Resolved merge conflict in tests

This commit is contained in:
Simon Kuberski 2022-06-19 01:46:31 +02:00
commit c9789a34e6
27 changed files with 695 additions and 142 deletions

View file

@ -8,6 +8,8 @@ It is based on the gamma method [arXiv:hep-lat/0306017](https://arxiv.org/abs/he
- non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in [arXiv:1809.01289](https://arxiv.org/abs/1809.01289).
- real and complex matrix operations and their error propagation based on automatic differentiation (Matrix inverse, Cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...).
More detailed examples can found in the [GitHub repository](https://github.com/fjosw/pyerrors/tree/develop/examples) [![badge](https://img.shields.io/badge/-try%20it%20out-579ACA.svg?logo=)](https://mybinder.org/v2/gh/fjosw/pyerrors/HEAD?labpath=examples).
There exist similar publicly available implementations of gamma method error analysis suites in [Fortran](https://gitlab.ift.uam-csic.es/alberto/aderrors), [Julia](https://gitlab.ift.uam-csic.es/alberto/aderrors.jl) and [Python](https://github.com/mbruno46/pyobs).
## Basic example
@ -443,8 +445,10 @@ Julia I/O routines for the json.gz format, compatible with [ADerrors.jl](https:/
# Citing
If you use `pyerrors` for research that leads to a publication please consider citing:
- Ulli Wolff, *Monte Carlo errors with less errors*. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
- Stefan Schaefer, Rainer Sommer, Francesco Virotta, *Critical slowing down and error analysis in lattice QCD simulations*. Nucl.Phys.B 845 (2011) 93-119.
- Alberto Ramos, *Automatic differentiation for error analysis of Monte Carlo data*. Comput.Phys.Commun. 238 (2019) 19-35.
and
- Stefan Schaefer, Rainer Sommer, Francesco Virotta, *Critical slowing down and error analysis in lattice QCD simulations*. Nucl.Phys.B 845 (2011) 93-119.
where applicable.
'''
from .obs import *
from .correlators import *

View file

@ -155,7 +155,7 @@ class Corr:
raise Exception("Vectors are of wrong shape!")
if normalize:
vector_l, vector_r = vector_l / np.sqrt((vector_l @ vector_l)), vector_r / np.sqrt(vector_r @ vector_r)
newcontent = [None if (item is None) else np.asarray([vector_l.T @ item @ vector_r]) for item in self.content]
newcontent = [None if _check_for_none(self, item) else np.asarray([vector_l.T @ item @ vector_r]) for item in self.content]
else:
# There are no checks here yet. There are so many possible scenarios, where this can go wrong.
@ -163,7 +163,7 @@ class Corr:
for t in range(self.T):
vector_l[t], vector_r[t] = vector_l[t] / np.sqrt((vector_l[t] @ vector_l[t])), vector_r[t] / np.sqrt(vector_r[t] @ vector_r[t])
newcontent = [None if (self.content[t] is None or vector_l[t] is None or vector_r[t] is None) else np.asarray([vector_l[t].T @ self.content[t] @ vector_r[t]]) for t in range(self.T)]
newcontent = [None if (_check_for_none(self, self.content[t]) or vector_l[t] is None or vector_r[t] is None) else np.asarray([vector_l[t].T @ self.content[t] @ vector_r[t]]) for t in range(self.T)]
return Corr(newcontent)
def item(self, i, j):
@ -197,6 +197,8 @@ class Corr:
def symmetric(self):
""" Symmetrize the correlator around x0=0."""
if self.N != 1:
raise Exception('symmetric cannot be safely applied to multi-dimensional correlators.')
if self.T % 2 != 0:
raise Exception("Can not symmetrize odd T")
@ -215,6 +217,8 @@ class Corr:
def anti_symmetric(self):
"""Anti-symmetrize the correlator around x0=0."""
if self.N != 1:
raise Exception('anti_symmetric cannot be safely applied to multi-dimensional correlators.')
if self.T % 2 != 0:
raise Exception("Can not symmetrize odd T")
@ -236,7 +240,7 @@ class Corr:
def matrix_symmetric(self):
"""Symmetrizes the correlator matrices on every timeslice."""
if self.N > 1:
transposed = [None if (G is None) else G.T for G in self.content]
transposed = [None if _check_for_none(self, G) else G.T for G in self.content]
return 0.5 * (Corr(transposed) + self)
if self.N == 1:
raise Exception("Trying to symmetrize a correlator matrix, that already has N=1.")
@ -419,13 +423,15 @@ class Corr:
Can either be an Obs which is correlated with all entries of the
correlator or a Corr of same length.
"""
if self.N != 1:
raise Exception("Only one-dimensional correlators can be safely correlated.")
new_content = []
for x0, t_slice in enumerate(self.content):
if t_slice is None:
if _check_for_none(self, t_slice):
new_content.append(None)
else:
if isinstance(partner, Corr):
if partner.content[x0] is None:
if _check_for_none(partner, partner.content[x0]):
new_content.append(None)
else:
new_content.append(np.array([correlate(o, partner.content[x0][0]) for o in t_slice]))
@ -449,9 +455,11 @@ class Corr:
the reweighting factor on all configurations in weight.idl and not
on the configurations in obs[i].idl.
"""
if self.N != 1:
raise Exception("Reweighting only implemented for one-dimensional correlators.")
new_content = []
for t_slice in self.content:
if t_slice is None:
if _check_for_none(self, t_slice):
new_content.append(None)
else:
new_content.append(np.array(reweight(weight, t_slice, **kwargs)))
@ -467,6 +475,8 @@ class Corr:
partity : int
Parity quantum number of the correlator, can be +1 or -1
"""
if self.N != 1:
raise Exception("T_symmetry only implemented for one-dimensional correlators.")
if not isinstance(partner, Corr):
raise Exception("T partner has to be a Corr object.")
if parity not in [+1, -1]:
@ -494,6 +504,8 @@ class Corr:
decides which definition of the finite differences derivative is used.
Available choice: symmetric, forward, backward, improved, default: symmetric
"""
if self.N != 1:
raise Exception("deriv only implemented for one-dimensional correlators.")
if variant == "symmetric":
newcontent = []
for t in range(1, self.T - 1):
@ -546,6 +558,8 @@ class Corr:
decides which definition of the finite differences derivative is used.
Available choice: symmetric, improved, default: symmetric
"""
if self.N != 1:
raise Exception("second_deriv only implemented for one-dimensional correlators.")
if variant == "symmetric":
newcontent = []
for t in range(1, self.T - 1):
@ -588,7 +602,7 @@ class Corr:
if variant == 'log':
newcontent = []
for t in range(self.T - 1):
if (self.content[t] is None) or (self.content[t + 1] is None):
if ((self.content[t] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0):
newcontent.append(None)
else:
newcontent.append(self.content[t] / self.content[t + 1])
@ -608,7 +622,7 @@ class Corr:
newcontent = []
for t in range(self.T - 1):
if (self.content[t] is None) or (self.content[t + 1] is None):
if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 1][0].value == 0):
newcontent.append(None)
# Fill the two timeslices in the middle of the lattice with their predecessors
elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]:
@ -623,7 +637,7 @@ class Corr:
elif variant == 'arccosh':
newcontent = []
for t in range(1, self.T - 1):
if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None):
if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None) or (self.content[t][0].value == 0):
newcontent.append(None)
else:
newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t]))
@ -758,7 +772,7 @@ class Corr:
x, y, y_err = self.plottable()
if hide_sigma:
hide_from = np.argmax((hide_sigma * np.array(y_err)) > np.abs(y)) - 1
hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1
else:
hide_from = None
ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=self.tag)
@ -781,7 +795,7 @@ class Corr:
corr.gamma_method()
x, y, y_err = corr.plottable()
if hide_sigma:
hide_from = np.argmax((hide_sigma * np.array(y_err)) > np.abs(y)) - 1
hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1
else:
hide_from = None
plt.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor'])
@ -883,12 +897,14 @@ class Corr:
else:
raise Exception("Unknown datatype " + str(datatype))
def print(self, range=[0, None]):
print(self.__repr__(range))
def print(self, print_range=None):
print(self.__repr__(print_range))
def __repr__(self, print_range=None):
if print_range is None:
print_range = [0, None]
def __repr__(self, range=[0, None]):
content_string = ""
content_string += "Corr T=" + str(self.T) + " N=" + str(self.N) + "\n" # +" filled with"+ str(type(self.content[0][0])) there should be a good solution here
if self.tag is not None:
@ -896,14 +912,14 @@ class Corr:
if self.N != 1:
return content_string
if range[1]:
range[1] += 1
if print_range[1]:
print_range[1] += 1
content_string += 'x0/a\tCorr(x0/a)\n------------------\n'
for i, sub_corr in enumerate(self.content[range[0]:range[1]]):
for i, sub_corr in enumerate(self.content[print_range[0]:print_range[1]]):
if sub_corr is None:
content_string += str(i + range[0]) + '\n'
content_string += str(i + print_range[0]) + '\n'
else:
content_string += str(i + range[0])
content_string += str(i + print_range[0])
for element in sub_corr:
content_string += '\t' + ' ' * int(element >= 0) + str(element)
content_string += '\n'
@ -923,7 +939,7 @@ class Corr:
raise Exception("Addition of Corrs with different shape")
newcontent = []
for t in range(self.T):
if (self.content[t] is None) or (y.content[t] is None):
if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]):
newcontent.append(None)
else:
newcontent.append(self.content[t] + y.content[t])
@ -932,7 +948,7 @@ class Corr:
elif isinstance(y, (Obs, int, float, CObs)):
newcontent = []
for t in range(self.T):
if (self.content[t] is None):
if _check_for_none(self, self.content[t]):
newcontent.append(None)
else:
newcontent.append(self.content[t] + y)
@ -951,7 +967,7 @@ class Corr:
raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
newcontent = []
for t in range(self.T):
if (self.content[t] is None) or (y.content[t] is None):
if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]):
newcontent.append(None)
else:
newcontent.append(self.content[t] * y.content[t])
@ -960,7 +976,7 @@ class Corr:
elif isinstance(y, (Obs, int, float, CObs)):
newcontent = []
for t in range(self.T):
if (self.content[t] is None):
if _check_for_none(self, self.content[t]):
newcontent.append(None)
else:
newcontent.append(self.content[t] * y)
@ -979,12 +995,12 @@ class Corr:
raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
newcontent = []
for t in range(self.T):
if (self.content[t] is None) or (y.content[t] is None):
if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]):
newcontent.append(None)
else:
newcontent.append(self.content[t] / y.content[t])
for t in range(self.T):
if newcontent[t] is None:
if _check_for_none(self, newcontent[t]):
continue
if np.isnan(np.sum(newcontent[t]).value):
newcontent[t] = None
@ -1003,7 +1019,7 @@ class Corr:
newcontent = []
for t in range(self.T):
if (self.content[t] is None):
if _check_for_none(self, self.content[t]):
newcontent.append(None)
else:
newcontent.append(self.content[t] / y)
@ -1014,7 +1030,7 @@ class Corr:
raise Exception('Division by zero will return undefined correlator')
newcontent = []
for t in range(self.T):
if (self.content[t] is None):
if _check_for_none(self, self.content[t]):
newcontent.append(None)
else:
newcontent.append(self.content[t] / y)
@ -1028,7 +1044,7 @@ class Corr:
raise TypeError('Corr / wrong type')
def __neg__(self):
newcontent = [None if (item is None) else -1. * item for item in self.content]
newcontent = [None if _check_for_none(self, item) else -1. * item for item in self.content]
return Corr(newcontent, prange=self.prange)
def __sub__(self, y):
@ -1036,31 +1052,31 @@ class Corr:
def __pow__(self, y):
if isinstance(y, (Obs, int, float, CObs)):
newcontent = [None if (item is None) else item**y for item in self.content]
newcontent = [None if _check_for_none(self, item) else item**y for item in self.content]
return Corr(newcontent, prange=self.prange)
else:
raise TypeError('Type of exponent not supported')
def __abs__(self):
newcontent = [None if (item is None) else np.abs(item) for item in self.content]
newcontent = [None if _check_for_none(self, item) else np.abs(item) for item in self.content]
return Corr(newcontent, prange=self.prange)
# The numpy functions:
def sqrt(self):
return self**0.5
return self ** 0.5
def log(self):
newcontent = [None if (item is None) else np.log(item) for item in self.content]
newcontent = [None if _check_for_none(self, item) else np.log(item) for item in self.content]
return Corr(newcontent, prange=self.prange)
def exp(self):
newcontent = [None if (item is None) else np.exp(item) for item in self.content]
newcontent = [None if _check_for_none(self, item) else np.exp(item) for item in self.content]
return Corr(newcontent, prange=self.prange)
def _apply_func_to_corr(self, func):
newcontent = [None if (item is None) else func(item) for item in self.content]
newcontent = [None if _check_for_none(self, item) else func(item) for item in self.content]
for t in range(self.T):
if newcontent[t] is None:
if _check_for_none(self, newcontent[t]):
continue
if np.isnan(np.sum(newcontent[t]).value):
newcontent[t] = None
@ -1222,6 +1238,11 @@ def _sort_vectors(vec_set, ts):
return sorted_vec_set
def _check_for_none(corr, entry):
"""Checks if entry for correlator corr is None"""
return len(list(filter(None, np.asarray(entry).flatten()))) < corr.N ** 2
def _GEVP_solver(Gt, G0):
"""Helper function for solving the GEVP and sorting the eigenvectors.

View file

@ -8,7 +8,6 @@ import scipy.stats
import matplotlib.pyplot as plt
from matplotlib import gridspec
from scipy.odr import ODR, Model, RealData
from scipy.stats import chi2
import iminuit
from autograd import jacobian
from autograd import elementwise_grad as egrad
@ -34,9 +33,9 @@ class Fit_result(Sequence):
def __len__(self):
return len(self.fit_parameters)
def gamma_method(self):
def gamma_method(self, **kwargs):
"""Apply the gamma method to all fit parameters"""
[o.gamma_method() for o in self.fit_parameters]
[o.gamma_method(**kwargs) for o in self.fit_parameters]
def __str__(self):
my_str = 'Goodness of fit:\n'
@ -95,7 +94,8 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
If true all output to the console is omitted (default False).
initial_guess : list
can provide an initial guess for the input parameters. Relevant for
non-linear fits with many parameters.
non-linear fits with many parameters. In case of correlated fits the guess is used to perform
an uncorrelated fit which then serves as guess for the correlated fit.
method : str, optional
can be used to choose an alternative method for the minimization of chisquare.
The possible methods are the ones which can be used for scipy.optimize.minimize and
@ -264,7 +264,7 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
fitp = out.beta
try:
hess_inv = np.linalg.pinv(jacobian(jacobian(odr_chisquare))(np.concatenate((fitp, out.xplus.ravel()))))
hess = jacobian(jacobian(odr_chisquare))(np.concatenate((fitp, out.xplus.ravel())))
except TypeError:
raise Exception("It is required to use autograd.numpy instead of numpy within fit functions, see the documentation for details.") from None
@ -275,7 +275,11 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
jac_jac_x = jacobian(jacobian(odr_chisquare_compact_x))(np.concatenate((fitp, out.xplus.ravel(), x_f.ravel())))
deriv_x = -hess_inv @ jac_jac_x[:n_parms + m, n_parms + m:]
# Compute hess^{-1} @ jac_jac_x[:n_parms + m, n_parms + m:] using LAPACK dgesv
try:
deriv_x = -scipy.linalg.solve(hess, jac_jac_x[:n_parms + m, n_parms + m:])
except np.linalg.LinAlgError:
raise Exception("Cannot invert hessian matrix.")
def odr_chisquare_compact_y(d):
model = func(d[:n_parms], d[n_parms:n_parms + m].reshape(x_shape))
@ -284,7 +288,11 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
jac_jac_y = jacobian(jacobian(odr_chisquare_compact_y))(np.concatenate((fitp, out.xplus.ravel(), y_f)))
deriv_y = -hess_inv @ jac_jac_y[:n_parms + m, n_parms + m:]
# Compute hess^{-1} @ jac_jac_y[:n_parms + m, n_parms + m:] using LAPACK dgesv
try:
deriv_y = -scipy.linalg.solve(hess, jac_jac_y[:n_parms + m, n_parms + m:])
except np.linalg.LinAlgError:
raise Exception("Cannot invert hessian matrix.")
result = []
for i in range(n_parms):
@ -294,7 +302,7 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
output.odr_chisquare = odr_chisquare(np.concatenate((out.beta, out.xplus.ravel())))
output.dof = x.shape[-1] - n_parms
output.p_value = 1 - chi2.cdf(output.odr_chisquare, output.dof)
output.p_value = 1 - scipy.stats.chi2.cdf(output.odr_chisquare, output.dof)
return output
@ -469,18 +477,17 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
if condn > 1 / np.sqrt(np.finfo(float).eps):
warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning)
chol = np.linalg.cholesky(corr)
chol_inv = np.linalg.inv(chol)
chol_inv = np.dot(chol_inv, covdiag)
chol_inv = scipy.linalg.solve_triangular(chol, covdiag, lower=True)
def chisqfunc(p):
def chisqfunc_corr(p):
model = func(p, x)
chisq = anp.sum(anp.dot(chol_inv, (y_f - model)) ** 2)
return chisq
else:
def chisqfunc(p):
model = func(p, x)
chisq = anp.sum(((y_f - model) / dy_f) ** 2)
return chisq
def chisqfunc(p):
model = func(p, x)
chisq = anp.sum(((y_f - model) / dy_f) ** 2)
return chisq
output.method = kwargs.get('method', 'Levenberg-Marquardt')
if not silent:
@ -489,29 +496,38 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
if output.method != 'Levenberg-Marquardt':
if output.method == 'migrad':
fit_result = iminuit.minimize(chisqfunc, x0, tol=1e-4) # Stopping criterion 0.002 * tol * errordef
if kwargs.get('correlated_fit') is True:
fit_result = iminuit.minimize(chisqfunc_corr, fit_result.x, tol=1e-4) # Stopping criterion 0.002 * tol * errordef
output.iterations = fit_result.nfev
else:
fit_result = scipy.optimize.minimize(chisqfunc, x0, method=kwargs.get('method'), tol=1e-12)
if kwargs.get('correlated_fit') is True:
fit_result = scipy.optimize.minimize(chisqfunc_corr, fit_result.x, method=kwargs.get('method'), tol=1e-12)
output.iterations = fit_result.nit
chisquare = fit_result.fun
else:
if kwargs.get('correlated_fit') is True:
def chisqfunc_residuals(p):
def chisqfunc_residuals_corr(p):
model = func(p, x)
chisq = anp.dot(chol_inv, (y_f - model))
return chisq
else:
def chisqfunc_residuals(p):
model = func(p, x)
chisq = ((y_f - model) / dy_f)
return chisq
def chisqfunc_residuals(p):
model = func(p, x)
chisq = ((y_f - model) / dy_f)
return chisq
fit_result = scipy.optimize.least_squares(chisqfunc_residuals, x0, method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15)
if kwargs.get('correlated_fit') is True:
fit_result = scipy.optimize.least_squares(chisqfunc_residuals_corr, fit_result.x, method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15)
chisquare = np.sum(fit_result.fun ** 2)
if kwargs.get('correlated_fit') is True:
assert np.isclose(chisquare, chisqfunc_corr(fit_result.x), atol=1e-14)
else:
assert np.isclose(chisquare, chisqfunc(fit_result.x), atol=1e-14)
output.iterations = fit_result.nfev
@ -542,7 +558,10 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
fitp = fit_result.x
try:
hess_inv = np.linalg.pinv(jacobian(jacobian(chisqfunc))(fitp))
if kwargs.get('correlated_fit') is True:
hess = jacobian(jacobian(chisqfunc_corr))(fitp)
else:
hess = jacobian(jacobian(chisqfunc))(fitp)
except TypeError:
raise Exception("It is required to use autograd.numpy instead of numpy within fit functions, see the documentation for details.") from None
@ -560,7 +579,11 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
jac_jac = jacobian(jacobian(chisqfunc_compact))(np.concatenate((fitp, y_f)))
deriv = -hess_inv @ jac_jac[:n_parms, n_parms:]
# Compute hess^{-1} @ jac_jac[:n_parms, n_parms:] using LAPACK dgesv
try:
deriv = -scipy.linalg.solve(hess, jac_jac[:n_parms, n_parms:])
except np.linalg.LinAlgError:
raise Exception("Cannot invert hessian matrix.")
result = []
for i in range(n_parms):
@ -568,9 +591,9 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
output.fit_parameters = result
output.chisquare = chisqfunc(fit_result.x)
output.chisquare = chisquare
output.dof = x.shape[-1] - n_parms
output.p_value = 1 - chi2.cdf(output.chisquare, output.dof)
output.p_value = 1 - scipy.stats.chi2.cdf(output.chisquare, output.dof)
if kwargs.get('resplot') is True:
residual_plot(x, y, func, result)

View file

@ -61,7 +61,7 @@ def read_ADerrors(file_path, bdio_path='./libbdio.so', **kwargs):
return_list = []
print('Reading of bdio file started')
while 1 > 0:
while True:
bdio_seek_record(fbdio)
ruinfo = bdio_get_ruinfo(fbdio)
@ -373,7 +373,7 @@ def read_mesons(file_path, bdio_path='./libbdio.so', **kwargs):
fbdio = bdio_open(ctypes.c_char_p(b_path), ctypes.c_char_p(b_read), ctypes.c_char_p(b_form))
print('Reading of bdio file started')
while 1 > 0:
while True:
bdio_seek_record(fbdio)
ruinfo = bdio_get_ruinfo(fbdio)
if ruinfo < 0:
@ -582,7 +582,7 @@ def read_dSdm(file_path, bdio_path='./libbdio.so', **kwargs):
fbdio = bdio_open(ctypes.c_char_p(b_path), ctypes.c_char_p(b_read), ctypes.c_char_p(b_form))
print('Reading of bdio file started')
while 1 > 0:
while True:
bdio_seek_record(fbdio)
ruinfo = bdio_get_ruinfo(fbdio)
if ruinfo < 0:

View file

@ -648,7 +648,7 @@ def _dobsdict_to_xmlstring_spaces(d, space=' '):
return o
def create_dobs_string(obsl, name, spec='dobs v1.0', origin='', symbol=[], who=None, enstags={}):
def create_dobs_string(obsl, name, spec='dobs v1.0', origin='', symbol=[], who=None, enstags=None):
"""Generate the string for the export of a list of Obs or structures containing Obs
to a .xml.gz file according to the Zeuthen dobs format.
@ -674,6 +674,8 @@ def create_dobs_string(obsl, name, spec='dobs v1.0', origin='', symbol=[], who=N
Provide alternative enstag for ensembles in the form enstags = {ename: enstag}
Otherwise, the ensemble name is used.
"""
if enstags is None:
enstags = {}
od = {}
r_names = []
for o in obsl:
@ -831,7 +833,7 @@ def create_dobs_string(obsl, name, spec='dobs v1.0', origin='', symbol=[], who=N
return rs
def write_dobs(obsl, fname, name, spec='dobs v1.0', origin='', symbol=[], who=None, enstags={}, gz=True):
def write_dobs(obsl, fname, name, spec='dobs v1.0', origin='', symbol=[], who=None, enstags=None, gz=True):
"""Export a list of Obs or structures containing Obs to a .xml.gz file
according to the Zeuthen dobs format.
@ -861,6 +863,8 @@ def write_dobs(obsl, fname, name, spec='dobs v1.0', origin='', symbol=[], who=No
gz : bool
If True, the output is a gzipped XML. If False, the output is a XML file.
"""
if enstags is None:
enstags = {}
dobsstring = create_dobs_string(obsl, name, spec, origin, symbol, who, enstags=enstags)

View file

@ -55,8 +55,8 @@ def _get_files(path, filestem, idl):
return filtered_files, idx
def read_meson_hd5(path, filestem, ens_id, meson='meson_0', idl=None):
"""Read hadrons meson hdf5 file and extract the meson labeled 'meson'
def read_meson_hd5(path, filestem, ens_id, meson='meson_0', idl=None, gammas=None):
r'''Read hadrons meson hdf5 file and extract the meson labeled 'meson'
Parameters
-----------------
@ -69,13 +69,31 @@ def read_meson_hd5(path, filestem, ens_id, meson='meson_0', idl=None):
meson : str
label of the meson to be extracted, standard value meson_0 which
corresponds to the pseudoscalar pseudoscalar two-point function.
gammas : tuple of strings
Instrad of a meson label one can also provide a tuple of two strings
indicating the gamma matrices at source and sink.
("Gamma5", "Gamma5") corresponds to the pseudoscalar pseudoscalar
two-point function. The gammas argument dominateds over meson.
idl : range
If specified only configurations in the given range are read in.
"""
'''
files, idx = _get_files(path, filestem, idl)
tree = meson.rsplit('_')[0]
if gammas is not None:
h5file = h5py.File(path + '/' + files[0], "r")
found_meson = None
for key in h5file[tree].keys():
if gammas[0] == h5file[tree][key].attrs["gamma_snk"][0].decode() and h5file[tree][key].attrs["gamma_src"][0].decode() == gammas[1]:
found_meson = key
break
h5file.close()
if found_meson:
meson = found_meson
else:
raise Exception("Source Sink combination " + str(gammas) + " not found.")
corr_data = []
infos = []
for hd5_file in files:
@ -153,10 +171,6 @@ def read_DistillationContraction_hd5(path, ens_id, diagrams=["direct"], idl=None
identifier = tuple(identifier)
# "DistillationContraction/Metadata/DmfSuffix" contains info about different quarks, irrelevant in the SU(3) case.
check_traj = h5file["DistillationContraction/Metadata"].attrs.get("Traj")[0]
assert check_traj == n_traj
for diagram in diagrams:
real_data = np.zeros(Nt)
for x0 in range(Nt):

View file

@ -165,7 +165,7 @@ def create_json_string(ol, description='', indent=1):
d = {}
d['program'] = 'pyerrors %s' % (pyerrorsversion.__version__)
d['version'] = '1.0'
d['version'] = '1.1'
d['who'] = getpass.getuser()
d['date'] = datetime.datetime.now().astimezone().strftime('%Y-%m-%d %H:%M:%S %z')
d['host'] = socket.gethostname() + ', ' + platform.platform()
@ -294,6 +294,7 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
if od:
ret = Obs([[ddi[0] + values[0] for ddi in di] for di in od['deltas']], od['names'], idl=od['idl'])
ret._value = values[0]
ret.is_merged = od['is_merged']
else:
ret = Obs([], [], means=[])
@ -319,6 +320,7 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
for i in range(layout):
if od:
ret.append(Obs([list(di[:, i] + values[i]) for di in od['deltas']], od['names'], idl=od['idl']))
ret[-1]._value = values[i]
ret[-1].is_merged = od['is_merged']
else:
ret.append(Obs([], [], means=[]))
@ -346,6 +348,7 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
for i in range(N):
if od:
ret.append(Obs([di[:, i] + values[i] for di in od['deltas']], od['names'], idl=od['idl']))
ret[-1]._value = values[i]
ret[-1].is_merged = od['is_merged']
else:
ret.append(Obs([], [], means=[]))

View file

@ -17,8 +17,6 @@ def read_pbp(path, prefix, **kwargs):
list which contains the last config to be read for each replicum
"""
extract_nfct = 1
ls = []
for (dirpath, dirnames, filenames) in os.walk(path):
ls.extend(filenames)
@ -78,14 +76,10 @@ def read_pbp(path, prefix, **kwargs):
# This block is necessary for openQCD1.6 ms1 files
nfct = []
if extract_nfct == 1:
for i in range(nrw):
t = fp.read(4)
nfct.append(struct.unpack('i', t)[0])
print('nfct: ', nfct) # Hasenbusch factor, 1 for rat reweighting
else:
for i in range(nrw):
nfct.append(1)
for i in range(nrw):
t = fp.read(4)
nfct.append(struct.unpack('i', t)[0])
print('nfct: ', nfct) # Hasenbusch factor, 1 for rat reweighting
nsrc = []
for i in range(nrw):
@ -93,7 +87,7 @@ def read_pbp(path, prefix, **kwargs):
nsrc.append(struct.unpack('i', t)[0])
# body
while 0 < 1:
while True:
t = fp.read(4)
if len(t) < 4:
break

View file

@ -150,7 +150,7 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
print('something is wrong!')
configlist.append([])
while 0 < 1:
while True:
t = fp.read(4)
if len(t) < 4:
break
@ -362,7 +362,7 @@ def extract_t0(path, prefix, dtr_read, xmin, spatial_extent, fit_range=5, **kwar
Ysl = []
configlist.append([])
while 0 < 1:
while True:
t = fp.read(4)
if(len(t) < 4):
break
@ -657,7 +657,7 @@ def read_qtop(path, prefix, c, dtr_cnfg=1, version="openQCD", **kwargs):
nfl = 1
iobs = 8 * nfl # number of flow observables calculated
while 0 < 1:
while True:
t = fp.read(4)
if(len(t) < 4):
break
@ -682,7 +682,7 @@ def read_qtop(path, prefix, c, dtr_cnfg=1, version="openQCD", **kwargs):
t = fp.read(8)
eps = struct.unpack('d', t)[0]
while 0 < 1:
while True:
t = fp.read(4)
if(len(t) < 4):
break

View file

@ -1,5 +1,7 @@
import warnings
import pickle
from math import gcd
from functools import reduce
import numpy as np
import autograd.numpy as anp # Thinly-wrapped numpy
from autograd import jacobian
@ -981,6 +983,39 @@ def _merge_idx(idl):
return sorted(set().union(*idl))
def _intersection_idx(idl):
"""Returns the intersection of all lists in idl as sorted list
Parameters
----------
idl : list
List of lists or ranges.
"""
def _lcm(*args):
"""Returns the lowest common multiple of args.
From python 3.9 onwards the math library contains an lcm function."""
return reduce(lambda a, b: a * b // gcd(a, b), args)
# Use groupby to efficiently check whether all elements of idl are identical
try:
g = groupby(idl)
if next(g, True) and not next(g, False):
return idl[0]
except Exception:
pass
if np.all([type(idx) is range for idx in idl]):
if len(set([idx[0] for idx in idl])) == 1:
idstart = max([idx.start for idx in idl])
idstop = min([idx.stop for idx in idl])
idstep = _lcm(*[idx.step for idx in idl])
return range(idstart, idstop, idstep)
return sorted(set.intersection(*[set(o) for o in idl]))
def _expand_deltas_for_merge(deltas, idx, shape, new_idx):
"""Expand deltas defined on idx to the list of configs that is defined by new_idx.
New, empty entries are filled by 0. If idx and new_idx are of type range, the smallest
@ -1008,6 +1043,34 @@ def _expand_deltas_for_merge(deltas, idx, shape, new_idx):
return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))])
def _collapse_deltas_for_merge(deltas, idx, shape, new_idx):
"""Collapse deltas defined on idx to the list of configs that is defined by new_idx.
If idx and new_idx are of type range, the smallest
common divisor of the step sizes is used as new step size.
Parameters
----------
deltas : list
List of fluctuations
idx : list
List or range of configs on which the deltas are defined.
Has to be a subset of new_idx and has to be sorted in ascending order.
shape : list
Number of configs in idx.
new_idx : list
List of configs that defines the new range, has to be sorted in ascending order.
"""
if type(idx) is range and type(new_idx) is range:
if idx == new_idx:
return deltas
ret = np.zeros(new_idx[-1] - new_idx[0] + 1)
for i in range(shape):
if idx[i] in new_idx:
ret[idx[i] - new_idx[0]] = deltas[i]
return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))])
def _filter_zeroes(deltas, idx, eps=Obs.filter_eps):
"""Filter out all configurations with vanishing fluctuation such that they do not
contribute to the error estimate anymore. Returns the new deltas and
@ -1389,13 +1452,6 @@ def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs):
if isinstance(smooth, int):
corr = _smooth_eigenvalues(corr, smooth)
errors = [o.dvalue for o in obs]
cov = np.diag(errors) @ corr @ np.diag(errors)
eigenvalues = np.linalg.eigh(cov)[0]
if not np.all(eigenvalues >= 0):
warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning)
if visualize:
plt.matshow(corr, vmin=-1, vmax=1)
plt.set_cmap('RdBu')
@ -1404,8 +1460,15 @@ def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs):
if correlation is True:
return corr
else:
return cov
errors = [o.dvalue for o in obs]
cov = np.diag(errors) @ corr @ np.diag(errors)
eigenvalues = np.linalg.eigh(cov)[0]
if not np.all(eigenvalues >= 0):
warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning)
return cov
def _smooth_eigenvalues(corr, E):
@ -1429,8 +1492,8 @@ def _covariance_element(obs1, obs2):
"""Estimates the covariance of two Obs objects, neglecting autocorrelations."""
def calc_gamma(deltas1, deltas2, idx1, idx2, new_idx):
deltas1 = _expand_deltas_for_merge(deltas1, idx1, len(idx1), new_idx)
deltas2 = _expand_deltas_for_merge(deltas2, idx2, len(idx2), new_idx)
deltas1 = _collapse_deltas_for_merge(deltas1, idx1, len(idx1), new_idx)
deltas2 = _collapse_deltas_for_merge(deltas2, idx2, len(idx2), new_idx)
return np.sum(deltas1 * deltas2)
if set(obs1.names).isdisjoint(set(obs2.names)):
@ -1450,29 +1513,30 @@ def _covariance_element(obs1, obs2):
for r_name in obs1.e_content[e_name]:
if r_name not in obs2.e_content[e_name]:
continue
idl_d[r_name] = _merge_idx([obs1.idl[r_name], obs2.idl[r_name]])
idl_d[r_name] = _intersection_idx([obs1.idl[r_name], obs2.idl[r_name]])
gamma = 0.0
for r_name in obs1.e_content[e_name]:
if r_name not in obs2.e_content[e_name]:
continue
if len(idl_d[r_name]) == 0:
continue
gamma += calc_gamma(obs1.deltas[r_name], obs2.deltas[r_name], obs1.idl[r_name], obs2.idl[r_name], idl_d[r_name])
if gamma == 0.0:
continue
gamma_div = 0.0
e_N = 0
for r_name in obs1.e_content[e_name]:
if r_name not in obs2.e_content[e_name]:
continue
gamma_div += calc_gamma(np.ones(obs1.shape[r_name]), np.ones(obs2.shape[r_name]), obs1.idl[r_name], obs2.idl[r_name], idl_d[r_name])
e_N += len(idl_d[r_name])
gamma /= max(gamma_div, 1.0)
if len(idl_d[r_name]) == 0:
continue
gamma_div += np.sqrt(calc_gamma(obs1.deltas[r_name], obs1.deltas[r_name], obs1.idl[r_name], obs1.idl[r_name], idl_d[r_name]) * calc_gamma(obs2.deltas[r_name], obs2.deltas[r_name], obs2.idl[r_name], obs2.idl[r_name], idl_d[r_name]))
gamma /= gamma_div
# Bias correction hep-lat/0306017 eq. (49)
dvalue += (1 + 1 / e_N) * gamma / e_N
dvalue += gamma
for e_name in obs1.cov_names:

View file

@ -1 +1 @@
__version__ = "2.1.0+dev"
__version__ = "2.2.0+dev"