mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-15 03:53:41 +02:00
Benchmarks added
This commit is contained in:
parent
8655fe2cd1
commit
b5f3dd6ac3
9 changed files with 58 additions and 1 deletions
164
tests/linalg_test.py
Normal file
164
tests/linalg_test.py
Normal file
|
@ -0,0 +1,164 @@
|
|||
import numpy as np
|
||||
import autograd.numpy as anp
|
||||
import math
|
||||
import pyerrors as pe
|
||||
import pytest
|
||||
|
||||
np.random.seed(0)
|
||||
|
||||
|
||||
def test_matmul():
|
||||
for dim in [4, 8]:
|
||||
my_list = []
|
||||
length = 1000 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))
|
||||
my_array = np.array(my_list).reshape((dim, dim))
|
||||
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
assert e.is_zero(), t
|
||||
|
||||
my_list = []
|
||||
length = 1000 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']),
|
||||
pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])))
|
||||
my_array = np.array(my_list).reshape((dim, dim))
|
||||
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
assert e.is_zero(), t
|
||||
|
||||
|
||||
def test_multi_dot():
|
||||
for dim in [4, 8]:
|
||||
my_list = []
|
||||
length = 1000 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))
|
||||
my_array = np.array(my_list).reshape((dim, dim))
|
||||
tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
assert e.is_zero(), t
|
||||
|
||||
my_list = []
|
||||
length = 1000 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']),
|
||||
pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])))
|
||||
my_array = np.array(my_list).reshape((dim, dim))
|
||||
tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
assert e.is_zero(), t
|
||||
|
||||
|
||||
def test_matrix_inverse():
|
||||
content = []
|
||||
for t in range(9):
|
||||
exponent = np.random.normal(3, 5)
|
||||
content.append(pe.pseudo_Obs(2 + 10 ** exponent, 10 ** (exponent - 1), 't'))
|
||||
|
||||
content.append(1.0) # Add 1.0 as a float
|
||||
matrix = np.diag(content)
|
||||
inverse_matrix = pe.linalg.inv(matrix)
|
||||
assert all([o.is_zero() for o in np.diag(matrix) * np.diag(inverse_matrix) - 1])
|
||||
|
||||
|
||||
def test_complex_matrix_inverse():
|
||||
dimension = 6
|
||||
base_matrix = np.empty((dimension, dimension), dtype=object)
|
||||
matrix = np.empty((dimension, dimension), dtype=complex)
|
||||
for (n, m), entry in np.ndenumerate(base_matrix):
|
||||
exponent_real = np.random.normal(3, 5)
|
||||
exponent_imag = np.random.normal(3, 5)
|
||||
base_matrix[n, m] = pe.CObs(pe.pseudo_Obs(2 + 10 ** exponent_real, 10 ** (exponent_real - 1), 't'),
|
||||
pe.pseudo_Obs(2 + 10 ** exponent_imag, 10 ** (exponent_imag - 1), 't'))
|
||||
|
||||
# Construct invertible matrix
|
||||
obs_matrix = np.identity(dimension) + base_matrix @ base_matrix.T
|
||||
|
||||
for (n, m), entry in np.ndenumerate(obs_matrix):
|
||||
matrix[n, m] = entry.real.value + 1j * entry.imag.value
|
||||
|
||||
inverse_matrix = np.linalg.inv(matrix)
|
||||
inverse_obs_matrix = pe.linalg.inv(obs_matrix)
|
||||
for (n, m), entry in np.ndenumerate(inverse_matrix):
|
||||
assert np.isclose(inverse_matrix[n, m].real, inverse_obs_matrix[n, m].real.value)
|
||||
assert np.isclose(inverse_matrix[n, m].imag, inverse_obs_matrix[n, m].imag.value)
|
||||
|
||||
|
||||
def test_matrix_functions():
|
||||
dim = 4
|
||||
matrix = []
|
||||
for i in range(dim):
|
||||
row = []
|
||||
for j in range(dim):
|
||||
row.append(pe.pseudo_Obs(np.random.rand(), 0.2 + 0.1 * np.random.rand(), 'e1'))
|
||||
matrix.append(row)
|
||||
matrix = np.array(matrix) @ np.identity(dim)
|
||||
|
||||
# Check inverse of matrix
|
||||
inv = pe.linalg.inv(matrix)
|
||||
check_inv = matrix @ inv
|
||||
|
||||
for (i, j), entry in np.ndenumerate(check_inv):
|
||||
entry.gamma_method()
|
||||
if(i == j):
|
||||
assert math.isclose(entry.value, 1.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j) + ' ' + str(entry.value)
|
||||
else:
|
||||
assert math.isclose(entry.value, 0.0, abs_tol=1e-9), 'value ' + str(i) + ',' + str(j) + ' ' + str(entry.value)
|
||||
assert math.isclose(entry.dvalue, 0.0, abs_tol=1e-9), 'dvalue ' + str(i) + ',' + str(j) + ' ' + str(entry.dvalue)
|
||||
|
||||
# Check Cholesky decomposition
|
||||
sym = np.dot(matrix, matrix.T)
|
||||
cholesky = pe.linalg.cholesky(sym)
|
||||
check = cholesky @ cholesky.T
|
||||
|
||||
for (i, j), entry in np.ndenumerate(check):
|
||||
diff = entry - sym[i, j]
|
||||
assert diff.is_zero()
|
||||
|
||||
# Check eigh
|
||||
e, v = pe.linalg.eigh(sym)
|
||||
for i in range(dim):
|
||||
tmp = sym @ v[:, i] - v[:, i] * e[i]
|
||||
for j in range(dim):
|
||||
assert tmp[j].is_zero()
|
||||
|
||||
# Check svd
|
||||
u, v, vh = pe.linalg.svd(sym)
|
||||
diff = sym - u @ np.diag(v) @ vh
|
||||
|
||||
for (i, j), entry in np.ndenumerate(diff):
|
||||
assert entry.is_zero()
|
||||
|
||||
|
||||
def test_complex_matrix_operations():
|
||||
dimension = 4
|
||||
base_matrix = np.empty((dimension, dimension), dtype=object)
|
||||
for (n, m), entry in np.ndenumerate(base_matrix):
|
||||
exponent_real = np.random.normal(3, 5)
|
||||
exponent_imag = np.random.normal(3, 5)
|
||||
base_matrix[n, m] = pe.CObs(pe.pseudo_Obs(2 + 10 ** exponent_real, 10 ** (exponent_real - 1), 't'),
|
||||
pe.pseudo_Obs(2 + 10 ** exponent_imag, 10 ** (exponent_imag - 1), 't'))
|
||||
|
||||
for other in [2, 2.3, (1 - 0.1j), (0 + 2.1j)]:
|
||||
ta = base_matrix * other
|
||||
tb = other * base_matrix
|
||||
diff = ta - tb
|
||||
for (i, j), entry in np.ndenumerate(diff):
|
||||
assert entry.is_zero()
|
||||
ta = base_matrix + other
|
||||
tb = other + base_matrix
|
||||
diff = ta - tb
|
||||
for (i, j), entry in np.ndenumerate(diff):
|
||||
assert entry.is_zero()
|
||||
ta = base_matrix - other
|
||||
tb = other - base_matrix
|
||||
diff = ta + tb
|
||||
for (i, j), entry in np.ndenumerate(diff):
|
||||
assert entry.is_zero()
|
||||
ta = base_matrix / other
|
||||
tb = other / base_matrix
|
||||
diff = ta * tb - 1
|
||||
for (i, j), entry in np.ndenumerate(diff):
|
||||
assert entry.is_zero()
|
Loading…
Add table
Add a link
Reference in a new issue