mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-14 19:43:41 +02:00
feat/tests: Correlated fits now also work for combined fits.
This commit is contained in:
parent
59d22fceee
commit
ba54545b4e
2 changed files with 132 additions and 30 deletions
107
pyerrors/fits.py
107
pyerrors/fits.py
|
@ -692,9 +692,6 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
|
|||
|
||||
def _combined_fit(x, y, func, silent=False, **kwargs):
|
||||
|
||||
if kwargs.get('correlated_fit') is True:
|
||||
raise Exception("Correlated fit has not been implemented yet")
|
||||
|
||||
output = Fit_result()
|
||||
output.fit_function = func
|
||||
|
||||
|
@ -722,6 +719,9 @@ def _combined_fit(x, y, func, silent=False, **kwargs):
|
|||
if len(x_all.shape) > 2:
|
||||
raise Exception('Unknown format for x values')
|
||||
|
||||
if np.any(np.asarray(dy_f) <= 0.0):
|
||||
raise Exception('No y errors available, run the gamma method first.')
|
||||
|
||||
# number of fit parameters
|
||||
n_parms_ls = []
|
||||
for key in key_ls:
|
||||
|
@ -753,6 +753,22 @@ def _combined_fit(x, y, func, silent=False, **kwargs):
|
|||
else:
|
||||
x0 = [0.1] * n_parms
|
||||
|
||||
if kwargs.get('correlated_fit') is True:
|
||||
corr = covariance(y_all, correlation=True, **kwargs)
|
||||
covdiag = np.diag(1 / np.asarray(dy_f))
|
||||
condn = np.linalg.cond(corr)
|
||||
if condn > 0.1 / np.finfo(float).eps:
|
||||
raise Exception(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})")
|
||||
if condn > 1e13:
|
||||
warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning)
|
||||
chol = np.linalg.cholesky(corr)
|
||||
chol_inv = scipy.linalg.solve_triangular(chol, covdiag, lower=True)
|
||||
|
||||
def chisqfunc_corr(p):
|
||||
model = np.concatenate([np.array(func[key](p, np.asarray(x[key]))) for key in key_ls])
|
||||
chisq = anp.sum(anp.dot(chol_inv, (y_f - model)) ** 2)
|
||||
return chisq
|
||||
|
||||
def chisqfunc(p):
|
||||
func_list = np.concatenate([[func[k]] * len(x[k]) for k in key_ls])
|
||||
model = anp.array([func_list[i](p, x_all[i]) for i in range(len(x_all))])
|
||||
|
@ -769,30 +785,46 @@ def _combined_fit(x, y, func, silent=False, **kwargs):
|
|||
if 'tol' in kwargs:
|
||||
tolerance = kwargs.get('tol')
|
||||
fit_result = iminuit.minimize(chisqfunc, x0, tol=tolerance) # Stopping criterion 0.002 * tol * errordef
|
||||
if kwargs.get('correlated_fit') is True:
|
||||
fit_result = iminuit.minimize(chisqfunc_corr, fit_result.x, tol=tolerance)
|
||||
output.iterations = fit_result.nfev
|
||||
else:
|
||||
tolerance = 1e-12
|
||||
if 'tol' in kwargs:
|
||||
tolerance = kwargs.get('tol')
|
||||
fit_result = scipy.optimize.minimize(chisqfunc, x0, method=kwargs.get('method'), tol=tolerance)
|
||||
if kwargs.get('correlated_fit') is True:
|
||||
fit_result = scipy.optimize.minimize(chisqfunc_corr, fit_result.x, method=kwargs.get('method'), tol=tolerance)
|
||||
output.iterations = fit_result.nit
|
||||
|
||||
chisquare = fit_result.fun
|
||||
|
||||
else:
|
||||
if kwargs.get('correlated_fit') is True:
|
||||
def chisqfunc_residuals_corr(p):
|
||||
model = np.concatenate([np.array(func[key](p, np.asarray(x[key]))) for key in key_ls])
|
||||
chisq = anp.dot(chol_inv, (y_f - model))
|
||||
return chisq
|
||||
|
||||
def chisqfunc_residuals(p):
|
||||
model = np.concatenate([np.array(func[key](p, np.asarray(x[key]))) for key in key_ls])
|
||||
chisq = ((y_f - model) / dy_f)
|
||||
return chisq
|
||||
|
||||
if 'tol' in kwargs:
|
||||
print('tol cannot be set for Levenberg-Marquardt')
|
||||
|
||||
fit_result = scipy.optimize.least_squares(chisqfunc_residuals, x0, method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15)
|
||||
if kwargs.get('correlated_fit') is True:
|
||||
fit_result = scipy.optimize.least_squares(chisqfunc_residuals_corr, fit_result.x, method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15)
|
||||
|
||||
chisquare = np.sum(fit_result.fun ** 2)
|
||||
assert np.isclose(chisquare, chisqfunc(fit_result.x), atol=1e-14)
|
||||
output.iterations = fit_result.nfev
|
||||
if kwargs.get('correlated_fit') is True:
|
||||
assert np.isclose(chisquare, chisqfunc_corr(fit_result.x), atol=1e-14)
|
||||
else:
|
||||
assert np.isclose(chisquare, chisqfunc(fit_result.x), atol=1e-14)
|
||||
|
||||
output.message = fit_result.message
|
||||
output.iterations = fit_result.nfev
|
||||
|
||||
if not fit_result.success:
|
||||
raise Exception('The minimization procedure did not converge.')
|
||||
|
@ -805,17 +837,12 @@ def _combined_fit(x, y, func, silent=False, **kwargs):
|
|||
else:
|
||||
output.chisquare_by_dof = float('nan')
|
||||
|
||||
output.message = fit_result.message
|
||||
if not silent:
|
||||
print(fit_result.message)
|
||||
print('chisquare/d.o.f.:', output.chisquare_by_dof)
|
||||
print('fit parameters', fit_result.x)
|
||||
|
||||
def chisqfunc_compact(d):
|
||||
func_list = np.concatenate([[func[k]] * len(x[k]) for k in key_ls])
|
||||
model = anp.array([func_list[i](d[:n_parms], x_all[i]) for i in range(len(x_all))])
|
||||
chisq = anp.sum(((d[n_parms:] - model) / dy_f) ** 2)
|
||||
return chisq
|
||||
|
||||
def prepare_hat_matrix():
|
||||
hat_vector = []
|
||||
for key in key_ls:
|
||||
|
@ -825,24 +852,6 @@ def _combined_fit(x, y, func, silent=False, **kwargs):
|
|||
hat_vector = [item for sublist in hat_vector for item in sublist]
|
||||
return hat_vector
|
||||
|
||||
fitp = fit_result.x
|
||||
|
||||
if np.any(np.asarray(dy_f) <= 0.0):
|
||||
raise Exception('No y errors available, run the gamma method first.')
|
||||
|
||||
try:
|
||||
hess = hessian(chisqfunc)(fitp)
|
||||
except TypeError:
|
||||
raise Exception("It is required to use autograd.numpy instead of numpy within fit functions, see the documentation for details.") from None
|
||||
|
||||
jac_jac_y = hessian(chisqfunc_compact)(np.concatenate((fitp, y_f)))
|
||||
|
||||
# Compute hess^{-1} @ jac_jac_y[:n_parms + m, n_parms + m:] using LAPACK dgesv
|
||||
try:
|
||||
deriv_y = -scipy.linalg.solve(hess, jac_jac_y[:n_parms, n_parms:])
|
||||
except np.linalg.LinAlgError:
|
||||
raise Exception("Cannot invert hessian matrix.")
|
||||
|
||||
if kwargs.get('expected_chisquare') is True:
|
||||
if kwargs.get('correlated_fit') is not True:
|
||||
W = np.diag(1 / np.asarray(dy_f))
|
||||
|
@ -855,12 +864,50 @@ def _combined_fit(x, y, func, silent=False, **kwargs):
|
|||
if not silent:
|
||||
print('chisquare/expected_chisquare:', output.chisquare_by_expected_chisquare)
|
||||
|
||||
fitp = fit_result.x
|
||||
if np.any(np.asarray(dy_f) <= 0.0):
|
||||
raise Exception('No y errors available, run the gamma method first.')
|
||||
|
||||
try:
|
||||
if kwargs.get('correlated_fit') is True:
|
||||
hess = hessian(chisqfunc_corr)(fitp)
|
||||
else:
|
||||
hess = hessian(chisqfunc)(fitp)
|
||||
except TypeError:
|
||||
raise Exception("It is required to use autograd.numpy instead of numpy within fit functions, see the documentation for details.") from None
|
||||
|
||||
if kwargs.get('correlated_fit') is True:
|
||||
def chisqfunc_compact(d):
|
||||
func_list = np.concatenate([[func[k]] * len(x[k]) for k in key_ls])
|
||||
model = anp.array([func_list[i](d[:n_parms], x_all[i]) for i in range(len(x_all))])
|
||||
chisq = anp.sum(anp.dot(chol_inv, (d[n_parms:] - model)) ** 2)
|
||||
return chisq
|
||||
else:
|
||||
def chisqfunc_compact(d):
|
||||
func_list = np.concatenate([[func[k]] * len(x[k]) for k in key_ls])
|
||||
model = anp.array([func_list[i](d[:n_parms], x_all[i]) for i in range(len(x_all))])
|
||||
chisq = anp.sum(((d[n_parms:] - model) / dy_f) ** 2)
|
||||
return chisq
|
||||
|
||||
jac_jac_y = hessian(chisqfunc_compact)(np.concatenate((fitp, y_f)))
|
||||
|
||||
# Compute hess^{-1} @ jac_jac_y[:n_parms + m, n_parms + m:] using LAPACK dgesv
|
||||
try:
|
||||
deriv_y = -scipy.linalg.solve(hess, jac_jac_y[:n_parms, n_parms:])
|
||||
except np.linalg.LinAlgError:
|
||||
raise Exception("Cannot invert hessian matrix.")
|
||||
|
||||
result = []
|
||||
for i in range(n_parms):
|
||||
result.append(derived_observable(lambda x_all, **kwargs: (x_all[0] + np.finfo(np.float64).eps) / (y_all[0].value + np.finfo(np.float64).eps) * fitp[i], list(y_all), man_grad=list(deriv_y[i])))
|
||||
|
||||
output.fit_parameters = result
|
||||
|
||||
if kwargs.get('correlated_fit') is True:
|
||||
n_cov = np.min(np.vectorize(lambda x_all: x_all.N)(y_all))
|
||||
output.t2_p_value = 1 - scipy.stats.f.cdf((n_cov - output.dof) / (output.dof * (n_cov - 1)) * output.chisquare,
|
||||
output.dof, n_cov - output.dof)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue