Resolved merge conflict in tests

This commit is contained in:
Simon Kuberski 2022-06-19 01:46:31 +02:00
commit c9789a34e6
27 changed files with 695 additions and 142 deletions

15
.github/workflows/binder.yml vendored Normal file
View file

@ -0,0 +1,15 @@
name: binder
on:
push:
branches:
- develop
jobs:
Create-MyBinderOrg-Cache:
runs-on: ubuntu-latest
steps:
- name: cache binder build on mybinder.org
uses: jupyterhub/repo2docker-action@master
with:
NO_PUSH: true
MYBINDERORG_TAG: ${{ github.event.ref }} # This builds the container on mybinder.org with the branch that was pushed on.

View file

@ -13,15 +13,15 @@ jobs:
pytest:
runs-on: ${{ matrix.os }}
strategy:
fail-fast: true
fail-fast: true
matrix:
os: [ubuntu-latest]
python-version: ["3.7", "3.8", "3.9", "3.10"]
include:
- os: macos-latest
python-version: 3.9
python-version: 3.9
- os: windows-latest
python-version: 3.9
python-version: 3.9
steps:
- name: Checkout source
@ -40,6 +40,7 @@ jobs:
pip install pytest
pip install pytest-cov
pip install pytest-benchmark
pip freeze
- name: Run tests
run: pytest --cov=pyerrors -vv

4
.gitignore vendored
View file

@ -6,6 +6,10 @@ __pycache__
.cache
examples/B1k2_pcac_plateau.p
examples/Untitled.*
examples/pcac_plateau_test_ensemble.json.gz
core.*
*.swp
htmlcov
build
pyerrors.egg-info
dist

View file

@ -2,6 +2,39 @@
All notable changes to this project will be documented in this file.
## [2.1.3] - 2022-06-13
### Fixed
- Further bugs in connection with correlator objects which have arrays with None entries as content fixed.
## [2.1.2] - 2022-06-10
### Fixed
- Bug in `Corr.matrix_symmetric` fixed which appeared when a time slice contained an array with `None` entries.
## [2.1.1] - 2022-06-06
### Fixed
- Bug in error propagation of correlated least square fits fixed.
- `Fit_result.gamma_method` can now be called with kwargs
## [2.1.0] - 2022-05-31
### Added
- `obs.covariance` now has the option to smooth small eigenvalues of the matrix with the method described in hep-lat/9412087.
- `Corr.prune` was added which can reduce the size of a correlator matrix before solving the GEVP.
- `Corr.show` has two additional optional arguments. `hide_sigma` to hide data points with large errors and `references` to display reference values as horizontal lines.
- I/O routines for ALPHA dobs format added.
- `input.hadrons` functionality extended.
### Changed
- The standard behavior of the `Corr.GEVP` method has changed. It now returns all eigenvectors of the system instead of only the specified ones as default. The standard way of sorting the eigenvectors was changed to `Eigenvalue`. The argument `sorted_list` was deprecated in favor of `sort`.
- Before performing a correlated fit the routine first runs an uncorrelated one to obtain a better guess for the initial parameters.
### Fixed
- `obs.covariance` now also gives correct estimators if data defined on non-identical configurations is passed to the function.
- Rounding errors in estimating derivatives of fit parameters with respect to input data from the inverse hessian reduced. This should only make a difference when the magnitude of the errors of different fit parameters vary vastly.
- Bug in json.gz format fixed which did not properly store the replica mean values. Format version bumped to 1.1.
- The GEVP matrix is now symmetrized before solving the system for all sorting options not only the one with fixed `ts`.
- Automatic range estimation improved in `fits.residual_plot`.
- Bugs in `input.bdio` fixed.
## [2.0.0] - 2022-03-31
### Added
- The possibility to work with Monte Carlo histories which are evenly or unevenly spaced was added.

View file

@ -1,4 +1,4 @@
[![flake8](https://github.com/fjosw/pyerrors/actions/workflows/flake8.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/flake8.yml) [![pytest](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml) [![examples](https://github.com/fjosw/pyerrors/actions/workflows/examples.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/examples.yml) [![docs](https://github.com/fjosw/pyerrors/actions/workflows/docs.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/docs.yml) [![](https://img.shields.io/badge/python-3.7+-blue.svg)](https://www.python.org/downloads/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![flake8](https://github.com/fjosw/pyerrors/actions/workflows/flake8.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/flake8.yml) [![pytest](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml) [![](https://img.shields.io/badge/python-3.7+-blue.svg)](https://www.python.org/downloads/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/fjosw/pyerrors/HEAD?labpath=examples)
# pyerrors
`pyerrors` is a python package for error computation and propagation of Markov chain Monte Carlo data.
@ -8,11 +8,12 @@
- **Bug reports:** https://github.com/fjosw/pyerrors/issues
## Installation
To install the current `develop` version run
To install the most recent release run
```bash
pip install pyerrors # Fresh install
pip install -U pyerrors # Upgrade
```
to install the current `develop` version run
```bash
pip install git+https://github.com/fjosw/pyerrors.git@develop
```
to install the most recent release run
```bash
pip install git+https://github.com/fjosw/pyerrors.git@master
```

View file

@ -21,6 +21,7 @@
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import pyerrors as pe"
]
@ -32,7 +33,8 @@
"outputs": [],
"source": [
"plt.style.use('./base_style.mplstyle')\n",
"plt.rc('text', usetex=True)"
"usetex = matplotlib.checkdep_usetex(True)\n",
"plt.rc('text', usetex=usetex)"
]
},
{

View file

@ -8,6 +8,7 @@
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import pyerrors as pe"
]
@ -20,7 +21,8 @@
"outputs": [],
"source": [
"plt.style.use('./base_style.mplstyle')\n",
"plt.rc('text', usetex=True)"
"usetex = matplotlib.checkdep_usetex(True)\n",
"plt.rc('text', usetex=usetex)"
]
},
{
@ -480,7 +482,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@ -494,7 +496,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
"version": "3.8.10"
}
},
"nbformat": 4,

View file

@ -7,6 +7,7 @@
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import pyerrors as pe"
]
@ -18,7 +19,8 @@
"outputs": [],
"source": [
"plt.style.use('./base_style.mplstyle')\n",
"plt.rc('text', usetex=True)"
"usetex = matplotlib.checkdep_usetex(True)\n",
"plt.rc('text', usetex=usetex)"
]
},
{

View file

@ -6,9 +6,10 @@
"metadata": {},
"outputs": [],
"source": [
"import pyerrors as pe\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt"
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import pyerrors as pe"
]
},
{
@ -18,7 +19,8 @@
"outputs": [],
"source": [
"plt.style.use('./base_style.mplstyle')\n",
"plt.rc('text', usetex=True)"
"usetex = matplotlib.checkdep_usetex(True)\n",
"plt.rc('text', usetex=usetex)"
]
},
{
@ -439,7 +441,7 @@
"hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
},
"kernelspec": {
"display_name": "Python 3.8.10 64-bit",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},

View file

@ -393,7 +393,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@ -407,7 +407,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
"version": "3.8.10"
}
},
"nbformat": 4,

View file

@ -7,6 +7,7 @@
"metadata": {},
"outputs": [],
"source": [
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import pyerrors as pe"
]
@ -18,7 +19,9 @@
"metadata": {},
"outputs": [],
"source": [
"plt.style.use('./base_style.mplstyle'); plt.rc('text', usetex=True)"
"plt.style.use('./base_style.mplstyle')\n",
"usetex = matplotlib.checkdep_usetex(True)\n",
"plt.rc('text', usetex=usetex)"
]
},
{
@ -305,7 +308,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},

View file

@ -8,6 +8,8 @@ It is based on the gamma method [arXiv:hep-lat/0306017](https://arxiv.org/abs/he
- non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in [arXiv:1809.01289](https://arxiv.org/abs/1809.01289).
- real and complex matrix operations and their error propagation based on automatic differentiation (Matrix inverse, Cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...).
More detailed examples can found in the [GitHub repository](https://github.com/fjosw/pyerrors/tree/develop/examples) [![badge](https://img.shields.io/badge/-try%20it%20out-579ACA.svg?logo=)](https://mybinder.org/v2/gh/fjosw/pyerrors/HEAD?labpath=examples).
There exist similar publicly available implementations of gamma method error analysis suites in [Fortran](https://gitlab.ift.uam-csic.es/alberto/aderrors), [Julia](https://gitlab.ift.uam-csic.es/alberto/aderrors.jl) and [Python](https://github.com/mbruno46/pyobs).
## Basic example
@ -443,8 +445,10 @@ Julia I/O routines for the json.gz format, compatible with [ADerrors.jl](https:/
# Citing
If you use `pyerrors` for research that leads to a publication please consider citing:
- Ulli Wolff, *Monte Carlo errors with less errors*. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
- Stefan Schaefer, Rainer Sommer, Francesco Virotta, *Critical slowing down and error analysis in lattice QCD simulations*. Nucl.Phys.B 845 (2011) 93-119.
- Alberto Ramos, *Automatic differentiation for error analysis of Monte Carlo data*. Comput.Phys.Commun. 238 (2019) 19-35.
and
- Stefan Schaefer, Rainer Sommer, Francesco Virotta, *Critical slowing down and error analysis in lattice QCD simulations*. Nucl.Phys.B 845 (2011) 93-119.
where applicable.
'''
from .obs import *
from .correlators import *

View file

@ -155,7 +155,7 @@ class Corr:
raise Exception("Vectors are of wrong shape!")
if normalize:
vector_l, vector_r = vector_l / np.sqrt((vector_l @ vector_l)), vector_r / np.sqrt(vector_r @ vector_r)
newcontent = [None if (item is None) else np.asarray([vector_l.T @ item @ vector_r]) for item in self.content]
newcontent = [None if _check_for_none(self, item) else np.asarray([vector_l.T @ item @ vector_r]) for item in self.content]
else:
# There are no checks here yet. There are so many possible scenarios, where this can go wrong.
@ -163,7 +163,7 @@ class Corr:
for t in range(self.T):
vector_l[t], vector_r[t] = vector_l[t] / np.sqrt((vector_l[t] @ vector_l[t])), vector_r[t] / np.sqrt(vector_r[t] @ vector_r[t])
newcontent = [None if (self.content[t] is None or vector_l[t] is None or vector_r[t] is None) else np.asarray([vector_l[t].T @ self.content[t] @ vector_r[t]]) for t in range(self.T)]
newcontent = [None if (_check_for_none(self, self.content[t]) or vector_l[t] is None or vector_r[t] is None) else np.asarray([vector_l[t].T @ self.content[t] @ vector_r[t]]) for t in range(self.T)]
return Corr(newcontent)
def item(self, i, j):
@ -197,6 +197,8 @@ class Corr:
def symmetric(self):
""" Symmetrize the correlator around x0=0."""
if self.N != 1:
raise Exception('symmetric cannot be safely applied to multi-dimensional correlators.')
if self.T % 2 != 0:
raise Exception("Can not symmetrize odd T")
@ -215,6 +217,8 @@ class Corr:
def anti_symmetric(self):
"""Anti-symmetrize the correlator around x0=0."""
if self.N != 1:
raise Exception('anti_symmetric cannot be safely applied to multi-dimensional correlators.')
if self.T % 2 != 0:
raise Exception("Can not symmetrize odd T")
@ -236,7 +240,7 @@ class Corr:
def matrix_symmetric(self):
"""Symmetrizes the correlator matrices on every timeslice."""
if self.N > 1:
transposed = [None if (G is None) else G.T for G in self.content]
transposed = [None if _check_for_none(self, G) else G.T for G in self.content]
return 0.5 * (Corr(transposed) + self)
if self.N == 1:
raise Exception("Trying to symmetrize a correlator matrix, that already has N=1.")
@ -419,13 +423,15 @@ class Corr:
Can either be an Obs which is correlated with all entries of the
correlator or a Corr of same length.
"""
if self.N != 1:
raise Exception("Only one-dimensional correlators can be safely correlated.")
new_content = []
for x0, t_slice in enumerate(self.content):
if t_slice is None:
if _check_for_none(self, t_slice):
new_content.append(None)
else:
if isinstance(partner, Corr):
if partner.content[x0] is None:
if _check_for_none(partner, partner.content[x0]):
new_content.append(None)
else:
new_content.append(np.array([correlate(o, partner.content[x0][0]) for o in t_slice]))
@ -449,9 +455,11 @@ class Corr:
the reweighting factor on all configurations in weight.idl and not
on the configurations in obs[i].idl.
"""
if self.N != 1:
raise Exception("Reweighting only implemented for one-dimensional correlators.")
new_content = []
for t_slice in self.content:
if t_slice is None:
if _check_for_none(self, t_slice):
new_content.append(None)
else:
new_content.append(np.array(reweight(weight, t_slice, **kwargs)))
@ -467,6 +475,8 @@ class Corr:
partity : int
Parity quantum number of the correlator, can be +1 or -1
"""
if self.N != 1:
raise Exception("T_symmetry only implemented for one-dimensional correlators.")
if not isinstance(partner, Corr):
raise Exception("T partner has to be a Corr object.")
if parity not in [+1, -1]:
@ -494,6 +504,8 @@ class Corr:
decides which definition of the finite differences derivative is used.
Available choice: symmetric, forward, backward, improved, default: symmetric
"""
if self.N != 1:
raise Exception("deriv only implemented for one-dimensional correlators.")
if variant == "symmetric":
newcontent = []
for t in range(1, self.T - 1):
@ -546,6 +558,8 @@ class Corr:
decides which definition of the finite differences derivative is used.
Available choice: symmetric, improved, default: symmetric
"""
if self.N != 1:
raise Exception("second_deriv only implemented for one-dimensional correlators.")
if variant == "symmetric":
newcontent = []
for t in range(1, self.T - 1):
@ -588,7 +602,7 @@ class Corr:
if variant == 'log':
newcontent = []
for t in range(self.T - 1):
if (self.content[t] is None) or (self.content[t + 1] is None):
if ((self.content[t] is None) or (self.content[t + 1] is None)) or (self.content[t + 1][0].value == 0):
newcontent.append(None)
else:
newcontent.append(self.content[t] / self.content[t + 1])
@ -608,7 +622,7 @@ class Corr:
newcontent = []
for t in range(self.T - 1):
if (self.content[t] is None) or (self.content[t + 1] is None):
if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 1][0].value == 0):
newcontent.append(None)
# Fill the two timeslices in the middle of the lattice with their predecessors
elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]:
@ -623,7 +637,7 @@ class Corr:
elif variant == 'arccosh':
newcontent = []
for t in range(1, self.T - 1):
if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None):
if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None) or (self.content[t][0].value == 0):
newcontent.append(None)
else:
newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t]))
@ -758,7 +772,7 @@ class Corr:
x, y, y_err = self.plottable()
if hide_sigma:
hide_from = np.argmax((hide_sigma * np.array(y_err)) > np.abs(y)) - 1
hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1
else:
hide_from = None
ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=self.tag)
@ -781,7 +795,7 @@ class Corr:
corr.gamma_method()
x, y, y_err = corr.plottable()
if hide_sigma:
hide_from = np.argmax((hide_sigma * np.array(y_err)) > np.abs(y)) - 1
hide_from = np.argmax((hide_sigma * np.array(y_err[1:])) > np.abs(y[1:])) - 1
else:
hide_from = None
plt.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor'])
@ -883,12 +897,14 @@ class Corr:
else:
raise Exception("Unknown datatype " + str(datatype))
def print(self, range=[0, None]):
print(self.__repr__(range))
def print(self, print_range=None):
print(self.__repr__(print_range))
def __repr__(self, print_range=None):
if print_range is None:
print_range = [0, None]
def __repr__(self, range=[0, None]):
content_string = ""
content_string += "Corr T=" + str(self.T) + " N=" + str(self.N) + "\n" # +" filled with"+ str(type(self.content[0][0])) there should be a good solution here
if self.tag is not None:
@ -896,14 +912,14 @@ class Corr:
if self.N != 1:
return content_string
if range[1]:
range[1] += 1
if print_range[1]:
print_range[1] += 1
content_string += 'x0/a\tCorr(x0/a)\n------------------\n'
for i, sub_corr in enumerate(self.content[range[0]:range[1]]):
for i, sub_corr in enumerate(self.content[print_range[0]:print_range[1]]):
if sub_corr is None:
content_string += str(i + range[0]) + '\n'
content_string += str(i + print_range[0]) + '\n'
else:
content_string += str(i + range[0])
content_string += str(i + print_range[0])
for element in sub_corr:
content_string += '\t' + ' ' * int(element >= 0) + str(element)
content_string += '\n'
@ -923,7 +939,7 @@ class Corr:
raise Exception("Addition of Corrs with different shape")
newcontent = []
for t in range(self.T):
if (self.content[t] is None) or (y.content[t] is None):
if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]):
newcontent.append(None)
else:
newcontent.append(self.content[t] + y.content[t])
@ -932,7 +948,7 @@ class Corr:
elif isinstance(y, (Obs, int, float, CObs)):
newcontent = []
for t in range(self.T):
if (self.content[t] is None):
if _check_for_none(self, self.content[t]):
newcontent.append(None)
else:
newcontent.append(self.content[t] + y)
@ -951,7 +967,7 @@ class Corr:
raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
newcontent = []
for t in range(self.T):
if (self.content[t] is None) or (y.content[t] is None):
if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]):
newcontent.append(None)
else:
newcontent.append(self.content[t] * y.content[t])
@ -960,7 +976,7 @@ class Corr:
elif isinstance(y, (Obs, int, float, CObs)):
newcontent = []
for t in range(self.T):
if (self.content[t] is None):
if _check_for_none(self, self.content[t]):
newcontent.append(None)
else:
newcontent.append(self.content[t] * y)
@ -979,12 +995,12 @@ class Corr:
raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T")
newcontent = []
for t in range(self.T):
if (self.content[t] is None) or (y.content[t] is None):
if _check_for_none(self, self.content[t]) or _check_for_none(y, y.content[t]):
newcontent.append(None)
else:
newcontent.append(self.content[t] / y.content[t])
for t in range(self.T):
if newcontent[t] is None:
if _check_for_none(self, newcontent[t]):
continue
if np.isnan(np.sum(newcontent[t]).value):
newcontent[t] = None
@ -1003,7 +1019,7 @@ class Corr:
newcontent = []
for t in range(self.T):
if (self.content[t] is None):
if _check_for_none(self, self.content[t]):
newcontent.append(None)
else:
newcontent.append(self.content[t] / y)
@ -1014,7 +1030,7 @@ class Corr:
raise Exception('Division by zero will return undefined correlator')
newcontent = []
for t in range(self.T):
if (self.content[t] is None):
if _check_for_none(self, self.content[t]):
newcontent.append(None)
else:
newcontent.append(self.content[t] / y)
@ -1028,7 +1044,7 @@ class Corr:
raise TypeError('Corr / wrong type')
def __neg__(self):
newcontent = [None if (item is None) else -1. * item for item in self.content]
newcontent = [None if _check_for_none(self, item) else -1. * item for item in self.content]
return Corr(newcontent, prange=self.prange)
def __sub__(self, y):
@ -1036,31 +1052,31 @@ class Corr:
def __pow__(self, y):
if isinstance(y, (Obs, int, float, CObs)):
newcontent = [None if (item is None) else item**y for item in self.content]
newcontent = [None if _check_for_none(self, item) else item**y for item in self.content]
return Corr(newcontent, prange=self.prange)
else:
raise TypeError('Type of exponent not supported')
def __abs__(self):
newcontent = [None if (item is None) else np.abs(item) for item in self.content]
newcontent = [None if _check_for_none(self, item) else np.abs(item) for item in self.content]
return Corr(newcontent, prange=self.prange)
# The numpy functions:
def sqrt(self):
return self**0.5
return self ** 0.5
def log(self):
newcontent = [None if (item is None) else np.log(item) for item in self.content]
newcontent = [None if _check_for_none(self, item) else np.log(item) for item in self.content]
return Corr(newcontent, prange=self.prange)
def exp(self):
newcontent = [None if (item is None) else np.exp(item) for item in self.content]
newcontent = [None if _check_for_none(self, item) else np.exp(item) for item in self.content]
return Corr(newcontent, prange=self.prange)
def _apply_func_to_corr(self, func):
newcontent = [None if (item is None) else func(item) for item in self.content]
newcontent = [None if _check_for_none(self, item) else func(item) for item in self.content]
for t in range(self.T):
if newcontent[t] is None:
if _check_for_none(self, newcontent[t]):
continue
if np.isnan(np.sum(newcontent[t]).value):
newcontent[t] = None
@ -1222,6 +1238,11 @@ def _sort_vectors(vec_set, ts):
return sorted_vec_set
def _check_for_none(corr, entry):
"""Checks if entry for correlator corr is None"""
return len(list(filter(None, np.asarray(entry).flatten()))) < corr.N ** 2
def _GEVP_solver(Gt, G0):
"""Helper function for solving the GEVP and sorting the eigenvectors.

View file

@ -8,7 +8,6 @@ import scipy.stats
import matplotlib.pyplot as plt
from matplotlib import gridspec
from scipy.odr import ODR, Model, RealData
from scipy.stats import chi2
import iminuit
from autograd import jacobian
from autograd import elementwise_grad as egrad
@ -34,9 +33,9 @@ class Fit_result(Sequence):
def __len__(self):
return len(self.fit_parameters)
def gamma_method(self):
def gamma_method(self, **kwargs):
"""Apply the gamma method to all fit parameters"""
[o.gamma_method() for o in self.fit_parameters]
[o.gamma_method(**kwargs) for o in self.fit_parameters]
def __str__(self):
my_str = 'Goodness of fit:\n'
@ -95,7 +94,8 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
If true all output to the console is omitted (default False).
initial_guess : list
can provide an initial guess for the input parameters. Relevant for
non-linear fits with many parameters.
non-linear fits with many parameters. In case of correlated fits the guess is used to perform
an uncorrelated fit which then serves as guess for the correlated fit.
method : str, optional
can be used to choose an alternative method for the minimization of chisquare.
The possible methods are the ones which can be used for scipy.optimize.minimize and
@ -264,7 +264,7 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
fitp = out.beta
try:
hess_inv = np.linalg.pinv(jacobian(jacobian(odr_chisquare))(np.concatenate((fitp, out.xplus.ravel()))))
hess = jacobian(jacobian(odr_chisquare))(np.concatenate((fitp, out.xplus.ravel())))
except TypeError:
raise Exception("It is required to use autograd.numpy instead of numpy within fit functions, see the documentation for details.") from None
@ -275,7 +275,11 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
jac_jac_x = jacobian(jacobian(odr_chisquare_compact_x))(np.concatenate((fitp, out.xplus.ravel(), x_f.ravel())))
deriv_x = -hess_inv @ jac_jac_x[:n_parms + m, n_parms + m:]
# Compute hess^{-1} @ jac_jac_x[:n_parms + m, n_parms + m:] using LAPACK dgesv
try:
deriv_x = -scipy.linalg.solve(hess, jac_jac_x[:n_parms + m, n_parms + m:])
except np.linalg.LinAlgError:
raise Exception("Cannot invert hessian matrix.")
def odr_chisquare_compact_y(d):
model = func(d[:n_parms], d[n_parms:n_parms + m].reshape(x_shape))
@ -284,7 +288,11 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
jac_jac_y = jacobian(jacobian(odr_chisquare_compact_y))(np.concatenate((fitp, out.xplus.ravel(), y_f)))
deriv_y = -hess_inv @ jac_jac_y[:n_parms + m, n_parms + m:]
# Compute hess^{-1} @ jac_jac_y[:n_parms + m, n_parms + m:] using LAPACK dgesv
try:
deriv_y = -scipy.linalg.solve(hess, jac_jac_y[:n_parms + m, n_parms + m:])
except np.linalg.LinAlgError:
raise Exception("Cannot invert hessian matrix.")
result = []
for i in range(n_parms):
@ -294,7 +302,7 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
output.odr_chisquare = odr_chisquare(np.concatenate((out.beta, out.xplus.ravel())))
output.dof = x.shape[-1] - n_parms
output.p_value = 1 - chi2.cdf(output.odr_chisquare, output.dof)
output.p_value = 1 - scipy.stats.chi2.cdf(output.odr_chisquare, output.dof)
return output
@ -469,18 +477,17 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
if condn > 1 / np.sqrt(np.finfo(float).eps):
warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning)
chol = np.linalg.cholesky(corr)
chol_inv = np.linalg.inv(chol)
chol_inv = np.dot(chol_inv, covdiag)
chol_inv = scipy.linalg.solve_triangular(chol, covdiag, lower=True)
def chisqfunc(p):
def chisqfunc_corr(p):
model = func(p, x)
chisq = anp.sum(anp.dot(chol_inv, (y_f - model)) ** 2)
return chisq
else:
def chisqfunc(p):
model = func(p, x)
chisq = anp.sum(((y_f - model) / dy_f) ** 2)
return chisq
def chisqfunc(p):
model = func(p, x)
chisq = anp.sum(((y_f - model) / dy_f) ** 2)
return chisq
output.method = kwargs.get('method', 'Levenberg-Marquardt')
if not silent:
@ -489,29 +496,38 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
if output.method != 'Levenberg-Marquardt':
if output.method == 'migrad':
fit_result = iminuit.minimize(chisqfunc, x0, tol=1e-4) # Stopping criterion 0.002 * tol * errordef
if kwargs.get('correlated_fit') is True:
fit_result = iminuit.minimize(chisqfunc_corr, fit_result.x, tol=1e-4) # Stopping criterion 0.002 * tol * errordef
output.iterations = fit_result.nfev
else:
fit_result = scipy.optimize.minimize(chisqfunc, x0, method=kwargs.get('method'), tol=1e-12)
if kwargs.get('correlated_fit') is True:
fit_result = scipy.optimize.minimize(chisqfunc_corr, fit_result.x, method=kwargs.get('method'), tol=1e-12)
output.iterations = fit_result.nit
chisquare = fit_result.fun
else:
if kwargs.get('correlated_fit') is True:
def chisqfunc_residuals(p):
def chisqfunc_residuals_corr(p):
model = func(p, x)
chisq = anp.dot(chol_inv, (y_f - model))
return chisq
else:
def chisqfunc_residuals(p):
model = func(p, x)
chisq = ((y_f - model) / dy_f)
return chisq
def chisqfunc_residuals(p):
model = func(p, x)
chisq = ((y_f - model) / dy_f)
return chisq
fit_result = scipy.optimize.least_squares(chisqfunc_residuals, x0, method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15)
if kwargs.get('correlated_fit') is True:
fit_result = scipy.optimize.least_squares(chisqfunc_residuals_corr, fit_result.x, method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15)
chisquare = np.sum(fit_result.fun ** 2)
if kwargs.get('correlated_fit') is True:
assert np.isclose(chisquare, chisqfunc_corr(fit_result.x), atol=1e-14)
else:
assert np.isclose(chisquare, chisqfunc(fit_result.x), atol=1e-14)
output.iterations = fit_result.nfev
@ -542,7 +558,10 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
fitp = fit_result.x
try:
hess_inv = np.linalg.pinv(jacobian(jacobian(chisqfunc))(fitp))
if kwargs.get('correlated_fit') is True:
hess = jacobian(jacobian(chisqfunc_corr))(fitp)
else:
hess = jacobian(jacobian(chisqfunc))(fitp)
except TypeError:
raise Exception("It is required to use autograd.numpy instead of numpy within fit functions, see the documentation for details.") from None
@ -560,7 +579,11 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
jac_jac = jacobian(jacobian(chisqfunc_compact))(np.concatenate((fitp, y_f)))
deriv = -hess_inv @ jac_jac[:n_parms, n_parms:]
# Compute hess^{-1} @ jac_jac[:n_parms, n_parms:] using LAPACK dgesv
try:
deriv = -scipy.linalg.solve(hess, jac_jac[:n_parms, n_parms:])
except np.linalg.LinAlgError:
raise Exception("Cannot invert hessian matrix.")
result = []
for i in range(n_parms):
@ -568,9 +591,9 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
output.fit_parameters = result
output.chisquare = chisqfunc(fit_result.x)
output.chisquare = chisquare
output.dof = x.shape[-1] - n_parms
output.p_value = 1 - chi2.cdf(output.chisquare, output.dof)
output.p_value = 1 - scipy.stats.chi2.cdf(output.chisquare, output.dof)
if kwargs.get('resplot') is True:
residual_plot(x, y, func, result)

View file

@ -61,7 +61,7 @@ def read_ADerrors(file_path, bdio_path='./libbdio.so', **kwargs):
return_list = []
print('Reading of bdio file started')
while 1 > 0:
while True:
bdio_seek_record(fbdio)
ruinfo = bdio_get_ruinfo(fbdio)
@ -373,7 +373,7 @@ def read_mesons(file_path, bdio_path='./libbdio.so', **kwargs):
fbdio = bdio_open(ctypes.c_char_p(b_path), ctypes.c_char_p(b_read), ctypes.c_char_p(b_form))
print('Reading of bdio file started')
while 1 > 0:
while True:
bdio_seek_record(fbdio)
ruinfo = bdio_get_ruinfo(fbdio)
if ruinfo < 0:
@ -582,7 +582,7 @@ def read_dSdm(file_path, bdio_path='./libbdio.so', **kwargs):
fbdio = bdio_open(ctypes.c_char_p(b_path), ctypes.c_char_p(b_read), ctypes.c_char_p(b_form))
print('Reading of bdio file started')
while 1 > 0:
while True:
bdio_seek_record(fbdio)
ruinfo = bdio_get_ruinfo(fbdio)
if ruinfo < 0:

View file

@ -648,7 +648,7 @@ def _dobsdict_to_xmlstring_spaces(d, space=' '):
return o
def create_dobs_string(obsl, name, spec='dobs v1.0', origin='', symbol=[], who=None, enstags={}):
def create_dobs_string(obsl, name, spec='dobs v1.0', origin='', symbol=[], who=None, enstags=None):
"""Generate the string for the export of a list of Obs or structures containing Obs
to a .xml.gz file according to the Zeuthen dobs format.
@ -674,6 +674,8 @@ def create_dobs_string(obsl, name, spec='dobs v1.0', origin='', symbol=[], who=N
Provide alternative enstag for ensembles in the form enstags = {ename: enstag}
Otherwise, the ensemble name is used.
"""
if enstags is None:
enstags = {}
od = {}
r_names = []
for o in obsl:
@ -831,7 +833,7 @@ def create_dobs_string(obsl, name, spec='dobs v1.0', origin='', symbol=[], who=N
return rs
def write_dobs(obsl, fname, name, spec='dobs v1.0', origin='', symbol=[], who=None, enstags={}, gz=True):
def write_dobs(obsl, fname, name, spec='dobs v1.0', origin='', symbol=[], who=None, enstags=None, gz=True):
"""Export a list of Obs or structures containing Obs to a .xml.gz file
according to the Zeuthen dobs format.
@ -861,6 +863,8 @@ def write_dobs(obsl, fname, name, spec='dobs v1.0', origin='', symbol=[], who=No
gz : bool
If True, the output is a gzipped XML. If False, the output is a XML file.
"""
if enstags is None:
enstags = {}
dobsstring = create_dobs_string(obsl, name, spec, origin, symbol, who, enstags=enstags)

View file

@ -55,8 +55,8 @@ def _get_files(path, filestem, idl):
return filtered_files, idx
def read_meson_hd5(path, filestem, ens_id, meson='meson_0', idl=None):
"""Read hadrons meson hdf5 file and extract the meson labeled 'meson'
def read_meson_hd5(path, filestem, ens_id, meson='meson_0', idl=None, gammas=None):
r'''Read hadrons meson hdf5 file and extract the meson labeled 'meson'
Parameters
-----------------
@ -69,13 +69,31 @@ def read_meson_hd5(path, filestem, ens_id, meson='meson_0', idl=None):
meson : str
label of the meson to be extracted, standard value meson_0 which
corresponds to the pseudoscalar pseudoscalar two-point function.
gammas : tuple of strings
Instrad of a meson label one can also provide a tuple of two strings
indicating the gamma matrices at source and sink.
("Gamma5", "Gamma5") corresponds to the pseudoscalar pseudoscalar
two-point function. The gammas argument dominateds over meson.
idl : range
If specified only configurations in the given range are read in.
"""
'''
files, idx = _get_files(path, filestem, idl)
tree = meson.rsplit('_')[0]
if gammas is not None:
h5file = h5py.File(path + '/' + files[0], "r")
found_meson = None
for key in h5file[tree].keys():
if gammas[0] == h5file[tree][key].attrs["gamma_snk"][0].decode() and h5file[tree][key].attrs["gamma_src"][0].decode() == gammas[1]:
found_meson = key
break
h5file.close()
if found_meson:
meson = found_meson
else:
raise Exception("Source Sink combination " + str(gammas) + " not found.")
corr_data = []
infos = []
for hd5_file in files:
@ -153,10 +171,6 @@ def read_DistillationContraction_hd5(path, ens_id, diagrams=["direct"], idl=None
identifier = tuple(identifier)
# "DistillationContraction/Metadata/DmfSuffix" contains info about different quarks, irrelevant in the SU(3) case.
check_traj = h5file["DistillationContraction/Metadata"].attrs.get("Traj")[0]
assert check_traj == n_traj
for diagram in diagrams:
real_data = np.zeros(Nt)
for x0 in range(Nt):

View file

@ -165,7 +165,7 @@ def create_json_string(ol, description='', indent=1):
d = {}
d['program'] = 'pyerrors %s' % (pyerrorsversion.__version__)
d['version'] = '1.0'
d['version'] = '1.1'
d['who'] = getpass.getuser()
d['date'] = datetime.datetime.now().astimezone().strftime('%Y-%m-%d %H:%M:%S %z')
d['host'] = socket.gethostname() + ', ' + platform.platform()
@ -294,6 +294,7 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
if od:
ret = Obs([[ddi[0] + values[0] for ddi in di] for di in od['deltas']], od['names'], idl=od['idl'])
ret._value = values[0]
ret.is_merged = od['is_merged']
else:
ret = Obs([], [], means=[])
@ -319,6 +320,7 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
for i in range(layout):
if od:
ret.append(Obs([list(di[:, i] + values[i]) for di in od['deltas']], od['names'], idl=od['idl']))
ret[-1]._value = values[i]
ret[-1].is_merged = od['is_merged']
else:
ret.append(Obs([], [], means=[]))
@ -346,6 +348,7 @@ def _parse_json_dict(json_dict, verbose=True, full_output=False):
for i in range(N):
if od:
ret.append(Obs([di[:, i] + values[i] for di in od['deltas']], od['names'], idl=od['idl']))
ret[-1]._value = values[i]
ret[-1].is_merged = od['is_merged']
else:
ret.append(Obs([], [], means=[]))

View file

@ -17,8 +17,6 @@ def read_pbp(path, prefix, **kwargs):
list which contains the last config to be read for each replicum
"""
extract_nfct = 1
ls = []
for (dirpath, dirnames, filenames) in os.walk(path):
ls.extend(filenames)
@ -78,14 +76,10 @@ def read_pbp(path, prefix, **kwargs):
# This block is necessary for openQCD1.6 ms1 files
nfct = []
if extract_nfct == 1:
for i in range(nrw):
t = fp.read(4)
nfct.append(struct.unpack('i', t)[0])
print('nfct: ', nfct) # Hasenbusch factor, 1 for rat reweighting
else:
for i in range(nrw):
nfct.append(1)
for i in range(nrw):
t = fp.read(4)
nfct.append(struct.unpack('i', t)[0])
print('nfct: ', nfct) # Hasenbusch factor, 1 for rat reweighting
nsrc = []
for i in range(nrw):
@ -93,7 +87,7 @@ def read_pbp(path, prefix, **kwargs):
nsrc.append(struct.unpack('i', t)[0])
# body
while 0 < 1:
while True:
t = fp.read(4)
if len(t) < 4:
break

View file

@ -150,7 +150,7 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
print('something is wrong!')
configlist.append([])
while 0 < 1:
while True:
t = fp.read(4)
if len(t) < 4:
break
@ -362,7 +362,7 @@ def extract_t0(path, prefix, dtr_read, xmin, spatial_extent, fit_range=5, **kwar
Ysl = []
configlist.append([])
while 0 < 1:
while True:
t = fp.read(4)
if(len(t) < 4):
break
@ -657,7 +657,7 @@ def read_qtop(path, prefix, c, dtr_cnfg=1, version="openQCD", **kwargs):
nfl = 1
iobs = 8 * nfl # number of flow observables calculated
while 0 < 1:
while True:
t = fp.read(4)
if(len(t) < 4):
break
@ -682,7 +682,7 @@ def read_qtop(path, prefix, c, dtr_cnfg=1, version="openQCD", **kwargs):
t = fp.read(8)
eps = struct.unpack('d', t)[0]
while 0 < 1:
while True:
t = fp.read(4)
if(len(t) < 4):
break

View file

@ -1,5 +1,7 @@
import warnings
import pickle
from math import gcd
from functools import reduce
import numpy as np
import autograd.numpy as anp # Thinly-wrapped numpy
from autograd import jacobian
@ -981,6 +983,39 @@ def _merge_idx(idl):
return sorted(set().union(*idl))
def _intersection_idx(idl):
"""Returns the intersection of all lists in idl as sorted list
Parameters
----------
idl : list
List of lists or ranges.
"""
def _lcm(*args):
"""Returns the lowest common multiple of args.
From python 3.9 onwards the math library contains an lcm function."""
return reduce(lambda a, b: a * b // gcd(a, b), args)
# Use groupby to efficiently check whether all elements of idl are identical
try:
g = groupby(idl)
if next(g, True) and not next(g, False):
return idl[0]
except Exception:
pass
if np.all([type(idx) is range for idx in idl]):
if len(set([idx[0] for idx in idl])) == 1:
idstart = max([idx.start for idx in idl])
idstop = min([idx.stop for idx in idl])
idstep = _lcm(*[idx.step for idx in idl])
return range(idstart, idstop, idstep)
return sorted(set.intersection(*[set(o) for o in idl]))
def _expand_deltas_for_merge(deltas, idx, shape, new_idx):
"""Expand deltas defined on idx to the list of configs that is defined by new_idx.
New, empty entries are filled by 0. If idx and new_idx are of type range, the smallest
@ -1008,6 +1043,34 @@ def _expand_deltas_for_merge(deltas, idx, shape, new_idx):
return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))])
def _collapse_deltas_for_merge(deltas, idx, shape, new_idx):
"""Collapse deltas defined on idx to the list of configs that is defined by new_idx.
If idx and new_idx are of type range, the smallest
common divisor of the step sizes is used as new step size.
Parameters
----------
deltas : list
List of fluctuations
idx : list
List or range of configs on which the deltas are defined.
Has to be a subset of new_idx and has to be sorted in ascending order.
shape : list
Number of configs in idx.
new_idx : list
List of configs that defines the new range, has to be sorted in ascending order.
"""
if type(idx) is range and type(new_idx) is range:
if idx == new_idx:
return deltas
ret = np.zeros(new_idx[-1] - new_idx[0] + 1)
for i in range(shape):
if idx[i] in new_idx:
ret[idx[i] - new_idx[0]] = deltas[i]
return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))])
def _filter_zeroes(deltas, idx, eps=Obs.filter_eps):
"""Filter out all configurations with vanishing fluctuation such that they do not
contribute to the error estimate anymore. Returns the new deltas and
@ -1389,13 +1452,6 @@ def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs):
if isinstance(smooth, int):
corr = _smooth_eigenvalues(corr, smooth)
errors = [o.dvalue for o in obs]
cov = np.diag(errors) @ corr @ np.diag(errors)
eigenvalues = np.linalg.eigh(cov)[0]
if not np.all(eigenvalues >= 0):
warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning)
if visualize:
plt.matshow(corr, vmin=-1, vmax=1)
plt.set_cmap('RdBu')
@ -1404,8 +1460,15 @@ def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs):
if correlation is True:
return corr
else:
return cov
errors = [o.dvalue for o in obs]
cov = np.diag(errors) @ corr @ np.diag(errors)
eigenvalues = np.linalg.eigh(cov)[0]
if not np.all(eigenvalues >= 0):
warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning)
return cov
def _smooth_eigenvalues(corr, E):
@ -1429,8 +1492,8 @@ def _covariance_element(obs1, obs2):
"""Estimates the covariance of two Obs objects, neglecting autocorrelations."""
def calc_gamma(deltas1, deltas2, idx1, idx2, new_idx):
deltas1 = _expand_deltas_for_merge(deltas1, idx1, len(idx1), new_idx)
deltas2 = _expand_deltas_for_merge(deltas2, idx2, len(idx2), new_idx)
deltas1 = _collapse_deltas_for_merge(deltas1, idx1, len(idx1), new_idx)
deltas2 = _collapse_deltas_for_merge(deltas2, idx2, len(idx2), new_idx)
return np.sum(deltas1 * deltas2)
if set(obs1.names).isdisjoint(set(obs2.names)):
@ -1450,29 +1513,30 @@ def _covariance_element(obs1, obs2):
for r_name in obs1.e_content[e_name]:
if r_name not in obs2.e_content[e_name]:
continue
idl_d[r_name] = _merge_idx([obs1.idl[r_name], obs2.idl[r_name]])
idl_d[r_name] = _intersection_idx([obs1.idl[r_name], obs2.idl[r_name]])
gamma = 0.0
for r_name in obs1.e_content[e_name]:
if r_name not in obs2.e_content[e_name]:
continue
if len(idl_d[r_name]) == 0:
continue
gamma += calc_gamma(obs1.deltas[r_name], obs2.deltas[r_name], obs1.idl[r_name], obs2.idl[r_name], idl_d[r_name])
if gamma == 0.0:
continue
gamma_div = 0.0
e_N = 0
for r_name in obs1.e_content[e_name]:
if r_name not in obs2.e_content[e_name]:
continue
gamma_div += calc_gamma(np.ones(obs1.shape[r_name]), np.ones(obs2.shape[r_name]), obs1.idl[r_name], obs2.idl[r_name], idl_d[r_name])
e_N += len(idl_d[r_name])
gamma /= max(gamma_div, 1.0)
if len(idl_d[r_name]) == 0:
continue
gamma_div += np.sqrt(calc_gamma(obs1.deltas[r_name], obs1.deltas[r_name], obs1.idl[r_name], obs1.idl[r_name], idl_d[r_name]) * calc_gamma(obs2.deltas[r_name], obs2.deltas[r_name], obs2.idl[r_name], obs2.idl[r_name], idl_d[r_name]))
gamma /= gamma_div
# Bias correction hep-lat/0306017 eq. (49)
dvalue += (1 + 1 / e_N) * gamma / e_N
dvalue += gamma
for e_name in obs1.cov_names:

View file

@ -1 +1 @@
__version__ = "2.1.0+dev"
__version__ = "2.2.0+dev"

View file

@ -1,16 +1,40 @@
from setuptools import setup, find_packages
from pathlib import Path
from distutils.util import convert_path
this_directory = Path(__file__).parent
long_description = (this_directory / "README.md").read_text()
version = {}
with open(convert_path('pyerrors/version.py')) as ver_file:
exec(ver_file.read(), version)
setup(name='pyerrors',
version='2.1.0+dev',
version=version['__version__'],
description='Error analysis for lattice QCD',
long_description=long_description,
long_description_content_type='text/markdown',
url="https://github.com/fjosw/pyerrors",
project_urls= {
'Documentation': 'https://fjosw.github.io/pyerrors/pyerrors.html',
'Bug Tracker': 'https://github.com/fjosw/pyerrors/issues',
'Changelog' : 'https://github.com/fjosw/pyerrors/blob/master/CHANGELOG.md'
},
author='Fabian Joswig',
author_email='fabian.joswig@ed.ac.uk',
license="MIT",
packages=find_packages(),
python_requires='>=3.6.0',
install_requires=['numpy>=1.16', 'autograd>=1.4', 'numdifftools', 'matplotlib>=3.3', 'scipy', 'iminuit>=2', 'h5py', 'lxml', 'python-rapidjson']
install_requires=['numpy>=1.16', 'autograd>=1.4', 'numdifftools', 'matplotlib>=3.3', 'scipy>=1', 'iminuit>=2', 'h5py>=3', 'lxml>=4', 'python-rapidjson>=1'],
classifiers=[
'Development Status :: 5 - Production/Stable',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10',
'Topic :: Scientific/Engineering :: Physics'
],
)

View file

@ -1,6 +1,7 @@
import os
import numpy as np
import scipy
import matplotlib.pyplot as plt
import pyerrors as pe
import pytest
@ -246,6 +247,21 @@ def test_matrix_corr():
corr_mat.Eigenvalue(2, state=0)
def test_corr_none_entries():
a = pe.pseudo_Obs(1.0, 0.1, 'a')
l = np.asarray([[a, a], [a, a]])
n = np.asarray([[None, None], [None, None]])
x = [l, n]
matr = pe.Corr(x)
matr.projected(np.asarray([1.0, 0.0]))
matr * 2 - 2 * matr
matr * matr + matr ** 2 / matr
for func in [np.sqrt, np.log, np.exp, np.sin, np.cos, np.tan, np.sinh, np.cosh, np.tanh]:
func(matr)
def test_GEVP_warnings():
corr_aa = _gen_corr(1)
corr_ab = 0.5 * corr_aa
@ -332,6 +348,15 @@ def test_matrix_symmetric():
assert np.all([np.all(o == o.T) for o in sym_corr_mat])
t_obs = pe.pseudo_Obs(1.0, 0.1, 'test')
o_mat = np.array([[t_obs, t_obs], [t_obs, t_obs]])
corr1 = pe.Corr([o_mat, None, o_mat])
corr2 = pe.Corr([o_mat, np.array([[None, None], [None, None]]), o_mat])
corr3 = pe.Corr([o_mat, np.array([[t_obs, None], [None, t_obs]], dtype=object), o_mat])
corr1.matrix_symmetric()
corr2.matrix_symmetric()
corr3.matrix_symmetric()
def test_GEVP_solver():
@ -347,6 +372,17 @@ def test_GEVP_solver():
assert np.allclose(sp_vecs, pe.correlators._GEVP_solver(mat1, mat2), atol=1e-14)
def test_GEVP_none_entries():
t_obs = pe.pseudo_Obs(1.0, 0.1, 'test')
t_obs2 = pe.pseudo_Obs(0.1, 0.1, 'test')
o_mat = np.array([[t_obs, t_obs2], [t_obs2, t_obs2]])
n_arr = np.array([[None, None], [None, None]])
corr = pe.Corr([o_mat, o_mat, o_mat, o_mat, o_mat, o_mat, None, o_mat, n_arr, None, o_mat])
corr.GEVP(t0=2)
def test_hankel():
corr_content = []
for t in range(8):
@ -405,6 +441,7 @@ def test_spaghetti_plot():
corr.spaghetti_plot(True)
corr.spaghetti_plot(False)
plt.close('all')
def _gen_corr(val, samples=2000):

View file

@ -149,8 +149,10 @@ def test_correlated_fit():
return p[1] * anp.exp(-p[0] * x)
fitp = pe.least_squares(x, data, fitf, expected_chisquare=True)
assert np.isclose(fitp.chisquare / fitp.dof, fitp.chisquare_by_dof, atol=1e-14)
fitpc = pe.least_squares(x, data, fitf, correlated_fit=True)
assert np.isclose(fitpc.chisquare / fitpc.dof, fitpc.chisquare_by_dof, atol=1e-14)
for i in range(2):
diff = fitp[i] - fitpc[i]
diff.gamma_method()
@ -171,12 +173,35 @@ def test_fit_corr_independent():
y = a[0] * anp.exp(-a[1] * x)
return y
out = pe.least_squares(x, oy, func)
out_corr = pe.least_squares(x, oy, func, correlated_fit=True)
for method in ["Levenberg-Marquardt", "migrad", "Nelder-Mead"]:
out = pe.least_squares(x, oy, func, method=method)
out_corr = pe.least_squares(x, oy, func, correlated_fit=True, method=method)
assert np.isclose(out.chisquare, out_corr.chisquare)
assert (out[0] - out_corr[0]).is_zero(atol=1e-5)
assert (out[1] - out_corr[1]).is_zero(atol=1e-5)
assert np.isclose(out.chisquare, out_corr.chisquare)
assert np.isclose(out.dof, out_corr.dof)
assert np.isclose(out.chisquare_by_dof, out_corr.chisquare_by_dof)
assert (out[0] - out_corr[0]).is_zero(atol=1e-5)
assert (out[1] - out_corr[1]).is_zero(atol=1e-5)
def test_linear_fit_guesses():
for err in [10, 0.1, 0.001]:
xvals = []
yvals = []
for x in range(1, 8, 2):
xvals.append(x)
yvals.append(pe.pseudo_Obs(x + np.random.normal(0.0, err), err, 'test1') + pe.pseudo_Obs(0, err / 100, 'test2', samples=87))
lin_func = lambda a, x: a[0] + a[1] * x
with pytest.raises(Exception):
pe.least_squares(xvals, yvals, lin_func)
[o.gamma_method() for o in yvals];
with pytest.raises(Exception):
pe.least_squares(xvals, yvals, lin_func, initial_guess=[5])
bad_guess = pe.least_squares(xvals, yvals, lin_func, initial_guess=[999, 999])
good_guess = pe.least_squares(xvals, yvals, lin_func, initial_guess=[0, 1])
assert np.isclose(bad_guess.chisquare, good_guess.chisquare, atol=1e-8)
assert np.all([(go - ba).is_zero(atol=1e-6) for (go, ba) in zip(good_guess, bad_guess)])
def test_total_least_squares():
@ -218,7 +243,7 @@ def test_total_least_squares():
beta[i].gamma_method(S=1.0)
assert math.isclose(beta[i].value, output.beta[i], rel_tol=1e-5)
assert math.isclose(output.cov_beta[i, i], beta[i].dvalue ** 2, rel_tol=2.5e-1), str(output.cov_beta[i, i]) + ' ' + str(beta[i].dvalue ** 2)
assert math.isclose(pe.covariance([beta[0], beta[1]])[0, 1], output.cov_beta[0, 1], rel_tol=2.5e-1)
assert math.isclose(pe.covariance([beta[0], beta[1]])[0, 1], output.cov_beta[0, 1], rel_tol=3.5e-1)
out = pe.total_least_squares(ox, oy, func, const_par=[beta[1]])
@ -241,7 +266,7 @@ def test_total_least_squares():
betac[i].gamma_method(S=1.0)
assert math.isclose(betac[i].value, output.beta[i], rel_tol=1e-3)
assert math.isclose(output.cov_beta[i, i], betac[i].dvalue ** 2, rel_tol=2.5e-1), str(output.cov_beta[i, i]) + ' ' + str(betac[i].dvalue ** 2)
assert math.isclose(pe.covariance([betac[0], betac[1]])[0, 1], output.cov_beta[0, 1], rel_tol=2.5e-1)
assert math.isclose(pe.covariance([betac[0], betac[1]])[0, 1], output.cov_beta[0, 1], rel_tol=3.5e-1)
outc = pe.total_least_squares(oxc, oyc, func, const_par=[betac[1]])
@ -256,7 +281,7 @@ def test_total_least_squares():
betac[i].gamma_method(S=1.0)
assert math.isclose(betac[i].value, output.beta[i], rel_tol=1e-3)
assert math.isclose(output.cov_beta[i, i], betac[i].dvalue ** 2, rel_tol=2.5e-1), str(output.cov_beta[i, i]) + ' ' + str(betac[i].dvalue ** 2)
assert math.isclose(pe.covariance([betac[0], betac[1]])[0, 1], output.cov_beta[0, 1], rel_tol=2.5e-1)
assert math.isclose(pe.covariance([betac[0], betac[1]])[0, 1], output.cov_beta[0, 1], rel_tol=3.5e-1)
outc = pe.total_least_squares(oxc, oy, func, const_par=[betac[1]])
@ -376,6 +401,80 @@ def test_error_band():
pe.fits.error_band(x, f, fitp.fit_parameters)
def test_fit_vs_jackknife():
od = 0.9999999999
cov1 = np.array([[1, od, od], [od, 1.0, od], [od, od, 1.0]])
cov1 *= 0.05
nod = -0.4
cov2 = np.array([[1, nod, nod], [nod, 1.0, nod], [nod, nod, 1.0]])
cov2 *= 0.05
cov3 = np.identity(3)
cov3 *= 0.05
samples = 500
for i, cov in enumerate([cov1, cov2, cov3]):
dat = pe.misc.gen_correlated_data(np.arange(1, 4), cov, 'test', 0.5, samples=samples)
[o.gamma_method(S=0) for o in dat];
func = lambda a, x: a[0] + a[1] * x
fr = pe.least_squares(np.arange(1, 4), dat, func)
fr.gamma_method(S=0)
jd = np.array([o.export_jackknife() for o in dat]).T
jfr = []
for jacks in jd:
def chisqfunc_residuals(p):
model = func(p, np.arange(1, 4))
chisq = ((jacks - model) / [o.dvalue for o in dat])
return chisq
tf = scipy.optimize.least_squares(chisqfunc_residuals, [0.0, 0.0], method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15)
jfr.append(tf.x)
ajfr = np.array(jfr).T
err = np.array([np.sqrt(np.var(ajfr[j][1:], ddof=0) * (samples - 1)) for j in range(2)])
assert np.allclose(err, [o.dvalue for o in fr], atol=1e-8)
def test_correlated_fit_vs_jackknife():
od = 0.999999
cov1 = np.array([[1, od, od], [od, 1.0, od], [od, od, 1.0]])
cov1 *= 0.1
nod = -0.44
cov2 = np.array([[1, nod, nod], [nod, 1.0, nod], [nod, nod, 1.0]])
cov2 *= 0.1
cov3 = np.identity(3)
cov3 *= 0.01
samples = 250
x_val = np.arange(1, 6, 2)
for i, cov in enumerate([cov1, cov2, cov3]):
dat = pe.misc.gen_correlated_data(x_val + x_val ** 2 + np.random.normal(0.0, 0.1, 3), cov, 'test', 0.5, samples=samples)
[o.gamma_method(S=0) for o in dat];
dat
func = lambda a, x: a[0] * x + a[1] * x ** 2
fr = pe.least_squares(x_val, dat, func, correlated_fit=True, silent=True)
[o.gamma_method(S=0) for o in fr]
cov = pe.covariance(dat)
chol = np.linalg.cholesky(cov)
chol_inv = np.linalg.inv(chol)
jd = np.array([o.export_jackknife() for o in dat]).T
jfr = []
for jacks in jd:
def chisqfunc_residuals(p):
model = func(p, x_val)
chisq = np.dot(chol_inv, (jacks - model))
return chisq
tf = scipy.optimize.least_squares(chisqfunc_residuals, [0.0, 0.0], method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15)
jfr.append(tf.x)
ajfr = np.array(jfr).T
err = np.array([np.sqrt(np.var(ajfr[j][1:], ddof=0) * (samples - 1)) for j in range(2)])
assert np.allclose(err, [o.dvalue for o in fr], atol=1e-7)
assert np.allclose(ajfr.T[0], [o.value for o in fr], atol=1e-8)
def test_fit_no_autograd():
dim = 10
x = np.arange(dim)

View file

@ -354,3 +354,55 @@ def test_dobsio():
if isinstance(ol[i], pe.Obs):
for name in ol[i].r_values:
assert(np.isclose(ol[i].r_values[name], rl[i].r_values[name]))
def test_reconstruct_non_linear_r_obs(tmp_path):
to = pe.Obs([np.random.rand(500), np.random.rand(500), np.random.rand(111)],
["e|r1", "e|r2", "my_new_ensemble_54^£$|8'[@124435%6^7&()~#"],
idl=[range(1, 501), range(0, 500), range(1, 999, 9)])
to = np.log(to ** 2) / to
to.dump((tmp_path / "test_equality").as_posix())
ro = pe.input.json.load_json((tmp_path / "test_equality").as_posix())
assert assert_equal_Obs(to, ro)
def test_reconstruct_non_linear_r_obs_list(tmp_path):
to = pe.Obs([np.random.rand(500), np.random.rand(500), np.random.rand(111)],
["e|r1", "e|r2", "my_new_ensemble_54^£$|8'[@124435%6^7&()~#"],
idl=[range(1, 501), range(0, 500), range(1, 999, 9)])
to = np.log(to ** 2) / to
for to_list in [[to, to, to], np.array([to, to, to])]:
pe.input.json.dump_to_json(to_list, (tmp_path / "test_equality_list").as_posix())
ro_list = pe.input.json.load_json((tmp_path / "test_equality_list").as_posix())
for oa, ob in zip(to_list, ro_list):
assert assert_equal_Obs(oa, ob)
def assert_equal_Obs(to, ro):
for kw in ["N", "cov_names", "covobs", "ddvalue", "dvalue", "e_content",
"e_names", "idl", "mc_names", "names",
"reweighted", "shape", "tag"]:
if not getattr(to, kw) == getattr(ro, kw):
print(kw, "does not match.")
return False
for kw in ["value"]:
if not np.isclose(getattr(to, kw), getattr(ro, kw), atol=1e-14):
print(kw, "does not match.")
return False
for kw in ["r_values", "deltas"]:
for (k, v), (k2, v2) in zip(getattr(to, kw).items(), getattr(ro, kw).items()):
assert k == k2
if not np.allclose(v, v2, atol=1e-14):
print(kw, "does not match.")
return False
m_to = getattr(to, "is_merged")
m_ro = getattr(ro, "is_merged")
if not m_to == m_ro:
if not (all(value is False for value in m_ro.values()) and all(value is False for value in m_to.values())):
print("is_merged", "does not match.")
return False
return True

View file

@ -1,6 +1,7 @@
import autograd.numpy as np
import os
import copy
import matplotlib.pyplot as plt
import pyerrors as pe
import pytest
@ -56,6 +57,7 @@ def test_Obs_exceptions():
one.gamma_method()
with pytest.raises(Exception):
one.plot_piechart()
plt.close('all')
def test_dump():
value = np.random.normal(5, 10)
@ -368,6 +370,7 @@ def test_utils():
assert my_obs < (my_obs + 1)
float(my_obs)
str(my_obs)
plt.close('all')
def test_cobs():
@ -515,6 +518,35 @@ def test_merge_idx():
assert pe.obs._merge_idx([range(500, 6050, 50), range(500, 6250, 250)]) == range(500, 6250, 50)
def test_intersection_idx():
assert pe.obs._intersection_idx([range(1, 100), range(1, 100), range(1, 100)]) == range(1, 100)
assert pe.obs._intersection_idx([range(1, 100, 10), range(1, 100, 2)]) == range(1, 100, 10)
assert pe.obs._intersection_idx([range(10, 1010, 10), range(10, 1010, 50)]) == range(10, 1010, 50)
assert pe.obs._intersection_idx([range(500, 6050, 50), range(500, 6250, 250)]) == range(500, 6050, 250)
for ids in [[list(range(1, 80, 3)), list(range(1, 100, 2))], [range(1, 80, 3), range(1, 100, 2), range(1, 100, 7)]]:
assert list(pe.obs._intersection_idx(ids)) == pe.obs._intersection_idx([list(o) for o in ids])
def test_merge_intersection():
for idl_list in [[range(1, 100), range(1, 100), range(1, 100)],
[range(4, 80, 6), range(4, 80, 6)],
[[0, 2, 8, 19, 205], [0, 2, 8, 19, 205]]]:
assert pe.obs._merge_idx(idl_list) == pe.obs._intersection_idx(idl_list)
def test_intersection_collapse():
range1 = range(1, 2000, 2)
range2 = range(2, 2001, 8)
obs1 = pe.Obs([np.random.normal(1.0, 0.1, len(range1))], ["ens"], idl=[range1])
obs_merge = obs1 + pe.Obs([np.random.normal(1.0, 0.1, len(range2))], ["ens"], idl=[range2])
intersection = pe.obs._intersection_idx([o.idl["ens"] for o in [obs1, obs_merge]])
coll = pe.obs._collapse_deltas_for_merge(obs_merge.deltas["ens"], obs_merge.idl["ens"], len(obs_merge.idl["ens"]), range1)
assert np.all(coll == obs1.deltas["ens"])
def test_irregular_error_propagation():
obs_list = [pe.Obs([np.random.rand(100)], ['t']),
pe.Obs([np.random.rand(50)], ['t'], idl=[range(1, 100, 2)]),
@ -619,6 +651,26 @@ def test_covariance_is_variance():
assert np.isclose(test_obs.dvalue ** 2, pe.covariance([test_obs, test_obs])[0, 1])
def test_covariance_vs_numpy():
N = 1078
data1 = np.random.normal(2.5, 0.2, N)
data2 = np.random.normal(0.5, 0.08, N)
data3 = np.random.normal(-178, 5, N)
uncorr = np.row_stack([data1, data2, data3])
corr = np.random.multivariate_normal([0.0, 17, -0.0487], [[1.0, 0.6, -0.22], [0.6, 0.8, 0.01], [-0.22, 0.01, 1.9]], N).T
for X in [uncorr, corr]:
obs1 = pe.Obs([X[0]], ["ens1"])
obs2 = pe.Obs([X[1]], ["ens1"])
obs3 = pe.Obs([X[2]], ["ens1"])
obs1.gamma_method(S=0.0)
obs2.gamma_method(S=0.0)
obs3.gamma_method(S=0.0)
pe_cov = pe.covariance([obs1, obs2, obs3])
np_cov = np.cov(X) / N
assert np.allclose(pe_cov, np_cov, atol=1e-14)
def test_covariance_symmetry():
value1 = np.random.normal(5, 10)
dvalue1 = np.abs(np.random.normal(0, 1))
@ -687,6 +739,23 @@ def test_covariance_factorizing():
assert np.isclose(pe.covariance([mt0, tt[1]])[0, 1], -pe.covariance(tt)[0, 1])
def test_covariance_smooth_eigenvalues():
for c_coeff in range(0, 14, 2):
length = 14
sm = 5
t_fac = 1.5
tt = pe.misc.gen_correlated_data(np.zeros(length), 1 - 0.1 ** c_coeff * np.ones((length, length)) + 0.1 ** c_coeff * np.diag(np.ones(length)), 'test', tau=0.5 + t_fac * np.random.rand(length), samples=200)
[o.gamma_method() for o in tt]
full_corr = pe.covariance(tt, correlation=True)
cov = pe.covariance(tt, smooth=sm, correlation=True)
full_evals = np.linalg.eigh(full_corr)[0]
sm_length = np.where(full_evals < np.mean(full_evals[:-sm]))[0][-1]
evals = np.linalg.eigh(cov)[0]
assert np.all(np.isclose(evals[:sm_length], evals[0], atol=1e-8))
def test_covariance_alternation():
length = 12
t_fac = 2.5
@ -729,6 +798,86 @@ def test_covariance_idl():
pe.covariance([obs1, obs2])
def test_correlation_intersection_of_idls():
range1 = range(1, 2000, 2)
range2 = range(2, 2001, 2)
obs1 = pe.Obs([np.random.normal(1.0, 0.1, len(range1))], ["ens"], idl=[range1])
obs2_a = 0.4 * pe.Obs([np.random.normal(1.0, 0.1, len(range1))], ["ens"], idl=[range1]) + 0.6 * obs1
obs1.gamma_method()
obs2_a.gamma_method()
cov1 = pe.covariance([obs1, obs2_a])
corr1 = pe.covariance([obs1, obs2_a], correlation=True)
obs2_b = obs2_a + pe.Obs([np.random.normal(1.0, 0.1, len(range2))], ["ens"], idl=[range2])
obs2_b.gamma_method()
cov2 = pe.covariance([obs1, obs2_b])
corr2 = pe.covariance([obs1, obs2_b], correlation=True)
assert np.isclose(corr1[0, 1], corr2[0, 1], atol=1e-14)
assert cov1[0, 1] > cov2[0, 1]
obs2_c = pe.Obs([np.random.normal(1.0, 0.1, len(range2))], ["ens"], idl=[range2])
obs2_c.gamma_method()
assert np.isclose(0, pe.covariance([obs1, obs2_c])[0, 1], atol=1e-14)
def test_covariance_non_identical_objects():
obs1 = pe.Obs([np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 1000), np.random.normal(1.0, 0.1, 732)], ["ens|r1", "ens|r2", "ens2"])
obs1.gamma_method()
obs2 = obs1 + 1e-18
obs2.gamma_method()
assert obs1 == obs2
assert obs1 is not obs2
assert np.allclose(np.ones((2, 2)), pe.covariance([obs1, obs2], correlation=True), atol=1e-14)
def test_covariance_additional_non_overlapping_data():
range1 = range(1, 20, 2)
data2 = np.random.normal(0.0, 0.1, len(range1))
obs1 = pe.Obs([np.random.normal(1.0, 0.1, len(range1))], ["ens"], idl=[range1])
obs2_a = pe.Obs([data2], ["ens"], idl=[range1])
obs1.gamma_method()
obs2_a.gamma_method()
corr1 = pe.covariance([obs1, obs2_a], correlation=True)
added_data = np.random.normal(0.0, 0.1, len(range1))
added_data -= np.mean(added_data) - np.mean(data2)
data2_extended = np.ravel([data2, added_data], 'F')
obs2_b = pe.Obs([data2_extended], ["ens"])
obs2_b.gamma_method()
corr2 = pe.covariance([obs1, obs2_b], correlation=True)
assert np.isclose(corr1[0, 1], corr2[0, 1], atol=1e-14)
def test_coavariance_reorder_non_overlapping_data():
range1 = range(1, 20, 2)
range2 = range(1, 41, 2)
obs1 = pe.Obs([np.random.normal(1.0, 0.1, len(range1))], ["ens"], idl=[range1])
obs2_b = pe.Obs([np.random.normal(1.0, 0.1, len(range2))], ["ens"], idl=[range2])
obs1.gamma_method()
obs2_b.gamma_method()
corr1 = pe.covariance([obs1, obs2_b], correlation=True)
deltas = list(obs2_b.deltas['ens'][:len(range1)]) + sorted(obs2_b.deltas['ens'][len(range1):])
obs2_a = pe.Obs([obs2_b.value + np.array(deltas)], ["ens"], idl=[range2])
obs2_a.gamma_method()
corr2 = pe.covariance([obs1, obs2_a], correlation=True)
assert np.isclose(corr1[0, 1], corr2[0, 1], atol=1e-14)
def test_empty_obs():
o = pe.Obs([np.random.rand(100)], ['test'])
q = o + pe.Obs([], [], means=[])