Documentation updated

This commit is contained in:
fjosw 2021-11-17 13:43:40 +00:00
parent abe15bf716
commit c3585e6559
3 changed files with 95 additions and 64 deletions

View file

@ -205,6 +205,9 @@ The standard value for the parameter $S$ of this automatic windowing procedure i
<p>The integrated autocorrelation time $\tau_\mathrm{int}$ and the autocorrelation function $\rho(W)$ can be monitored via the methods <code><a href="pyerrors/obs.html#Obs.plot_tauint">pyerrors.obs.Obs.plot_tauint</a></code> and <code><a href="pyerrors/obs.html#Obs.plot_tauint">pyerrors.obs.Obs.plot_tauint</a></code>.</p>
<p>If the parameter $S$ is set to zero it is assumed that dataset does not exhibit any autocorrelation and the windowsize is chosen to be zero.
In this case the error estimate is identical to the sample standard error.</p>
<h3 id="exponential-tails">Exponential tails</h3>
<p>Slow modes in the Monte Carlo history can be accounted for by attaching an exponential tail to the autocorrelation function $\rho$ as suggested in <a href="https://arxiv.org/abs/1009.5228">arXiv:1009.5228</a>. The longest autocorrelation time in the history, $\tau_\mathrm{exp}$, can be passed to the <code>gamma_method</code> as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.</p>
@ -454,6 +457,9 @@ See <code><a href="pyerrors/obs.html#Obs.export_jackknife">pyerrors.obs.Obs.expo
<span class="sd">The integrated autocorrelation time $\tau_\mathrm{int}$ and the autocorrelation function $\rho(W)$ can be monitored via the methods `pyerrors.obs.Obs.plot_tauint` and `pyerrors.obs.Obs.plot_tauint`.</span>
<span class="sd">If the parameter $S$ is set to zero it is assumed that dataset does not exhibit any autocorrelation and the windowsize is chosen to be zero.</span>
<span class="sd">In this case the error estimate is identical to the sample standard error.</span>
<span class="sd">### Exponential tails</span>
<span class="sd">Slow modes in the Monte Carlo history can be accounted for by attaching an exponential tail to the autocorrelation function $\rho$ as suggested in [arXiv:1009.5228](https://arxiv.org/abs/1009.5228). The longest autocorrelation time in the history, $\tau_\mathrm{exp}$, can be passed to the `gamma_method` as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.</span>