mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-14 11:33:42 +02:00
feat/tests: Correlated fits now also work for combined fits.
This commit is contained in:
parent
59d22fceee
commit
ba54545b4e
2 changed files with 132 additions and 30 deletions
|
@ -703,6 +703,8 @@ def test_combined_fit_invalid_input():
|
|||
yvals.append(pe.pseudo_Obs(x + np.random.normal(0.0, err), err, 'test1') + pe.pseudo_Obs(0, err / 100, 'test2', samples=87))
|
||||
with pytest.raises(Exception):
|
||||
pe.least_squares({'a':xvals}, {'b':yvals}, {'a':func_valid})
|
||||
with pytest.raises(Exception):
|
||||
pe.least_squares({'a':xvals}, {'a':yvals}, {'a':func_valid})
|
||||
|
||||
def test_combined_fit_no_autograd():
|
||||
|
||||
|
@ -833,6 +835,59 @@ def test_combined_fit_dictkeys_no_order():
|
|||
assert(no_order_x_y[0] == order[0])
|
||||
assert(no_order_x_y[1] == order[1])
|
||||
|
||||
def test_correlated_combined_fit_vs_correlated_standard_fit():
|
||||
|
||||
x_const = {'a':[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 'b':np.arange(10, 20)}
|
||||
y_const = {'a':[pe.Obs([np.random.normal(1, val, 1000)], ['ensemble1'])
|
||||
for val in [0.25, 0.3, 0.01, 0.2, 0.5, 1.3, 0.26, 0.4, 0.1, 1.0]],
|
||||
'b':[pe.Obs([np.random.normal(1, val, 1000)], ['ensemble1'])
|
||||
for val in [0.5, 1.12, 0.26, 0.25, 0.3, 0.01, 0.2, 1.0, 0.38, 0.1]]}
|
||||
for key in y_const.keys():
|
||||
[item.gamma_method() for item in y_const[key]]
|
||||
y_const_ls = np.concatenate([np.array(o) for o in y_const.values()])
|
||||
x_const_ls = np.arange(0, 20)
|
||||
|
||||
def func_const(a,x):
|
||||
return 0 * x + a[0]
|
||||
|
||||
funcs_const = {"a": func_const,"b": func_const}
|
||||
for method_kw in ['Levenberg-Marquardt', 'migrad', 'Powell', 'Nelder-Mead']:
|
||||
res = []
|
||||
res.append(pe.fits.least_squares(x_const, y_const, funcs_const, method = method_kw, correlated_fit=True))
|
||||
res.append(pe.fits.least_squares(x_const_ls, y_const_ls, func_const, method = method_kw, correlated_fit=True))
|
||||
[item.gamma_method for item in res]
|
||||
assert np.isclose(0.0, (res[0].chisquare_by_dof - res[1].chisquare_by_dof), 1e-14, 1e-8)
|
||||
assert np.isclose(0.0, (res[0].p_value - res[1].p_value), 1e-14, 1e-8)
|
||||
assert np.isclose(0.0, (res[0].t2_p_value - res[1].t2_p_value), 1e-14, 1e-8)
|
||||
assert (res[0][0] - res[1][0]).is_zero(atol=1e-8)
|
||||
|
||||
def test_combined_fit_hotelling_t():
|
||||
xvals_b = np.arange(0,6)
|
||||
xvals_a = np.arange(0,8)
|
||||
|
||||
def func_exp1(x):
|
||||
return 0.3*np.exp(0.5*x)
|
||||
|
||||
def func_exp2(x):
|
||||
return 0.3*np.exp(0.8*x)
|
||||
|
||||
def func_a(a,x):
|
||||
return a[0]*anp.exp(a[1]*x)
|
||||
|
||||
def func_b(a,x):
|
||||
return a[0]*anp.exp(a[2]*x)
|
||||
|
||||
funcs = {'a':func_a, 'b':func_b}
|
||||
xs = {'a':xvals_a, 'b':xvals_b}
|
||||
yobs_a = [pe.Obs([np.random.normal(item, item*1.5, 1000)],['ensemble1']) for item in func_exp1(xvals_a)]
|
||||
yobs_b = [pe.Obs([np.random.normal(item, item*1.4, 1000)],['ensemble1']) for item in func_exp2(xvals_b)]
|
||||
ys = {'a': yobs_a, 'b': yobs_b}
|
||||
|
||||
for key in funcs.keys():
|
||||
[item.gamma_method() for item in ys[key]]
|
||||
ft = pe.fits.least_squares(xs, ys, funcs, correlated_fit=True)
|
||||
assert ft.t2_p_value >= ft.p_value
|
||||
|
||||
def fit_general(x, y, func, silent=False, **kwargs):
|
||||
"""Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue