mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-15 20:13:41 +02:00
removed unnecessary imports from tests
This commit is contained in:
parent
bb9790acd7
commit
e46746e4ca
4 changed files with 12 additions and 22 deletions
|
@ -1,16 +1,13 @@
|
|||
import autograd.numpy as np
|
||||
import os
|
||||
import random
|
||||
import string
|
||||
import copy
|
||||
import math
|
||||
import scipy.optimize
|
||||
from scipy.odr import ODR, Model, Data, RealData
|
||||
from scipy.odr import ODR, Model, RealData
|
||||
import pyerrors as pe
|
||||
import pytest
|
||||
|
||||
np.random.seed(0)
|
||||
|
||||
|
||||
def test_standard_fit():
|
||||
dim = 10 + int(30 * np.random.rand())
|
||||
x = np.arange(dim)
|
||||
|
@ -69,7 +66,7 @@ def test_odr_fit():
|
|||
|
||||
data = RealData([o.value for o in ox], [o.value for o in oy], sx=[o.dvalue for o in ox], sy=[o.dvalue for o in oy])
|
||||
model = Model(func)
|
||||
odr = ODR(data, model, [0,0], partol=np.finfo(np.float64).eps)
|
||||
odr = ODR(data, model, [0, 0], partol=np.finfo(np.float64).eps)
|
||||
odr.set_job(fit_type=0, deriv=1)
|
||||
output = odr.run()
|
||||
|
||||
|
@ -79,8 +76,8 @@ def test_odr_fit():
|
|||
for i in range(2):
|
||||
beta[i].gamma_method(e_tag=5, S=1.0)
|
||||
assert math.isclose(beta[i].value, output.beta[i], rel_tol=1e-5)
|
||||
assert math.isclose(output.cov_beta[i,i], beta[i].dvalue**2, rel_tol=2.5e-1), str(output.cov_beta[i,i]) + ' ' + str(beta[i].dvalue**2)
|
||||
assert math.isclose(pe.covariance(beta[0], beta[1]), output.cov_beta[0,1], rel_tol=2.5e-1)
|
||||
assert math.isclose(output.cov_beta[i, i], beta[i].dvalue ** 2, rel_tol=2.5e-1), str(output.cov_beta[i, i]) + ' ' + str(beta[i].dvalue ** 2)
|
||||
assert math.isclose(pe.covariance(beta[0], beta[1]), output.cov_beta[0, 1], rel_tol=2.5e-1)
|
||||
pe.Obs.e_tag_global = 0
|
||||
|
||||
|
||||
|
@ -94,7 +91,7 @@ def test_odr_derivatives():
|
|||
loc_xvalue = n + np.random.normal(0.0, x_err)
|
||||
x.append(pe.pseudo_Obs(loc_xvalue, x_err, str(n)))
|
||||
y.append(pe.pseudo_Obs((lambda x: x ** 2 - 1)(loc_xvalue) +
|
||||
np.random.normal(0.0, y_err), y_err, str(n)))
|
||||
np.random.normal(0.0, y_err), y_err, str(n)))
|
||||
|
||||
def func(a, x):
|
||||
return a[0] + a[1] * x ** 2
|
||||
|
@ -103,4 +100,4 @@ def test_odr_derivatives():
|
|||
|
||||
tfit = pe.fits.fit_general(x, y, func, base_step=0.1, step_ratio=1.1, num_steps=20)
|
||||
assert np.abs(np.max(np.array(list(fit1[1].deltas.values()))
|
||||
- np.array(list(tfit[1].deltas.values())))) < 10e-8
|
||||
- np.array(list(tfit[1].deltas.values())))) < 10e-8
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue