[Fix] corrected expected_chisquare by adding the number of priors (#274)

* [Fix] corrected expected_chisquare by adding the number of priors

* test/fits_test.py: dof and expected chisquare the same in uncorrelated fit w. prior to uncorrelated data
This commit is contained in:
Pia Leonie Jones Petrak 2025-10-22 09:36:01 -04:00 committed by GitHub
commit e0076ccea9
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 79 additions and 1 deletions

View file

@ -1611,3 +1611,81 @@ def old_prior_fit(x, y, func, priors, silent=False, **kwargs):
qqplot(x, y, func, result)
return output
def test_dof_prior_fit():
"""Performs an uncorrelated fit with a prior to uncorrelated data then
the expected chisquare and the usual dof need to agree"""
N = 5
def fitf(a, x):
return a[0] + 0 * x
x = [1. for i in range(N)]
y = [pe.cov_Obs(i, .1, '%d' % (i)) for i in range(N)]
[o.gm() for o in y]
res = pe.fits.least_squares(x, y, fitf, expected_chisquare=True, priors=[pe.cov_Obs(3, 1, 'p')])
assert res.chisquare_by_expected_chisquare == res.chisquare_by_dof
num_samples = 400
N = 10
x = norm.rvs(size=(N, num_samples)) # generate random numbers
r = np.zeros((N, N))
for i in range(N):
for j in range(N):
if(i==j):
r[i, j] = 1.0 # element in correlation matrix
errl = np.sqrt([3.4, 2.5, 3.6, 2.8, 4.2, 4.7, 4.9, 5.1, 3.2, 4.2]) # set y errors
for i in range(N):
for j in range(N):
if(i==j):
r[i, j] *= errl[i] * errl[j] # element in covariance matrix
c = cholesky(r, lower=True)
y = np.dot(c, x)
x = np.arange(N)
x_dict = {}
y_dict = {}
for i,item in enumerate(x):
x_dict[str(item)] = [x[i]]
for linear in [True, False]:
data = []
for i in range(N):
if linear:
data.append(pe.Obs([[i + 1 + o for o in y[i]]], ['ens'+str(i)]))
else:
data.append(pe.Obs([[np.exp(-(i + 1)) + np.exp(-(i + 1)) * o for o in y[i]]], ['ens'+str(i)]))
[o.gamma_method() for o in data]
data_dict = {}
for i,item in enumerate(x):
data_dict[str(item)] = [data[i]]
corr = pe.covariance(data, correlation=True)
chol = np.linalg.cholesky(corr)
covdiag = np.diag(1 / np.asarray([o.dvalue for o in data]))
chol_inv = scipy.linalg.solve_triangular(chol, covdiag, lower=True)
chol_inv_keys = [""]
chol_inv_keys_combined_fit = [str(item) for i,item in enumerate(x)]
if linear:
def fitf(p, x):
return p[1] + p[0] * x
fitf_dict = {}
for i,item in enumerate(x):
fitf_dict[str(item)] = fitf
else:
def fitf(p, x):
return p[1] * anp.exp(-p[0] * x)
fitf_dict = {}
for i,item in enumerate(x):
fitf_dict[str(item)] = fitf
fit_exp = pe.least_squares(x, data, fitf, expected_chisquare=True, priors = {0:pe.cov_Obs(1.0, 1, 'p')})
fit_cov = pe.least_squares(x, data, fitf, correlated_fit = True, inv_chol_cov_matrix = [chol_inv,chol_inv_keys], priors = {0:pe.cov_Obs(1.0, 1, 'p')})
assert np.isclose(fit_exp.chisquare_by_expected_chisquare,fit_exp.chisquare_by_dof,atol=1e-8)
assert np.isclose(fit_exp.chisquare_by_expected_chisquare,fit_cov.chisquare_by_dof,atol=1e-8)