further instances of np.float removed

This commit is contained in:
Fabian Joswig 2021-10-12 14:12:21 +01:00
parent ef35dd8684
commit cddf6ddf6b
3 changed files with 5 additions and 5 deletions

View file

@ -256,7 +256,7 @@ def odr_fit(x, y, func, silent=False, **kwargs):
data = RealData(x_f, y_f, sx=dx_f, sy=dy_f) data = RealData(x_f, y_f, sx=dx_f, sy=dy_f)
model = Model(func) model = Model(func)
odr = ODR(data, model, x0, partol=np.finfo(np.float).eps) odr = ODR(data, model, x0, partol=np.finfo(np.float64).eps)
odr.set_job(fit_type=0, deriv=1) odr.set_job(fit_type=0, deriv=1)
output = odr.run() output = odr.run()
@ -610,7 +610,7 @@ def covariance_matrix(y):
def error_band(x, func, beta): def error_band(x, func, beta):
"""Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta.""" """Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta."""
cov = covariance_matrix(beta) cov = covariance_matrix(beta)
if np.any(np.abs(cov - cov.T) > 1000 * np.finfo(np.float).eps): if np.any(np.abs(cov - cov.T) > 1000 * np.finfo(np.float64).eps):
print('Warning, Covariance matrix is not symmetric within floating point precision') print('Warning, Covariance matrix is not symmetric within floating point precision')
print('cov - cov.T:') print('cov - cov.T:')
print(cov - cov.T) print(cov - cov.T)
@ -716,7 +716,7 @@ def fit_general(x, y, func, silent=False, **kwargs):
model = Model(func) model = Model(func)
odr = ODR(data, model, beta0, partol=np.finfo(np.float).eps) odr = ODR(data, model, beta0, partol=np.finfo(np.float64).eps)
odr.set_job(fit_type=fit_type, deriv=1) odr.set_job(fit_type=fit_type, deriv=1)
output = odr.run() output = odr.run()
if print_output and not silent: if print_output and not silent:

View file

@ -71,7 +71,7 @@ def ks_test(obs=None):
plt.ylabel('Cumulative probability') plt.ylabel('Cumulative probability')
plt.title(str(bins) + ' Q values') plt.title(str(bins) + ' Q values')
n = np.arange(1, bins + 1) / np.float(bins) n = np.arange(1, bins + 1) / np.float64(bins)
Xs = np.sort(Qs) Xs = np.sort(Qs)
plt.step(Xs, n) plt.step(Xs, n)
diffs = n - Xs diffs = n - Xs

View file

@ -297,7 +297,7 @@ class Obs:
self.e_windowsize[e_name] = n self.e_windowsize[e_name] = n
break break
if len(self.e_content[e_name]) > 1 and self.e_dvalue[e_name] > np.finfo(np.float).eps: if len(self.e_content[e_name]) > 1 and self.e_dvalue[e_name] > np.finfo(np.float64).eps:
e_mean = 0 e_mean = 0
for r_name in self.e_content[e_name]: for r_name in self.e_content[e_name]:
e_mean += self.shape[r_name] * self.r_values[r_name] e_mean += self.shape[r_name] * self.r_values[r_name]