diff --git a/docs/pyerrors/correlators.html b/docs/pyerrors/correlators.html index 305a566b..19eb9fd2 100644 --- a/docs/pyerrors/correlators.html +++ b/docs/pyerrors/correlators.html @@ -455,989 +455,994 @@ 241 if self.N == 1: 242 raise Exception("Trying to symmetrize a correlator matrix, that already has N=1.") 243 - 244 def GEVP(self, t0, ts=None, state=0, sorted_list="Eigenvalue"): - 245 """Solve the general eigenvalue problem on the current correlator + 244 def GEVP(self, t0, ts=None, sort="Eigenvalue", **kwargs): + 245 r'''Solve the generalized eigenvalue problem on the correlator matrix and returns the corresponding eigenvectors. 246 - 247 Parameters - 248 ---------- - 249 t0 : int - 250 The time t0 for G(t)v= lambda G(t_0)v - 251 ts : int - 252 fixed time G(t_s)v= lambda G(t_0)v if return_list=False - 253 If return_list=True and sorting=Eigenvector it gives a reference point for the sorting method. - 254 state : int - 255 The state one is interested in, ordered by energy. The lowest state is zero. - 256 sorted_list : string - 257 if this argument is set, a list of vectors (len=self.T) is returned. If it is left as None, only one vector is returned. - 258 "Eigenvalue" - The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice. - 259 "Eigenvector" - Use the method described in arXiv:2004.10472 [hep-lat] to find the set of v(t) belonging to the state. - 260 The reference state is identified by its eigenvalue at t=ts - 261 """ - 262 - 263 if self.N == 1: - 264 raise Exception("GEVP methods only works on correlator matrices and not single correlators.") - 265 - 266 symmetric_corr = self.matrix_symmetric() - 267 if sorted_list is None: - 268 if (ts is None): - 269 raise Exception("ts is required if sorted_list=None.") - 270 if (ts <= t0): - 271 raise Exception("ts has to be larger than t0.") - 272 if (self.content[t0] is None) or (self.content[ts] is None): - 273 raise Exception("Corr not defined at t0/ts.") - 274 G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double") - 275 for i in range(self.N): - 276 for j in range(self.N): - 277 G0[i, j] = symmetric_corr[t0][i, j].value - 278 Gt[i, j] = symmetric_corr[ts][i, j].value - 279 - 280 sp_vecs = _GEVP_solver(Gt, G0) - 281 sp_vec = sp_vecs[state] - 282 return sp_vec - 283 elif sorted_list in ["Eigenvalue", "Eigenvector"]: - 284 if sorted_list == "Eigenvalue" and ts is not None: - 285 warnings.warn("ts has no effect when sorting by eigenvalue is chosen.", RuntimeWarning) - 286 all_vecs = [None] * (t0 + 1) - 287 for t in range(t0 + 1, self.T): - 288 try: - 289 G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double") - 290 for i in range(self.N): - 291 for j in range(self.N): - 292 G0[i, j] = symmetric_corr[t0][i, j].value - 293 Gt[i, j] = symmetric_corr[t][i, j].value + 247 The eigenvectors are sorted according to the descending eigenvalues, the zeroth eigenvector(s) correspond to the + 248 largest eigenvalue(s). The eigenvector(s) for the individual states can be accessed via slicing + 249 ```python + 250 C.GEVP(t0=2)[0] # Ground state vector(s) + 251 C.GEVP(t0=2)[:3] # Vectors for the lowest three states + 252 ``` + 253 + 254 Parameters + 255 ---------- + 256 t0 : int + 257 The time t0 for the right hand side of the GEVP according to $G(t)v_i=\lambda_i G(t_0)v_i$ + 258 ts : int + 259 fixed time $G(t_s)v_i=\lambda_i G(t_0)v_i$ if sort=None. + 260 If sort="Eigenvector" it gives a reference point for the sorting method. + 261 sort : string + 262 If this argument is set, a list of self.T vectors per state is returned. If it is set to None, only one vector is returned. + 263 - "Eigenvalue": The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice. + 264 - "Eigenvector": Use the method described in arXiv:2004.10472 to find the set of v(t) belonging to the state. + 265 The reference state is identified by its eigenvalue at $t=t_s$. + 266 + 267 Other Parameters + 268 ---------------- + 269 state : int + 270 Returns only the vector(s) for a specified state. The lowest state is zero. + 271 ''' + 272 + 273 if self.N == 1: + 274 raise Exception("GEVP methods only works on correlator matrices and not single correlators.") + 275 if ts is not None: + 276 if (ts <= t0): + 277 raise Exception("ts has to be larger than t0.") + 278 + 279 if "sorted_list" in kwargs: + 280 warnings.warn("Argument 'sorted_list' is deprecated, use 'sort' instead.", DeprecationWarning) + 281 sort = kwargs.get("sorted_list") + 282 + 283 symmetric_corr = self.matrix_symmetric() + 284 if sort is None: + 285 if (ts is None): + 286 raise Exception("ts is required if sort=None.") + 287 if (self.content[t0] is None) or (self.content[ts] is None): + 288 raise Exception("Corr not defined at t0/ts.") + 289 G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double") + 290 for i in range(self.N): + 291 for j in range(self.N): + 292 G0[i, j] = symmetric_corr[t0][i, j].value + 293 Gt[i, j] = symmetric_corr[ts][i, j].value 294 - 295 sp_vecs = _GEVP_solver(Gt, G0) - 296 if sorted_list == "Eigenvalue": - 297 sp_vec = sp_vecs[state] - 298 all_vecs.append(sp_vec) - 299 else: - 300 all_vecs.append(sp_vecs) - 301 except Exception: - 302 all_vecs.append(None) - 303 if sorted_list == "Eigenvector": - 304 if (ts is None): - 305 raise Exception("ts is required for the Eigenvector sorting method.") - 306 all_vecs = _sort_vectors(all_vecs, ts) - 307 all_vecs = [a[state] if a is not None else None for a in all_vecs] - 308 else: - 309 raise Exception("Unkown value for 'sorted_list'.") - 310 - 311 return all_vecs - 312 - 313 def Eigenvalue(self, t0, ts=None, state=0, sorted_list=None): - 314 """Determines the eigenvalue of the GEVP by solving and projecting the correlator - 315 - 316 Parameters - 317 ---------- - 318 t0 : int - 319 The time t0 for G(t)v= lambda G(t_0)v - 320 ts : int - 321 fixed time G(t_s)v= lambda G(t_0)v if return_list=False - 322 If return_list=True and sorting=Eigenvector it gives a reference point for the sorting method. - 323 state : int - 324 The state one is interested in ordered by energy. The lowest state is zero. - 325 sorted_list : string - 326 if this argument is set, a list of vectors (len=self.T) is returned. If it is left as None, only one vector is returned. - 327 "Eigenvalue" - The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice. - 328 "Eigenvector" - Use the method described in arXiv:2004.10472 [hep-lat] to find the set of v(t) belonging to the state. - 329 The reference state is identified by its eigenvalue at t=ts - 330 """ - 331 vec = self.GEVP(t0, ts=ts, state=state, sorted_list=sorted_list) - 332 return self.projected(vec) + 295 reordered_vecs = _GEVP_solver(Gt, G0) + 296 + 297 elif sort in ["Eigenvalue", "Eigenvector"]: + 298 if sort == "Eigenvalue" and ts is not None: + 299 warnings.warn("ts has no effect when sorting by eigenvalue is chosen.", RuntimeWarning) + 300 all_vecs = [None] * (t0 + 1) + 301 for t in range(t0 + 1, self.T): + 302 try: + 303 G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double") + 304 for i in range(self.N): + 305 for j in range(self.N): + 306 G0[i, j] = symmetric_corr[t0][i, j].value + 307 Gt[i, j] = symmetric_corr[t][i, j].value + 308 + 309 all_vecs.append(_GEVP_solver(Gt, G0)) + 310 except Exception: + 311 all_vecs.append(None) + 312 if sort == "Eigenvector": + 313 if (ts is None): + 314 raise Exception("ts is required for the Eigenvector sorting method.") + 315 all_vecs = _sort_vectors(all_vecs, ts) + 316 + 317 reordered_vecs = [[v[s] if v is not None else None for v in all_vecs] for s in range(self.N)] + 318 else: + 319 raise Exception("Unkown value for 'sort'.") + 320 + 321 if "state" in kwargs: + 322 return reordered_vecs[kwargs.get("state")] + 323 else: + 324 return reordered_vecs + 325 + 326 def Eigenvalue(self, t0, ts=None, state=0, sort="Eigenvalue"): + 327 """Determines the eigenvalue of the GEVP by solving and projecting the correlator + 328 + 329 Parameters + 330 ---------- + 331 state : int + 332 The state one is interested in ordered by energy. The lowest state is zero. 333 - 334 def Hankel(self, N, periodic=False): - 335 """Constructs an NxN Hankel matrix - 336 - 337 C(t) c(t+1) ... c(t+n-1) - 338 C(t+1) c(t+2) ... c(t+n) - 339 ................. - 340 C(t+(n-1)) c(t+n) ... c(t+2(n-1)) + 334 All other parameters are identical to the ones of Corr.GEVP. + 335 """ + 336 vec = self.GEVP(t0, ts=ts, sort=sort)[state] + 337 return self.projected(vec) + 338 + 339 def Hankel(self, N, periodic=False): + 340 """Constructs an NxN Hankel matrix 341 - 342 Parameters - 343 ---------- - 344 N : int - 345 Dimension of the Hankel matrix - 346 periodic : bool, optional - 347 determines whether the matrix is extended periodically - 348 """ - 349 - 350 if self.N != 1: - 351 raise Exception("Multi-operator Prony not implemented!") - 352 - 353 array = np.empty([N, N], dtype="object") - 354 new_content = [] - 355 for t in range(self.T): - 356 new_content.append(array.copy()) + 342 C(t) c(t+1) ... c(t+n-1) + 343 C(t+1) c(t+2) ... c(t+n) + 344 ................. + 345 C(t+(n-1)) c(t+n) ... c(t+2(n-1)) + 346 + 347 Parameters + 348 ---------- + 349 N : int + 350 Dimension of the Hankel matrix + 351 periodic : bool, optional + 352 determines whether the matrix is extended periodically + 353 """ + 354 + 355 if self.N != 1: + 356 raise Exception("Multi-operator Prony not implemented!") 357 - 358 def wrap(i): - 359 while i >= self.T: - 360 i -= self.T - 361 return i + 358 array = np.empty([N, N], dtype="object") + 359 new_content = [] + 360 for t in range(self.T): + 361 new_content.append(array.copy()) 362 - 363 for t in range(self.T): - 364 for i in range(N): - 365 for j in range(N): - 366 if periodic: - 367 new_content[t][i, j] = self.content[wrap(t + i + j)][0] - 368 elif (t + i + j) >= self.T: - 369 new_content[t] = None - 370 else: - 371 new_content[t][i, j] = self.content[t + i + j][0] - 372 - 373 return Corr(new_content) - 374 - 375 def roll(self, dt): - 376 """Periodically shift the correlator by dt timeslices + 363 def wrap(i): + 364 while i >= self.T: + 365 i -= self.T + 366 return i + 367 + 368 for t in range(self.T): + 369 for i in range(N): + 370 for j in range(N): + 371 if periodic: + 372 new_content[t][i, j] = self.content[wrap(t + i + j)][0] + 373 elif (t + i + j) >= self.T: + 374 new_content[t] = None + 375 else: + 376 new_content[t][i, j] = self.content[t + i + j][0] 377 - 378 Parameters - 379 ---------- - 380 dt : int - 381 number of timeslices - 382 """ - 383 return Corr(list(np.roll(np.array(self.content, dtype=object), dt))) - 384 - 385 def reverse(self): - 386 """Reverse the time ordering of the Corr""" - 387 return Corr(self.content[:: -1]) - 388 - 389 def thin(self, spacing=2, offset=0): - 390 """Thin out a correlator to suppress correlations - 391 - 392 Parameters - 393 ---------- - 394 spacing : int - 395 Keep only every 'spacing'th entry of the correlator - 396 offset : int - 397 Offset the equal spacing - 398 """ - 399 new_content = [] - 400 for t in range(self.T): - 401 if (offset + t) % spacing != 0: - 402 new_content.append(None) - 403 else: - 404 new_content.append(self.content[t]) - 405 return Corr(new_content) - 406 - 407 def correlate(self, partner): - 408 """Correlate the correlator with another correlator or Obs - 409 - 410 Parameters - 411 ---------- - 412 partner : Obs or Corr - 413 partner to correlate the correlator with. - 414 Can either be an Obs which is correlated with all entries of the - 415 correlator or a Corr of same length. - 416 """ - 417 new_content = [] - 418 for x0, t_slice in enumerate(self.content): - 419 if t_slice is None: - 420 new_content.append(None) - 421 else: - 422 if isinstance(partner, Corr): - 423 if partner.content[x0] is None: - 424 new_content.append(None) - 425 else: - 426 new_content.append(np.array([correlate(o, partner.content[x0][0]) for o in t_slice])) - 427 elif isinstance(partner, Obs): # Should this include CObs? - 428 new_content.append(np.array([correlate(o, partner) for o in t_slice])) - 429 else: - 430 raise Exception("Can only correlate with an Obs or a Corr.") - 431 - 432 return Corr(new_content) - 433 - 434 def reweight(self, weight, **kwargs): - 435 """Reweight the correlator. + 378 return Corr(new_content) + 379 + 380 def roll(self, dt): + 381 """Periodically shift the correlator by dt timeslices + 382 + 383 Parameters + 384 ---------- + 385 dt : int + 386 number of timeslices + 387 """ + 388 return Corr(list(np.roll(np.array(self.content, dtype=object), dt))) + 389 + 390 def reverse(self): + 391 """Reverse the time ordering of the Corr""" + 392 return Corr(self.content[:: -1]) + 393 + 394 def thin(self, spacing=2, offset=0): + 395 """Thin out a correlator to suppress correlations + 396 + 397 Parameters + 398 ---------- + 399 spacing : int + 400 Keep only every 'spacing'th entry of the correlator + 401 offset : int + 402 Offset the equal spacing + 403 """ + 404 new_content = [] + 405 for t in range(self.T): + 406 if (offset + t) % spacing != 0: + 407 new_content.append(None) + 408 else: + 409 new_content.append(self.content[t]) + 410 return Corr(new_content) + 411 + 412 def correlate(self, partner): + 413 """Correlate the correlator with another correlator or Obs + 414 + 415 Parameters + 416 ---------- + 417 partner : Obs or Corr + 418 partner to correlate the correlator with. + 419 Can either be an Obs which is correlated with all entries of the + 420 correlator or a Corr of same length. + 421 """ + 422 new_content = [] + 423 for x0, t_slice in enumerate(self.content): + 424 if t_slice is None: + 425 new_content.append(None) + 426 else: + 427 if isinstance(partner, Corr): + 428 if partner.content[x0] is None: + 429 new_content.append(None) + 430 else: + 431 new_content.append(np.array([correlate(o, partner.content[x0][0]) for o in t_slice])) + 432 elif isinstance(partner, Obs): # Should this include CObs? + 433 new_content.append(np.array([correlate(o, partner) for o in t_slice])) + 434 else: + 435 raise Exception("Can only correlate with an Obs or a Corr.") 436 - 437 Parameters - 438 ---------- - 439 weight : Obs - 440 Reweighting factor. An Observable that has to be defined on a superset of the - 441 configurations in obs[i].idl for all i. - 442 all_configs : bool - 443 if True, the reweighted observables are normalized by the average of - 444 the reweighting factor on all configurations in weight.idl and not - 445 on the configurations in obs[i].idl. - 446 """ - 447 new_content = [] - 448 for t_slice in self.content: - 449 if t_slice is None: - 450 new_content.append(None) - 451 else: - 452 new_content.append(np.array(reweight(weight, t_slice, **kwargs))) - 453 return Corr(new_content) - 454 - 455 def T_symmetry(self, partner, parity=+1): - 456 """Return the time symmetry average of the correlator and its partner - 457 - 458 Parameters - 459 ---------- - 460 partner : Corr - 461 Time symmetry partner of the Corr - 462 partity : int - 463 Parity quantum number of the correlator, can be +1 or -1 - 464 """ - 465 if not isinstance(partner, Corr): - 466 raise Exception("T partner has to be a Corr object.") - 467 if parity not in [+1, -1]: - 468 raise Exception("Parity has to be +1 or -1.") - 469 T_partner = parity * partner.reverse() - 470 - 471 t_slices = [] - 472 test = (self - T_partner) - 473 test.gamma_method() - 474 for x0, t_slice in enumerate(test.content): - 475 if t_slice is not None: - 476 if not t_slice[0].is_zero_within_error(5): - 477 t_slices.append(x0) - 478 if t_slices: - 479 warnings.warn("T symmetry partners do not agree within 5 sigma on time slices " + str(t_slices) + ".", RuntimeWarning) - 480 - 481 return (self + T_partner) / 2 - 482 - 483 def deriv(self, variant="symmetric"): - 484 """Return the first derivative of the correlator with respect to x0. + 437 return Corr(new_content) + 438 + 439 def reweight(self, weight, **kwargs): + 440 """Reweight the correlator. + 441 + 442 Parameters + 443 ---------- + 444 weight : Obs + 445 Reweighting factor. An Observable that has to be defined on a superset of the + 446 configurations in obs[i].idl for all i. + 447 all_configs : bool + 448 if True, the reweighted observables are normalized by the average of + 449 the reweighting factor on all configurations in weight.idl and not + 450 on the configurations in obs[i].idl. + 451 """ + 452 new_content = [] + 453 for t_slice in self.content: + 454 if t_slice is None: + 455 new_content.append(None) + 456 else: + 457 new_content.append(np.array(reweight(weight, t_slice, **kwargs))) + 458 return Corr(new_content) + 459 + 460 def T_symmetry(self, partner, parity=+1): + 461 """Return the time symmetry average of the correlator and its partner + 462 + 463 Parameters + 464 ---------- + 465 partner : Corr + 466 Time symmetry partner of the Corr + 467 partity : int + 468 Parity quantum number of the correlator, can be +1 or -1 + 469 """ + 470 if not isinstance(partner, Corr): + 471 raise Exception("T partner has to be a Corr object.") + 472 if parity not in [+1, -1]: + 473 raise Exception("Parity has to be +1 or -1.") + 474 T_partner = parity * partner.reverse() + 475 + 476 t_slices = [] + 477 test = (self - T_partner) + 478 test.gamma_method() + 479 for x0, t_slice in enumerate(test.content): + 480 if t_slice is not None: + 481 if not t_slice[0].is_zero_within_error(5): + 482 t_slices.append(x0) + 483 if t_slices: + 484 warnings.warn("T symmetry partners do not agree within 5 sigma on time slices " + str(t_slices) + ".", RuntimeWarning) 485 - 486 Parameters - 487 ---------- - 488 variant : str - 489 decides which definition of the finite differences derivative is used. - 490 Available choice: symmetric, forward, backward, improved, default: symmetric - 491 """ - 492 if variant == "symmetric": - 493 newcontent = [] - 494 for t in range(1, self.T - 1): - 495 if (self.content[t - 1] is None) or (self.content[t + 1] is None): - 496 newcontent.append(None) - 497 else: - 498 newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1])) - 499 if(all([x is None for x in newcontent])): - 500 raise Exception('Derivative is undefined at all timeslices') - 501 return Corr(newcontent, padding=[1, 1]) - 502 elif variant == "forward": - 503 newcontent = [] - 504 for t in range(self.T - 1): - 505 if (self.content[t] is None) or (self.content[t + 1] is None): - 506 newcontent.append(None) - 507 else: - 508 newcontent.append(self.content[t + 1] - self.content[t]) - 509 if(all([x is None for x in newcontent])): - 510 raise Exception("Derivative is undefined at all timeslices") - 511 return Corr(newcontent, padding=[0, 1]) - 512 elif variant == "backward": - 513 newcontent = [] - 514 for t in range(1, self.T): - 515 if (self.content[t - 1] is None) or (self.content[t] is None): - 516 newcontent.append(None) - 517 else: - 518 newcontent.append(self.content[t] - self.content[t - 1]) - 519 if(all([x is None for x in newcontent])): - 520 raise Exception("Derivative is undefined at all timeslices") - 521 return Corr(newcontent, padding=[1, 0]) - 522 elif variant == "improved": - 523 newcontent = [] - 524 for t in range(2, self.T - 2): - 525 if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None): - 526 newcontent.append(None) - 527 else: - 528 newcontent.append((1 / 12) * (self.content[t - 2] - 8 * self.content[t - 1] + 8 * self.content[t + 1] - self.content[t + 2])) - 529 if(all([x is None for x in newcontent])): - 530 raise Exception('Derivative is undefined at all timeslices') - 531 return Corr(newcontent, padding=[2, 2]) - 532 else: - 533 raise Exception("Unknown variant.") - 534 - 535 def second_deriv(self, variant="symmetric"): - 536 """Return the second derivative of the correlator with respect to x0. - 537 - 538 Parameters - 539 ---------- - 540 variant : str - 541 decides which definition of the finite differences derivative is used. - 542 Available choice: symmetric, improved, default: symmetric - 543 """ - 544 if variant == "symmetric": - 545 newcontent = [] - 546 for t in range(1, self.T - 1): - 547 if (self.content[t - 1] is None) or (self.content[t + 1] is None): - 548 newcontent.append(None) - 549 else: - 550 newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1])) - 551 if(all([x is None for x in newcontent])): - 552 raise Exception("Derivative is undefined at all timeslices") - 553 return Corr(newcontent, padding=[1, 1]) - 554 elif variant == "improved": - 555 newcontent = [] - 556 for t in range(2, self.T - 2): - 557 if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None): - 558 newcontent.append(None) - 559 else: - 560 newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2])) - 561 if(all([x is None for x in newcontent])): - 562 raise Exception("Derivative is undefined at all timeslices") - 563 return Corr(newcontent, padding=[2, 2]) - 564 else: - 565 raise Exception("Unknown variant.") - 566 - 567 def m_eff(self, variant='log', guess=1.0): - 568 """Returns the effective mass of the correlator as correlator object - 569 - 570 Parameters - 571 ---------- - 572 variant : str - 573 log : uses the standard effective mass log(C(t) / C(t+1)) - 574 cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m. - 575 sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m. - 576 See, e.g., arXiv:1205.5380 - 577 arccosh : Uses the explicit form of the symmetrized correlator (not recommended) - 578 guess : float - 579 guess for the root finder, only relevant for the root variant - 580 """ - 581 if self.N != 1: - 582 raise Exception('Correlator must be projected before getting m_eff') - 583 if variant == 'log': - 584 newcontent = [] - 585 for t in range(self.T - 1): - 586 if (self.content[t] is None) or (self.content[t + 1] is None): - 587 newcontent.append(None) - 588 else: - 589 newcontent.append(self.content[t] / self.content[t + 1]) - 590 if(all([x is None for x in newcontent])): - 591 raise Exception('m_eff is undefined at all timeslices') - 592 - 593 return np.log(Corr(newcontent, padding=[0, 1])) - 594 - 595 elif variant in ['periodic', 'cosh', 'sinh']: - 596 if variant in ['periodic', 'cosh']: - 597 func = anp.cosh - 598 else: - 599 func = anp.sinh - 600 - 601 def root_function(x, d): - 602 return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d - 603 - 604 newcontent = [] - 605 for t in range(self.T - 1): - 606 if (self.content[t] is None) or (self.content[t + 1] is None): - 607 newcontent.append(None) - 608 # Fill the two timeslices in the middle of the lattice with their predecessors - 609 elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]: - 610 newcontent.append(newcontent[-1]) - 611 else: - 612 newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess))) - 613 if(all([x is None for x in newcontent])): - 614 raise Exception('m_eff is undefined at all timeslices') - 615 - 616 return Corr(newcontent, padding=[0, 1]) - 617 - 618 elif variant == 'arccosh': - 619 newcontent = [] - 620 for t in range(1, self.T - 1): - 621 if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None): - 622 newcontent.append(None) - 623 else: - 624 newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t])) - 625 if(all([x is None for x in newcontent])): - 626 raise Exception("m_eff is undefined at all timeslices") - 627 return np.arccosh(Corr(newcontent, padding=[1, 1])) - 628 - 629 else: - 630 raise Exception('Unknown variant.') - 631 - 632 def fit(self, function, fitrange=None, silent=False, **kwargs): - 633 r'''Fits function to the data - 634 - 635 Parameters - 636 ---------- - 637 function : obj - 638 function to fit to the data. See fits.least_squares for details. - 639 fitrange : list - 640 Two element list containing the timeslices on which the fit is supposed to start and stop. - 641 Caution: This range is inclusive as opposed to standard python indexing. - 642 `fitrange=[4, 6]` corresponds to the three entries 4, 5 and 6. - 643 If not specified, self.prange or all timeslices are used. - 644 silent : bool - 645 Decides whether output is printed to the standard output. - 646 ''' - 647 if self.N != 1: - 648 raise Exception("Correlator must be projected before fitting") - 649 - 650 if fitrange is None: - 651 if self.prange: - 652 fitrange = self.prange - 653 else: - 654 fitrange = [0, self.T - 1] - 655 else: - 656 if not isinstance(fitrange, list): - 657 raise Exception("fitrange has to be a list with two elements") - 658 if len(fitrange) != 2: - 659 raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]") - 660 - 661 xs = [x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None] - 662 ys = [self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None] - 663 result = least_squares(xs, ys, function, silent=silent, **kwargs) - 664 return result + 486 return (self + T_partner) / 2 + 487 + 488 def deriv(self, variant="symmetric"): + 489 """Return the first derivative of the correlator with respect to x0. + 490 + 491 Parameters + 492 ---------- + 493 variant : str + 494 decides which definition of the finite differences derivative is used. + 495 Available choice: symmetric, forward, backward, improved, default: symmetric + 496 """ + 497 if variant == "symmetric": + 498 newcontent = [] + 499 for t in range(1, self.T - 1): + 500 if (self.content[t - 1] is None) or (self.content[t + 1] is None): + 501 newcontent.append(None) + 502 else: + 503 newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1])) + 504 if(all([x is None for x in newcontent])): + 505 raise Exception('Derivative is undefined at all timeslices') + 506 return Corr(newcontent, padding=[1, 1]) + 507 elif variant == "forward": + 508 newcontent = [] + 509 for t in range(self.T - 1): + 510 if (self.content[t] is None) or (self.content[t + 1] is None): + 511 newcontent.append(None) + 512 else: + 513 newcontent.append(self.content[t + 1] - self.content[t]) + 514 if(all([x is None for x in newcontent])): + 515 raise Exception("Derivative is undefined at all timeslices") + 516 return Corr(newcontent, padding=[0, 1]) + 517 elif variant == "backward": + 518 newcontent = [] + 519 for t in range(1, self.T): + 520 if (self.content[t - 1] is None) or (self.content[t] is None): + 521 newcontent.append(None) + 522 else: + 523 newcontent.append(self.content[t] - self.content[t - 1]) + 524 if(all([x is None for x in newcontent])): + 525 raise Exception("Derivative is undefined at all timeslices") + 526 return Corr(newcontent, padding=[1, 0]) + 527 elif variant == "improved": + 528 newcontent = [] + 529 for t in range(2, self.T - 2): + 530 if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None): + 531 newcontent.append(None) + 532 else: + 533 newcontent.append((1 / 12) * (self.content[t - 2] - 8 * self.content[t - 1] + 8 * self.content[t + 1] - self.content[t + 2])) + 534 if(all([x is None for x in newcontent])): + 535 raise Exception('Derivative is undefined at all timeslices') + 536 return Corr(newcontent, padding=[2, 2]) + 537 else: + 538 raise Exception("Unknown variant.") + 539 + 540 def second_deriv(self, variant="symmetric"): + 541 """Return the second derivative of the correlator with respect to x0. + 542 + 543 Parameters + 544 ---------- + 545 variant : str + 546 decides which definition of the finite differences derivative is used. + 547 Available choice: symmetric, improved, default: symmetric + 548 """ + 549 if variant == "symmetric": + 550 newcontent = [] + 551 for t in range(1, self.T - 1): + 552 if (self.content[t - 1] is None) or (self.content[t + 1] is None): + 553 newcontent.append(None) + 554 else: + 555 newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1])) + 556 if(all([x is None for x in newcontent])): + 557 raise Exception("Derivative is undefined at all timeslices") + 558 return Corr(newcontent, padding=[1, 1]) + 559 elif variant == "improved": + 560 newcontent = [] + 561 for t in range(2, self.T - 2): + 562 if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None): + 563 newcontent.append(None) + 564 else: + 565 newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2])) + 566 if(all([x is None for x in newcontent])): + 567 raise Exception("Derivative is undefined at all timeslices") + 568 return Corr(newcontent, padding=[2, 2]) + 569 else: + 570 raise Exception("Unknown variant.") + 571 + 572 def m_eff(self, variant='log', guess=1.0): + 573 """Returns the effective mass of the correlator as correlator object + 574 + 575 Parameters + 576 ---------- + 577 variant : str + 578 log : uses the standard effective mass log(C(t) / C(t+1)) + 579 cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m. + 580 sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m. + 581 See, e.g., arXiv:1205.5380 + 582 arccosh : Uses the explicit form of the symmetrized correlator (not recommended) + 583 guess : float + 584 guess for the root finder, only relevant for the root variant + 585 """ + 586 if self.N != 1: + 587 raise Exception('Correlator must be projected before getting m_eff') + 588 if variant == 'log': + 589 newcontent = [] + 590 for t in range(self.T - 1): + 591 if (self.content[t] is None) or (self.content[t + 1] is None): + 592 newcontent.append(None) + 593 else: + 594 newcontent.append(self.content[t] / self.content[t + 1]) + 595 if(all([x is None for x in newcontent])): + 596 raise Exception('m_eff is undefined at all timeslices') + 597 + 598 return np.log(Corr(newcontent, padding=[0, 1])) + 599 + 600 elif variant in ['periodic', 'cosh', 'sinh']: + 601 if variant in ['periodic', 'cosh']: + 602 func = anp.cosh + 603 else: + 604 func = anp.sinh + 605 + 606 def root_function(x, d): + 607 return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d + 608 + 609 newcontent = [] + 610 for t in range(self.T - 1): + 611 if (self.content[t] is None) or (self.content[t + 1] is None): + 612 newcontent.append(None) + 613 # Fill the two timeslices in the middle of the lattice with their predecessors + 614 elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]: + 615 newcontent.append(newcontent[-1]) + 616 else: + 617 newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess))) + 618 if(all([x is None for x in newcontent])): + 619 raise Exception('m_eff is undefined at all timeslices') + 620 + 621 return Corr(newcontent, padding=[0, 1]) + 622 + 623 elif variant == 'arccosh': + 624 newcontent = [] + 625 for t in range(1, self.T - 1): + 626 if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None): + 627 newcontent.append(None) + 628 else: + 629 newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t])) + 630 if(all([x is None for x in newcontent])): + 631 raise Exception("m_eff is undefined at all timeslices") + 632 return np.arccosh(Corr(newcontent, padding=[1, 1])) + 633 + 634 else: + 635 raise Exception('Unknown variant.') + 636 + 637 def fit(self, function, fitrange=None, silent=False, **kwargs): + 638 r'''Fits function to the data + 639 + 640 Parameters + 641 ---------- + 642 function : obj + 643 function to fit to the data. See fits.least_squares for details. + 644 fitrange : list + 645 Two element list containing the timeslices on which the fit is supposed to start and stop. + 646 Caution: This range is inclusive as opposed to standard python indexing. + 647 `fitrange=[4, 6]` corresponds to the three entries 4, 5 and 6. + 648 If not specified, self.prange or all timeslices are used. + 649 silent : bool + 650 Decides whether output is printed to the standard output. + 651 ''' + 652 if self.N != 1: + 653 raise Exception("Correlator must be projected before fitting") + 654 + 655 if fitrange is None: + 656 if self.prange: + 657 fitrange = self.prange + 658 else: + 659 fitrange = [0, self.T - 1] + 660 else: + 661 if not isinstance(fitrange, list): + 662 raise Exception("fitrange has to be a list with two elements") + 663 if len(fitrange) != 2: + 664 raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]") 665 - 666 def plateau(self, plateau_range=None, method="fit", auto_gamma=False): - 667 """ Extract a plateau value from a Corr object - 668 - 669 Parameters - 670 ---------- - 671 plateau_range : list - 672 list with two entries, indicating the first and the last timeslice - 673 of the plateau region. - 674 method : str - 675 method to extract the plateau. - 676 'fit' fits a constant to the plateau region - 677 'avg', 'average' or 'mean' just average over the given timeslices. - 678 auto_gamma : bool - 679 apply gamma_method with default parameters to the Corr. Defaults to None - 680 """ - 681 if not plateau_range: - 682 if self.prange: - 683 plateau_range = self.prange - 684 else: - 685 raise Exception("no plateau range provided") - 686 if self.N != 1: - 687 raise Exception("Correlator must be projected before getting a plateau.") - 688 if(all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])): - 689 raise Exception("plateau is undefined at all timeslices in plateaurange.") - 690 if auto_gamma: - 691 self.gamma_method() - 692 if method == "fit": - 693 def const_func(a, t): - 694 return a[0] - 695 return self.fit(const_func, plateau_range)[0] - 696 elif method in ["avg", "average", "mean"]: - 697 returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None]) - 698 return returnvalue - 699 - 700 else: - 701 raise Exception("Unsupported plateau method: " + method) - 702 - 703 def set_prange(self, prange): - 704 """Sets the attribute prange of the Corr object.""" - 705 if not len(prange) == 2: - 706 raise Exception("prange must be a list or array with two values") - 707 if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))): - 708 raise Exception("Start and end point must be integers") - 709 if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]): - 710 raise Exception("Start and end point must define a range in the interval 0,T") - 711 - 712 self.prange = prange - 713 return - 714 - 715 def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, ylabel=None, save=None, auto_gamma=False, hide_sigma=None, references=None): - 716 """Plots the correlator using the tag of the correlator as label if available. - 717 - 718 Parameters - 719 ---------- - 720 x_range : list - 721 list of two values, determining the range of the x-axis e.g. [4, 8] - 722 comp : Corr or list of Corr - 723 Correlator or list of correlators which are plotted for comparison. - 724 The tags of these correlators are used as labels if available. - 725 logscale : bool - 726 Sets y-axis to logscale - 727 plateau : Obs - 728 Plateau value to be visualized in the figure - 729 fit_res : Fit_result - 730 Fit_result object to be visualized - 731 ylabel : str - 732 Label for the y-axis - 733 save : str - 734 path to file in which the figure should be saved - 735 auto_gamma : bool - 736 Apply the gamma method with standard parameters to all correlators and plateau values before plotting. - 737 hide_sigma : float - 738 Hides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors. - 739 references : list - 740 List of floating point values that are displayed as horizontal lines for reference. - 741 """ - 742 if self.N != 1: - 743 raise Exception("Correlator must be projected before plotting") - 744 - 745 if auto_gamma: - 746 self.gamma_method() - 747 - 748 if x_range is None: - 749 x_range = [0, self.T - 1] - 750 - 751 fig = plt.figure() - 752 ax1 = fig.add_subplot(111) - 753 - 754 x, y, y_err = self.plottable() - 755 if hide_sigma: - 756 hide_from = np.argmax((hide_sigma * np.array(y_err)) > np.abs(y)) - 1 - 757 else: - 758 hide_from = None - 759 ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=self.tag) - 760 if logscale: - 761 ax1.set_yscale('log') + 666 xs = [x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None] + 667 ys = [self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None] + 668 result = least_squares(xs, ys, function, silent=silent, **kwargs) + 669 return result + 670 + 671 def plateau(self, plateau_range=None, method="fit", auto_gamma=False): + 672 """ Extract a plateau value from a Corr object + 673 + 674 Parameters + 675 ---------- + 676 plateau_range : list + 677 list with two entries, indicating the first and the last timeslice + 678 of the plateau region. + 679 method : str + 680 method to extract the plateau. + 681 'fit' fits a constant to the plateau region + 682 'avg', 'average' or 'mean' just average over the given timeslices. + 683 auto_gamma : bool + 684 apply gamma_method with default parameters to the Corr. Defaults to None + 685 """ + 686 if not plateau_range: + 687 if self.prange: + 688 plateau_range = self.prange + 689 else: + 690 raise Exception("no plateau range provided") + 691 if self.N != 1: + 692 raise Exception("Correlator must be projected before getting a plateau.") + 693 if(all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])): + 694 raise Exception("plateau is undefined at all timeslices in plateaurange.") + 695 if auto_gamma: + 696 self.gamma_method() + 697 if method == "fit": + 698 def const_func(a, t): + 699 return a[0] + 700 return self.fit(const_func, plateau_range)[0] + 701 elif method in ["avg", "average", "mean"]: + 702 returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None]) + 703 return returnvalue + 704 + 705 else: + 706 raise Exception("Unsupported plateau method: " + method) + 707 + 708 def set_prange(self, prange): + 709 """Sets the attribute prange of the Corr object.""" + 710 if not len(prange) == 2: + 711 raise Exception("prange must be a list or array with two values") + 712 if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))): + 713 raise Exception("Start and end point must be integers") + 714 if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]): + 715 raise Exception("Start and end point must define a range in the interval 0,T") + 716 + 717 self.prange = prange + 718 return + 719 + 720 def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, ylabel=None, save=None, auto_gamma=False, hide_sigma=None, references=None): + 721 """Plots the correlator using the tag of the correlator as label if available. + 722 + 723 Parameters + 724 ---------- + 725 x_range : list + 726 list of two values, determining the range of the x-axis e.g. [4, 8] + 727 comp : Corr or list of Corr + 728 Correlator or list of correlators which are plotted for comparison. + 729 The tags of these correlators are used as labels if available. + 730 logscale : bool + 731 Sets y-axis to logscale + 732 plateau : Obs + 733 Plateau value to be visualized in the figure + 734 fit_res : Fit_result + 735 Fit_result object to be visualized + 736 ylabel : str + 737 Label for the y-axis + 738 save : str + 739 path to file in which the figure should be saved + 740 auto_gamma : bool + 741 Apply the gamma method with standard parameters to all correlators and plateau values before plotting. + 742 hide_sigma : float + 743 Hides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors. + 744 references : list + 745 List of floating point values that are displayed as horizontal lines for reference. + 746 """ + 747 if self.N != 1: + 748 raise Exception("Correlator must be projected before plotting") + 749 + 750 if auto_gamma: + 751 self.gamma_method() + 752 + 753 if x_range is None: + 754 x_range = [0, self.T - 1] + 755 + 756 fig = plt.figure() + 757 ax1 = fig.add_subplot(111) + 758 + 759 x, y, y_err = self.plottable() + 760 if hide_sigma: + 761 hide_from = np.argmax((hide_sigma * np.array(y_err)) > np.abs(y)) - 1 762 else: - 763 if y_range is None: - 764 try: - 765 y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) - 766 y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) - 767 ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)]) - 768 except Exception: - 769 pass - 770 else: - 771 ax1.set_ylim(y_range) - 772 if comp: - 773 if isinstance(comp, (Corr, list)): - 774 for corr in comp if isinstance(comp, list) else [comp]: - 775 if auto_gamma: - 776 corr.gamma_method() - 777 x, y, y_err = corr.plottable() - 778 if hide_sigma: - 779 hide_from = np.argmax((hide_sigma * np.array(y_err)) > np.abs(y)) - 1 - 780 else: - 781 hide_from = None - 782 plt.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor']) - 783 else: - 784 raise Exception("'comp' must be a correlator or a list of correlators.") - 785 - 786 if plateau: - 787 if isinstance(plateau, Obs): - 788 if auto_gamma: - 789 plateau.gamma_method() - 790 ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau)) - 791 ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-') - 792 else: - 793 raise Exception("'plateau' must be an Obs") - 794 - 795 if references: - 796 if isinstance(references, list): - 797 for ref in references: - 798 ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--') - 799 else: - 800 raise Exception("'references' must be a list of floating pint values.") - 801 - 802 if self.prange: - 803 ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',') - 804 ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',') - 805 - 806 if fit_res: - 807 x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05) - 808 ax1.plot(x_samples, - 809 fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples), - 810 ls='-', marker=',', lw=2) - 811 - 812 ax1.set_xlabel(r'$x_0 / a$') - 813 if ylabel: - 814 ax1.set_ylabel(ylabel) - 815 ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5]) + 763 hide_from = None + 764 ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=self.tag) + 765 if logscale: + 766 ax1.set_yscale('log') + 767 else: + 768 if y_range is None: + 769 try: + 770 y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) + 771 y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) + 772 ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)]) + 773 except Exception: + 774 pass + 775 else: + 776 ax1.set_ylim(y_range) + 777 if comp: + 778 if isinstance(comp, (Corr, list)): + 779 for corr in comp if isinstance(comp, list) else [comp]: + 780 if auto_gamma: + 781 corr.gamma_method() + 782 x, y, y_err = corr.plottable() + 783 if hide_sigma: + 784 hide_from = np.argmax((hide_sigma * np.array(y_err)) > np.abs(y)) - 1 + 785 else: + 786 hide_from = None + 787 plt.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor']) + 788 else: + 789 raise Exception("'comp' must be a correlator or a list of correlators.") + 790 + 791 if plateau: + 792 if isinstance(plateau, Obs): + 793 if auto_gamma: + 794 plateau.gamma_method() + 795 ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau)) + 796 ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-') + 797 else: + 798 raise Exception("'plateau' must be an Obs") + 799 + 800 if references: + 801 if isinstance(references, list): + 802 for ref in references: + 803 ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--') + 804 else: + 805 raise Exception("'references' must be a list of floating pint values.") + 806 + 807 if self.prange: + 808 ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',') + 809 ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',') + 810 + 811 if fit_res: + 812 x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05) + 813 ax1.plot(x_samples, + 814 fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples), + 815 ls='-', marker=',', lw=2) 816 - 817 handles, labels = ax1.get_legend_handles_labels() - 818 if labels: - 819 ax1.legend() - 820 plt.draw() + 817 ax1.set_xlabel(r'$x_0 / a$') + 818 if ylabel: + 819 ax1.set_ylabel(ylabel) + 820 ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5]) 821 - 822 if save: - 823 if isinstance(save, str): - 824 fig.savefig(save) - 825 else: - 826 raise Exception("'save' has to be a string.") - 827 - 828 def spaghetti_plot(self, logscale=True): - 829 """Produces a spaghetti plot of the correlator suited to monitor exceptional configurations. - 830 - 831 Parameters - 832 ---------- - 833 logscale : bool - 834 Determines whether the scale of the y-axis is logarithmic or standard. - 835 """ - 836 if self.N != 1: - 837 raise Exception("Correlator needs to be projected first.") - 838 - 839 mc_names = list(set([item for sublist in [o[0].mc_names for o in self.content if o is not None] for item in sublist])) - 840 x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None] - 841 - 842 for name in mc_names: - 843 data = np.array([o[0].deltas[name] + o[0].r_values[name] for o in self.content if o is not None]).T - 844 - 845 fig = plt.figure() - 846 ax = fig.add_subplot(111) - 847 for dat in data: - 848 ax.plot(x0_vals, dat, ls='-', marker='') + 822 handles, labels = ax1.get_legend_handles_labels() + 823 if labels: + 824 ax1.legend() + 825 plt.draw() + 826 + 827 if save: + 828 if isinstance(save, str): + 829 fig.savefig(save) + 830 else: + 831 raise Exception("'save' has to be a string.") + 832 + 833 def spaghetti_plot(self, logscale=True): + 834 """Produces a spaghetti plot of the correlator suited to monitor exceptional configurations. + 835 + 836 Parameters + 837 ---------- + 838 logscale : bool + 839 Determines whether the scale of the y-axis is logarithmic or standard. + 840 """ + 841 if self.N != 1: + 842 raise Exception("Correlator needs to be projected first.") + 843 + 844 mc_names = list(set([item for sublist in [o[0].mc_names for o in self.content if o is not None] for item in sublist])) + 845 x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None] + 846 + 847 for name in mc_names: + 848 data = np.array([o[0].deltas[name] + o[0].r_values[name] for o in self.content if o is not None]).T 849 - 850 if logscale is True: - 851 ax.set_yscale('log') - 852 - 853 ax.set_xlabel(r'$x_0 / a$') - 854 plt.title(name) - 855 plt.draw() - 856 - 857 def dump(self, filename, datatype="json.gz", **kwargs): - 858 """Dumps the Corr into a file of chosen type - 859 Parameters - 860 ---------- - 861 filename : str - 862 Name of the file to be saved. - 863 datatype : str - 864 Format of the exported file. Supported formats include - 865 "json.gz" and "pickle" - 866 path : str - 867 specifies a custom path for the file (default '.') - 868 """ - 869 if datatype == "json.gz": - 870 from .input.json import dump_to_json - 871 if 'path' in kwargs: - 872 file_name = kwargs.get('path') + '/' + filename - 873 else: - 874 file_name = filename - 875 dump_to_json(self, file_name) - 876 elif datatype == "pickle": - 877 dump_object(self, filename, **kwargs) - 878 else: - 879 raise Exception("Unknown datatype " + str(datatype)) - 880 - 881 def print(self, range=[0, None]): - 882 print(self.__repr__(range)) - 883 - 884 def __repr__(self, range=[0, None]): - 885 content_string = "" - 886 - 887 content_string += "Corr T=" + str(self.T) + " N=" + str(self.N) + "\n" # +" filled with"+ str(type(self.content[0][0])) there should be a good solution here + 850 fig = plt.figure() + 851 ax = fig.add_subplot(111) + 852 for dat in data: + 853 ax.plot(x0_vals, dat, ls='-', marker='') + 854 + 855 if logscale is True: + 856 ax.set_yscale('log') + 857 + 858 ax.set_xlabel(r'$x_0 / a$') + 859 plt.title(name) + 860 plt.draw() + 861 + 862 def dump(self, filename, datatype="json.gz", **kwargs): + 863 """Dumps the Corr into a file of chosen type + 864 Parameters + 865 ---------- + 866 filename : str + 867 Name of the file to be saved. + 868 datatype : str + 869 Format of the exported file. Supported formats include + 870 "json.gz" and "pickle" + 871 path : str + 872 specifies a custom path for the file (default '.') + 873 """ + 874 if datatype == "json.gz": + 875 from .input.json import dump_to_json + 876 if 'path' in kwargs: + 877 file_name = kwargs.get('path') + '/' + filename + 878 else: + 879 file_name = filename + 880 dump_to_json(self, file_name) + 881 elif datatype == "pickle": + 882 dump_object(self, filename, **kwargs) + 883 else: + 884 raise Exception("Unknown datatype " + str(datatype)) + 885 + 886 def print(self, range=[0, None]): + 887 print(self.__repr__(range)) 888 - 889 if self.tag is not None: - 890 content_string += "Description: " + self.tag + "\n" - 891 if self.N != 1: - 892 return content_string + 889 def __repr__(self, range=[0, None]): + 890 content_string = "" + 891 + 892 content_string += "Corr T=" + str(self.T) + " N=" + str(self.N) + "\n" # +" filled with"+ str(type(self.content[0][0])) there should be a good solution here 893 - 894 if range[1]: - 895 range[1] += 1 - 896 content_string += 'x0/a\tCorr(x0/a)\n------------------\n' - 897 for i, sub_corr in enumerate(self.content[range[0]:range[1]]): - 898 if sub_corr is None: - 899 content_string += str(i + range[0]) + '\n' - 900 else: - 901 content_string += str(i + range[0]) - 902 for element in sub_corr: - 903 content_string += '\t' + ' ' * int(element >= 0) + str(element) - 904 content_string += '\n' - 905 return content_string - 906 - 907 def __str__(self): - 908 return self.__repr__() - 909 - 910 # We define the basic operations, that can be performed with correlators. - 911 # While */+- get defined here, they only work for Corr*Obs and not Obs*Corr. - 912 # This is because Obs*Corr checks Obs.__mul__ first and does not catch an exception. - 913 # One could try and tell Obs to check if the y in __mul__ is a Corr and + 894 if self.tag is not None: + 895 content_string += "Description: " + self.tag + "\n" + 896 if self.N != 1: + 897 return content_string + 898 + 899 if range[1]: + 900 range[1] += 1 + 901 content_string += 'x0/a\tCorr(x0/a)\n------------------\n' + 902 for i, sub_corr in enumerate(self.content[range[0]:range[1]]): + 903 if sub_corr is None: + 904 content_string += str(i + range[0]) + '\n' + 905 else: + 906 content_string += str(i + range[0]) + 907 for element in sub_corr: + 908 content_string += '\t' + ' ' * int(element >= 0) + str(element) + 909 content_string += '\n' + 910 return content_string + 911 + 912 def __str__(self): + 913 return self.__repr__() 914 - 915 def __add__(self, y): - 916 if isinstance(y, Corr): - 917 if ((self.N != y.N) or (self.T != y.T)): - 918 raise Exception("Addition of Corrs with different shape") - 919 newcontent = [] - 920 for t in range(self.T): - 921 if (self.content[t] is None) or (y.content[t] is None): - 922 newcontent.append(None) - 923 else: - 924 newcontent.append(self.content[t] + y.content[t]) - 925 return Corr(newcontent) - 926 - 927 elif isinstance(y, (Obs, int, float, CObs)): - 928 newcontent = [] - 929 for t in range(self.T): - 930 if (self.content[t] is None): - 931 newcontent.append(None) - 932 else: - 933 newcontent.append(self.content[t] + y) - 934 return Corr(newcontent, prange=self.prange) - 935 elif isinstance(y, np.ndarray): - 936 if y.shape == (self.T,): - 937 return Corr(list((np.array(self.content).T + y).T)) - 938 else: - 939 raise ValueError("operands could not be broadcast together") - 940 else: - 941 raise TypeError("Corr + wrong type") - 942 - 943 def __mul__(self, y): - 944 if isinstance(y, Corr): - 945 if not((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): - 946 raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") - 947 newcontent = [] - 948 for t in range(self.T): - 949 if (self.content[t] is None) or (y.content[t] is None): - 950 newcontent.append(None) - 951 else: - 952 newcontent.append(self.content[t] * y.content[t]) - 953 return Corr(newcontent) - 954 - 955 elif isinstance(y, (Obs, int, float, CObs)): - 956 newcontent = [] - 957 for t in range(self.T): - 958 if (self.content[t] is None): - 959 newcontent.append(None) - 960 else: - 961 newcontent.append(self.content[t] * y) - 962 return Corr(newcontent, prange=self.prange) - 963 elif isinstance(y, np.ndarray): - 964 if y.shape == (self.T,): - 965 return Corr(list((np.array(self.content).T * y).T)) - 966 else: - 967 raise ValueError("operands could not be broadcast together") - 968 else: - 969 raise TypeError("Corr * wrong type") - 970 - 971 def __truediv__(self, y): - 972 if isinstance(y, Corr): - 973 if not((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): - 974 raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") - 975 newcontent = [] - 976 for t in range(self.T): - 977 if (self.content[t] is None) or (y.content[t] is None): - 978 newcontent.append(None) - 979 else: - 980 newcontent.append(self.content[t] / y.content[t]) + 915 # We define the basic operations, that can be performed with correlators. + 916 # While */+- get defined here, they only work for Corr*Obs and not Obs*Corr. + 917 # This is because Obs*Corr checks Obs.__mul__ first and does not catch an exception. + 918 # One could try and tell Obs to check if the y in __mul__ is a Corr and + 919 + 920 def __add__(self, y): + 921 if isinstance(y, Corr): + 922 if ((self.N != y.N) or (self.T != y.T)): + 923 raise Exception("Addition of Corrs with different shape") + 924 newcontent = [] + 925 for t in range(self.T): + 926 if (self.content[t] is None) or (y.content[t] is None): + 927 newcontent.append(None) + 928 else: + 929 newcontent.append(self.content[t] + y.content[t]) + 930 return Corr(newcontent) + 931 + 932 elif isinstance(y, (Obs, int, float, CObs)): + 933 newcontent = [] + 934 for t in range(self.T): + 935 if (self.content[t] is None): + 936 newcontent.append(None) + 937 else: + 938 newcontent.append(self.content[t] + y) + 939 return Corr(newcontent, prange=self.prange) + 940 elif isinstance(y, np.ndarray): + 941 if y.shape == (self.T,): + 942 return Corr(list((np.array(self.content).T + y).T)) + 943 else: + 944 raise ValueError("operands could not be broadcast together") + 945 else: + 946 raise TypeError("Corr + wrong type") + 947 + 948 def __mul__(self, y): + 949 if isinstance(y, Corr): + 950 if not((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): + 951 raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") + 952 newcontent = [] + 953 for t in range(self.T): + 954 if (self.content[t] is None) or (y.content[t] is None): + 955 newcontent.append(None) + 956 else: + 957 newcontent.append(self.content[t] * y.content[t]) + 958 return Corr(newcontent) + 959 + 960 elif isinstance(y, (Obs, int, float, CObs)): + 961 newcontent = [] + 962 for t in range(self.T): + 963 if (self.content[t] is None): + 964 newcontent.append(None) + 965 else: + 966 newcontent.append(self.content[t] * y) + 967 return Corr(newcontent, prange=self.prange) + 968 elif isinstance(y, np.ndarray): + 969 if y.shape == (self.T,): + 970 return Corr(list((np.array(self.content).T * y).T)) + 971 else: + 972 raise ValueError("operands could not be broadcast together") + 973 else: + 974 raise TypeError("Corr * wrong type") + 975 + 976 def __truediv__(self, y): + 977 if isinstance(y, Corr): + 978 if not((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): + 979 raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") + 980 newcontent = [] 981 for t in range(self.T): - 982 if newcontent[t] is None: - 983 continue - 984 if np.isnan(np.sum(newcontent[t]).value): - 985 newcontent[t] = None - 986 - 987 if all([item is None for item in newcontent]): - 988 raise Exception("Division returns completely undefined correlator") - 989 return Corr(newcontent) - 990 - 991 elif isinstance(y, (Obs, CObs)): - 992 if isinstance(y, Obs): - 993 if y.value == 0: - 994 raise Exception('Division by zero will return undefined correlator') - 995 if isinstance(y, CObs): - 996 if y.is_zero(): - 997 raise Exception('Division by zero will return undefined correlator') - 998 - 999 newcontent = [] -1000 for t in range(self.T): -1001 if (self.content[t] is None): -1002 newcontent.append(None) -1003 else: -1004 newcontent.append(self.content[t] / y) -1005 return Corr(newcontent, prange=self.prange) -1006 -1007 elif isinstance(y, (int, float)): -1008 if y == 0: -1009 raise Exception('Division by zero will return undefined correlator') -1010 newcontent = [] -1011 for t in range(self.T): -1012 if (self.content[t] is None): -1013 newcontent.append(None) -1014 else: -1015 newcontent.append(self.content[t] / y) -1016 return Corr(newcontent, prange=self.prange) -1017 elif isinstance(y, np.ndarray): -1018 if y.shape == (self.T,): -1019 return Corr(list((np.array(self.content).T / y).T)) -1020 else: -1021 raise ValueError("operands could not be broadcast together") -1022 else: -1023 raise TypeError('Corr / wrong type') -1024 -1025 def __neg__(self): -1026 newcontent = [None if (item is None) else -1. * item for item in self.content] -1027 return Corr(newcontent, prange=self.prange) -1028 -1029 def __sub__(self, y): -1030 return self + (-y) -1031 -1032 def __pow__(self, y): -1033 if isinstance(y, (Obs, int, float, CObs)): -1034 newcontent = [None if (item is None) else item**y for item in self.content] -1035 return Corr(newcontent, prange=self.prange) -1036 else: -1037 raise TypeError('Type of exponent not supported') -1038 -1039 def __abs__(self): -1040 newcontent = [None if (item is None) else np.abs(item) for item in self.content] -1041 return Corr(newcontent, prange=self.prange) -1042 -1043 # The numpy functions: -1044 def sqrt(self): -1045 return self**0.5 -1046 -1047 def log(self): -1048 newcontent = [None if (item is None) else np.log(item) for item in self.content] -1049 return Corr(newcontent, prange=self.prange) -1050 -1051 def exp(self): -1052 newcontent = [None if (item is None) else np.exp(item) for item in self.content] -1053 return Corr(newcontent, prange=self.prange) -1054 -1055 def _apply_func_to_corr(self, func): -1056 newcontent = [None if (item is None) else func(item) for item in self.content] -1057 for t in range(self.T): -1058 if newcontent[t] is None: -1059 continue -1060 if np.isnan(np.sum(newcontent[t]).value): -1061 newcontent[t] = None -1062 if all([item is None for item in newcontent]): -1063 raise Exception('Operation returns undefined correlator') -1064 return Corr(newcontent) -1065 -1066 def sin(self): -1067 return self._apply_func_to_corr(np.sin) -1068 -1069 def cos(self): -1070 return self._apply_func_to_corr(np.cos) -1071 -1072 def tan(self): -1073 return self._apply_func_to_corr(np.tan) -1074 -1075 def sinh(self): -1076 return self._apply_func_to_corr(np.sinh) -1077 -1078 def cosh(self): -1079 return self._apply_func_to_corr(np.cosh) -1080 -1081 def tanh(self): -1082 return self._apply_func_to_corr(np.tanh) -1083 -1084 def arcsin(self): -1085 return self._apply_func_to_corr(np.arcsin) -1086 -1087 def arccos(self): -1088 return self._apply_func_to_corr(np.arccos) -1089 -1090 def arctan(self): -1091 return self._apply_func_to_corr(np.arctan) -1092 -1093 def arcsinh(self): -1094 return self._apply_func_to_corr(np.arcsinh) -1095 -1096 def arccosh(self): -1097 return self._apply_func_to_corr(np.arccosh) -1098 -1099 def arctanh(self): -1100 return self._apply_func_to_corr(np.arctanh) -1101 -1102 # Right hand side operations (require tweak in main module to work) -1103 def __radd__(self, y): -1104 return self + y -1105 -1106 def __rsub__(self, y): -1107 return -self + y -1108 -1109 def __rmul__(self, y): -1110 return self * y -1111 -1112 def __rtruediv__(self, y): -1113 return (self / y) ** (-1) -1114 -1115 @property -1116 def real(self): -1117 def return_real(obs_OR_cobs): -1118 if isinstance(obs_OR_cobs, CObs): -1119 return obs_OR_cobs.real -1120 else: -1121 return obs_OR_cobs -1122 -1123 return self._apply_func_to_corr(return_real) -1124 -1125 @property -1126 def imag(self): -1127 def return_imag(obs_OR_cobs): -1128 if isinstance(obs_OR_cobs, CObs): -1129 return obs_OR_cobs.imag -1130 else: -1131 return obs_OR_cobs * 0 # So it stays the right type -1132 -1133 return self._apply_func_to_corr(return_imag) -1134 -1135 def prune(self, Ntrunc, tproj=3, t0proj=2, basematrix=None): -1136 r''' Project large correlation matrix to lowest states + 982 if (self.content[t] is None) or (y.content[t] is None): + 983 newcontent.append(None) + 984 else: + 985 newcontent.append(self.content[t] / y.content[t]) + 986 for t in range(self.T): + 987 if newcontent[t] is None: + 988 continue + 989 if np.isnan(np.sum(newcontent[t]).value): + 990 newcontent[t] = None + 991 + 992 if all([item is None for item in newcontent]): + 993 raise Exception("Division returns completely undefined correlator") + 994 return Corr(newcontent) + 995 + 996 elif isinstance(y, (Obs, CObs)): + 997 if isinstance(y, Obs): + 998 if y.value == 0: + 999 raise Exception('Division by zero will return undefined correlator') +1000 if isinstance(y, CObs): +1001 if y.is_zero(): +1002 raise Exception('Division by zero will return undefined correlator') +1003 +1004 newcontent = [] +1005 for t in range(self.T): +1006 if (self.content[t] is None): +1007 newcontent.append(None) +1008 else: +1009 newcontent.append(self.content[t] / y) +1010 return Corr(newcontent, prange=self.prange) +1011 +1012 elif isinstance(y, (int, float)): +1013 if y == 0: +1014 raise Exception('Division by zero will return undefined correlator') +1015 newcontent = [] +1016 for t in range(self.T): +1017 if (self.content[t] is None): +1018 newcontent.append(None) +1019 else: +1020 newcontent.append(self.content[t] / y) +1021 return Corr(newcontent, prange=self.prange) +1022 elif isinstance(y, np.ndarray): +1023 if y.shape == (self.T,): +1024 return Corr(list((np.array(self.content).T / y).T)) +1025 else: +1026 raise ValueError("operands could not be broadcast together") +1027 else: +1028 raise TypeError('Corr / wrong type') +1029 +1030 def __neg__(self): +1031 newcontent = [None if (item is None) else -1. * item for item in self.content] +1032 return Corr(newcontent, prange=self.prange) +1033 +1034 def __sub__(self, y): +1035 return self + (-y) +1036 +1037 def __pow__(self, y): +1038 if isinstance(y, (Obs, int, float, CObs)): +1039 newcontent = [None if (item is None) else item**y for item in self.content] +1040 return Corr(newcontent, prange=self.prange) +1041 else: +1042 raise TypeError('Type of exponent not supported') +1043 +1044 def __abs__(self): +1045 newcontent = [None if (item is None) else np.abs(item) for item in self.content] +1046 return Corr(newcontent, prange=self.prange) +1047 +1048 # The numpy functions: +1049 def sqrt(self): +1050 return self**0.5 +1051 +1052 def log(self): +1053 newcontent = [None if (item is None) else np.log(item) for item in self.content] +1054 return Corr(newcontent, prange=self.prange) +1055 +1056 def exp(self): +1057 newcontent = [None if (item is None) else np.exp(item) for item in self.content] +1058 return Corr(newcontent, prange=self.prange) +1059 +1060 def _apply_func_to_corr(self, func): +1061 newcontent = [None if (item is None) else func(item) for item in self.content] +1062 for t in range(self.T): +1063 if newcontent[t] is None: +1064 continue +1065 if np.isnan(np.sum(newcontent[t]).value): +1066 newcontent[t] = None +1067 if all([item is None for item in newcontent]): +1068 raise Exception('Operation returns undefined correlator') +1069 return Corr(newcontent) +1070 +1071 def sin(self): +1072 return self._apply_func_to_corr(np.sin) +1073 +1074 def cos(self): +1075 return self._apply_func_to_corr(np.cos) +1076 +1077 def tan(self): +1078 return self._apply_func_to_corr(np.tan) +1079 +1080 def sinh(self): +1081 return self._apply_func_to_corr(np.sinh) +1082 +1083 def cosh(self): +1084 return self._apply_func_to_corr(np.cosh) +1085 +1086 def tanh(self): +1087 return self._apply_func_to_corr(np.tanh) +1088 +1089 def arcsin(self): +1090 return self._apply_func_to_corr(np.arcsin) +1091 +1092 def arccos(self): +1093 return self._apply_func_to_corr(np.arccos) +1094 +1095 def arctan(self): +1096 return self._apply_func_to_corr(np.arctan) +1097 +1098 def arcsinh(self): +1099 return self._apply_func_to_corr(np.arcsinh) +1100 +1101 def arccosh(self): +1102 return self._apply_func_to_corr(np.arccosh) +1103 +1104 def arctanh(self): +1105 return self._apply_func_to_corr(np.arctanh) +1106 +1107 # Right hand side operations (require tweak in main module to work) +1108 def __radd__(self, y): +1109 return self + y +1110 +1111 def __rsub__(self, y): +1112 return -self + y +1113 +1114 def __rmul__(self, y): +1115 return self * y +1116 +1117 def __rtruediv__(self, y): +1118 return (self / y) ** (-1) +1119 +1120 @property +1121 def real(self): +1122 def return_real(obs_OR_cobs): +1123 if isinstance(obs_OR_cobs, CObs): +1124 return obs_OR_cobs.real +1125 else: +1126 return obs_OR_cobs +1127 +1128 return self._apply_func_to_corr(return_real) +1129 +1130 @property +1131 def imag(self): +1132 def return_imag(obs_OR_cobs): +1133 if isinstance(obs_OR_cobs, CObs): +1134 return obs_OR_cobs.imag +1135 else: +1136 return obs_OR_cobs * 0 # So it stays the right type 1137 -1138 This method can be used to reduce the size of an (N x N) correlation matrix -1139 to (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise -1140 is still small. -1141 -1142 Parameters -1143 ---------- -1144 Ntrunc: int -1145 Rank of the target matrix. -1146 tproj: int -1147 Time where the eigenvectors are evaluated, corresponds to ts in the GEVP method. -1148 The default value is 3. -1149 t0proj: int -1150 Time where the correlation matrix is inverted. Choosing t0proj=1 is strongly -1151 discouraged for O(a) improved theories, since the correctness of the procedure -1152 cannot be granted in this case. The default value is 2. -1153 basematrix : Corr -1154 Correlation matrix that is used to determine the eigenvectors of the -1155 lowest states based on a GEVP. basematrix is taken to be the Corr itself if -1156 is is not specified. -1157 -1158 Notes -1159 ----- -1160 We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving -1161 the GEVP $$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \equiv t_\mathrm{proj}$ -1162 and $t_0 \equiv t_{0, \mathrm{proj}}$. The target matrix is projected onto the subspace of the -1163 resulting eigenvectors $v_n, n=1,\dots,N_\mathrm{trunc}$ via -1164 $$G^\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large -1165 correlation matrix and to remove some noise that is added by irrelevant operators. -1166 This may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated -1167 bound $t_0 \leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$. -1168 ''' -1169 -1170 if self.N == 1: -1171 raise Exception('Method cannot be applied to one-dimensional correlators.') -1172 if basematrix is None: -1173 basematrix = self -1174 if Ntrunc >= basematrix.N: -1175 raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N)) -1176 if basematrix.N != self.N: -1177 raise Exception('basematrix and targetmatrix have to be of the same size.') -1178 -1179 evecs = [] -1180 for i in range(Ntrunc): -1181 evecs.append(basematrix.GEVP(t0proj, tproj, state=i, sorted_list=None)) -1182 -1183 tmpmat = np.empty((Ntrunc, Ntrunc), dtype=object) -1184 rmat = [] -1185 for t in range(basematrix.T): -1186 for i in range(Ntrunc): -1187 for j in range(Ntrunc): -1188 tmpmat[i][j] = evecs[i].T @ self[t] @ evecs[j] -1189 rmat.append(np.copy(tmpmat)) -1190 -1191 newcontent = [None if (self.content[t] is None) else rmat[t] for t in range(self.T)] -1192 return Corr(newcontent) +1138 return self._apply_func_to_corr(return_imag) +1139 +1140 def prune(self, Ntrunc, tproj=3, t0proj=2, basematrix=None): +1141 r''' Project large correlation matrix to lowest states +1142 +1143 This method can be used to reduce the size of an (N x N) correlation matrix +1144 to (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise +1145 is still small. +1146 +1147 Parameters +1148 ---------- +1149 Ntrunc: int +1150 Rank of the target matrix. +1151 tproj: int +1152 Time where the eigenvectors are evaluated, corresponds to ts in the GEVP method. +1153 The default value is 3. +1154 t0proj: int +1155 Time where the correlation matrix is inverted. Choosing t0proj=1 is strongly +1156 discouraged for O(a) improved theories, since the correctness of the procedure +1157 cannot be granted in this case. The default value is 2. +1158 basematrix : Corr +1159 Correlation matrix that is used to determine the eigenvectors of the +1160 lowest states based on a GEVP. basematrix is taken to be the Corr itself if +1161 is is not specified. +1162 +1163 Notes +1164 ----- +1165 We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving +1166 the GEVP $$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \equiv t_\mathrm{proj}$ +1167 and $t_0 \equiv t_{0, \mathrm{proj}}$. The target matrix is projected onto the subspace of the +1168 resulting eigenvectors $v_n, n=1,\dots,N_\mathrm{trunc}$ via +1169 $$G^\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large +1170 correlation matrix and to remove some noise that is added by irrelevant operators. +1171 This may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated +1172 bound $t_0 \leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$. +1173 ''' +1174 +1175 if self.N == 1: +1176 raise Exception('Method cannot be applied to one-dimensional correlators.') +1177 if basematrix is None: +1178 basematrix = self +1179 if Ntrunc >= basematrix.N: +1180 raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N)) +1181 if basematrix.N != self.N: +1182 raise Exception('basematrix and targetmatrix have to be of the same size.') +1183 +1184 evecs = basematrix.GEVP(t0proj, tproj, sort=None)[:Ntrunc] +1185 +1186 tmpmat = np.empty((Ntrunc, Ntrunc), dtype=object) +1187 rmat = [] +1188 for t in range(basematrix.T): +1189 for i in range(Ntrunc): +1190 for j in range(Ntrunc): +1191 tmpmat[i][j] = evecs[i].T @ self[t] @ evecs[j] +1192 rmat.append(np.copy(tmpmat)) 1193 -1194 -1195def _sort_vectors(vec_set, ts): -1196 """Helper function used to find a set of Eigenvectors consistent over all timeslices""" -1197 reference_sorting = np.array(vec_set[ts]) -1198 N = reference_sorting.shape[0] -1199 sorted_vec_set = [] -1200 for t in range(len(vec_set)): -1201 if vec_set[t] is None: -1202 sorted_vec_set.append(None) -1203 elif not t == ts: -1204 perms = [list(o) for o in permutations([i for i in range(N)], N)] -1205 best_score = 0 -1206 for perm in perms: -1207 current_score = 1 -1208 for k in range(N): -1209 new_sorting = reference_sorting.copy() -1210 new_sorting[perm[k], :] = vec_set[t][k] -1211 current_score *= abs(np.linalg.det(new_sorting)) -1212 if current_score > best_score: -1213 best_score = current_score -1214 best_perm = perm -1215 sorted_vec_set.append([vec_set[t][k] for k in best_perm]) -1216 else: -1217 sorted_vec_set.append(vec_set[t]) -1218 -1219 return sorted_vec_set -1220 +1194 newcontent = [None if (self.content[t] is None) else rmat[t] for t in range(self.T)] +1195 return Corr(newcontent) +1196 +1197 +1198def _sort_vectors(vec_set, ts): +1199 """Helper function used to find a set of Eigenvectors consistent over all timeslices""" +1200 reference_sorting = np.array(vec_set[ts]) +1201 N = reference_sorting.shape[0] +1202 sorted_vec_set = [] +1203 for t in range(len(vec_set)): +1204 if vec_set[t] is None: +1205 sorted_vec_set.append(None) +1206 elif not t == ts: +1207 perms = [list(o) for o in permutations([i for i in range(N)], N)] +1208 best_score = 0 +1209 for perm in perms: +1210 current_score = 1 +1211 for k in range(N): +1212 new_sorting = reference_sorting.copy() +1213 new_sorting[perm[k], :] = vec_set[t][k] +1214 current_score *= abs(np.linalg.det(new_sorting)) +1215 if current_score > best_score: +1216 best_score = current_score +1217 best_perm = perm +1218 sorted_vec_set.append([vec_set[t][k] for k in best_perm]) +1219 else: +1220 sorted_vec_set.append(vec_set[t]) 1221 -1222def _GEVP_solver(Gt, G0): # Just so normalization an sorting does not need to be repeated. Here we could later put in some checks -1223 sp_val, sp_vecs = scipy.linalg.eigh(Gt, G0) -1224 sp_vecs = [sp_vecs[:, np.argsort(sp_val)[-i]] for i in range(1, sp_vecs.shape[0] + 1)] -1225 sp_vecs = [v / np.sqrt((v.T @ G0 @ v)) for v in sp_vecs] -1226 return sp_vecs +1222 return sorted_vec_set +1223 +1224 +1225def _GEVP_solver(Gt, G0): +1226 """Helper function for solving the GEVP and sorting the eigenvectors. +1227 +1228 The helper function assumes that both provided matrices are symmetric and +1229 only processes the lower triangular part of both matrices. In case the matrices +1230 are not symmetric the upper triangular parts are effectively discarded.""" +1231 return scipy.linalg.eigh(Gt, G0, lower=True)[1].T[::-1] @@ -1684,955 +1689,958 @@ 242 if self.N == 1: 243 raise Exception("Trying to symmetrize a correlator matrix, that already has N=1.") 244 - 245 def GEVP(self, t0, ts=None, state=0, sorted_list="Eigenvalue"): - 246 """Solve the general eigenvalue problem on the current correlator + 245 def GEVP(self, t0, ts=None, sort="Eigenvalue", **kwargs): + 246 r'''Solve the generalized eigenvalue problem on the correlator matrix and returns the corresponding eigenvectors. 247 - 248 Parameters - 249 ---------- - 250 t0 : int - 251 The time t0 for G(t)v= lambda G(t_0)v - 252 ts : int - 253 fixed time G(t_s)v= lambda G(t_0)v if return_list=False - 254 If return_list=True and sorting=Eigenvector it gives a reference point for the sorting method. - 255 state : int - 256 The state one is interested in, ordered by energy. The lowest state is zero. - 257 sorted_list : string - 258 if this argument is set, a list of vectors (len=self.T) is returned. If it is left as None, only one vector is returned. - 259 "Eigenvalue" - The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice. - 260 "Eigenvector" - Use the method described in arXiv:2004.10472 [hep-lat] to find the set of v(t) belonging to the state. - 261 The reference state is identified by its eigenvalue at t=ts - 262 """ - 263 - 264 if self.N == 1: - 265 raise Exception("GEVP methods only works on correlator matrices and not single correlators.") - 266 - 267 symmetric_corr = self.matrix_symmetric() - 268 if sorted_list is None: - 269 if (ts is None): - 270 raise Exception("ts is required if sorted_list=None.") - 271 if (ts <= t0): - 272 raise Exception("ts has to be larger than t0.") - 273 if (self.content[t0] is None) or (self.content[ts] is None): - 274 raise Exception("Corr not defined at t0/ts.") - 275 G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double") - 276 for i in range(self.N): - 277 for j in range(self.N): - 278 G0[i, j] = symmetric_corr[t0][i, j].value - 279 Gt[i, j] = symmetric_corr[ts][i, j].value - 280 - 281 sp_vecs = _GEVP_solver(Gt, G0) - 282 sp_vec = sp_vecs[state] - 283 return sp_vec - 284 elif sorted_list in ["Eigenvalue", "Eigenvector"]: - 285 if sorted_list == "Eigenvalue" and ts is not None: - 286 warnings.warn("ts has no effect when sorting by eigenvalue is chosen.", RuntimeWarning) - 287 all_vecs = [None] * (t0 + 1) - 288 for t in range(t0 + 1, self.T): - 289 try: - 290 G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double") - 291 for i in range(self.N): - 292 for j in range(self.N): - 293 G0[i, j] = symmetric_corr[t0][i, j].value - 294 Gt[i, j] = symmetric_corr[t][i, j].value + 248 The eigenvectors are sorted according to the descending eigenvalues, the zeroth eigenvector(s) correspond to the + 249 largest eigenvalue(s). The eigenvector(s) for the individual states can be accessed via slicing + 250 ```python + 251 C.GEVP(t0=2)[0] # Ground state vector(s) + 252 C.GEVP(t0=2)[:3] # Vectors for the lowest three states + 253 ``` + 254 + 255 Parameters + 256 ---------- + 257 t0 : int + 258 The time t0 for the right hand side of the GEVP according to $G(t)v_i=\lambda_i G(t_0)v_i$ + 259 ts : int + 260 fixed time $G(t_s)v_i=\lambda_i G(t_0)v_i$ if sort=None. + 261 If sort="Eigenvector" it gives a reference point for the sorting method. + 262 sort : string + 263 If this argument is set, a list of self.T vectors per state is returned. If it is set to None, only one vector is returned. + 264 - "Eigenvalue": The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice. + 265 - "Eigenvector": Use the method described in arXiv:2004.10472 to find the set of v(t) belonging to the state. + 266 The reference state is identified by its eigenvalue at $t=t_s$. + 267 + 268 Other Parameters + 269 ---------------- + 270 state : int + 271 Returns only the vector(s) for a specified state. The lowest state is zero. + 272 ''' + 273 + 274 if self.N == 1: + 275 raise Exception("GEVP methods only works on correlator matrices and not single correlators.") + 276 if ts is not None: + 277 if (ts <= t0): + 278 raise Exception("ts has to be larger than t0.") + 279 + 280 if "sorted_list" in kwargs: + 281 warnings.warn("Argument 'sorted_list' is deprecated, use 'sort' instead.", DeprecationWarning) + 282 sort = kwargs.get("sorted_list") + 283 + 284 symmetric_corr = self.matrix_symmetric() + 285 if sort is None: + 286 if (ts is None): + 287 raise Exception("ts is required if sort=None.") + 288 if (self.content[t0] is None) or (self.content[ts] is None): + 289 raise Exception("Corr not defined at t0/ts.") + 290 G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double") + 291 for i in range(self.N): + 292 for j in range(self.N): + 293 G0[i, j] = symmetric_corr[t0][i, j].value + 294 Gt[i, j] = symmetric_corr[ts][i, j].value 295 - 296 sp_vecs = _GEVP_solver(Gt, G0) - 297 if sorted_list == "Eigenvalue": - 298 sp_vec = sp_vecs[state] - 299 all_vecs.append(sp_vec) - 300 else: - 301 all_vecs.append(sp_vecs) - 302 except Exception: - 303 all_vecs.append(None) - 304 if sorted_list == "Eigenvector": - 305 if (ts is None): - 306 raise Exception("ts is required for the Eigenvector sorting method.") - 307 all_vecs = _sort_vectors(all_vecs, ts) - 308 all_vecs = [a[state] if a is not None else None for a in all_vecs] - 309 else: - 310 raise Exception("Unkown value for 'sorted_list'.") - 311 - 312 return all_vecs - 313 - 314 def Eigenvalue(self, t0, ts=None, state=0, sorted_list=None): - 315 """Determines the eigenvalue of the GEVP by solving and projecting the correlator - 316 - 317 Parameters - 318 ---------- - 319 t0 : int - 320 The time t0 for G(t)v= lambda G(t_0)v - 321 ts : int - 322 fixed time G(t_s)v= lambda G(t_0)v if return_list=False - 323 If return_list=True and sorting=Eigenvector it gives a reference point for the sorting method. - 324 state : int - 325 The state one is interested in ordered by energy. The lowest state is zero. - 326 sorted_list : string - 327 if this argument is set, a list of vectors (len=self.T) is returned. If it is left as None, only one vector is returned. - 328 "Eigenvalue" - The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice. - 329 "Eigenvector" - Use the method described in arXiv:2004.10472 [hep-lat] to find the set of v(t) belonging to the state. - 330 The reference state is identified by its eigenvalue at t=ts - 331 """ - 332 vec = self.GEVP(t0, ts=ts, state=state, sorted_list=sorted_list) - 333 return self.projected(vec) + 296 reordered_vecs = _GEVP_solver(Gt, G0) + 297 + 298 elif sort in ["Eigenvalue", "Eigenvector"]: + 299 if sort == "Eigenvalue" and ts is not None: + 300 warnings.warn("ts has no effect when sorting by eigenvalue is chosen.", RuntimeWarning) + 301 all_vecs = [None] * (t0 + 1) + 302 for t in range(t0 + 1, self.T): + 303 try: + 304 G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double") + 305 for i in range(self.N): + 306 for j in range(self.N): + 307 G0[i, j] = symmetric_corr[t0][i, j].value + 308 Gt[i, j] = symmetric_corr[t][i, j].value + 309 + 310 all_vecs.append(_GEVP_solver(Gt, G0)) + 311 except Exception: + 312 all_vecs.append(None) + 313 if sort == "Eigenvector": + 314 if (ts is None): + 315 raise Exception("ts is required for the Eigenvector sorting method.") + 316 all_vecs = _sort_vectors(all_vecs, ts) + 317 + 318 reordered_vecs = [[v[s] if v is not None else None for v in all_vecs] for s in range(self.N)] + 319 else: + 320 raise Exception("Unkown value for 'sort'.") + 321 + 322 if "state" in kwargs: + 323 return reordered_vecs[kwargs.get("state")] + 324 else: + 325 return reordered_vecs + 326 + 327 def Eigenvalue(self, t0, ts=None, state=0, sort="Eigenvalue"): + 328 """Determines the eigenvalue of the GEVP by solving and projecting the correlator + 329 + 330 Parameters + 331 ---------- + 332 state : int + 333 The state one is interested in ordered by energy. The lowest state is zero. 334 - 335 def Hankel(self, N, periodic=False): - 336 """Constructs an NxN Hankel matrix - 337 - 338 C(t) c(t+1) ... c(t+n-1) - 339 C(t+1) c(t+2) ... c(t+n) - 340 ................. - 341 C(t+(n-1)) c(t+n) ... c(t+2(n-1)) + 335 All other parameters are identical to the ones of Corr.GEVP. + 336 """ + 337 vec = self.GEVP(t0, ts=ts, sort=sort)[state] + 338 return self.projected(vec) + 339 + 340 def Hankel(self, N, periodic=False): + 341 """Constructs an NxN Hankel matrix 342 - 343 Parameters - 344 ---------- - 345 N : int - 346 Dimension of the Hankel matrix - 347 periodic : bool, optional - 348 determines whether the matrix is extended periodically - 349 """ - 350 - 351 if self.N != 1: - 352 raise Exception("Multi-operator Prony not implemented!") - 353 - 354 array = np.empty([N, N], dtype="object") - 355 new_content = [] - 356 for t in range(self.T): - 357 new_content.append(array.copy()) + 343 C(t) c(t+1) ... c(t+n-1) + 344 C(t+1) c(t+2) ... c(t+n) + 345 ................. + 346 C(t+(n-1)) c(t+n) ... c(t+2(n-1)) + 347 + 348 Parameters + 349 ---------- + 350 N : int + 351 Dimension of the Hankel matrix + 352 periodic : bool, optional + 353 determines whether the matrix is extended periodically + 354 """ + 355 + 356 if self.N != 1: + 357 raise Exception("Multi-operator Prony not implemented!") 358 - 359 def wrap(i): - 360 while i >= self.T: - 361 i -= self.T - 362 return i + 359 array = np.empty([N, N], dtype="object") + 360 new_content = [] + 361 for t in range(self.T): + 362 new_content.append(array.copy()) 363 - 364 for t in range(self.T): - 365 for i in range(N): - 366 for j in range(N): - 367 if periodic: - 368 new_content[t][i, j] = self.content[wrap(t + i + j)][0] - 369 elif (t + i + j) >= self.T: - 370 new_content[t] = None - 371 else: - 372 new_content[t][i, j] = self.content[t + i + j][0] - 373 - 374 return Corr(new_content) - 375 - 376 def roll(self, dt): - 377 """Periodically shift the correlator by dt timeslices + 364 def wrap(i): + 365 while i >= self.T: + 366 i -= self.T + 367 return i + 368 + 369 for t in range(self.T): + 370 for i in range(N): + 371 for j in range(N): + 372 if periodic: + 373 new_content[t][i, j] = self.content[wrap(t + i + j)][0] + 374 elif (t + i + j) >= self.T: + 375 new_content[t] = None + 376 else: + 377 new_content[t][i, j] = self.content[t + i + j][0] 378 - 379 Parameters - 380 ---------- - 381 dt : int - 382 number of timeslices - 383 """ - 384 return Corr(list(np.roll(np.array(self.content, dtype=object), dt))) - 385 - 386 def reverse(self): - 387 """Reverse the time ordering of the Corr""" - 388 return Corr(self.content[:: -1]) - 389 - 390 def thin(self, spacing=2, offset=0): - 391 """Thin out a correlator to suppress correlations - 392 - 393 Parameters - 394 ---------- - 395 spacing : int - 396 Keep only every 'spacing'th entry of the correlator - 397 offset : int - 398 Offset the equal spacing - 399 """ - 400 new_content = [] - 401 for t in range(self.T): - 402 if (offset + t) % spacing != 0: - 403 new_content.append(None) - 404 else: - 405 new_content.append(self.content[t]) - 406 return Corr(new_content) - 407 - 408 def correlate(self, partner): - 409 """Correlate the correlator with another correlator or Obs - 410 - 411 Parameters - 412 ---------- - 413 partner : Obs or Corr - 414 partner to correlate the correlator with. - 415 Can either be an Obs which is correlated with all entries of the - 416 correlator or a Corr of same length. - 417 """ - 418 new_content = [] - 419 for x0, t_slice in enumerate(self.content): - 420 if t_slice is None: - 421 new_content.append(None) - 422 else: - 423 if isinstance(partner, Corr): - 424 if partner.content[x0] is None: - 425 new_content.append(None) - 426 else: - 427 new_content.append(np.array([correlate(o, partner.content[x0][0]) for o in t_slice])) - 428 elif isinstance(partner, Obs): # Should this include CObs? - 429 new_content.append(np.array([correlate(o, partner) for o in t_slice])) - 430 else: - 431 raise Exception("Can only correlate with an Obs or a Corr.") - 432 - 433 return Corr(new_content) - 434 - 435 def reweight(self, weight, **kwargs): - 436 """Reweight the correlator. + 379 return Corr(new_content) + 380 + 381 def roll(self, dt): + 382 """Periodically shift the correlator by dt timeslices + 383 + 384 Parameters + 385 ---------- + 386 dt : int + 387 number of timeslices + 388 """ + 389 return Corr(list(np.roll(np.array(self.content, dtype=object), dt))) + 390 + 391 def reverse(self): + 392 """Reverse the time ordering of the Corr""" + 393 return Corr(self.content[:: -1]) + 394 + 395 def thin(self, spacing=2, offset=0): + 396 """Thin out a correlator to suppress correlations + 397 + 398 Parameters + 399 ---------- + 400 spacing : int + 401 Keep only every 'spacing'th entry of the correlator + 402 offset : int + 403 Offset the equal spacing + 404 """ + 405 new_content = [] + 406 for t in range(self.T): + 407 if (offset + t) % spacing != 0: + 408 new_content.append(None) + 409 else: + 410 new_content.append(self.content[t]) + 411 return Corr(new_content) + 412 + 413 def correlate(self, partner): + 414 """Correlate the correlator with another correlator or Obs + 415 + 416 Parameters + 417 ---------- + 418 partner : Obs or Corr + 419 partner to correlate the correlator with. + 420 Can either be an Obs which is correlated with all entries of the + 421 correlator or a Corr of same length. + 422 """ + 423 new_content = [] + 424 for x0, t_slice in enumerate(self.content): + 425 if t_slice is None: + 426 new_content.append(None) + 427 else: + 428 if isinstance(partner, Corr): + 429 if partner.content[x0] is None: + 430 new_content.append(None) + 431 else: + 432 new_content.append(np.array([correlate(o, partner.content[x0][0]) for o in t_slice])) + 433 elif isinstance(partner, Obs): # Should this include CObs? + 434 new_content.append(np.array([correlate(o, partner) for o in t_slice])) + 435 else: + 436 raise Exception("Can only correlate with an Obs or a Corr.") 437 - 438 Parameters - 439 ---------- - 440 weight : Obs - 441 Reweighting factor. An Observable that has to be defined on a superset of the - 442 configurations in obs[i].idl for all i. - 443 all_configs : bool - 444 if True, the reweighted observables are normalized by the average of - 445 the reweighting factor on all configurations in weight.idl and not - 446 on the configurations in obs[i].idl. - 447 """ - 448 new_content = [] - 449 for t_slice in self.content: - 450 if t_slice is None: - 451 new_content.append(None) - 452 else: - 453 new_content.append(np.array(reweight(weight, t_slice, **kwargs))) - 454 return Corr(new_content) - 455 - 456 def T_symmetry(self, partner, parity=+1): - 457 """Return the time symmetry average of the correlator and its partner - 458 - 459 Parameters - 460 ---------- - 461 partner : Corr - 462 Time symmetry partner of the Corr - 463 partity : int - 464 Parity quantum number of the correlator, can be +1 or -1 - 465 """ - 466 if not isinstance(partner, Corr): - 467 raise Exception("T partner has to be a Corr object.") - 468 if parity not in [+1, -1]: - 469 raise Exception("Parity has to be +1 or -1.") - 470 T_partner = parity * partner.reverse() - 471 - 472 t_slices = [] - 473 test = (self - T_partner) - 474 test.gamma_method() - 475 for x0, t_slice in enumerate(test.content): - 476 if t_slice is not None: - 477 if not t_slice[0].is_zero_within_error(5): - 478 t_slices.append(x0) - 479 if t_slices: - 480 warnings.warn("T symmetry partners do not agree within 5 sigma on time slices " + str(t_slices) + ".", RuntimeWarning) - 481 - 482 return (self + T_partner) / 2 - 483 - 484 def deriv(self, variant="symmetric"): - 485 """Return the first derivative of the correlator with respect to x0. + 438 return Corr(new_content) + 439 + 440 def reweight(self, weight, **kwargs): + 441 """Reweight the correlator. + 442 + 443 Parameters + 444 ---------- + 445 weight : Obs + 446 Reweighting factor. An Observable that has to be defined on a superset of the + 447 configurations in obs[i].idl for all i. + 448 all_configs : bool + 449 if True, the reweighted observables are normalized by the average of + 450 the reweighting factor on all configurations in weight.idl and not + 451 on the configurations in obs[i].idl. + 452 """ + 453 new_content = [] + 454 for t_slice in self.content: + 455 if t_slice is None: + 456 new_content.append(None) + 457 else: + 458 new_content.append(np.array(reweight(weight, t_slice, **kwargs))) + 459 return Corr(new_content) + 460 + 461 def T_symmetry(self, partner, parity=+1): + 462 """Return the time symmetry average of the correlator and its partner + 463 + 464 Parameters + 465 ---------- + 466 partner : Corr + 467 Time symmetry partner of the Corr + 468 partity : int + 469 Parity quantum number of the correlator, can be +1 or -1 + 470 """ + 471 if not isinstance(partner, Corr): + 472 raise Exception("T partner has to be a Corr object.") + 473 if parity not in [+1, -1]: + 474 raise Exception("Parity has to be +1 or -1.") + 475 T_partner = parity * partner.reverse() + 476 + 477 t_slices = [] + 478 test = (self - T_partner) + 479 test.gamma_method() + 480 for x0, t_slice in enumerate(test.content): + 481 if t_slice is not None: + 482 if not t_slice[0].is_zero_within_error(5): + 483 t_slices.append(x0) + 484 if t_slices: + 485 warnings.warn("T symmetry partners do not agree within 5 sigma on time slices " + str(t_slices) + ".", RuntimeWarning) 486 - 487 Parameters - 488 ---------- - 489 variant : str - 490 decides which definition of the finite differences derivative is used. - 491 Available choice: symmetric, forward, backward, improved, default: symmetric - 492 """ - 493 if variant == "symmetric": - 494 newcontent = [] - 495 for t in range(1, self.T - 1): - 496 if (self.content[t - 1] is None) or (self.content[t + 1] is None): - 497 newcontent.append(None) - 498 else: - 499 newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1])) - 500 if(all([x is None for x in newcontent])): - 501 raise Exception('Derivative is undefined at all timeslices') - 502 return Corr(newcontent, padding=[1, 1]) - 503 elif variant == "forward": - 504 newcontent = [] - 505 for t in range(self.T - 1): - 506 if (self.content[t] is None) or (self.content[t + 1] is None): - 507 newcontent.append(None) - 508 else: - 509 newcontent.append(self.content[t + 1] - self.content[t]) - 510 if(all([x is None for x in newcontent])): - 511 raise Exception("Derivative is undefined at all timeslices") - 512 return Corr(newcontent, padding=[0, 1]) - 513 elif variant == "backward": - 514 newcontent = [] - 515 for t in range(1, self.T): - 516 if (self.content[t - 1] is None) or (self.content[t] is None): - 517 newcontent.append(None) - 518 else: - 519 newcontent.append(self.content[t] - self.content[t - 1]) - 520 if(all([x is None for x in newcontent])): - 521 raise Exception("Derivative is undefined at all timeslices") - 522 return Corr(newcontent, padding=[1, 0]) - 523 elif variant == "improved": - 524 newcontent = [] - 525 for t in range(2, self.T - 2): - 526 if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None): - 527 newcontent.append(None) - 528 else: - 529 newcontent.append((1 / 12) * (self.content[t - 2] - 8 * self.content[t - 1] + 8 * self.content[t + 1] - self.content[t + 2])) - 530 if(all([x is None for x in newcontent])): - 531 raise Exception('Derivative is undefined at all timeslices') - 532 return Corr(newcontent, padding=[2, 2]) - 533 else: - 534 raise Exception("Unknown variant.") - 535 - 536 def second_deriv(self, variant="symmetric"): - 537 """Return the second derivative of the correlator with respect to x0. - 538 - 539 Parameters - 540 ---------- - 541 variant : str - 542 decides which definition of the finite differences derivative is used. - 543 Available choice: symmetric, improved, default: symmetric - 544 """ - 545 if variant == "symmetric": - 546 newcontent = [] - 547 for t in range(1, self.T - 1): - 548 if (self.content[t - 1] is None) or (self.content[t + 1] is None): - 549 newcontent.append(None) - 550 else: - 551 newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1])) - 552 if(all([x is None for x in newcontent])): - 553 raise Exception("Derivative is undefined at all timeslices") - 554 return Corr(newcontent, padding=[1, 1]) - 555 elif variant == "improved": - 556 newcontent = [] - 557 for t in range(2, self.T - 2): - 558 if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None): - 559 newcontent.append(None) - 560 else: - 561 newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2])) - 562 if(all([x is None for x in newcontent])): - 563 raise Exception("Derivative is undefined at all timeslices") - 564 return Corr(newcontent, padding=[2, 2]) - 565 else: - 566 raise Exception("Unknown variant.") - 567 - 568 def m_eff(self, variant='log', guess=1.0): - 569 """Returns the effective mass of the correlator as correlator object - 570 - 571 Parameters - 572 ---------- - 573 variant : str - 574 log : uses the standard effective mass log(C(t) / C(t+1)) - 575 cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m. - 576 sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m. - 577 See, e.g., arXiv:1205.5380 - 578 arccosh : Uses the explicit form of the symmetrized correlator (not recommended) - 579 guess : float - 580 guess for the root finder, only relevant for the root variant - 581 """ - 582 if self.N != 1: - 583 raise Exception('Correlator must be projected before getting m_eff') - 584 if variant == 'log': - 585 newcontent = [] - 586 for t in range(self.T - 1): - 587 if (self.content[t] is None) or (self.content[t + 1] is None): - 588 newcontent.append(None) - 589 else: - 590 newcontent.append(self.content[t] / self.content[t + 1]) - 591 if(all([x is None for x in newcontent])): - 592 raise Exception('m_eff is undefined at all timeslices') - 593 - 594 return np.log(Corr(newcontent, padding=[0, 1])) - 595 - 596 elif variant in ['periodic', 'cosh', 'sinh']: - 597 if variant in ['periodic', 'cosh']: - 598 func = anp.cosh - 599 else: - 600 func = anp.sinh - 601 - 602 def root_function(x, d): - 603 return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d - 604 - 605 newcontent = [] - 606 for t in range(self.T - 1): - 607 if (self.content[t] is None) or (self.content[t + 1] is None): - 608 newcontent.append(None) - 609 # Fill the two timeslices in the middle of the lattice with their predecessors - 610 elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]: - 611 newcontent.append(newcontent[-1]) - 612 else: - 613 newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess))) - 614 if(all([x is None for x in newcontent])): - 615 raise Exception('m_eff is undefined at all timeslices') - 616 - 617 return Corr(newcontent, padding=[0, 1]) - 618 - 619 elif variant == 'arccosh': - 620 newcontent = [] - 621 for t in range(1, self.T - 1): - 622 if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None): - 623 newcontent.append(None) - 624 else: - 625 newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t])) - 626 if(all([x is None for x in newcontent])): - 627 raise Exception("m_eff is undefined at all timeslices") - 628 return np.arccosh(Corr(newcontent, padding=[1, 1])) - 629 - 630 else: - 631 raise Exception('Unknown variant.') - 632 - 633 def fit(self, function, fitrange=None, silent=False, **kwargs): - 634 r'''Fits function to the data - 635 - 636 Parameters - 637 ---------- - 638 function : obj - 639 function to fit to the data. See fits.least_squares for details. - 640 fitrange : list - 641 Two element list containing the timeslices on which the fit is supposed to start and stop. - 642 Caution: This range is inclusive as opposed to standard python indexing. - 643 `fitrange=[4, 6]` corresponds to the three entries 4, 5 and 6. - 644 If not specified, self.prange or all timeslices are used. - 645 silent : bool - 646 Decides whether output is printed to the standard output. - 647 ''' - 648 if self.N != 1: - 649 raise Exception("Correlator must be projected before fitting") - 650 - 651 if fitrange is None: - 652 if self.prange: - 653 fitrange = self.prange - 654 else: - 655 fitrange = [0, self.T - 1] - 656 else: - 657 if not isinstance(fitrange, list): - 658 raise Exception("fitrange has to be a list with two elements") - 659 if len(fitrange) != 2: - 660 raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]") - 661 - 662 xs = [x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None] - 663 ys = [self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None] - 664 result = least_squares(xs, ys, function, silent=silent, **kwargs) - 665 return result + 487 return (self + T_partner) / 2 + 488 + 489 def deriv(self, variant="symmetric"): + 490 """Return the first derivative of the correlator with respect to x0. + 491 + 492 Parameters + 493 ---------- + 494 variant : str + 495 decides which definition of the finite differences derivative is used. + 496 Available choice: symmetric, forward, backward, improved, default: symmetric + 497 """ + 498 if variant == "symmetric": + 499 newcontent = [] + 500 for t in range(1, self.T - 1): + 501 if (self.content[t - 1] is None) or (self.content[t + 1] is None): + 502 newcontent.append(None) + 503 else: + 504 newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1])) + 505 if(all([x is None for x in newcontent])): + 506 raise Exception('Derivative is undefined at all timeslices') + 507 return Corr(newcontent, padding=[1, 1]) + 508 elif variant == "forward": + 509 newcontent = [] + 510 for t in range(self.T - 1): + 511 if (self.content[t] is None) or (self.content[t + 1] is None): + 512 newcontent.append(None) + 513 else: + 514 newcontent.append(self.content[t + 1] - self.content[t]) + 515 if(all([x is None for x in newcontent])): + 516 raise Exception("Derivative is undefined at all timeslices") + 517 return Corr(newcontent, padding=[0, 1]) + 518 elif variant == "backward": + 519 newcontent = [] + 520 for t in range(1, self.T): + 521 if (self.content[t - 1] is None) or (self.content[t] is None): + 522 newcontent.append(None) + 523 else: + 524 newcontent.append(self.content[t] - self.content[t - 1]) + 525 if(all([x is None for x in newcontent])): + 526 raise Exception("Derivative is undefined at all timeslices") + 527 return Corr(newcontent, padding=[1, 0]) + 528 elif variant == "improved": + 529 newcontent = [] + 530 for t in range(2, self.T - 2): + 531 if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None): + 532 newcontent.append(None) + 533 else: + 534 newcontent.append((1 / 12) * (self.content[t - 2] - 8 * self.content[t - 1] + 8 * self.content[t + 1] - self.content[t + 2])) + 535 if(all([x is None for x in newcontent])): + 536 raise Exception('Derivative is undefined at all timeslices') + 537 return Corr(newcontent, padding=[2, 2]) + 538 else: + 539 raise Exception("Unknown variant.") + 540 + 541 def second_deriv(self, variant="symmetric"): + 542 """Return the second derivative of the correlator with respect to x0. + 543 + 544 Parameters + 545 ---------- + 546 variant : str + 547 decides which definition of the finite differences derivative is used. + 548 Available choice: symmetric, improved, default: symmetric + 549 """ + 550 if variant == "symmetric": + 551 newcontent = [] + 552 for t in range(1, self.T - 1): + 553 if (self.content[t - 1] is None) or (self.content[t + 1] is None): + 554 newcontent.append(None) + 555 else: + 556 newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1])) + 557 if(all([x is None for x in newcontent])): + 558 raise Exception("Derivative is undefined at all timeslices") + 559 return Corr(newcontent, padding=[1, 1]) + 560 elif variant == "improved": + 561 newcontent = [] + 562 for t in range(2, self.T - 2): + 563 if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None): + 564 newcontent.append(None) + 565 else: + 566 newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2])) + 567 if(all([x is None for x in newcontent])): + 568 raise Exception("Derivative is undefined at all timeslices") + 569 return Corr(newcontent, padding=[2, 2]) + 570 else: + 571 raise Exception("Unknown variant.") + 572 + 573 def m_eff(self, variant='log', guess=1.0): + 574 """Returns the effective mass of the correlator as correlator object + 575 + 576 Parameters + 577 ---------- + 578 variant : str + 579 log : uses the standard effective mass log(C(t) / C(t+1)) + 580 cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m. + 581 sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m. + 582 See, e.g., arXiv:1205.5380 + 583 arccosh : Uses the explicit form of the symmetrized correlator (not recommended) + 584 guess : float + 585 guess for the root finder, only relevant for the root variant + 586 """ + 587 if self.N != 1: + 588 raise Exception('Correlator must be projected before getting m_eff') + 589 if variant == 'log': + 590 newcontent = [] + 591 for t in range(self.T - 1): + 592 if (self.content[t] is None) or (self.content[t + 1] is None): + 593 newcontent.append(None) + 594 else: + 595 newcontent.append(self.content[t] / self.content[t + 1]) + 596 if(all([x is None for x in newcontent])): + 597 raise Exception('m_eff is undefined at all timeslices') + 598 + 599 return np.log(Corr(newcontent, padding=[0, 1])) + 600 + 601 elif variant in ['periodic', 'cosh', 'sinh']: + 602 if variant in ['periodic', 'cosh']: + 603 func = anp.cosh + 604 else: + 605 func = anp.sinh + 606 + 607 def root_function(x, d): + 608 return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d + 609 + 610 newcontent = [] + 611 for t in range(self.T - 1): + 612 if (self.content[t] is None) or (self.content[t + 1] is None): + 613 newcontent.append(None) + 614 # Fill the two timeslices in the middle of the lattice with their predecessors + 615 elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]: + 616 newcontent.append(newcontent[-1]) + 617 else: + 618 newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess))) + 619 if(all([x is None for x in newcontent])): + 620 raise Exception('m_eff is undefined at all timeslices') + 621 + 622 return Corr(newcontent, padding=[0, 1]) + 623 + 624 elif variant == 'arccosh': + 625 newcontent = [] + 626 for t in range(1, self.T - 1): + 627 if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None): + 628 newcontent.append(None) + 629 else: + 630 newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t])) + 631 if(all([x is None for x in newcontent])): + 632 raise Exception("m_eff is undefined at all timeslices") + 633 return np.arccosh(Corr(newcontent, padding=[1, 1])) + 634 + 635 else: + 636 raise Exception('Unknown variant.') + 637 + 638 def fit(self, function, fitrange=None, silent=False, **kwargs): + 639 r'''Fits function to the data + 640 + 641 Parameters + 642 ---------- + 643 function : obj + 644 function to fit to the data. See fits.least_squares for details. + 645 fitrange : list + 646 Two element list containing the timeslices on which the fit is supposed to start and stop. + 647 Caution: This range is inclusive as opposed to standard python indexing. + 648 `fitrange=[4, 6]` corresponds to the three entries 4, 5 and 6. + 649 If not specified, self.prange or all timeslices are used. + 650 silent : bool + 651 Decides whether output is printed to the standard output. + 652 ''' + 653 if self.N != 1: + 654 raise Exception("Correlator must be projected before fitting") + 655 + 656 if fitrange is None: + 657 if self.prange: + 658 fitrange = self.prange + 659 else: + 660 fitrange = [0, self.T - 1] + 661 else: + 662 if not isinstance(fitrange, list): + 663 raise Exception("fitrange has to be a list with two elements") + 664 if len(fitrange) != 2: + 665 raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]") 666 - 667 def plateau(self, plateau_range=None, method="fit", auto_gamma=False): - 668 """ Extract a plateau value from a Corr object - 669 - 670 Parameters - 671 ---------- - 672 plateau_range : list - 673 list with two entries, indicating the first and the last timeslice - 674 of the plateau region. - 675 method : str - 676 method to extract the plateau. - 677 'fit' fits a constant to the plateau region - 678 'avg', 'average' or 'mean' just average over the given timeslices. - 679 auto_gamma : bool - 680 apply gamma_method with default parameters to the Corr. Defaults to None - 681 """ - 682 if not plateau_range: - 683 if self.prange: - 684 plateau_range = self.prange - 685 else: - 686 raise Exception("no plateau range provided") - 687 if self.N != 1: - 688 raise Exception("Correlator must be projected before getting a plateau.") - 689 if(all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])): - 690 raise Exception("plateau is undefined at all timeslices in plateaurange.") - 691 if auto_gamma: - 692 self.gamma_method() - 693 if method == "fit": - 694 def const_func(a, t): - 695 return a[0] - 696 return self.fit(const_func, plateau_range)[0] - 697 elif method in ["avg", "average", "mean"]: - 698 returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None]) - 699 return returnvalue - 700 - 701 else: - 702 raise Exception("Unsupported plateau method: " + method) - 703 - 704 def set_prange(self, prange): - 705 """Sets the attribute prange of the Corr object.""" - 706 if not len(prange) == 2: - 707 raise Exception("prange must be a list or array with two values") - 708 if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))): - 709 raise Exception("Start and end point must be integers") - 710 if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]): - 711 raise Exception("Start and end point must define a range in the interval 0,T") - 712 - 713 self.prange = prange - 714 return - 715 - 716 def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, ylabel=None, save=None, auto_gamma=False, hide_sigma=None, references=None): - 717 """Plots the correlator using the tag of the correlator as label if available. - 718 - 719 Parameters - 720 ---------- - 721 x_range : list - 722 list of two values, determining the range of the x-axis e.g. [4, 8] - 723 comp : Corr or list of Corr - 724 Correlator or list of correlators which are plotted for comparison. - 725 The tags of these correlators are used as labels if available. - 726 logscale : bool - 727 Sets y-axis to logscale - 728 plateau : Obs - 729 Plateau value to be visualized in the figure - 730 fit_res : Fit_result - 731 Fit_result object to be visualized - 732 ylabel : str - 733 Label for the y-axis - 734 save : str - 735 path to file in which the figure should be saved - 736 auto_gamma : bool - 737 Apply the gamma method with standard parameters to all correlators and plateau values before plotting. - 738 hide_sigma : float - 739 Hides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors. - 740 references : list - 741 List of floating point values that are displayed as horizontal lines for reference. - 742 """ - 743 if self.N != 1: - 744 raise Exception("Correlator must be projected before plotting") - 745 - 746 if auto_gamma: - 747 self.gamma_method() - 748 - 749 if x_range is None: - 750 x_range = [0, self.T - 1] - 751 - 752 fig = plt.figure() - 753 ax1 = fig.add_subplot(111) - 754 - 755 x, y, y_err = self.plottable() - 756 if hide_sigma: - 757 hide_from = np.argmax((hide_sigma * np.array(y_err)) > np.abs(y)) - 1 - 758 else: - 759 hide_from = None - 760 ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=self.tag) - 761 if logscale: - 762 ax1.set_yscale('log') + 667 xs = [x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None] + 668 ys = [self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None] + 669 result = least_squares(xs, ys, function, silent=silent, **kwargs) + 670 return result + 671 + 672 def plateau(self, plateau_range=None, method="fit", auto_gamma=False): + 673 """ Extract a plateau value from a Corr object + 674 + 675 Parameters + 676 ---------- + 677 plateau_range : list + 678 list with two entries, indicating the first and the last timeslice + 679 of the plateau region. + 680 method : str + 681 method to extract the plateau. + 682 'fit' fits a constant to the plateau region + 683 'avg', 'average' or 'mean' just average over the given timeslices. + 684 auto_gamma : bool + 685 apply gamma_method with default parameters to the Corr. Defaults to None + 686 """ + 687 if not plateau_range: + 688 if self.prange: + 689 plateau_range = self.prange + 690 else: + 691 raise Exception("no plateau range provided") + 692 if self.N != 1: + 693 raise Exception("Correlator must be projected before getting a plateau.") + 694 if(all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])): + 695 raise Exception("plateau is undefined at all timeslices in plateaurange.") + 696 if auto_gamma: + 697 self.gamma_method() + 698 if method == "fit": + 699 def const_func(a, t): + 700 return a[0] + 701 return self.fit(const_func, plateau_range)[0] + 702 elif method in ["avg", "average", "mean"]: + 703 returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None]) + 704 return returnvalue + 705 + 706 else: + 707 raise Exception("Unsupported plateau method: " + method) + 708 + 709 def set_prange(self, prange): + 710 """Sets the attribute prange of the Corr object.""" + 711 if not len(prange) == 2: + 712 raise Exception("prange must be a list or array with two values") + 713 if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))): + 714 raise Exception("Start and end point must be integers") + 715 if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]): + 716 raise Exception("Start and end point must define a range in the interval 0,T") + 717 + 718 self.prange = prange + 719 return + 720 + 721 def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, ylabel=None, save=None, auto_gamma=False, hide_sigma=None, references=None): + 722 """Plots the correlator using the tag of the correlator as label if available. + 723 + 724 Parameters + 725 ---------- + 726 x_range : list + 727 list of two values, determining the range of the x-axis e.g. [4, 8] + 728 comp : Corr or list of Corr + 729 Correlator or list of correlators which are plotted for comparison. + 730 The tags of these correlators are used as labels if available. + 731 logscale : bool + 732 Sets y-axis to logscale + 733 plateau : Obs + 734 Plateau value to be visualized in the figure + 735 fit_res : Fit_result + 736 Fit_result object to be visualized + 737 ylabel : str + 738 Label for the y-axis + 739 save : str + 740 path to file in which the figure should be saved + 741 auto_gamma : bool + 742 Apply the gamma method with standard parameters to all correlators and plateau values before plotting. + 743 hide_sigma : float + 744 Hides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors. + 745 references : list + 746 List of floating point values that are displayed as horizontal lines for reference. + 747 """ + 748 if self.N != 1: + 749 raise Exception("Correlator must be projected before plotting") + 750 + 751 if auto_gamma: + 752 self.gamma_method() + 753 + 754 if x_range is None: + 755 x_range = [0, self.T - 1] + 756 + 757 fig = plt.figure() + 758 ax1 = fig.add_subplot(111) + 759 + 760 x, y, y_err = self.plottable() + 761 if hide_sigma: + 762 hide_from = np.argmax((hide_sigma * np.array(y_err)) > np.abs(y)) - 1 763 else: - 764 if y_range is None: - 765 try: - 766 y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) - 767 y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) - 768 ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)]) - 769 except Exception: - 770 pass - 771 else: - 772 ax1.set_ylim(y_range) - 773 if comp: - 774 if isinstance(comp, (Corr, list)): - 775 for corr in comp if isinstance(comp, list) else [comp]: - 776 if auto_gamma: - 777 corr.gamma_method() - 778 x, y, y_err = corr.plottable() - 779 if hide_sigma: - 780 hide_from = np.argmax((hide_sigma * np.array(y_err)) > np.abs(y)) - 1 - 781 else: - 782 hide_from = None - 783 plt.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor']) - 784 else: - 785 raise Exception("'comp' must be a correlator or a list of correlators.") - 786 - 787 if plateau: - 788 if isinstance(plateau, Obs): - 789 if auto_gamma: - 790 plateau.gamma_method() - 791 ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau)) - 792 ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-') - 793 else: - 794 raise Exception("'plateau' must be an Obs") - 795 - 796 if references: - 797 if isinstance(references, list): - 798 for ref in references: - 799 ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--') - 800 else: - 801 raise Exception("'references' must be a list of floating pint values.") - 802 - 803 if self.prange: - 804 ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',') - 805 ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',') - 806 - 807 if fit_res: - 808 x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05) - 809 ax1.plot(x_samples, - 810 fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples), - 811 ls='-', marker=',', lw=2) - 812 - 813 ax1.set_xlabel(r'$x_0 / a$') - 814 if ylabel: - 815 ax1.set_ylabel(ylabel) - 816 ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5]) + 764 hide_from = None + 765 ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=self.tag) + 766 if logscale: + 767 ax1.set_yscale('log') + 768 else: + 769 if y_range is None: + 770 try: + 771 y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) + 772 y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)]) + 773 ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)]) + 774 except Exception: + 775 pass + 776 else: + 777 ax1.set_ylim(y_range) + 778 if comp: + 779 if isinstance(comp, (Corr, list)): + 780 for corr in comp if isinstance(comp, list) else [comp]: + 781 if auto_gamma: + 782 corr.gamma_method() + 783 x, y, y_err = corr.plottable() + 784 if hide_sigma: + 785 hide_from = np.argmax((hide_sigma * np.array(y_err)) > np.abs(y)) - 1 + 786 else: + 787 hide_from = None + 788 plt.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor']) + 789 else: + 790 raise Exception("'comp' must be a correlator or a list of correlators.") + 791 + 792 if plateau: + 793 if isinstance(plateau, Obs): + 794 if auto_gamma: + 795 plateau.gamma_method() + 796 ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau)) + 797 ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-') + 798 else: + 799 raise Exception("'plateau' must be an Obs") + 800 + 801 if references: + 802 if isinstance(references, list): + 803 for ref in references: + 804 ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--') + 805 else: + 806 raise Exception("'references' must be a list of floating pint values.") + 807 + 808 if self.prange: + 809 ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',') + 810 ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',') + 811 + 812 if fit_res: + 813 x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05) + 814 ax1.plot(x_samples, + 815 fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples), + 816 ls='-', marker=',', lw=2) 817 - 818 handles, labels = ax1.get_legend_handles_labels() - 819 if labels: - 820 ax1.legend() - 821 plt.draw() + 818 ax1.set_xlabel(r'$x_0 / a$') + 819 if ylabel: + 820 ax1.set_ylabel(ylabel) + 821 ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5]) 822 - 823 if save: - 824 if isinstance(save, str): - 825 fig.savefig(save) - 826 else: - 827 raise Exception("'save' has to be a string.") - 828 - 829 def spaghetti_plot(self, logscale=True): - 830 """Produces a spaghetti plot of the correlator suited to monitor exceptional configurations. - 831 - 832 Parameters - 833 ---------- - 834 logscale : bool - 835 Determines whether the scale of the y-axis is logarithmic or standard. - 836 """ - 837 if self.N != 1: - 838 raise Exception("Correlator needs to be projected first.") - 839 - 840 mc_names = list(set([item for sublist in [o[0].mc_names for o in self.content if o is not None] for item in sublist])) - 841 x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None] - 842 - 843 for name in mc_names: - 844 data = np.array([o[0].deltas[name] + o[0].r_values[name] for o in self.content if o is not None]).T - 845 - 846 fig = plt.figure() - 847 ax = fig.add_subplot(111) - 848 for dat in data: - 849 ax.plot(x0_vals, dat, ls='-', marker='') + 823 handles, labels = ax1.get_legend_handles_labels() + 824 if labels: + 825 ax1.legend() + 826 plt.draw() + 827 + 828 if save: + 829 if isinstance(save, str): + 830 fig.savefig(save) + 831 else: + 832 raise Exception("'save' has to be a string.") + 833 + 834 def spaghetti_plot(self, logscale=True): + 835 """Produces a spaghetti plot of the correlator suited to monitor exceptional configurations. + 836 + 837 Parameters + 838 ---------- + 839 logscale : bool + 840 Determines whether the scale of the y-axis is logarithmic or standard. + 841 """ + 842 if self.N != 1: + 843 raise Exception("Correlator needs to be projected first.") + 844 + 845 mc_names = list(set([item for sublist in [o[0].mc_names for o in self.content if o is not None] for item in sublist])) + 846 x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None] + 847 + 848 for name in mc_names: + 849 data = np.array([o[0].deltas[name] + o[0].r_values[name] for o in self.content if o is not None]).T 850 - 851 if logscale is True: - 852 ax.set_yscale('log') - 853 - 854 ax.set_xlabel(r'$x_0 / a$') - 855 plt.title(name) - 856 plt.draw() - 857 - 858 def dump(self, filename, datatype="json.gz", **kwargs): - 859 """Dumps the Corr into a file of chosen type - 860 Parameters - 861 ---------- - 862 filename : str - 863 Name of the file to be saved. - 864 datatype : str - 865 Format of the exported file. Supported formats include - 866 "json.gz" and "pickle" - 867 path : str - 868 specifies a custom path for the file (default '.') - 869 """ - 870 if datatype == "json.gz": - 871 from .input.json import dump_to_json - 872 if 'path' in kwargs: - 873 file_name = kwargs.get('path') + '/' + filename - 874 else: - 875 file_name = filename - 876 dump_to_json(self, file_name) - 877 elif datatype == "pickle": - 878 dump_object(self, filename, **kwargs) - 879 else: - 880 raise Exception("Unknown datatype " + str(datatype)) - 881 - 882 def print(self, range=[0, None]): - 883 print(self.__repr__(range)) - 884 - 885 def __repr__(self, range=[0, None]): - 886 content_string = "" - 887 - 888 content_string += "Corr T=" + str(self.T) + " N=" + str(self.N) + "\n" # +" filled with"+ str(type(self.content[0][0])) there should be a good solution here + 851 fig = plt.figure() + 852 ax = fig.add_subplot(111) + 853 for dat in data: + 854 ax.plot(x0_vals, dat, ls='-', marker='') + 855 + 856 if logscale is True: + 857 ax.set_yscale('log') + 858 + 859 ax.set_xlabel(r'$x_0 / a$') + 860 plt.title(name) + 861 plt.draw() + 862 + 863 def dump(self, filename, datatype="json.gz", **kwargs): + 864 """Dumps the Corr into a file of chosen type + 865 Parameters + 866 ---------- + 867 filename : str + 868 Name of the file to be saved. + 869 datatype : str + 870 Format of the exported file. Supported formats include + 871 "json.gz" and "pickle" + 872 path : str + 873 specifies a custom path for the file (default '.') + 874 """ + 875 if datatype == "json.gz": + 876 from .input.json import dump_to_json + 877 if 'path' in kwargs: + 878 file_name = kwargs.get('path') + '/' + filename + 879 else: + 880 file_name = filename + 881 dump_to_json(self, file_name) + 882 elif datatype == "pickle": + 883 dump_object(self, filename, **kwargs) + 884 else: + 885 raise Exception("Unknown datatype " + str(datatype)) + 886 + 887 def print(self, range=[0, None]): + 888 print(self.__repr__(range)) 889 - 890 if self.tag is not None: - 891 content_string += "Description: " + self.tag + "\n" - 892 if self.N != 1: - 893 return content_string + 890 def __repr__(self, range=[0, None]): + 891 content_string = "" + 892 + 893 content_string += "Corr T=" + str(self.T) + " N=" + str(self.N) + "\n" # +" filled with"+ str(type(self.content[0][0])) there should be a good solution here 894 - 895 if range[1]: - 896 range[1] += 1 - 897 content_string += 'x0/a\tCorr(x0/a)\n------------------\n' - 898 for i, sub_corr in enumerate(self.content[range[0]:range[1]]): - 899 if sub_corr is None: - 900 content_string += str(i + range[0]) + '\n' - 901 else: - 902 content_string += str(i + range[0]) - 903 for element in sub_corr: - 904 content_string += '\t' + ' ' * int(element >= 0) + str(element) - 905 content_string += '\n' - 906 return content_string - 907 - 908 def __str__(self): - 909 return self.__repr__() - 910 - 911 # We define the basic operations, that can be performed with correlators. - 912 # While */+- get defined here, they only work for Corr*Obs and not Obs*Corr. - 913 # This is because Obs*Corr checks Obs.__mul__ first and does not catch an exception. - 914 # One could try and tell Obs to check if the y in __mul__ is a Corr and + 895 if self.tag is not None: + 896 content_string += "Description: " + self.tag + "\n" + 897 if self.N != 1: + 898 return content_string + 899 + 900 if range[1]: + 901 range[1] += 1 + 902 content_string += 'x0/a\tCorr(x0/a)\n------------------\n' + 903 for i, sub_corr in enumerate(self.content[range[0]:range[1]]): + 904 if sub_corr is None: + 905 content_string += str(i + range[0]) + '\n' + 906 else: + 907 content_string += str(i + range[0]) + 908 for element in sub_corr: + 909 content_string += '\t' + ' ' * int(element >= 0) + str(element) + 910 content_string += '\n' + 911 return content_string + 912 + 913 def __str__(self): + 914 return self.__repr__() 915 - 916 def __add__(self, y): - 917 if isinstance(y, Corr): - 918 if ((self.N != y.N) or (self.T != y.T)): - 919 raise Exception("Addition of Corrs with different shape") - 920 newcontent = [] - 921 for t in range(self.T): - 922 if (self.content[t] is None) or (y.content[t] is None): - 923 newcontent.append(None) - 924 else: - 925 newcontent.append(self.content[t] + y.content[t]) - 926 return Corr(newcontent) - 927 - 928 elif isinstance(y, (Obs, int, float, CObs)): - 929 newcontent = [] - 930 for t in range(self.T): - 931 if (self.content[t] is None): - 932 newcontent.append(None) - 933 else: - 934 newcontent.append(self.content[t] + y) - 935 return Corr(newcontent, prange=self.prange) - 936 elif isinstance(y, np.ndarray): - 937 if y.shape == (self.T,): - 938 return Corr(list((np.array(self.content).T + y).T)) - 939 else: - 940 raise ValueError("operands could not be broadcast together") - 941 else: - 942 raise TypeError("Corr + wrong type") - 943 - 944 def __mul__(self, y): - 945 if isinstance(y, Corr): - 946 if not((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): - 947 raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") - 948 newcontent = [] - 949 for t in range(self.T): - 950 if (self.content[t] is None) or (y.content[t] is None): - 951 newcontent.append(None) - 952 else: - 953 newcontent.append(self.content[t] * y.content[t]) - 954 return Corr(newcontent) - 955 - 956 elif isinstance(y, (Obs, int, float, CObs)): - 957 newcontent = [] - 958 for t in range(self.T): - 959 if (self.content[t] is None): - 960 newcontent.append(None) - 961 else: - 962 newcontent.append(self.content[t] * y) - 963 return Corr(newcontent, prange=self.prange) - 964 elif isinstance(y, np.ndarray): - 965 if y.shape == (self.T,): - 966 return Corr(list((np.array(self.content).T * y).T)) - 967 else: - 968 raise ValueError("operands could not be broadcast together") - 969 else: - 970 raise TypeError("Corr * wrong type") - 971 - 972 def __truediv__(self, y): - 973 if isinstance(y, Corr): - 974 if not((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): - 975 raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") - 976 newcontent = [] - 977 for t in range(self.T): - 978 if (self.content[t] is None) or (y.content[t] is None): - 979 newcontent.append(None) - 980 else: - 981 newcontent.append(self.content[t] / y.content[t]) + 916 # We define the basic operations, that can be performed with correlators. + 917 # While */+- get defined here, they only work for Corr*Obs and not Obs*Corr. + 918 # This is because Obs*Corr checks Obs.__mul__ first and does not catch an exception. + 919 # One could try and tell Obs to check if the y in __mul__ is a Corr and + 920 + 921 def __add__(self, y): + 922 if isinstance(y, Corr): + 923 if ((self.N != y.N) or (self.T != y.T)): + 924 raise Exception("Addition of Corrs with different shape") + 925 newcontent = [] + 926 for t in range(self.T): + 927 if (self.content[t] is None) or (y.content[t] is None): + 928 newcontent.append(None) + 929 else: + 930 newcontent.append(self.content[t] + y.content[t]) + 931 return Corr(newcontent) + 932 + 933 elif isinstance(y, (Obs, int, float, CObs)): + 934 newcontent = [] + 935 for t in range(self.T): + 936 if (self.content[t] is None): + 937 newcontent.append(None) + 938 else: + 939 newcontent.append(self.content[t] + y) + 940 return Corr(newcontent, prange=self.prange) + 941 elif isinstance(y, np.ndarray): + 942 if y.shape == (self.T,): + 943 return Corr(list((np.array(self.content).T + y).T)) + 944 else: + 945 raise ValueError("operands could not be broadcast together") + 946 else: + 947 raise TypeError("Corr + wrong type") + 948 + 949 def __mul__(self, y): + 950 if isinstance(y, Corr): + 951 if not((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): + 952 raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") + 953 newcontent = [] + 954 for t in range(self.T): + 955 if (self.content[t] is None) or (y.content[t] is None): + 956 newcontent.append(None) + 957 else: + 958 newcontent.append(self.content[t] * y.content[t]) + 959 return Corr(newcontent) + 960 + 961 elif isinstance(y, (Obs, int, float, CObs)): + 962 newcontent = [] + 963 for t in range(self.T): + 964 if (self.content[t] is None): + 965 newcontent.append(None) + 966 else: + 967 newcontent.append(self.content[t] * y) + 968 return Corr(newcontent, prange=self.prange) + 969 elif isinstance(y, np.ndarray): + 970 if y.shape == (self.T,): + 971 return Corr(list((np.array(self.content).T * y).T)) + 972 else: + 973 raise ValueError("operands could not be broadcast together") + 974 else: + 975 raise TypeError("Corr * wrong type") + 976 + 977 def __truediv__(self, y): + 978 if isinstance(y, Corr): + 979 if not((self.N == 1 or y.N == 1 or self.N == y.N) and self.T == y.T): + 980 raise Exception("Multiplication of Corr object requires N=N or N=1 and T=T") + 981 newcontent = [] 982 for t in range(self.T): - 983 if newcontent[t] is None: - 984 continue - 985 if np.isnan(np.sum(newcontent[t]).value): - 986 newcontent[t] = None - 987 - 988 if all([item is None for item in newcontent]): - 989 raise Exception("Division returns completely undefined correlator") - 990 return Corr(newcontent) - 991 - 992 elif isinstance(y, (Obs, CObs)): - 993 if isinstance(y, Obs): - 994 if y.value == 0: - 995 raise Exception('Division by zero will return undefined correlator') - 996 if isinstance(y, CObs): - 997 if y.is_zero(): - 998 raise Exception('Division by zero will return undefined correlator') - 999 -1000 newcontent = [] -1001 for t in range(self.T): -1002 if (self.content[t] is None): -1003 newcontent.append(None) -1004 else: -1005 newcontent.append(self.content[t] / y) -1006 return Corr(newcontent, prange=self.prange) -1007 -1008 elif isinstance(y, (int, float)): -1009 if y == 0: -1010 raise Exception('Division by zero will return undefined correlator') -1011 newcontent = [] -1012 for t in range(self.T): -1013 if (self.content[t] is None): -1014 newcontent.append(None) -1015 else: -1016 newcontent.append(self.content[t] / y) -1017 return Corr(newcontent, prange=self.prange) -1018 elif isinstance(y, np.ndarray): -1019 if y.shape == (self.T,): -1020 return Corr(list((np.array(self.content).T / y).T)) -1021 else: -1022 raise ValueError("operands could not be broadcast together") -1023 else: -1024 raise TypeError('Corr / wrong type') -1025 -1026 def __neg__(self): -1027 newcontent = [None if (item is None) else -1. * item for item in self.content] -1028 return Corr(newcontent, prange=self.prange) -1029 -1030 def __sub__(self, y): -1031 return self + (-y) -1032 -1033 def __pow__(self, y): -1034 if isinstance(y, (Obs, int, float, CObs)): -1035 newcontent = [None if (item is None) else item**y for item in self.content] -1036 return Corr(newcontent, prange=self.prange) -1037 else: -1038 raise TypeError('Type of exponent not supported') -1039 -1040 def __abs__(self): -1041 newcontent = [None if (item is None) else np.abs(item) for item in self.content] -1042 return Corr(newcontent, prange=self.prange) -1043 -1044 # The numpy functions: -1045 def sqrt(self): -1046 return self**0.5 -1047 -1048 def log(self): -1049 newcontent = [None if (item is None) else np.log(item) for item in self.content] -1050 return Corr(newcontent, prange=self.prange) -1051 -1052 def exp(self): -1053 newcontent = [None if (item is None) else np.exp(item) for item in self.content] -1054 return Corr(newcontent, prange=self.prange) -1055 -1056 def _apply_func_to_corr(self, func): -1057 newcontent = [None if (item is None) else func(item) for item in self.content] -1058 for t in range(self.T): -1059 if newcontent[t] is None: -1060 continue -1061 if np.isnan(np.sum(newcontent[t]).value): -1062 newcontent[t] = None -1063 if all([item is None for item in newcontent]): -1064 raise Exception('Operation returns undefined correlator') -1065 return Corr(newcontent) -1066 -1067 def sin(self): -1068 return self._apply_func_to_corr(np.sin) -1069 -1070 def cos(self): -1071 return self._apply_func_to_corr(np.cos) -1072 -1073 def tan(self): -1074 return self._apply_func_to_corr(np.tan) -1075 -1076 def sinh(self): -1077 return self._apply_func_to_corr(np.sinh) -1078 -1079 def cosh(self): -1080 return self._apply_func_to_corr(np.cosh) -1081 -1082 def tanh(self): -1083 return self._apply_func_to_corr(np.tanh) -1084 -1085 def arcsin(self): -1086 return self._apply_func_to_corr(np.arcsin) -1087 -1088 def arccos(self): -1089 return self._apply_func_to_corr(np.arccos) -1090 -1091 def arctan(self): -1092 return self._apply_func_to_corr(np.arctan) -1093 -1094 def arcsinh(self): -1095 return self._apply_func_to_corr(np.arcsinh) -1096 -1097 def arccosh(self): -1098 return self._apply_func_to_corr(np.arccosh) -1099 -1100 def arctanh(self): -1101 return self._apply_func_to_corr(np.arctanh) -1102 -1103 # Right hand side operations (require tweak in main module to work) -1104 def __radd__(self, y): -1105 return self + y -1106 -1107 def __rsub__(self, y): -1108 return -self + y -1109 -1110 def __rmul__(self, y): -1111 return self * y -1112 -1113 def __rtruediv__(self, y): -1114 return (self / y) ** (-1) -1115 -1116 @property -1117 def real(self): -1118 def return_real(obs_OR_cobs): -1119 if isinstance(obs_OR_cobs, CObs): -1120 return obs_OR_cobs.real -1121 else: -1122 return obs_OR_cobs -1123 -1124 return self._apply_func_to_corr(return_real) -1125 -1126 @property -1127 def imag(self): -1128 def return_imag(obs_OR_cobs): -1129 if isinstance(obs_OR_cobs, CObs): -1130 return obs_OR_cobs.imag -1131 else: -1132 return obs_OR_cobs * 0 # So it stays the right type -1133 -1134 return self._apply_func_to_corr(return_imag) -1135 -1136 def prune(self, Ntrunc, tproj=3, t0proj=2, basematrix=None): -1137 r''' Project large correlation matrix to lowest states + 983 if (self.content[t] is None) or (y.content[t] is None): + 984 newcontent.append(None) + 985 else: + 986 newcontent.append(self.content[t] / y.content[t]) + 987 for t in range(self.T): + 988 if newcontent[t] is None: + 989 continue + 990 if np.isnan(np.sum(newcontent[t]).value): + 991 newcontent[t] = None + 992 + 993 if all([item is None for item in newcontent]): + 994 raise Exception("Division returns completely undefined correlator") + 995 return Corr(newcontent) + 996 + 997 elif isinstance(y, (Obs, CObs)): + 998 if isinstance(y, Obs): + 999 if y.value == 0: +1000 raise Exception('Division by zero will return undefined correlator') +1001 if isinstance(y, CObs): +1002 if y.is_zero(): +1003 raise Exception('Division by zero will return undefined correlator') +1004 +1005 newcontent = [] +1006 for t in range(self.T): +1007 if (self.content[t] is None): +1008 newcontent.append(None) +1009 else: +1010 newcontent.append(self.content[t] / y) +1011 return Corr(newcontent, prange=self.prange) +1012 +1013 elif isinstance(y, (int, float)): +1014 if y == 0: +1015 raise Exception('Division by zero will return undefined correlator') +1016 newcontent = [] +1017 for t in range(self.T): +1018 if (self.content[t] is None): +1019 newcontent.append(None) +1020 else: +1021 newcontent.append(self.content[t] / y) +1022 return Corr(newcontent, prange=self.prange) +1023 elif isinstance(y, np.ndarray): +1024 if y.shape == (self.T,): +1025 return Corr(list((np.array(self.content).T / y).T)) +1026 else: +1027 raise ValueError("operands could not be broadcast together") +1028 else: +1029 raise TypeError('Corr / wrong type') +1030 +1031 def __neg__(self): +1032 newcontent = [None if (item is None) else -1. * item for item in self.content] +1033 return Corr(newcontent, prange=self.prange) +1034 +1035 def __sub__(self, y): +1036 return self + (-y) +1037 +1038 def __pow__(self, y): +1039 if isinstance(y, (Obs, int, float, CObs)): +1040 newcontent = [None if (item is None) else item**y for item in self.content] +1041 return Corr(newcontent, prange=self.prange) +1042 else: +1043 raise TypeError('Type of exponent not supported') +1044 +1045 def __abs__(self): +1046 newcontent = [None if (item is None) else np.abs(item) for item in self.content] +1047 return Corr(newcontent, prange=self.prange) +1048 +1049 # The numpy functions: +1050 def sqrt(self): +1051 return self**0.5 +1052 +1053 def log(self): +1054 newcontent = [None if (item is None) else np.log(item) for item in self.content] +1055 return Corr(newcontent, prange=self.prange) +1056 +1057 def exp(self): +1058 newcontent = [None if (item is None) else np.exp(item) for item in self.content] +1059 return Corr(newcontent, prange=self.prange) +1060 +1061 def _apply_func_to_corr(self, func): +1062 newcontent = [None if (item is None) else func(item) for item in self.content] +1063 for t in range(self.T): +1064 if newcontent[t] is None: +1065 continue +1066 if np.isnan(np.sum(newcontent[t]).value): +1067 newcontent[t] = None +1068 if all([item is None for item in newcontent]): +1069 raise Exception('Operation returns undefined correlator') +1070 return Corr(newcontent) +1071 +1072 def sin(self): +1073 return self._apply_func_to_corr(np.sin) +1074 +1075 def cos(self): +1076 return self._apply_func_to_corr(np.cos) +1077 +1078 def tan(self): +1079 return self._apply_func_to_corr(np.tan) +1080 +1081 def sinh(self): +1082 return self._apply_func_to_corr(np.sinh) +1083 +1084 def cosh(self): +1085 return self._apply_func_to_corr(np.cosh) +1086 +1087 def tanh(self): +1088 return self._apply_func_to_corr(np.tanh) +1089 +1090 def arcsin(self): +1091 return self._apply_func_to_corr(np.arcsin) +1092 +1093 def arccos(self): +1094 return self._apply_func_to_corr(np.arccos) +1095 +1096 def arctan(self): +1097 return self._apply_func_to_corr(np.arctan) +1098 +1099 def arcsinh(self): +1100 return self._apply_func_to_corr(np.arcsinh) +1101 +1102 def arccosh(self): +1103 return self._apply_func_to_corr(np.arccosh) +1104 +1105 def arctanh(self): +1106 return self._apply_func_to_corr(np.arctanh) +1107 +1108 # Right hand side operations (require tweak in main module to work) +1109 def __radd__(self, y): +1110 return self + y +1111 +1112 def __rsub__(self, y): +1113 return -self + y +1114 +1115 def __rmul__(self, y): +1116 return self * y +1117 +1118 def __rtruediv__(self, y): +1119 return (self / y) ** (-1) +1120 +1121 @property +1122 def real(self): +1123 def return_real(obs_OR_cobs): +1124 if isinstance(obs_OR_cobs, CObs): +1125 return obs_OR_cobs.real +1126 else: +1127 return obs_OR_cobs +1128 +1129 return self._apply_func_to_corr(return_real) +1130 +1131 @property +1132 def imag(self): +1133 def return_imag(obs_OR_cobs): +1134 if isinstance(obs_OR_cobs, CObs): +1135 return obs_OR_cobs.imag +1136 else: +1137 return obs_OR_cobs * 0 # So it stays the right type 1138 -1139 This method can be used to reduce the size of an (N x N) correlation matrix -1140 to (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise -1141 is still small. -1142 -1143 Parameters -1144 ---------- -1145 Ntrunc: int -1146 Rank of the target matrix. -1147 tproj: int -1148 Time where the eigenvectors are evaluated, corresponds to ts in the GEVP method. -1149 The default value is 3. -1150 t0proj: int -1151 Time where the correlation matrix is inverted. Choosing t0proj=1 is strongly -1152 discouraged for O(a) improved theories, since the correctness of the procedure -1153 cannot be granted in this case. The default value is 2. -1154 basematrix : Corr -1155 Correlation matrix that is used to determine the eigenvectors of the -1156 lowest states based on a GEVP. basematrix is taken to be the Corr itself if -1157 is is not specified. -1158 -1159 Notes -1160 ----- -1161 We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving -1162 the GEVP $$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \equiv t_\mathrm{proj}$ -1163 and $t_0 \equiv t_{0, \mathrm{proj}}$. The target matrix is projected onto the subspace of the -1164 resulting eigenvectors $v_n, n=1,\dots,N_\mathrm{trunc}$ via -1165 $$G^\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large -1166 correlation matrix and to remove some noise that is added by irrelevant operators. -1167 This may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated -1168 bound $t_0 \leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$. -1169 ''' -1170 -1171 if self.N == 1: -1172 raise Exception('Method cannot be applied to one-dimensional correlators.') -1173 if basematrix is None: -1174 basematrix = self -1175 if Ntrunc >= basematrix.N: -1176 raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N)) -1177 if basematrix.N != self.N: -1178 raise Exception('basematrix and targetmatrix have to be of the same size.') -1179 -1180 evecs = [] -1181 for i in range(Ntrunc): -1182 evecs.append(basematrix.GEVP(t0proj, tproj, state=i, sorted_list=None)) -1183 -1184 tmpmat = np.empty((Ntrunc, Ntrunc), dtype=object) -1185 rmat = [] -1186 for t in range(basematrix.T): -1187 for i in range(Ntrunc): -1188 for j in range(Ntrunc): -1189 tmpmat[i][j] = evecs[i].T @ self[t] @ evecs[j] -1190 rmat.append(np.copy(tmpmat)) -1191 -1192 newcontent = [None if (self.content[t] is None) else rmat[t] for t in range(self.T)] -1193 return Corr(newcontent) +1139 return self._apply_func_to_corr(return_imag) +1140 +1141 def prune(self, Ntrunc, tproj=3, t0proj=2, basematrix=None): +1142 r''' Project large correlation matrix to lowest states +1143 +1144 This method can be used to reduce the size of an (N x N) correlation matrix +1145 to (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise +1146 is still small. +1147 +1148 Parameters +1149 ---------- +1150 Ntrunc: int +1151 Rank of the target matrix. +1152 tproj: int +1153 Time where the eigenvectors are evaluated, corresponds to ts in the GEVP method. +1154 The default value is 3. +1155 t0proj: int +1156 Time where the correlation matrix is inverted. Choosing t0proj=1 is strongly +1157 discouraged for O(a) improved theories, since the correctness of the procedure +1158 cannot be granted in this case. The default value is 2. +1159 basematrix : Corr +1160 Correlation matrix that is used to determine the eigenvectors of the +1161 lowest states based on a GEVP. basematrix is taken to be the Corr itself if +1162 is is not specified. +1163 +1164 Notes +1165 ----- +1166 We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving +1167 the GEVP $$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \equiv t_\mathrm{proj}$ +1168 and $t_0 \equiv t_{0, \mathrm{proj}}$. The target matrix is projected onto the subspace of the +1169 resulting eigenvectors $v_n, n=1,\dots,N_\mathrm{trunc}$ via +1170 $$G^\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large +1171 correlation matrix and to remove some noise that is added by irrelevant operators. +1172 This may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated +1173 bound $t_0 \leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$. +1174 ''' +1175 +1176 if self.N == 1: +1177 raise Exception('Method cannot be applied to one-dimensional correlators.') +1178 if basematrix is None: +1179 basematrix = self +1180 if Ntrunc >= basematrix.N: +1181 raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N)) +1182 if basematrix.N != self.N: +1183 raise Exception('basematrix and targetmatrix have to be of the same size.') +1184 +1185 evecs = basematrix.GEVP(t0proj, tproj, sort=None)[:Ntrunc] +1186 +1187 tmpmat = np.empty((Ntrunc, Ntrunc), dtype=object) +1188 rmat = [] +1189 for t in range(basematrix.T): +1190 for i in range(Ntrunc): +1191 for j in range(Ntrunc): +1192 tmpmat[i][j] = evecs[i].T @ self[t] @ evecs[j] +1193 rmat.append(np.copy(tmpmat)) +1194 +1195 newcontent = [None if (self.content[t] is None) else rmat[t] for t in range(self.T)] +1196 return Corr(newcontent) @@ -3036,100 +3044,127 @@ timeslice and the error on each timeslice.

def - GEVP(self, t0, ts=None, state=0, sorted_list='Eigenvalue') + GEVP(self, t0, ts=None, sort='Eigenvalue', **kwargs)
-
245    def GEVP(self, t0, ts=None, state=0, sorted_list="Eigenvalue"):
-246        """Solve the general eigenvalue problem on the current correlator
+            
245    def GEVP(self, t0, ts=None, sort="Eigenvalue", **kwargs):
+246        r'''Solve the generalized eigenvalue problem on the correlator matrix and returns the corresponding eigenvectors.
 247
-248        Parameters
-249        ----------
-250        t0 : int
-251            The time t0 for G(t)v= lambda G(t_0)v
-252        ts : int
-253            fixed time G(t_s)v= lambda G(t_0)v  if return_list=False
-254            If return_list=True and sorting=Eigenvector it gives a reference point for the sorting method.
-255        state : int
-256            The state one is interested in, ordered by energy. The lowest state is zero.
-257        sorted_list : string
-258            if this argument is set, a list of vectors (len=self.T) is returned. If it is left as None, only one vector is returned.
-259             "Eigenvalue"  -  The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice.
-260             "Eigenvector" -  Use the method described in arXiv:2004.10472 [hep-lat] to find the set of v(t) belonging to the state.
-261                              The reference state is identified by its eigenvalue at t=ts
-262        """
-263
-264        if self.N == 1:
-265            raise Exception("GEVP methods only works on correlator matrices and not single correlators.")
-266
-267        symmetric_corr = self.matrix_symmetric()
-268        if sorted_list is None:
-269            if (ts is None):
-270                raise Exception("ts is required if sorted_list=None.")
-271            if (ts <= t0):
-272                raise Exception("ts has to be larger than t0.")
-273            if (self.content[t0] is None) or (self.content[ts] is None):
-274                raise Exception("Corr not defined at t0/ts.")
-275            G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double")
-276            for i in range(self.N):
-277                for j in range(self.N):
-278                    G0[i, j] = symmetric_corr[t0][i, j].value
-279                    Gt[i, j] = symmetric_corr[ts][i, j].value
-280
-281            sp_vecs = _GEVP_solver(Gt, G0)
-282            sp_vec = sp_vecs[state]
-283            return sp_vec
-284        elif sorted_list in ["Eigenvalue", "Eigenvector"]:
-285            if sorted_list == "Eigenvalue" and ts is not None:
-286                warnings.warn("ts has no effect when sorting by eigenvalue is chosen.", RuntimeWarning)
-287            all_vecs = [None] * (t0 + 1)
-288            for t in range(t0 + 1, self.T):
-289                try:
-290                    G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double")
-291                    for i in range(self.N):
-292                        for j in range(self.N):
-293                            G0[i, j] = symmetric_corr[t0][i, j].value
-294                            Gt[i, j] = symmetric_corr[t][i, j].value
+248        The eigenvectors are sorted according to the descending eigenvalues, the zeroth eigenvector(s) correspond to the
+249        largest eigenvalue(s). The eigenvector(s) for the individual states can be accessed via slicing
+250        ```python
+251        C.GEVP(t0=2)[0]  # Ground state vector(s)
+252        C.GEVP(t0=2)[:3]  # Vectors for the lowest three states
+253        ```
+254
+255        Parameters
+256        ----------
+257        t0 : int
+258            The time t0 for the right hand side of the GEVP according to $G(t)v_i=\lambda_i G(t_0)v_i$
+259        ts : int
+260            fixed time $G(t_s)v_i=\lambda_i G(t_0)v_i$ if sort=None.
+261            If sort="Eigenvector" it gives a reference point for the sorting method.
+262        sort : string
+263            If this argument is set, a list of self.T vectors per state is returned. If it is set to None, only one vector is returned.
+264            - "Eigenvalue": The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice.
+265            - "Eigenvector": Use the method described in arXiv:2004.10472 to find the set of v(t) belonging to the state.
+266              The reference state is identified by its eigenvalue at $t=t_s$.
+267
+268        Other Parameters
+269        ----------------
+270        state : int
+271           Returns only the vector(s) for a specified state. The lowest state is zero.
+272        '''
+273
+274        if self.N == 1:
+275            raise Exception("GEVP methods only works on correlator matrices and not single correlators.")
+276        if ts is not None:
+277            if (ts <= t0):
+278                raise Exception("ts has to be larger than t0.")
+279
+280        if "sorted_list" in kwargs:
+281            warnings.warn("Argument 'sorted_list' is deprecated, use 'sort' instead.", DeprecationWarning)
+282            sort = kwargs.get("sorted_list")
+283
+284        symmetric_corr = self.matrix_symmetric()
+285        if sort is None:
+286            if (ts is None):
+287                raise Exception("ts is required if sort=None.")
+288            if (self.content[t0] is None) or (self.content[ts] is None):
+289                raise Exception("Corr not defined at t0/ts.")
+290            G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double")
+291            for i in range(self.N):
+292                for j in range(self.N):
+293                    G0[i, j] = symmetric_corr[t0][i, j].value
+294                    Gt[i, j] = symmetric_corr[ts][i, j].value
 295
-296                    sp_vecs = _GEVP_solver(Gt, G0)
-297                    if sorted_list == "Eigenvalue":
-298                        sp_vec = sp_vecs[state]
-299                        all_vecs.append(sp_vec)
-300                    else:
-301                        all_vecs.append(sp_vecs)
-302                except Exception:
-303                    all_vecs.append(None)
-304            if sorted_list == "Eigenvector":
-305                if (ts is None):
-306                    raise Exception("ts is required for the Eigenvector sorting method.")
-307                all_vecs = _sort_vectors(all_vecs, ts)
-308                all_vecs = [a[state] if a is not None else None for a in all_vecs]
-309        else:
-310            raise Exception("Unkown value for 'sorted_list'.")
-311
-312        return all_vecs
+296            reordered_vecs = _GEVP_solver(Gt, G0)
+297
+298        elif sort in ["Eigenvalue", "Eigenvector"]:
+299            if sort == "Eigenvalue" and ts is not None:
+300                warnings.warn("ts has no effect when sorting by eigenvalue is chosen.", RuntimeWarning)
+301            all_vecs = [None] * (t0 + 1)
+302            for t in range(t0 + 1, self.T):
+303                try:
+304                    G0, Gt = np.empty([self.N, self.N], dtype="double"), np.empty([self.N, self.N], dtype="double")
+305                    for i in range(self.N):
+306                        for j in range(self.N):
+307                            G0[i, j] = symmetric_corr[t0][i, j].value
+308                            Gt[i, j] = symmetric_corr[t][i, j].value
+309
+310                    all_vecs.append(_GEVP_solver(Gt, G0))
+311                except Exception:
+312                    all_vecs.append(None)
+313            if sort == "Eigenvector":
+314                if (ts is None):
+315                    raise Exception("ts is required for the Eigenvector sorting method.")
+316                all_vecs = _sort_vectors(all_vecs, ts)
+317
+318            reordered_vecs = [[v[s] if v is not None else None for v in all_vecs] for s in range(self.N)]
+319        else:
+320            raise Exception("Unkown value for 'sort'.")
+321
+322        if "state" in kwargs:
+323            return reordered_vecs[kwargs.get("state")]
+324        else:
+325            return reordered_vecs
 
-

Solve the general eigenvalue problem on the current correlator

+

Solve the generalized eigenvalue problem on the correlator matrix and returns the corresponding eigenvectors.

+ +

The eigenvectors are sorted according to the descending eigenvalues, the zeroth eigenvector(s) correspond to the +largest eigenvalue(s). The eigenvector(s) for the individual states can be accessed via slicing

+ +
C.GEVP(t0=2)[0]  # Ground state vector(s)
+C.GEVP(t0=2)[:3]  # Vectors for the lowest three states
+
Parameters
  • t0 (int): -The time t0 for G(t)v= lambda G(t_0)v
  • +The time t0 for the right hand side of the GEVP according to $G(t)v_i=\lambda_i G(t_0)v_i$
  • ts (int): -fixed time G(t_s)v= lambda G(t_0)v if return_list=False -If return_list=True and sorting=Eigenvector it gives a reference point for the sorting method.
  • +fixed time $G(t_s)v_i=\lambda_i G(t_0)v_i$ if sort=None. +If sort="Eigenvector" it gives a reference point for the sorting method. +
  • sort (string): +If this argument is set, a list of self.T vectors per state is returned. If it is set to None, only one vector is returned. +
      +
    • "Eigenvalue": The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice.
    • +
    • "Eigenvector": Use the method described in arXiv:2004.10472 to find the set of v(t) belonging to the state. +The reference state is identified by its eigenvalue at $t=t_s$.
    • +
  • +
+ +
Other Parameters
+ +
  • state (int): -The state one is interested in, ordered by energy. The lowest state is zero.
  • -
  • sorted_list (string): -if this argument is set, a list of vectors (len=self.T) is returned. If it is left as None, only one vector is returned. -"Eigenvalue" - The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice. -"Eigenvector" - Use the method described in arXiv:2004.10472 [hep-lat] to find the set of v(t) belonging to the state. - The reference state is identified by its eigenvalue at t=ts
  • +Returns only the vector(s) for a specified state. The lowest state is zero.
@@ -3140,32 +3175,24 @@ if this argument is set, a list of vectors (len=self.T) is returned. If it is le
def - Eigenvalue(self, t0, ts=None, state=0, sorted_list=None) + Eigenvalue(self, t0, ts=None, state=0, sort='Eigenvalue')
-
314    def Eigenvalue(self, t0, ts=None, state=0, sorted_list=None):
-315        """Determines the eigenvalue of the GEVP by solving and projecting the correlator
-316
-317        Parameters
-318        ----------
-319        t0 : int
-320            The time t0 for G(t)v= lambda G(t_0)v
-321        ts : int
-322            fixed time G(t_s)v= lambda G(t_0)v  if return_list=False
-323            If return_list=True and sorting=Eigenvector it gives a reference point for the sorting method.
-324        state : int
-325            The state one is interested in ordered by energy. The lowest state is zero.
-326        sorted_list : string
-327            if this argument is set, a list of vectors (len=self.T) is returned. If it is left as None, only one vector is returned.
-328             "Eigenvalue"  -  The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice.
-329             "Eigenvector" -  Use the method described in arXiv:2004.10472 [hep-lat] to find the set of v(t) belonging to the state.
-330                              The reference state is identified by its eigenvalue at t=ts
-331        """
-332        vec = self.GEVP(t0, ts=ts, state=state, sorted_list=sorted_list)
-333        return self.projected(vec)
+            
327    def Eigenvalue(self, t0, ts=None, state=0, sort="Eigenvalue"):
+328        """Determines the eigenvalue of the GEVP by solving and projecting the correlator
+329
+330        Parameters
+331        ----------
+332        state : int
+333            The state one is interested in ordered by energy. The lowest state is zero.
+334
+335        All other parameters are identical to the ones of Corr.GEVP.
+336        """
+337        vec = self.GEVP(t0, ts=ts, sort=sort)[state]
+338        return self.projected(vec)
 
@@ -3174,18 +3201,9 @@ if this argument is set, a list of vectors (len=self.T) is returned. If it is le
Parameters
    -
  • t0 (int): -The time t0 for G(t)v= lambda G(t_0)v
  • -
  • ts (int): -fixed time G(t_s)v= lambda G(t_0)v if return_list=False -If return_list=True and sorting=Eigenvector it gives a reference point for the sorting method.
  • state (int): The state one is interested in ordered by energy. The lowest state is zero.
  • -
  • sorted_list (string): -if this argument is set, a list of vectors (len=self.T) is returned. If it is left as None, only one vector is returned. -"Eigenvalue" - The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice. -"Eigenvector" - Use the method described in arXiv:2004.10472 [hep-lat] to find the set of v(t) belonging to the state. - The reference state is identified by its eigenvalue at t=ts
  • +
  • All other parameters are identical to the ones of Corr.GEVP.
@@ -3202,46 +3220,46 @@ if this argument is set, a list of vectors (len=self.T) is returned. If it is le
-
335    def Hankel(self, N, periodic=False):
-336        """Constructs an NxN Hankel matrix
-337
-338        C(t) c(t+1) ... c(t+n-1)
-339        C(t+1) c(t+2) ... c(t+n)
-340        .................
-341        C(t+(n-1)) c(t+n) ... c(t+2(n-1))
+            
340    def Hankel(self, N, periodic=False):
+341        """Constructs an NxN Hankel matrix
 342
-343        Parameters
-344        ----------
-345        N : int
-346            Dimension of the Hankel matrix
-347        periodic : bool, optional
-348            determines whether the matrix is extended periodically
-349        """
-350
-351        if self.N != 1:
-352            raise Exception("Multi-operator Prony not implemented!")
-353
-354        array = np.empty([N, N], dtype="object")
-355        new_content = []
-356        for t in range(self.T):
-357            new_content.append(array.copy())
+343        C(t) c(t+1) ... c(t+n-1)
+344        C(t+1) c(t+2) ... c(t+n)
+345        .................
+346        C(t+(n-1)) c(t+n) ... c(t+2(n-1))
+347
+348        Parameters
+349        ----------
+350        N : int
+351            Dimension of the Hankel matrix
+352        periodic : bool, optional
+353            determines whether the matrix is extended periodically
+354        """
+355
+356        if self.N != 1:
+357            raise Exception("Multi-operator Prony not implemented!")
 358
-359        def wrap(i):
-360            while i >= self.T:
-361                i -= self.T
-362            return i
+359        array = np.empty([N, N], dtype="object")
+360        new_content = []
+361        for t in range(self.T):
+362            new_content.append(array.copy())
 363
-364        for t in range(self.T):
-365            for i in range(N):
-366                for j in range(N):
-367                    if periodic:
-368                        new_content[t][i, j] = self.content[wrap(t + i + j)][0]
-369                    elif (t + i + j) >= self.T:
-370                        new_content[t] = None
-371                    else:
-372                        new_content[t][i, j] = self.content[t + i + j][0]
-373
-374        return Corr(new_content)
+364        def wrap(i):
+365            while i >= self.T:
+366                i -= self.T
+367            return i
+368
+369        for t in range(self.T):
+370            for i in range(N):
+371                for j in range(N):
+372                    if periodic:
+373                        new_content[t][i, j] = self.content[wrap(t + i + j)][0]
+374                    elif (t + i + j) >= self.T:
+375                        new_content[t] = None
+376                    else:
+377                        new_content[t][i, j] = self.content[t + i + j][0]
+378
+379        return Corr(new_content)
 
@@ -3275,15 +3293,15 @@ determines whether the matrix is extended periodically
-
376    def roll(self, dt):
-377        """Periodically shift the correlator by dt timeslices
-378
-379        Parameters
-380        ----------
-381        dt : int
-382            number of timeslices
-383        """
-384        return Corr(list(np.roll(np.array(self.content, dtype=object), dt)))
+            
381    def roll(self, dt):
+382        """Periodically shift the correlator by dt timeslices
+383
+384        Parameters
+385        ----------
+386        dt : int
+387            number of timeslices
+388        """
+389        return Corr(list(np.roll(np.array(self.content, dtype=object), dt)))
 
@@ -3310,9 +3328,9 @@ number of timeslices
-
386    def reverse(self):
-387        """Reverse the time ordering of the Corr"""
-388        return Corr(self.content[:: -1])
+            
391    def reverse(self):
+392        """Reverse the time ordering of the Corr"""
+393        return Corr(self.content[:: -1])
 
@@ -3332,23 +3350,23 @@ number of timeslices
-
390    def thin(self, spacing=2, offset=0):
-391        """Thin out a correlator to suppress correlations
-392
-393        Parameters
-394        ----------
-395        spacing : int
-396            Keep only every 'spacing'th entry of the correlator
-397        offset : int
-398            Offset the equal spacing
-399        """
-400        new_content = []
-401        for t in range(self.T):
-402            if (offset + t) % spacing != 0:
-403                new_content.append(None)
-404            else:
-405                new_content.append(self.content[t])
-406        return Corr(new_content)
+            
395    def thin(self, spacing=2, offset=0):
+396        """Thin out a correlator to suppress correlations
+397
+398        Parameters
+399        ----------
+400        spacing : int
+401            Keep only every 'spacing'th entry of the correlator
+402        offset : int
+403            Offset the equal spacing
+404        """
+405        new_content = []
+406        for t in range(self.T):
+407            if (offset + t) % spacing != 0:
+408                new_content.append(None)
+409            else:
+410                new_content.append(self.content[t])
+411        return Corr(new_content)
 
@@ -3377,32 +3395,32 @@ Offset the equal spacing
-
408    def correlate(self, partner):
-409        """Correlate the correlator with another correlator or Obs
-410
-411        Parameters
-412        ----------
-413        partner : Obs or Corr
-414            partner to correlate the correlator with.
-415            Can either be an Obs which is correlated with all entries of the
-416            correlator or a Corr of same length.
-417        """
-418        new_content = []
-419        for x0, t_slice in enumerate(self.content):
-420            if t_slice is None:
-421                new_content.append(None)
-422            else:
-423                if isinstance(partner, Corr):
-424                    if partner.content[x0] is None:
-425                        new_content.append(None)
-426                    else:
-427                        new_content.append(np.array([correlate(o, partner.content[x0][0]) for o in t_slice]))
-428                elif isinstance(partner, Obs):  # Should this include CObs?
-429                    new_content.append(np.array([correlate(o, partner) for o in t_slice]))
-430                else:
-431                    raise Exception("Can only correlate with an Obs or a Corr.")
-432
-433        return Corr(new_content)
+            
413    def correlate(self, partner):
+414        """Correlate the correlator with another correlator or Obs
+415
+416        Parameters
+417        ----------
+418        partner : Obs or Corr
+419            partner to correlate the correlator with.
+420            Can either be an Obs which is correlated with all entries of the
+421            correlator or a Corr of same length.
+422        """
+423        new_content = []
+424        for x0, t_slice in enumerate(self.content):
+425            if t_slice is None:
+426                new_content.append(None)
+427            else:
+428                if isinstance(partner, Corr):
+429                    if partner.content[x0] is None:
+430                        new_content.append(None)
+431                    else:
+432                        new_content.append(np.array([correlate(o, partner.content[x0][0]) for o in t_slice]))
+433                elif isinstance(partner, Obs):  # Should this include CObs?
+434                    new_content.append(np.array([correlate(o, partner) for o in t_slice]))
+435                else:
+436                    raise Exception("Can only correlate with an Obs or a Corr.")
+437
+438        return Corr(new_content)
 
@@ -3431,26 +3449,26 @@ correlator or a Corr of same length.
-
435    def reweight(self, weight, **kwargs):
-436        """Reweight the correlator.
-437
-438        Parameters
-439        ----------
-440        weight : Obs
-441            Reweighting factor. An Observable that has to be defined on a superset of the
-442            configurations in obs[i].idl for all i.
-443        all_configs : bool
-444            if True, the reweighted observables are normalized by the average of
-445            the reweighting factor on all configurations in weight.idl and not
-446            on the configurations in obs[i].idl.
-447        """
-448        new_content = []
-449        for t_slice in self.content:
-450            if t_slice is None:
-451                new_content.append(None)
-452            else:
-453                new_content.append(np.array(reweight(weight, t_slice, **kwargs)))
-454        return Corr(new_content)
+            
440    def reweight(self, weight, **kwargs):
+441        """Reweight the correlator.
+442
+443        Parameters
+444        ----------
+445        weight : Obs
+446            Reweighting factor. An Observable that has to be defined on a superset of the
+447            configurations in obs[i].idl for all i.
+448        all_configs : bool
+449            if True, the reweighted observables are normalized by the average of
+450            the reweighting factor on all configurations in weight.idl and not
+451            on the configurations in obs[i].idl.
+452        """
+453        new_content = []
+454        for t_slice in self.content:
+455            if t_slice is None:
+456                new_content.append(None)
+457            else:
+458                new_content.append(np.array(reweight(weight, t_slice, **kwargs)))
+459        return Corr(new_content)
 
@@ -3482,33 +3500,33 @@ on the configurations in obs[i].idl.
-
456    def T_symmetry(self, partner, parity=+1):
-457        """Return the time symmetry average of the correlator and its partner
-458
-459        Parameters
-460        ----------
-461        partner : Corr
-462            Time symmetry partner of the Corr
-463        partity : int
-464            Parity quantum number of the correlator, can be +1 or -1
-465        """
-466        if not isinstance(partner, Corr):
-467            raise Exception("T partner has to be a Corr object.")
-468        if parity not in [+1, -1]:
-469            raise Exception("Parity has to be +1 or -1.")
-470        T_partner = parity * partner.reverse()
-471
-472        t_slices = []
-473        test = (self - T_partner)
-474        test.gamma_method()
-475        for x0, t_slice in enumerate(test.content):
-476            if t_slice is not None:
-477                if not t_slice[0].is_zero_within_error(5):
-478                    t_slices.append(x0)
-479        if t_slices:
-480            warnings.warn("T symmetry partners do not agree within 5 sigma on time slices " + str(t_slices) + ".", RuntimeWarning)
-481
-482        return (self + T_partner) / 2
+            
461    def T_symmetry(self, partner, parity=+1):
+462        """Return the time symmetry average of the correlator and its partner
+463
+464        Parameters
+465        ----------
+466        partner : Corr
+467            Time symmetry partner of the Corr
+468        partity : int
+469            Parity quantum number of the correlator, can be +1 or -1
+470        """
+471        if not isinstance(partner, Corr):
+472            raise Exception("T partner has to be a Corr object.")
+473        if parity not in [+1, -1]:
+474            raise Exception("Parity has to be +1 or -1.")
+475        T_partner = parity * partner.reverse()
+476
+477        t_slices = []
+478        test = (self - T_partner)
+479        test.gamma_method()
+480        for x0, t_slice in enumerate(test.content):
+481            if t_slice is not None:
+482                if not t_slice[0].is_zero_within_error(5):
+483                    t_slices.append(x0)
+484        if t_slices:
+485            warnings.warn("T symmetry partners do not agree within 5 sigma on time slices " + str(t_slices) + ".", RuntimeWarning)
+486
+487        return (self + T_partner) / 2
 
@@ -3537,57 +3555,57 @@ Parity quantum number of the correlator, can be +1 or -1
-
484    def deriv(self, variant="symmetric"):
-485        """Return the first derivative of the correlator with respect to x0.
-486
-487        Parameters
-488        ----------
-489        variant : str
-490            decides which definition of the finite differences derivative is used.
-491            Available choice: symmetric, forward, backward, improved, default: symmetric
-492        """
-493        if variant == "symmetric":
-494            newcontent = []
-495            for t in range(1, self.T - 1):
-496                if (self.content[t - 1] is None) or (self.content[t + 1] is None):
-497                    newcontent.append(None)
-498                else:
-499                    newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1]))
-500            if(all([x is None for x in newcontent])):
-501                raise Exception('Derivative is undefined at all timeslices')
-502            return Corr(newcontent, padding=[1, 1])
-503        elif variant == "forward":
-504            newcontent = []
-505            for t in range(self.T - 1):
-506                if (self.content[t] is None) or (self.content[t + 1] is None):
-507                    newcontent.append(None)
-508                else:
-509                    newcontent.append(self.content[t + 1] - self.content[t])
-510            if(all([x is None for x in newcontent])):
-511                raise Exception("Derivative is undefined at all timeslices")
-512            return Corr(newcontent, padding=[0, 1])
-513        elif variant == "backward":
-514            newcontent = []
-515            for t in range(1, self.T):
-516                if (self.content[t - 1] is None) or (self.content[t] is None):
-517                    newcontent.append(None)
-518                else:
-519                    newcontent.append(self.content[t] - self.content[t - 1])
-520            if(all([x is None for x in newcontent])):
-521                raise Exception("Derivative is undefined at all timeslices")
-522            return Corr(newcontent, padding=[1, 0])
-523        elif variant == "improved":
-524            newcontent = []
-525            for t in range(2, self.T - 2):
-526                if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None):
-527                    newcontent.append(None)
-528                else:
-529                    newcontent.append((1 / 12) * (self.content[t - 2] - 8 * self.content[t - 1] + 8 * self.content[t + 1] - self.content[t + 2]))
-530            if(all([x is None for x in newcontent])):
-531                raise Exception('Derivative is undefined at all timeslices')
-532            return Corr(newcontent, padding=[2, 2])
-533        else:
-534            raise Exception("Unknown variant.")
+            
489    def deriv(self, variant="symmetric"):
+490        """Return the first derivative of the correlator with respect to x0.
+491
+492        Parameters
+493        ----------
+494        variant : str
+495            decides which definition of the finite differences derivative is used.
+496            Available choice: symmetric, forward, backward, improved, default: symmetric
+497        """
+498        if variant == "symmetric":
+499            newcontent = []
+500            for t in range(1, self.T - 1):
+501                if (self.content[t - 1] is None) or (self.content[t + 1] is None):
+502                    newcontent.append(None)
+503                else:
+504                    newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1]))
+505            if(all([x is None for x in newcontent])):
+506                raise Exception('Derivative is undefined at all timeslices')
+507            return Corr(newcontent, padding=[1, 1])
+508        elif variant == "forward":
+509            newcontent = []
+510            for t in range(self.T - 1):
+511                if (self.content[t] is None) or (self.content[t + 1] is None):
+512                    newcontent.append(None)
+513                else:
+514                    newcontent.append(self.content[t + 1] - self.content[t])
+515            if(all([x is None for x in newcontent])):
+516                raise Exception("Derivative is undefined at all timeslices")
+517            return Corr(newcontent, padding=[0, 1])
+518        elif variant == "backward":
+519            newcontent = []
+520            for t in range(1, self.T):
+521                if (self.content[t - 1] is None) or (self.content[t] is None):
+522                    newcontent.append(None)
+523                else:
+524                    newcontent.append(self.content[t] - self.content[t - 1])
+525            if(all([x is None for x in newcontent])):
+526                raise Exception("Derivative is undefined at all timeslices")
+527            return Corr(newcontent, padding=[1, 0])
+528        elif variant == "improved":
+529            newcontent = []
+530            for t in range(2, self.T - 2):
+531                if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None):
+532                    newcontent.append(None)
+533                else:
+534                    newcontent.append((1 / 12) * (self.content[t - 2] - 8 * self.content[t - 1] + 8 * self.content[t + 1] - self.content[t + 2]))
+535            if(all([x is None for x in newcontent])):
+536                raise Exception('Derivative is undefined at all timeslices')
+537            return Corr(newcontent, padding=[2, 2])
+538        else:
+539            raise Exception("Unknown variant.")
 
@@ -3615,37 +3633,37 @@ Available choice: symmetric, forward, backward, improved, default: symmetric -
536    def second_deriv(self, variant="symmetric"):
-537        """Return the second derivative of the correlator with respect to x0.
-538
-539        Parameters
-540        ----------
-541        variant : str
-542            decides which definition of the finite differences derivative is used.
-543            Available choice: symmetric, improved, default: symmetric
-544        """
-545        if variant == "symmetric":
-546            newcontent = []
-547            for t in range(1, self.T - 1):
-548                if (self.content[t - 1] is None) or (self.content[t + 1] is None):
-549                    newcontent.append(None)
-550                else:
-551                    newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1]))
-552            if(all([x is None for x in newcontent])):
-553                raise Exception("Derivative is undefined at all timeslices")
-554            return Corr(newcontent, padding=[1, 1])
-555        elif variant == "improved":
-556            newcontent = []
-557            for t in range(2, self.T - 2):
-558                if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None):
-559                    newcontent.append(None)
-560                else:
-561                    newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2]))
-562            if(all([x is None for x in newcontent])):
-563                raise Exception("Derivative is undefined at all timeslices")
-564            return Corr(newcontent, padding=[2, 2])
-565        else:
-566            raise Exception("Unknown variant.")
+            
541    def second_deriv(self, variant="symmetric"):
+542        """Return the second derivative of the correlator with respect to x0.
+543
+544        Parameters
+545        ----------
+546        variant : str
+547            decides which definition of the finite differences derivative is used.
+548            Available choice: symmetric, improved, default: symmetric
+549        """
+550        if variant == "symmetric":
+551            newcontent = []
+552            for t in range(1, self.T - 1):
+553                if (self.content[t - 1] is None) or (self.content[t + 1] is None):
+554                    newcontent.append(None)
+555                else:
+556                    newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1]))
+557            if(all([x is None for x in newcontent])):
+558                raise Exception("Derivative is undefined at all timeslices")
+559            return Corr(newcontent, padding=[1, 1])
+560        elif variant == "improved":
+561            newcontent = []
+562            for t in range(2, self.T - 2):
+563                if (self.content[t - 2] is None) or (self.content[t - 1] is None) or (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t + 2] is None):
+564                    newcontent.append(None)
+565                else:
+566                    newcontent.append((1 / 12) * (-self.content[t + 2] + 16 * self.content[t + 1] - 30 * self.content[t] + 16 * self.content[t - 1] - self.content[t - 2]))
+567            if(all([x is None for x in newcontent])):
+568                raise Exception("Derivative is undefined at all timeslices")
+569            return Corr(newcontent, padding=[2, 2])
+570        else:
+571            raise Exception("Unknown variant.")
 
@@ -3673,70 +3691,70 @@ Available choice: symmetric, improved, default: symmetric
-
568    def m_eff(self, variant='log', guess=1.0):
-569        """Returns the effective mass of the correlator as correlator object
-570
-571        Parameters
-572        ----------
-573        variant : str
-574            log : uses the standard effective mass log(C(t) / C(t+1))
-575            cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.
-576            sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.
-577            See, e.g., arXiv:1205.5380
-578            arccosh : Uses the explicit form of the symmetrized correlator (not recommended)
-579        guess : float
-580            guess for the root finder, only relevant for the root variant
-581        """
-582        if self.N != 1:
-583            raise Exception('Correlator must be projected before getting m_eff')
-584        if variant == 'log':
-585            newcontent = []
-586            for t in range(self.T - 1):
-587                if (self.content[t] is None) or (self.content[t + 1] is None):
-588                    newcontent.append(None)
-589                else:
-590                    newcontent.append(self.content[t] / self.content[t + 1])
-591            if(all([x is None for x in newcontent])):
-592                raise Exception('m_eff is undefined at all timeslices')
-593
-594            return np.log(Corr(newcontent, padding=[0, 1]))
-595
-596        elif variant in ['periodic', 'cosh', 'sinh']:
-597            if variant in ['periodic', 'cosh']:
-598                func = anp.cosh
-599            else:
-600                func = anp.sinh
-601
-602            def root_function(x, d):
-603                return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d
-604
-605            newcontent = []
-606            for t in range(self.T - 1):
-607                if (self.content[t] is None) or (self.content[t + 1] is None):
-608                    newcontent.append(None)
-609                # Fill the two timeslices in the middle of the lattice with their predecessors
-610                elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]:
-611                    newcontent.append(newcontent[-1])
-612                else:
-613                    newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess)))
-614            if(all([x is None for x in newcontent])):
-615                raise Exception('m_eff is undefined at all timeslices')
-616
-617            return Corr(newcontent, padding=[0, 1])
-618
-619        elif variant == 'arccosh':
-620            newcontent = []
-621            for t in range(1, self.T - 1):
-622                if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None):
-623                    newcontent.append(None)
-624                else:
-625                    newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t]))
-626            if(all([x is None for x in newcontent])):
-627                raise Exception("m_eff is undefined at all timeslices")
-628            return np.arccosh(Corr(newcontent, padding=[1, 1]))
-629
-630        else:
-631            raise Exception('Unknown variant.')
+            
573    def m_eff(self, variant='log', guess=1.0):
+574        """Returns the effective mass of the correlator as correlator object
+575
+576        Parameters
+577        ----------
+578        variant : str
+579            log : uses the standard effective mass log(C(t) / C(t+1))
+580            cosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.
+581            sinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.
+582            See, e.g., arXiv:1205.5380
+583            arccosh : Uses the explicit form of the symmetrized correlator (not recommended)
+584        guess : float
+585            guess for the root finder, only relevant for the root variant
+586        """
+587        if self.N != 1:
+588            raise Exception('Correlator must be projected before getting m_eff')
+589        if variant == 'log':
+590            newcontent = []
+591            for t in range(self.T - 1):
+592                if (self.content[t] is None) or (self.content[t + 1] is None):
+593                    newcontent.append(None)
+594                else:
+595                    newcontent.append(self.content[t] / self.content[t + 1])
+596            if(all([x is None for x in newcontent])):
+597                raise Exception('m_eff is undefined at all timeslices')
+598
+599            return np.log(Corr(newcontent, padding=[0, 1]))
+600
+601        elif variant in ['periodic', 'cosh', 'sinh']:
+602            if variant in ['periodic', 'cosh']:
+603                func = anp.cosh
+604            else:
+605                func = anp.sinh
+606
+607            def root_function(x, d):
+608                return func(x * (t - self.T / 2)) / func(x * (t + 1 - self.T / 2)) - d
+609
+610            newcontent = []
+611            for t in range(self.T - 1):
+612                if (self.content[t] is None) or (self.content[t + 1] is None):
+613                    newcontent.append(None)
+614                # Fill the two timeslices in the middle of the lattice with their predecessors
+615                elif variant == 'sinh' and t in [self.T / 2, self.T / 2 - 1]:
+616                    newcontent.append(newcontent[-1])
+617                else:
+618                    newcontent.append(np.abs(find_root(self.content[t][0] / self.content[t + 1][0], root_function, guess=guess)))
+619            if(all([x is None for x in newcontent])):
+620                raise Exception('m_eff is undefined at all timeslices')
+621
+622            return Corr(newcontent, padding=[0, 1])
+623
+624        elif variant == 'arccosh':
+625            newcontent = []
+626            for t in range(1, self.T - 1):
+627                if (self.content[t] is None) or (self.content[t + 1] is None) or (self.content[t - 1] is None):
+628                    newcontent.append(None)
+629                else:
+630                    newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t]))
+631            if(all([x is None for x in newcontent])):
+632                raise Exception("m_eff is undefined at all timeslices")
+633            return np.arccosh(Corr(newcontent, padding=[1, 1]))
+634
+635        else:
+636            raise Exception('Unknown variant.')
 
@@ -3769,39 +3787,39 @@ guess for the root finder, only relevant for the root variant
-
633    def fit(self, function, fitrange=None, silent=False, **kwargs):
-634        r'''Fits function to the data
-635
-636        Parameters
-637        ----------
-638        function : obj
-639            function to fit to the data. See fits.least_squares for details.
-640        fitrange : list
-641            Two element list containing the timeslices on which the fit is supposed to start and stop.
-642            Caution: This range is inclusive as opposed to standard python indexing.
-643            `fitrange=[4, 6]` corresponds to the three entries 4, 5 and 6.
-644            If not specified, self.prange or all timeslices are used.
-645        silent : bool
-646            Decides whether output is printed to the standard output.
-647        '''
-648        if self.N != 1:
-649            raise Exception("Correlator must be projected before fitting")
-650
-651        if fitrange is None:
-652            if self.prange:
-653                fitrange = self.prange
-654            else:
-655                fitrange = [0, self.T - 1]
-656        else:
-657            if not isinstance(fitrange, list):
-658                raise Exception("fitrange has to be a list with two elements")
-659            if len(fitrange) != 2:
-660                raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]")
-661
-662        xs = [x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
-663        ys = [self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
-664        result = least_squares(xs, ys, function, silent=silent, **kwargs)
-665        return result
+            
638    def fit(self, function, fitrange=None, silent=False, **kwargs):
+639        r'''Fits function to the data
+640
+641        Parameters
+642        ----------
+643        function : obj
+644            function to fit to the data. See fits.least_squares for details.
+645        fitrange : list
+646            Two element list containing the timeslices on which the fit is supposed to start and stop.
+647            Caution: This range is inclusive as opposed to standard python indexing.
+648            `fitrange=[4, 6]` corresponds to the three entries 4, 5 and 6.
+649            If not specified, self.prange or all timeslices are used.
+650        silent : bool
+651            Decides whether output is printed to the standard output.
+652        '''
+653        if self.N != 1:
+654            raise Exception("Correlator must be projected before fitting")
+655
+656        if fitrange is None:
+657            if self.prange:
+658                fitrange = self.prange
+659            else:
+660                fitrange = [0, self.T - 1]
+661        else:
+662            if not isinstance(fitrange, list):
+663                raise Exception("fitrange has to be a list with two elements")
+664            if len(fitrange) != 2:
+665                raise Exception("fitrange has to have exactly two elements [fit_start, fit_stop]")
+666
+667        xs = [x for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
+668        ys = [self.content[x][0] for x in range(fitrange[0], fitrange[1] + 1) if not self.content[x] is None]
+669        result = least_squares(xs, ys, function, silent=silent, **kwargs)
+670        return result
 
@@ -3835,42 +3853,42 @@ Decides whether output is printed to the standard output.
-
667    def plateau(self, plateau_range=None, method="fit", auto_gamma=False):
-668        """ Extract a plateau value from a Corr object
-669
-670        Parameters
-671        ----------
-672        plateau_range : list
-673            list with two entries, indicating the first and the last timeslice
-674            of the plateau region.
-675        method : str
-676            method to extract the plateau.
-677                'fit' fits a constant to the plateau region
-678                'avg', 'average' or 'mean' just average over the given timeslices.
-679        auto_gamma : bool
-680            apply gamma_method with default parameters to the Corr. Defaults to None
-681        """
-682        if not plateau_range:
-683            if self.prange:
-684                plateau_range = self.prange
-685            else:
-686                raise Exception("no plateau range provided")
-687        if self.N != 1:
-688            raise Exception("Correlator must be projected before getting a plateau.")
-689        if(all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])):
-690            raise Exception("plateau is undefined at all timeslices in plateaurange.")
-691        if auto_gamma:
-692            self.gamma_method()
-693        if method == "fit":
-694            def const_func(a, t):
-695                return a[0]
-696            return self.fit(const_func, plateau_range)[0]
-697        elif method in ["avg", "average", "mean"]:
-698            returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None])
-699            return returnvalue
-700
-701        else:
-702            raise Exception("Unsupported plateau method: " + method)
+            
672    def plateau(self, plateau_range=None, method="fit", auto_gamma=False):
+673        """ Extract a plateau value from a Corr object
+674
+675        Parameters
+676        ----------
+677        plateau_range : list
+678            list with two entries, indicating the first and the last timeslice
+679            of the plateau region.
+680        method : str
+681            method to extract the plateau.
+682                'fit' fits a constant to the plateau region
+683                'avg', 'average' or 'mean' just average over the given timeslices.
+684        auto_gamma : bool
+685            apply gamma_method with default parameters to the Corr. Defaults to None
+686        """
+687        if not plateau_range:
+688            if self.prange:
+689                plateau_range = self.prange
+690            else:
+691                raise Exception("no plateau range provided")
+692        if self.N != 1:
+693            raise Exception("Correlator must be projected before getting a plateau.")
+694        if(all([self.content[t] is None for t in range(plateau_range[0], plateau_range[1] + 1)])):
+695            raise Exception("plateau is undefined at all timeslices in plateaurange.")
+696        if auto_gamma:
+697            self.gamma_method()
+698        if method == "fit":
+699            def const_func(a, t):
+700                return a[0]
+701            return self.fit(const_func, plateau_range)[0]
+702        elif method in ["avg", "average", "mean"]:
+703            returnvalue = np.mean([item[0] for item in self.content[plateau_range[0]:plateau_range[1] + 1] if item is not None])
+704            return returnvalue
+705
+706        else:
+707            raise Exception("Unsupported plateau method: " + method)
 
@@ -3904,17 +3922,17 @@ apply gamma_method with default parameters to the Corr. Defaults to None
-
704    def set_prange(self, prange):
-705        """Sets the attribute prange of the Corr object."""
-706        if not len(prange) == 2:
-707            raise Exception("prange must be a list or array with two values")
-708        if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))):
-709            raise Exception("Start and end point must be integers")
-710        if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]):
-711            raise Exception("Start and end point must define a range in the interval 0,T")
-712
-713        self.prange = prange
-714        return
+            
709    def set_prange(self, prange):
+710        """Sets the attribute prange of the Corr object."""
+711        if not len(prange) == 2:
+712            raise Exception("prange must be a list or array with two values")
+713        if not ((isinstance(prange[0], int)) and (isinstance(prange[1], int))):
+714            raise Exception("Start and end point must be integers")
+715        if not (0 <= prange[0] <= self.T and 0 <= prange[1] <= self.T and prange[0] < prange[1]):
+716            raise Exception("Start and end point must define a range in the interval 0,T")
+717
+718        self.prange = prange
+719        return
 
@@ -3934,118 +3952,118 @@ apply gamma_method with default parameters to the Corr. Defaults to None
-
716    def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, ylabel=None, save=None, auto_gamma=False, hide_sigma=None, references=None):
-717        """Plots the correlator using the tag of the correlator as label if available.
-718
-719        Parameters
-720        ----------
-721        x_range : list
-722            list of two values, determining the range of the x-axis e.g. [4, 8]
-723        comp : Corr or list of Corr
-724            Correlator or list of correlators which are plotted for comparison.
-725            The tags of these correlators are used as labels if available.
-726        logscale : bool
-727            Sets y-axis to logscale
-728        plateau : Obs
-729            Plateau value to be visualized in the figure
-730        fit_res : Fit_result
-731            Fit_result object to be visualized
-732        ylabel : str
-733            Label for the y-axis
-734        save : str
-735            path to file in which the figure should be saved
-736        auto_gamma : bool
-737            Apply the gamma method with standard parameters to all correlators and plateau values before plotting.
-738        hide_sigma : float
-739            Hides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors.
-740        references : list
-741            List of floating point values that are displayed as horizontal lines for reference.
-742        """
-743        if self.N != 1:
-744            raise Exception("Correlator must be projected before plotting")
-745
-746        if auto_gamma:
-747            self.gamma_method()
-748
-749        if x_range is None:
-750            x_range = [0, self.T - 1]
-751
-752        fig = plt.figure()
-753        ax1 = fig.add_subplot(111)
-754
-755        x, y, y_err = self.plottable()
-756        if hide_sigma:
-757            hide_from = np.argmax((hide_sigma * np.array(y_err)) > np.abs(y)) - 1
-758        else:
-759            hide_from = None
-760        ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=self.tag)
-761        if logscale:
-762            ax1.set_yscale('log')
+            
721    def show(self, x_range=None, comp=None, y_range=None, logscale=False, plateau=None, fit_res=None, ylabel=None, save=None, auto_gamma=False, hide_sigma=None, references=None):
+722        """Plots the correlator using the tag of the correlator as label if available.
+723
+724        Parameters
+725        ----------
+726        x_range : list
+727            list of two values, determining the range of the x-axis e.g. [4, 8]
+728        comp : Corr or list of Corr
+729            Correlator or list of correlators which are plotted for comparison.
+730            The tags of these correlators are used as labels if available.
+731        logscale : bool
+732            Sets y-axis to logscale
+733        plateau : Obs
+734            Plateau value to be visualized in the figure
+735        fit_res : Fit_result
+736            Fit_result object to be visualized
+737        ylabel : str
+738            Label for the y-axis
+739        save : str
+740            path to file in which the figure should be saved
+741        auto_gamma : bool
+742            Apply the gamma method with standard parameters to all correlators and plateau values before plotting.
+743        hide_sigma : float
+744            Hides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors.
+745        references : list
+746            List of floating point values that are displayed as horizontal lines for reference.
+747        """
+748        if self.N != 1:
+749            raise Exception("Correlator must be projected before plotting")
+750
+751        if auto_gamma:
+752            self.gamma_method()
+753
+754        if x_range is None:
+755            x_range = [0, self.T - 1]
+756
+757        fig = plt.figure()
+758        ax1 = fig.add_subplot(111)
+759
+760        x, y, y_err = self.plottable()
+761        if hide_sigma:
+762            hide_from = np.argmax((hide_sigma * np.array(y_err)) > np.abs(y)) - 1
 763        else:
-764            if y_range is None:
-765                try:
-766                    y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
-767                    y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
-768                    ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)])
-769                except Exception:
-770                    pass
-771            else:
-772                ax1.set_ylim(y_range)
-773        if comp:
-774            if isinstance(comp, (Corr, list)):
-775                for corr in comp if isinstance(comp, list) else [comp]:
-776                    if auto_gamma:
-777                        corr.gamma_method()
-778                    x, y, y_err = corr.plottable()
-779                    if hide_sigma:
-780                        hide_from = np.argmax((hide_sigma * np.array(y_err)) > np.abs(y)) - 1
-781                    else:
-782                        hide_from = None
-783                    plt.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor'])
-784            else:
-785                raise Exception("'comp' must be a correlator or a list of correlators.")
-786
-787        if plateau:
-788            if isinstance(plateau, Obs):
-789                if auto_gamma:
-790                    plateau.gamma_method()
-791                ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau))
-792                ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-')
-793            else:
-794                raise Exception("'plateau' must be an Obs")
-795
-796        if references:
-797            if isinstance(references, list):
-798                for ref in references:
-799                    ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--')
-800            else:
-801                raise Exception("'references' must be a list of floating pint values.")
-802
-803        if self.prange:
-804            ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',')
-805            ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',')
-806
-807        if fit_res:
-808            x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05)
-809            ax1.plot(x_samples,
-810                     fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples),
-811                     ls='-', marker=',', lw=2)
-812
-813        ax1.set_xlabel(r'$x_0 / a$')
-814        if ylabel:
-815            ax1.set_ylabel(ylabel)
-816        ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5])
+764            hide_from = None
+765        ax1.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=self.tag)
+766        if logscale:
+767            ax1.set_yscale('log')
+768        else:
+769            if y_range is None:
+770                try:
+771                    y_min = min([(x[0].value - x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
+772                    y_max = max([(x[0].value + x[0].dvalue) for x in self.content[x_range[0]: x_range[1] + 1] if (x is not None) and x[0].dvalue < 2 * np.abs(x[0].value)])
+773                    ax1.set_ylim([y_min - 0.1 * (y_max - y_min), y_max + 0.1 * (y_max - y_min)])
+774                except Exception:
+775                    pass
+776            else:
+777                ax1.set_ylim(y_range)
+778        if comp:
+779            if isinstance(comp, (Corr, list)):
+780                for corr in comp if isinstance(comp, list) else [comp]:
+781                    if auto_gamma:
+782                        corr.gamma_method()
+783                    x, y, y_err = corr.plottable()
+784                    if hide_sigma:
+785                        hide_from = np.argmax((hide_sigma * np.array(y_err)) > np.abs(y)) - 1
+786                    else:
+787                        hide_from = None
+788                    plt.errorbar(x[:hide_from], y[:hide_from], y_err[:hide_from], label=corr.tag, mfc=plt.rcParams['axes.facecolor'])
+789            else:
+790                raise Exception("'comp' must be a correlator or a list of correlators.")
+791
+792        if plateau:
+793            if isinstance(plateau, Obs):
+794                if auto_gamma:
+795                    plateau.gamma_method()
+796                ax1.axhline(y=plateau.value, linewidth=2, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--', label=str(plateau))
+797                ax1.axhspan(plateau.value - plateau.dvalue, plateau.value + plateau.dvalue, alpha=0.25, color=plt.rcParams['text.color'], ls='-')
+798            else:
+799                raise Exception("'plateau' must be an Obs")
+800
+801        if references:
+802            if isinstance(references, list):
+803                for ref in references:
+804                    ax1.axhline(y=ref, linewidth=1, color=plt.rcParams['text.color'], alpha=0.6, marker=',', ls='--')
+805            else:
+806                raise Exception("'references' must be a list of floating pint values.")
+807
+808        if self.prange:
+809            ax1.axvline(self.prange[0], 0, 1, ls='-', marker=',')
+810            ax1.axvline(self.prange[1], 0, 1, ls='-', marker=',')
+811
+812        if fit_res:
+813            x_samples = np.arange(x_range[0], x_range[1] + 1, 0.05)
+814            ax1.plot(x_samples,
+815                     fit_res.fit_function([o.value for o in fit_res.fit_parameters], x_samples),
+816                     ls='-', marker=',', lw=2)
 817
-818        handles, labels = ax1.get_legend_handles_labels()
-819        if labels:
-820            ax1.legend()
-821        plt.draw()
+818        ax1.set_xlabel(r'$x_0 / a$')
+819        if ylabel:
+820            ax1.set_ylabel(ylabel)
+821        ax1.set_xlim([x_range[0] - 0.5, x_range[1] + 0.5])
 822
-823        if save:
-824            if isinstance(save, str):
-825                fig.savefig(save)
-826            else:
-827                raise Exception("'save' has to be a string.")
+823        handles, labels = ax1.get_legend_handles_labels()
+824        if labels:
+825            ax1.legend()
+826        plt.draw()
+827
+828        if save:
+829            if isinstance(save, str):
+830                fig.savefig(save)
+831            else:
+832                raise Exception("'save' has to be a string.")
 
@@ -4091,34 +4109,34 @@ List of floating point values that are displayed as horizontal lines for referen
-
829    def spaghetti_plot(self, logscale=True):
-830        """Produces a spaghetti plot of the correlator suited to monitor exceptional configurations.
-831
-832        Parameters
-833        ----------
-834        logscale : bool
-835            Determines whether the scale of the y-axis is logarithmic or standard.
-836        """
-837        if self.N != 1:
-838            raise Exception("Correlator needs to be projected first.")
-839
-840        mc_names = list(set([item for sublist in [o[0].mc_names for o in self.content if o is not None] for item in sublist]))
-841        x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None]
-842
-843        for name in mc_names:
-844            data = np.array([o[0].deltas[name] + o[0].r_values[name] for o in self.content if o is not None]).T
-845
-846            fig = plt.figure()
-847            ax = fig.add_subplot(111)
-848            for dat in data:
-849                ax.plot(x0_vals, dat, ls='-', marker='')
+            
834    def spaghetti_plot(self, logscale=True):
+835        """Produces a spaghetti plot of the correlator suited to monitor exceptional configurations.
+836
+837        Parameters
+838        ----------
+839        logscale : bool
+840            Determines whether the scale of the y-axis is logarithmic or standard.
+841        """
+842        if self.N != 1:
+843            raise Exception("Correlator needs to be projected first.")
+844
+845        mc_names = list(set([item for sublist in [o[0].mc_names for o in self.content if o is not None] for item in sublist]))
+846        x0_vals = [n for (n, o) in zip(np.arange(self.T), self.content) if o is not None]
+847
+848        for name in mc_names:
+849            data = np.array([o[0].deltas[name] + o[0].r_values[name] for o in self.content if o is not None]).T
 850
-851            if logscale is True:
-852                ax.set_yscale('log')
-853
-854            ax.set_xlabel(r'$x_0 / a$')
-855            plt.title(name)
-856            plt.draw()
+851            fig = plt.figure()
+852            ax = fig.add_subplot(111)
+853            for dat in data:
+854                ax.plot(x0_vals, dat, ls='-', marker='')
+855
+856            if logscale is True:
+857                ax.set_yscale('log')
+858
+859            ax.set_xlabel(r'$x_0 / a$')
+860            plt.title(name)
+861            plt.draw()
 
@@ -4145,29 +4163,29 @@ Determines whether the scale of the y-axis is logarithmic or standard.
-
858    def dump(self, filename, datatype="json.gz", **kwargs):
-859        """Dumps the Corr into a file of chosen type
-860        Parameters
-861        ----------
-862        filename : str
-863            Name of the file to be saved.
-864        datatype : str
-865            Format of the exported file. Supported formats include
-866            "json.gz" and "pickle"
-867        path : str
-868            specifies a custom path for the file (default '.')
-869        """
-870        if datatype == "json.gz":
-871            from .input.json import dump_to_json
-872            if 'path' in kwargs:
-873                file_name = kwargs.get('path') + '/' + filename
-874            else:
-875                file_name = filename
-876            dump_to_json(self, file_name)
-877        elif datatype == "pickle":
-878            dump_object(self, filename, **kwargs)
-879        else:
-880            raise Exception("Unknown datatype " + str(datatype))
+            
863    def dump(self, filename, datatype="json.gz", **kwargs):
+864        """Dumps the Corr into a file of chosen type
+865        Parameters
+866        ----------
+867        filename : str
+868            Name of the file to be saved.
+869        datatype : str
+870            Format of the exported file. Supported formats include
+871            "json.gz" and "pickle"
+872        path : str
+873            specifies a custom path for the file (default '.')
+874        """
+875        if datatype == "json.gz":
+876            from .input.json import dump_to_json
+877            if 'path' in kwargs:
+878                file_name = kwargs.get('path') + '/' + filename
+879            else:
+880                file_name = filename
+881            dump_to_json(self, file_name)
+882        elif datatype == "pickle":
+883            dump_object(self, filename, **kwargs)
+884        else:
+885            raise Exception("Unknown datatype " + str(datatype))
 
@@ -4199,8 +4217,8 @@ specifies a custom path for the file (default '.')
-
882    def print(self, range=[0, None]):
-883        print(self.__repr__(range))
+            
887    def print(self, range=[0, None]):
+888        print(self.__repr__(range))
 
@@ -4218,8 +4236,8 @@ specifies a custom path for the file (default '.')
-
1045    def sqrt(self):
-1046        return self**0.5
+            
1050    def sqrt(self):
+1051        return self**0.5
 
@@ -4237,9 +4255,9 @@ specifies a custom path for the file (default '.')
-
1048    def log(self):
-1049        newcontent = [None if (item is None) else np.log(item) for item in self.content]
-1050        return Corr(newcontent, prange=self.prange)
+            
1053    def log(self):
+1054        newcontent = [None if (item is None) else np.log(item) for item in self.content]
+1055        return Corr(newcontent, prange=self.prange)
 
@@ -4257,9 +4275,9 @@ specifies a custom path for the file (default '.')
-
1052    def exp(self):
-1053        newcontent = [None if (item is None) else np.exp(item) for item in self.content]
-1054        return Corr(newcontent, prange=self.prange)
+            
1057    def exp(self):
+1058        newcontent = [None if (item is None) else np.exp(item) for item in self.content]
+1059        return Corr(newcontent, prange=self.prange)
 
@@ -4277,8 +4295,8 @@ specifies a custom path for the file (default '.')
-
1067    def sin(self):
-1068        return self._apply_func_to_corr(np.sin)
+            
1072    def sin(self):
+1073        return self._apply_func_to_corr(np.sin)
 
@@ -4296,8 +4314,8 @@ specifies a custom path for the file (default '.')
-
1070    def cos(self):
-1071        return self._apply_func_to_corr(np.cos)
+            
1075    def cos(self):
+1076        return self._apply_func_to_corr(np.cos)
 
@@ -4315,8 +4333,8 @@ specifies a custom path for the file (default '.')
-
1073    def tan(self):
-1074        return self._apply_func_to_corr(np.tan)
+            
1078    def tan(self):
+1079        return self._apply_func_to_corr(np.tan)
 
@@ -4334,8 +4352,8 @@ specifies a custom path for the file (default '.')
-
1076    def sinh(self):
-1077        return self._apply_func_to_corr(np.sinh)
+            
1081    def sinh(self):
+1082        return self._apply_func_to_corr(np.sinh)
 
@@ -4353,8 +4371,8 @@ specifies a custom path for the file (default '.')
-
1079    def cosh(self):
-1080        return self._apply_func_to_corr(np.cosh)
+            
1084    def cosh(self):
+1085        return self._apply_func_to_corr(np.cosh)
 
@@ -4372,8 +4390,8 @@ specifies a custom path for the file (default '.')
-
1082    def tanh(self):
-1083        return self._apply_func_to_corr(np.tanh)
+            
1087    def tanh(self):
+1088        return self._apply_func_to_corr(np.tanh)
 
@@ -4391,8 +4409,8 @@ specifies a custom path for the file (default '.')
-
1085    def arcsin(self):
-1086        return self._apply_func_to_corr(np.arcsin)
+            
1090    def arcsin(self):
+1091        return self._apply_func_to_corr(np.arcsin)
 
@@ -4410,8 +4428,8 @@ specifies a custom path for the file (default '.')
-
1088    def arccos(self):
-1089        return self._apply_func_to_corr(np.arccos)
+            
1093    def arccos(self):
+1094        return self._apply_func_to_corr(np.arccos)
 
@@ -4429,8 +4447,8 @@ specifies a custom path for the file (default '.')
-
1091    def arctan(self):
-1092        return self._apply_func_to_corr(np.arctan)
+            
1096    def arctan(self):
+1097        return self._apply_func_to_corr(np.arctan)
 
@@ -4448,8 +4466,8 @@ specifies a custom path for the file (default '.')
-
1094    def arcsinh(self):
-1095        return self._apply_func_to_corr(np.arcsinh)
+            
1099    def arcsinh(self):
+1100        return self._apply_func_to_corr(np.arcsinh)
 
@@ -4467,8 +4485,8 @@ specifies a custom path for the file (default '.')
-
1097    def arccosh(self):
-1098        return self._apply_func_to_corr(np.arccosh)
+            
1102    def arccosh(self):
+1103        return self._apply_func_to_corr(np.arccosh)
 
@@ -4486,8 +4504,8 @@ specifies a custom path for the file (default '.')
-
1100    def arctanh(self):
-1101        return self._apply_func_to_corr(np.arctanh)
+            
1105    def arctanh(self):
+1106        return self._apply_func_to_corr(np.arctanh)
 
@@ -4527,64 +4545,62 @@ specifies a custom path for the file (default '.')
-
1136    def prune(self, Ntrunc, tproj=3, t0proj=2, basematrix=None):
-1137        r''' Project large correlation matrix to lowest states
-1138
-1139        This method can be used to reduce the size of an (N x N) correlation matrix
-1140        to (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise
-1141        is still small.
-1142
-1143        Parameters
-1144        ----------
-1145        Ntrunc: int
-1146            Rank of the target matrix.
-1147        tproj: int
-1148            Time where the eigenvectors are evaluated, corresponds to ts in the GEVP method.
-1149            The default value is 3.
-1150        t0proj: int
-1151            Time where the correlation matrix is inverted. Choosing t0proj=1 is strongly
-1152            discouraged for O(a) improved theories, since the correctness of the procedure
-1153            cannot be granted in this case. The default value is 2.
-1154        basematrix : Corr
-1155            Correlation matrix that is used to determine the eigenvectors of the
-1156            lowest states based on a GEVP. basematrix is taken to be the Corr itself if
-1157            is is not specified.
-1158
-1159        Notes
-1160        -----
-1161        We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving
-1162        the GEVP $$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \equiv t_\mathrm{proj}$
-1163        and $t_0 \equiv t_{0, \mathrm{proj}}$. The target matrix is projected onto the subspace of the
-1164        resulting eigenvectors $v_n, n=1,\dots,N_\mathrm{trunc}$ via
-1165        $$G^\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large
-1166        correlation matrix and to remove some noise that is added by irrelevant operators.
-1167        This may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated
-1168        bound $t_0 \leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$.
-1169        '''
-1170
-1171        if self.N == 1:
-1172            raise Exception('Method cannot be applied to one-dimensional correlators.')
-1173        if basematrix is None:
-1174            basematrix = self
-1175        if Ntrunc >= basematrix.N:
-1176            raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N))
-1177        if basematrix.N != self.N:
-1178            raise Exception('basematrix and targetmatrix have to be of the same size.')
-1179
-1180        evecs = []
-1181        for i in range(Ntrunc):
-1182            evecs.append(basematrix.GEVP(t0proj, tproj, state=i, sorted_list=None))
-1183
-1184        tmpmat = np.empty((Ntrunc, Ntrunc), dtype=object)
-1185        rmat = []
-1186        for t in range(basematrix.T):
-1187            for i in range(Ntrunc):
-1188                for j in range(Ntrunc):
-1189                    tmpmat[i][j] = evecs[i].T @ self[t] @ evecs[j]
-1190            rmat.append(np.copy(tmpmat))
-1191
-1192        newcontent = [None if (self.content[t] is None) else rmat[t] for t in range(self.T)]
-1193        return Corr(newcontent)
+            
1141    def prune(self, Ntrunc, tproj=3, t0proj=2, basematrix=None):
+1142        r''' Project large correlation matrix to lowest states
+1143
+1144        This method can be used to reduce the size of an (N x N) correlation matrix
+1145        to (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise
+1146        is still small.
+1147
+1148        Parameters
+1149        ----------
+1150        Ntrunc: int
+1151            Rank of the target matrix.
+1152        tproj: int
+1153            Time where the eigenvectors are evaluated, corresponds to ts in the GEVP method.
+1154            The default value is 3.
+1155        t0proj: int
+1156            Time where the correlation matrix is inverted. Choosing t0proj=1 is strongly
+1157            discouraged for O(a) improved theories, since the correctness of the procedure
+1158            cannot be granted in this case. The default value is 2.
+1159        basematrix : Corr
+1160            Correlation matrix that is used to determine the eigenvectors of the
+1161            lowest states based on a GEVP. basematrix is taken to be the Corr itself if
+1162            is is not specified.
+1163
+1164        Notes
+1165        -----
+1166        We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving
+1167        the GEVP $$C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \equiv t_\mathrm{proj}$
+1168        and $t_0 \equiv t_{0, \mathrm{proj}}$. The target matrix is projected onto the subspace of the
+1169        resulting eigenvectors $v_n, n=1,\dots,N_\mathrm{trunc}$ via
+1170        $$G^\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large
+1171        correlation matrix and to remove some noise that is added by irrelevant operators.
+1172        This may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated
+1173        bound $t_0 \leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$.
+1174        '''
+1175
+1176        if self.N == 1:
+1177            raise Exception('Method cannot be applied to one-dimensional correlators.')
+1178        if basematrix is None:
+1179            basematrix = self
+1180        if Ntrunc >= basematrix.N:
+1181            raise Exception('Cannot truncate using Ntrunc <= %d' % (basematrix.N))
+1182        if basematrix.N != self.N:
+1183            raise Exception('basematrix and targetmatrix have to be of the same size.')
+1184
+1185        evecs = basematrix.GEVP(t0proj, tproj, sort=None)[:Ntrunc]
+1186
+1187        tmpmat = np.empty((Ntrunc, Ntrunc), dtype=object)
+1188        rmat = []
+1189        for t in range(basematrix.T):
+1190            for i in range(Ntrunc):
+1191                for j in range(Ntrunc):
+1192                    tmpmat[i][j] = evecs[i].T @ self[t] @ evecs[j]
+1193            rmat.append(np.copy(tmpmat))
+1194
+1195        newcontent = [None if (self.content[t] is None) else rmat[t] for t in range(self.T)]
+1196        return Corr(newcontent)
 
diff --git a/docs/search.js b/docs/search.js index f5834b95..529eda26 100644 --- a/docs/search.js +++ b/docs/search.js @@ -1,6 +1,6 @@ window.pdocSearch = (function(){ /** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();oWhat is pyerrors?\n\n

pyerrors is a python package for error computation and propagation of Markov chain Monte Carlo data.\nIt is based on the gamma method arXiv:hep-lat/0306017. Some of its features are:

\n\n
    \n
  • automatic differentiation for exact liner error propagation as suggested in arXiv:1809.01289 (partly based on the autograd package).
  • \n
  • treatment of slow modes in the simulation as suggested in arXiv:1009.5228.
  • \n
  • coherent error propagation for data from different Markov chains.
  • \n
  • non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in arXiv:1809.01289.
  • \n
  • real and complex matrix operations and their error propagation based on automatic differentiation (Matrix inverse, Cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...).
  • \n
\n\n

There exist similar publicly available implementations of gamma method error analysis suites in Fortran, Julia and Python.

\n\n

Basic example

\n\n
import numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name']) # Initialize an Obs object\nmy_new_obs = 2 * np.log(my_obs) / my_obs ** 2 # Construct derived Obs object\nmy_new_obs.gamma_method()                     # Estimate the statistical error\nprint(my_new_obs)                             # Print the result to stdout\n> 0.31498(72)\n
\n\n

The Obs class

\n\n

pyerrors introduces a new datatype, Obs, which simplifies error propagation and estimation for auto- and cross-correlated data.\nAn Obs object can be initialized with two arguments, the first is a list containing the samples for an observable from a Monte Carlo chain.\nThe samples can either be provided as python list or as numpy array.\nThe second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble.

\n\n
import pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\n
\n\n

Error propagation

\n\n

When performing mathematical operations on Obs objects the correct error propagation is intrinsically taken care of using a first order Taylor expansion\n$$\\delta_f^i=\\sum_\\alpha \\bar{f}_\\alpha \\delta_\\alpha^i\\,,\\quad \\delta_\\alpha^i=a_\\alpha^i-\\bar{a}_\\alpha\\,,$$\nas introduced in arXiv:hep-lat/0306017.\nThe required derivatives $\\bar{f}_\\alpha$ are evaluated up to machine precision via automatic differentiation as suggested in arXiv:1809.01289.

\n\n

The Obs class is designed such that mathematical numpy functions can be used on Obs just as for regular floats.

\n\n
import numpy as np\nimport pyerrors as pe\n\nmy_obs1 = pe.Obs([samples1], ['ensemble_name'])\nmy_obs2 = pe.Obs([samples2], ['ensemble_name'])\n\nmy_sum = my_obs1 + my_obs2\n\nmy_m_eff = np.log(my_obs1 / my_obs2)\n\niamzero = my_m_eff - my_m_eff\n# Check that value and fluctuations are zero within machine precision\nprint(iamzero == 0.0)\n> True\n
\n\n

Error estimation

\n\n

The error estimation within pyerrors is based on the gamma method introduced in arXiv:hep-lat/0306017.\nAfter having arrived at the derived quantity of interest the gamma_method can be called as detailed in the following example.

\n\n
my_sum.gamma_method()\nprint(my_sum)\n> 1.70(57)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 5.72046658e-01 +/- 7.56746598e-02 (33.650%)\n>  t_int         2.71422900e+00 +/- 6.40320983e-01 S = 2.00\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n\n

We use the following definition of the integrated autocorrelation time established in Madras & Sokal 1988\n$$\\tau_\\mathrm{int}=\\frac{1}{2}+\\sum_{t=1}^{W}\\rho(t)\\geq \\frac{1}{2}\\,.$$\nThe window $W$ is determined via the automatic windowing procedure described in arXiv:hep-lat/0306017.\nThe standard value for the parameter $S$ of this automatic windowing procedure is $S=2$. Other values for $S$ can be passed to the gamma_method as parameter.

\n\n
my_sum.gamma_method(S=3.0)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 6.30675201e-01 +/- 1.04585650e-01 (37.099%)\n>  t_int         3.29909703e+00 +/- 9.77310102e-01 S = 3.00\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n\n

The integrated autocorrelation time $\\tau_\\mathrm{int}$ and the autocorrelation function $\\rho(W)$ can be monitored via the methods pyerrors.obs.Obs.plot_tauint and pyerrors.obs.Obs.plot_tauint.

\n\n

If the parameter $S$ is set to zero it is assumed that the dataset does not exhibit any autocorrelation and the windowsize is chosen to be zero.\nIn this case the error estimate is identical to the sample standard error.

\n\n

Exponential tails

\n\n

Slow modes in the Monte Carlo history can be accounted for by attaching an exponential tail to the autocorrelation function $\\rho$ as suggested in arXiv:1009.5228. The longest autocorrelation time in the history, $\\tau_\\mathrm{exp}$, can be passed to the gamma_method as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.

\n\n
my_sum.gamma_method(tau_exp=7.2)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 6.28097762e-01 +/- 5.79077524e-02 (36.947%)\n>  t_int         3.27218667e+00 +/- 7.99583654e-01 tau_exp = 7.20,  N_sigma = 1\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n\n

For the full API see pyerrors.obs.Obs.gamma_method.

\n\n

Multiple ensembles/replica

\n\n

Error propagation for multiple ensembles (Markov chains with different simulation parameters) is handled automatically. Ensembles are uniquely identified by their name.

\n\n
obs1 = pe.Obs([samples1], ['ensemble1'])\nobs2 = pe.Obs([samples2], ['ensemble2'])\n\nmy_sum = obs1 + obs2\nmy_sum.details()\n> Result   2.00697958e+00\n> 1500 samples in 2 ensembles:\n>   \u00b7 Ensemble 'ensemble1' : 1000 configurations (from 1 to 1000)\n>   \u00b7 Ensemble 'ensemble2' : 500 configurations (from 1 to 500)\n
\n\n

pyerrors identifies multiple replica (independent Markov chains with identical simulation parameters) by the vertical bar | in the name of the data set.

\n\n
obs1 = pe.Obs([samples1], ['ensemble1|r01'])\nobs2 = pe.Obs([samples2], ['ensemble1|r02'])\n\n> my_sum = obs1 + obs2\n> my_sum.details()\n> Result   2.00697958e+00\n> 1500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1'\n>     \u00b7 Replicum 'r01' : 1000 configurations (from 1 to 1000)\n>     \u00b7 Replicum 'r02' : 500 configurations (from 1 to 500)\n
\n\n

Error estimation for multiple ensembles

\n\n

In order to keep track of different error analysis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.

\n\n
pe.Obs.S_dict['ensemble1'] = 2.5\npe.Obs.tau_exp_dict['ensemble2'] = 8.0\npe.Obs.tau_exp_dict['ensemble3'] = 2.0\n
\n\n

In case the gamma_method is called without any parameters it will use the values specified in the dictionaries for the respective ensembles.\nPassing arguments to the gamma_method still dominates over the dictionaries.

\n\n

Irregular Monte Carlo chains

\n\n

Obs objects defined on irregular Monte Carlo chains can be initialized with the parameter idl.

\n\n
# Observable defined on configurations 20 to 519\nobs1 = pe.Obs([samples1], ['ensemble1'], idl=[range(20, 520)])\nobs1.details()\n> Result         9.98319881e-01\n> 500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 500 configurations (from 20 to 519)\n\n# Observable defined on every second configuration between 5 and 1003\nobs2 = pe.Obs([samples2], ['ensemble1'], idl=[range(5, 1005, 2)])\nobs2.details()\n> Result         9.99100712e-01\n> 500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 500 configurations (from 5 to 1003 in steps of 2)\n\n# Observable defined on configurations 2, 9, 28, 29 and 501\nobs3 = pe.Obs([samples3], ['ensemble1'], idl=[[2, 9, 28, 29, 501]])\nobs3.details()\n> Result         1.01718064e+00\n> 5 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 5 configurations (irregular range)\n
\n\n

Obs objects defined on regular and irregular histories of the same ensemble can be combined with each other and the correct error propagation and estimation is automatically taken care of.

\n\n

Warning: Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions.\nMake sure to check the autocorrelation time with e.g. pyerrors.obs.Obs.plot_rho or pyerrors.obs.Obs.plot_tauint.

\n\n

For the full API see pyerrors.obs.Obs.

\n\n

Correlators

\n\n

When one is not interested in single observables but correlation functions, pyerrors offers the Corr class which simplifies the corresponding error propagation and provides the user with a set of standard methods. In order to initialize a Corr objects one needs to arrange the data as a list of Obs

\n\n
my_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3])\nprint(my_corr)\n> x0/a  Corr(x0/a)\n> ------------------\n> 0      0.7957(80)\n> 1      0.5156(51)\n> 2      0.3227(33)\n> 3      0.2041(21)\n
\n\n

In case the correlation functions are not defined on the outermost timeslices, for example because of fixed boundary conditions, a padding can be introduced.

\n\n
my_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3], padding=[1, 1])\nprint(my_corr)\n> x0/a  Corr(x0/a)\n> ------------------\n> 0\n> 1      0.7957(80)\n> 2      0.5156(51)\n> 3      0.3227(33)\n> 4      0.2041(21)\n> 5\n
\n\n

The individual entries of a correlator can be accessed via slicing

\n\n
print(my_corr[3])\n> 0.3227(33)\n
\n\n

Error propagation with the Corr class works very similar to Obs objects. Mathematical operations are overloaded and Corr objects can be computed together with other Corr objects, Obs objects or real numbers and integers.

\n\n
my_new_corr = 0.3 * my_corr[2] * my_corr * my_corr + 12 / my_corr\n
\n\n

pyerrors provides the user with a set of regularly used methods for the manipulation of correlator objects:

\n\n
    \n
  • Corr.gamma_method applies the gamma method to all entries of the correlator.
  • \n
  • Corr.m_eff to construct effective masses. Various variants for periodic and fixed temporal boundary conditions are available.
  • \n
  • Corr.deriv returns the first derivative of the correlator as Corr. Different discretizations of the numerical derivative are available.
  • \n
  • Corr.second_deriv returns the second derivative of the correlator as Corr. Different discretizations of the numerical derivative are available.
  • \n
  • Corr.symmetric symmetrizes parity even correlations functions, assuming periodic boundary conditions.
  • \n
  • Corr.anti_symmetric anti-symmetrizes parity odd correlations functions, assuming periodic boundary conditions.
  • \n
  • Corr.T_symmetry averages a correlator with its time symmetry partner, assuming fixed boundary conditions.
  • \n
  • Corr.plateau extracts a plateau value from the correlator in a given range.
  • \n
  • Corr.roll periodically shifts the correlator.
  • \n
  • Corr.reverse reverses the time ordering of the correlator.
  • \n
  • Corr.correlate constructs a disconnected correlation function from the correlator and another Corr or Obs object.
  • \n
  • Corr.reweight reweights the correlator.
  • \n
\n\n

pyerrors can also handle matrices of correlation functions and extract energy states from these matrices via a generalized eigenvalue problem (see pyerrors.correlators.Corr.GEVP).

\n\n

For the full API see pyerrors.correlators.Corr.

\n\n

Complex valued observables

\n\n

pyerrors can handle complex valued observables via the class pyerrors.obs.CObs.\nCObs are initialized with a real and an imaginary part which both can be Obs valued.

\n\n
my_real_part = pe.Obs([samples1], ['ensemble1'])\nmy_imag_part = pe.Obs([samples2], ['ensemble1'])\n\nmy_cobs = pe.CObs(my_real_part, my_imag_part)\nmy_cobs.gamma_method()\nprint(my_cobs)\n> (0.9959(91)+0.659(28)j)\n
\n\n

Elementary mathematical operations are overloaded and samples are properly propagated as for the Obs class.

\n\n
my_derived_cobs = (my_cobs + my_cobs.conjugate()) / np.abs(my_cobs)\nmy_derived_cobs.gamma_method()\nprint(my_derived_cobs)\n> (1.668(23)+0.0j)\n
\n\n

The Covobs class

\n\n

In many projects, auxiliary data that is not based on Monte Carlo chains enters. Examples are experimentally determined mesons masses which are used to set the scale or renormalization constants. These numbers come with an error that has to be propagated through the analysis. The Covobs class allows to define such quantities in pyerrors. Furthermore, external input might consist of correlated quantities. An example are the parameters of an interpolation formula, which are defined via mean values and a covariance matrix between all parameters. The contribution of the interpolation formula to the error of a derived quantity therefore might depend on the complete covariance matrix.

\n\n

This concept is built into the definition of Covobs. In pyerrors, external input is defined by $M$ mean values, a $M\\times M$ covariance matrix, where $M=1$ is permissible, and a name that uniquely identifies the covariance matrix. Below, we define the pion mass, based on its mean value and error, 134.9768(5). Note, that the square of the error enters cov_Obs, since the second argument of this function is the covariance matrix of the Covobs.

\n\n
import pyerrors.obs as pe\n\nmpi = pe.cov_Obs(134.9768, 0.0005**2, 'pi^0 mass')\nmpi.gamma_method()\nmpi.details()\n> Result         1.34976800e+02 +/- 5.00000000e-04 +/- 0.00000000e+00 (0.000%)\n>  pi^0 mass     5.00000000e-04\n> 0 samples in 1 ensemble:\n>   \u00b7 Covobs   'pi^0 mass'\n
\n\n

The resulting object mpi is an Obs that contains a Covobs. In the following, it may be handled as any other Obs. The contribution of the covariance matrix to the error of an Obs is determined from the $M \\times M$ covariance matrix $\\Sigma$ and the gradient of the Obs with respect to the external quantities, which is the $1\\times M$ Jacobian matrix $J$, via\n$$s = \\sqrt{J^T \\Sigma J}\\,,$$\nwhere the Jacobian is computed for each derived quantity via automatic differentiation.

\n\n

Correlated auxiliary data is defined similarly to above, e.g., via

\n\n
RAP = pe.cov_Obs([16.7457, -19.0475], [[3.49591, -6.07560], [-6.07560, 10.5834]], 'R_AP, 1906.03445, (5.3a)')\nprint(RAP)\n> [Obs[16.7(1.9)], Obs[-19.0(3.3)]]\n
\n\n

where RAP now is a list of two Obs that contains the two correlated parameters.

\n\n

Since the gradient of a derived observable with respect to an external covariance matrix is propagated through the entire analysis, the Covobs class allows to quote the derivative of a result with respect to the external quantities. If these derivatives are published together with the result, small shifts in the definition of external quantities, e.g., the definition of the physical point, can be performed a posteriori based on the published information. This may help to compare results of different groups. The gradient of an Obs o with respect to a covariance matrix with the identifying string k may be accessed via

\n\n
o.covobs[k].grad\n
\n\n

Error propagation in iterative algorithms

\n\n

pyerrors supports exact linear error propagation for iterative algorithms like various variants of non-linear least sqaures fits or root finding. The derivatives required for the error propagation are calculated as described in arXiv:1809.01289.

\n\n

Least squares fits

\n\n

Standard non-linear least square fits with errors on the dependent but not the independent variables can be performed with pyerrors.fits.least_squares. As default solver the Levenberg-Marquardt algorithm implemented in scipy is used.

\n\n

Fit functions have to be of the following form

\n\n
import autograd.numpy as anp\n\ndef func(a, x):\n    return a[1] * anp.exp(-a[0] * x)\n
\n\n

It is important that numerical functions refer to autograd.numpy instead of numpy for the automatic differentiation in iterative algorithms to work properly.

\n\n

Fits can then be performed via

\n\n
fit_result = pe.fits.least_squares(x, y, func)\nprint("\\n", fit_result)\n> Fit with 2 parameters\n> Method: Levenberg-Marquardt\n> `ftol` termination condition is satisfied.\n> chisquare/d.o.f.: 0.9593035785160936\n\n>  Goodness of fit:\n> \u03c7\u00b2/d.o.f. = 0.959304\n> p-value   = 0.5673\n> Fit parameters:\n> 0      0.0548(28)\n> 1      1.933(64)\n
\n\n

where x is a list or numpy.array of floats and y is a list or numpy.array of Obs.

\n\n

Data stored in Corr objects can be fitted directly using the Corr.fit method.

\n\n
my_corr = pe.Corr(y)\nfit_result = my_corr.fit(func, fitrange=[12, 25])\n
\n\n

this can simplify working with absolute fit ranges and takes care of gaps in the data automatically.

\n\n

For fit functions with multiple independent variables the fit function can be of the form

\n\n
def func(a, x):\n    (x1, x2) = x\n    return a[0] * x1 ** 2 + a[1] * x2\n
\n\n

pyerrors also supports correlated fits which can be triggered via the parameter correlated_fit=True.\nDetails about how the required covariance matrix is estimated can be found in pyerrors.obs.covariance.

\n\n

Direct visualizations of the performed fits can be triggered via resplot=True or qqplot=True. For all available options see pyerrors.fits.least_squares.

\n\n

Total least squares fits

\n\n

pyerrors can also fit data with errors on both the dependent and independent variables using the total least squares method also referred to orthogonal distance regression as implemented in scipy, see pyerrors.fits.least_squares. The syntax is identical to the standard least squares case, the only diffrence being that x also has to be a list or numpy.array of Obs.

\n\n

For the full API see pyerrors.fits for fits and pyerrors.roots for finding roots of functions.

\n\n

Matrix operations

\n\n

pyerrors provides wrappers for Obs- and CObs-valued matrix operations based on numpy.linalg. The supported functions include:

\n\n
    \n
  • inv for the matrix inverse.
  • \n
  • cholseky for the Cholesky decomposition.
  • \n
  • det for the matrix determinant.
  • \n
  • eigh for eigenvalues and eigenvectors of hermitean matrices.
  • \n
  • eig for eigenvalues of general matrices.
  • \n
  • pinv for the Moore-Penrose pseudoinverse.
  • \n
  • svd for the singular-value-decomposition.
  • \n
\n\n

For the full API see pyerrors.linalg.

\n\n

Export data

\n\n

The preferred exported file format within pyerrors is json.gz. Files written to this format are valid JSON files that have been compressed using gzip. The structure of the content is inspired by the dobs format of the ALPHA collaboration. The aim of the format is to facilitate the storage of data in a self-contained way such that, even years after the creation of the file, it is possible to extract all necessary information:

\n\n
    \n
  • What observables are stored? Possibly: How exactly are they defined.
  • \n
  • How does each single ensemble or external quantity contribute to the error of the observable?
  • \n
  • Who did write the file when and on which machine?
  • \n
\n\n

This can be achieved by storing all information in one single file. The export routines of pyerrors are written such that as much information as possible is written automatically as described in the following example

\n\n
my_obs = pe.Obs([samples], ["test_ensemble"])\nmy_obs.tag = "My observable"\n\npe.input.json.dump_to_json(my_obs, "test_output_file", description="This file contains a test observable")\n# For a single observable one can equivalently use the class method dump\nmy_obs.dump("test_output_file", description="This file contains a test observable")\n\ncheck = pe.input.json.load_json("test_output_file")\n\nprint(my_obs == check)\n> True\n
\n\n

The format also allows to directly write out the content of Corr objects or lists and arrays of Obs objects by passing the desired data to pyerrors.input.json.dump_to_json.

\n\n

json.gz format specification

\n\n

The first entries of the file provide optional auxiliary information:

\n\n
    \n
  • program is a string that indicates which program was used to write the file.
  • \n
  • version is a string that specifies the version of the format.
  • \n
  • who is a string that specifies the user name of the creator of the file.
  • \n
  • date is a string and contains the creation date of the file.
  • \n
  • host is a string and contains the hostname of the machine where the file has been written.
  • \n
  • description contains information on the content of the file. This field is not filled automatically in pyerrors. The user is advised to provide as detailed information as possible in this field. Examples are: Input files of measurements or simulations, LaTeX formulae or references to publications to specify how the observables have been computed, details on the analysis strategy, ... This field may be any valid JSON type. Strings, arrays or objects (equivalent to dicts in python) are well suited to provide information.
  • \n
\n\n

The only necessary entry of the file is the field\n-obsdata, an array that contains the actual data.

\n\n

Each entry of the array belongs to a single structure of observables. Currently, these structures can be either of Obs, list, numpy.ndarray, Corr. All Obs inside a structure (with dimension > 0) have to be defined on the same set of configurations. Different structures, that are represented by entries of the array obsdata, are treated independently. Each entry of the array obsdata has the following required entries:

\n\n
    \n
  • type is a string that specifies the type of the structure. This allows to parse the content to the correct form after reading the file. It is always possible to interpret the content as list of Obs.
  • \n
  • value is an array that contains the mean values of the Obs inside the structure.\nThe following entries are optional:
  • \n
  • layout is a string that specifies the layout of multi-dimensional structures. Examples are \"2, 2\" for a 2x2 dimensional matrix or \"64, 4, 4\" for a Corr with $T=64$ and 4x4 matrices on each time slices. \"1\" denotes a single Obs. Multi-dimensional structures are stored in row-major format (see below).
  • \n
  • tag is any JSON type. It contains additional information concerning the structure. The tag of an Obs in pyerrors is written here.
  • \n
  • reweighted is a Bool that may be used to specify, whether the Obs in the structure have been reweighted.
  • \n
  • data is an array that contains the data from MC chains. We will define it below.
  • \n
  • cdata is an array that contains the data from external quantities with an error (Covobs in pyerrors). We will define it below.
  • \n
\n\n

The array data contains the data from MC chains. Each entry of the array corresponds to one ensemble and contains:

\n\n
    \n
  • id, a string that contains the name of the ensemble
  • \n
  • replica, an array that contains an entry per replica of the ensemble.
  • \n
\n\n

Each entry of replica contains\nname, a string that contains the name of the replica\ndeltas, an array that contains the actual data.

\n\n

Each entry in deltas corresponds to one configuration of the replica and has $1+N$ many entries. The first entry is an integer that specifies the configuration number that, together with ensemble and replica name, may be used to uniquely identify the configuration on which the data has been obtained. The following N entries specify the deltas, i.e., the deviation of the observable from the mean value on this configuration, of each Obs inside the structure. Multi-dimensional structures are stored in a row-major format. For primary observables, such as correlation functions, $value + delta_i$ matches the primary data obtained on the configuration.

\n\n

The array cdata contains information about the contribution of auxiliary observables, represented by Covobs in pyerrors, to the total error of the observables. Each entry of the array belongs to one auxiliary covariance matrix and contains:

\n\n
    \n
  • id, a string that identifies the covariance matrix
  • \n
  • layout, a string that defines the dimensions of the $M\\times M$ covariance matrix (has to be \"M, M\" or \"1\").
  • \n
  • cov, an array that contains the $M\\times M$ many entries of the covariance matrix, stored in row-major format.
  • \n
  • grad, an array that contains N entries, one for each Obs inside the structure. Each entry itself is an array, that contains the M gradients of the Nth observable with respect to the quantity that corresponds to the Mth diagonal entry of the covariance matrix.
  • \n
\n\n

A JSON schema that may be used to verify the correctness of a file with respect to the format definition is stored in ./examples/json_schema.json. The schema is a self-descriptive format definition and contains an exemplary file.

\n\n

Julia I/O routines for the json.gz format, compatible with ADerrors.jl, can be found here.

\n\n

Citing

\n\n

If you use pyerrors for research that leads to a publication please consider citing:

\n\n
    \n
  • Ulli Wolff, Monte Carlo errors with less errors. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
  • \n
  • Stefan Schaefer, Rainer Sommer, Francesco Virotta, Critical slowing down and error analysis in lattice QCD simulations. Nucl.Phys.B 845 (2011) 93-119.
  • \n
  • Alberto Ramos, Automatic differentiation for error analysis of Monte Carlo data. Comput.Phys.Commun. 238 (2019) 19-35.
  • \n
\n"}, "pyerrors.correlators": {"fullname": "pyerrors.correlators", "modulename": "pyerrors.correlators", "type": "module", "doc": "

\n"}, "pyerrors.correlators.Corr": {"fullname": "pyerrors.correlators.Corr", "modulename": "pyerrors.correlators", "qualname": "Corr", "type": "class", "doc": "

The class for a correlator (time dependent sequence of pe.Obs).

\n\n

Everything, this class does, can be achieved using lists or arrays of Obs.\nBut it is simply more convenient to have a dedicated object for correlators.\nOne often wants to add or multiply correlators of the same length at every timeslice and it is inconvenient\nto iterate over all timeslices for every operation. This is especially true, when dealing with matrices.

\n\n

The correlator can have two types of content: An Obs at every timeslice OR a GEVP\nmatrix at every timeslice. Other dependency (eg. spatial) are not supported.

\n"}, "pyerrors.correlators.Corr.__init__": {"fullname": "pyerrors.correlators.Corr.__init__", "modulename": "pyerrors.correlators", "qualname": "Corr.__init__", "type": "function", "doc": "

Initialize a Corr object.

\n\n
Parameters
\n\n
    \n
  • data_input (list or array):\nlist of Obs or list of arrays of Obs or array of Corrs
  • \n
  • padding (list, optional):\nList with two entries where the first labels the padding\nat the front of the correlator and the second the padding\nat the back.
  • \n
  • prange (list, optional):\nList containing the first and last timeslice of the plateau\nregion indentified for this correlator.
  • \n
\n", "signature": "(self, data_input, padding=[0, 0], prange=None)", "funcdef": "def"}, "pyerrors.correlators.Corr.reweighted": {"fullname": "pyerrors.correlators.Corr.reweighted", "modulename": "pyerrors.correlators", "qualname": "Corr.reweighted", "type": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.gamma_method": {"fullname": "pyerrors.correlators.Corr.gamma_method", "modulename": "pyerrors.correlators", "qualname": "Corr.gamma_method", "type": "function", "doc": "

Apply the gamma method to the content of the Corr.

\n", "signature": "(self, **kwargs)", "funcdef": "def"}, "pyerrors.correlators.Corr.projected": {"fullname": "pyerrors.correlators.Corr.projected", "modulename": "pyerrors.correlators", "qualname": "Corr.projected", "type": "function", "doc": "

We need to project the Correlator with a Vector to get a single value at each timeslice.

\n\n

The method can use one or two vectors.\nIf two are specified it returns v1@G@v2 (the order might be very important.)\nBy default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to

\n", "signature": "(self, vector_l=None, vector_r=None, normalize=False)", "funcdef": "def"}, "pyerrors.correlators.Corr.item": {"fullname": "pyerrors.correlators.Corr.item", "modulename": "pyerrors.correlators", "qualname": "Corr.item", "type": "function", "doc": "

Picks the element [i,j] from every matrix and returns a correlator containing one Obs per timeslice.

\n\n
Parameters
\n\n
    \n
  • i (int):\nFirst index to be picked.
  • \n
  • j (int):\nSecond index to be picked.
  • \n
\n", "signature": "(self, i, j)", "funcdef": "def"}, "pyerrors.correlators.Corr.plottable": {"fullname": "pyerrors.correlators.Corr.plottable", "modulename": "pyerrors.correlators", "qualname": "Corr.plottable", "type": "function", "doc": "

Outputs the correlator in a plotable format.

\n\n

Outputs three lists containing the timeslice index, the value on each\ntimeslice and the error on each timeslice.

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.symmetric": {"fullname": "pyerrors.correlators.Corr.symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.symmetric", "type": "function", "doc": "

Symmetrize the correlator around x0=0.

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.anti_symmetric": {"fullname": "pyerrors.correlators.Corr.anti_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.anti_symmetric", "type": "function", "doc": "

Anti-symmetrize the correlator around x0=0.

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.matrix_symmetric", "type": "function", "doc": "

Symmetrizes the correlator matrices on every timeslice.

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.GEVP": {"fullname": "pyerrors.correlators.Corr.GEVP", "modulename": "pyerrors.correlators", "qualname": "Corr.GEVP", "type": "function", "doc": "

Solve the general eigenvalue problem on the current correlator

\n\n
Parameters
\n\n
    \n
  • t0 (int):\nThe time t0 for G(t)v= lambda G(t_0)v
  • \n
  • ts (int):\nfixed time G(t_s)v= lambda G(t_0)v if return_list=False\nIf return_list=True and sorting=Eigenvector it gives a reference point for the sorting method.
  • \n
  • state (int):\nThe state one is interested in, ordered by energy. The lowest state is zero.
  • \n
  • sorted_list (string):\nif this argument is set, a list of vectors (len=self.T) is returned. If it is left as None, only one vector is returned.\n\"Eigenvalue\" - The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice.\n\"Eigenvector\" - Use the method described in arXiv:2004.10472 [hep-lat] to find the set of v(t) belonging to the state.\n The reference state is identified by its eigenvalue at t=ts
  • \n
\n", "signature": "(self, t0, ts=None, state=0, sorted_list='Eigenvalue')", "funcdef": "def"}, "pyerrors.correlators.Corr.Eigenvalue": {"fullname": "pyerrors.correlators.Corr.Eigenvalue", "modulename": "pyerrors.correlators", "qualname": "Corr.Eigenvalue", "type": "function", "doc": "

Determines the eigenvalue of the GEVP by solving and projecting the correlator

\n\n
Parameters
\n\n
    \n
  • t0 (int):\nThe time t0 for G(t)v= lambda G(t_0)v
  • \n
  • ts (int):\nfixed time G(t_s)v= lambda G(t_0)v if return_list=False\nIf return_list=True and sorting=Eigenvector it gives a reference point for the sorting method.
  • \n
  • state (int):\nThe state one is interested in ordered by energy. The lowest state is zero.
  • \n
  • sorted_list (string):\nif this argument is set, a list of vectors (len=self.T) is returned. If it is left as None, only one vector is returned.\n\"Eigenvalue\" - The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice.\n\"Eigenvector\" - Use the method described in arXiv:2004.10472 [hep-lat] to find the set of v(t) belonging to the state.\n The reference state is identified by its eigenvalue at t=ts
  • \n
\n", "signature": "(self, t0, ts=None, state=0, sorted_list=None)", "funcdef": "def"}, "pyerrors.correlators.Corr.Hankel": {"fullname": "pyerrors.correlators.Corr.Hankel", "modulename": "pyerrors.correlators", "qualname": "Corr.Hankel", "type": "function", "doc": "

Constructs an NxN Hankel matrix

\n\n

C(t) c(t+1) ... c(t+n-1)\nC(t+1) c(t+2) ... c(t+n)\n.................\nC(t+(n-1)) c(t+n) ... c(t+2(n-1))

\n\n
Parameters
\n\n
    \n
  • N (int):\nDimension of the Hankel matrix
  • \n
  • periodic (bool, optional):\ndetermines whether the matrix is extended periodically
  • \n
\n", "signature": "(self, N, periodic=False)", "funcdef": "def"}, "pyerrors.correlators.Corr.roll": {"fullname": "pyerrors.correlators.Corr.roll", "modulename": "pyerrors.correlators", "qualname": "Corr.roll", "type": "function", "doc": "

Periodically shift the correlator by dt timeslices

\n\n
Parameters
\n\n
    \n
  • dt (int):\nnumber of timeslices
  • \n
\n", "signature": "(self, dt)", "funcdef": "def"}, "pyerrors.correlators.Corr.reverse": {"fullname": "pyerrors.correlators.Corr.reverse", "modulename": "pyerrors.correlators", "qualname": "Corr.reverse", "type": "function", "doc": "

Reverse the time ordering of the Corr

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.thin": {"fullname": "pyerrors.correlators.Corr.thin", "modulename": "pyerrors.correlators", "qualname": "Corr.thin", "type": "function", "doc": "

Thin out a correlator to suppress correlations

\n\n
Parameters
\n\n
    \n
  • spacing (int):\nKeep only every 'spacing'th entry of the correlator
  • \n
  • offset (int):\nOffset the equal spacing
  • \n
\n", "signature": "(self, spacing=2, offset=0)", "funcdef": "def"}, "pyerrors.correlators.Corr.correlate": {"fullname": "pyerrors.correlators.Corr.correlate", "modulename": "pyerrors.correlators", "qualname": "Corr.correlate", "type": "function", "doc": "

Correlate the correlator with another correlator or Obs

\n\n
Parameters
\n\n
    \n
  • partner (Obs or Corr):\npartner to correlate the correlator with.\nCan either be an Obs which is correlated with all entries of the\ncorrelator or a Corr of same length.
  • \n
\n", "signature": "(self, partner)", "funcdef": "def"}, "pyerrors.correlators.Corr.reweight": {"fullname": "pyerrors.correlators.Corr.reweight", "modulename": "pyerrors.correlators", "qualname": "Corr.reweight", "type": "function", "doc": "

Reweight the correlator.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
  • \n
\n", "signature": "(self, weight, **kwargs)", "funcdef": "def"}, "pyerrors.correlators.Corr.T_symmetry": {"fullname": "pyerrors.correlators.Corr.T_symmetry", "modulename": "pyerrors.correlators", "qualname": "Corr.T_symmetry", "type": "function", "doc": "

Return the time symmetry average of the correlator and its partner

\n\n
Parameters
\n\n
    \n
  • partner (Corr):\nTime symmetry partner of the Corr
  • \n
  • partity (int):\nParity quantum number of the correlator, can be +1 or -1
  • \n
\n", "signature": "(self, partner, parity=1)", "funcdef": "def"}, "pyerrors.correlators.Corr.deriv": {"fullname": "pyerrors.correlators.Corr.deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.deriv", "type": "function", "doc": "

Return the first derivative of the correlator with respect to x0.

\n\n
Parameters
\n\n
    \n
  • variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice: symmetric, forward, backward, improved, default: symmetric
  • \n
\n", "signature": "(self, variant='symmetric')", "funcdef": "def"}, "pyerrors.correlators.Corr.second_deriv": {"fullname": "pyerrors.correlators.Corr.second_deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.second_deriv", "type": "function", "doc": "

Return the second derivative of the correlator with respect to x0.

\n\n
Parameters
\n\n
    \n
  • variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice: symmetric, improved, default: symmetric
  • \n
\n", "signature": "(self, variant='symmetric')", "funcdef": "def"}, "pyerrors.correlators.Corr.m_eff": {"fullname": "pyerrors.correlators.Corr.m_eff", "modulename": "pyerrors.correlators", "qualname": "Corr.m_eff", "type": "function", "doc": "

Returns the effective mass of the correlator as correlator object

\n\n
Parameters
\n\n
    \n
  • variant (str):\nlog : uses the standard effective mass log(C(t) / C(t+1))\ncosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.\nsinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.\nSee, e.g., arXiv:1205.5380\narccosh : Uses the explicit form of the symmetrized correlator (not recommended)
  • \n
  • guess (float):\nguess for the root finder, only relevant for the root variant
  • \n
\n", "signature": "(self, variant='log', guess=1.0)", "funcdef": "def"}, "pyerrors.correlators.Corr.fit": {"fullname": "pyerrors.correlators.Corr.fit", "modulename": "pyerrors.correlators", "qualname": "Corr.fit", "type": "function", "doc": "

Fits function to the data

\n\n
Parameters
\n\n
    \n
  • function (obj):\nfunction to fit to the data. See fits.least_squares for details.
  • \n
  • fitrange (list):\nTwo element list containing the timeslices on which the fit is supposed to start and stop.\nCaution: This range is inclusive as opposed to standard python indexing.\nfitrange=[4, 6] corresponds to the three entries 4, 5 and 6.\nIf not specified, self.prange or all timeslices are used.
  • \n
  • silent (bool):\nDecides whether output is printed to the standard output.
  • \n
\n", "signature": "(self, function, fitrange=None, silent=False, **kwargs)", "funcdef": "def"}, "pyerrors.correlators.Corr.plateau": {"fullname": "pyerrors.correlators.Corr.plateau", "modulename": "pyerrors.correlators", "qualname": "Corr.plateau", "type": "function", "doc": "

Extract a plateau value from a Corr object

\n\n
Parameters
\n\n
    \n
  • plateau_range (list):\nlist with two entries, indicating the first and the last timeslice\nof the plateau region.
  • \n
  • method (str):\nmethod to extract the plateau.\n 'fit' fits a constant to the plateau region\n 'avg', 'average' or 'mean' just average over the given timeslices.
  • \n
  • auto_gamma (bool):\napply gamma_method with default parameters to the Corr. Defaults to None
  • \n
\n", "signature": "(self, plateau_range=None, method='fit', auto_gamma=False)", "funcdef": "def"}, "pyerrors.correlators.Corr.set_prange": {"fullname": "pyerrors.correlators.Corr.set_prange", "modulename": "pyerrors.correlators", "qualname": "Corr.set_prange", "type": "function", "doc": "

Sets the attribute prange of the Corr object.

\n", "signature": "(self, prange)", "funcdef": "def"}, "pyerrors.correlators.Corr.show": {"fullname": "pyerrors.correlators.Corr.show", "modulename": "pyerrors.correlators", "qualname": "Corr.show", "type": "function", "doc": "

Plots the correlator using the tag of the correlator as label if available.

\n\n
Parameters
\n\n
    \n
  • x_range (list):\nlist of two values, determining the range of the x-axis e.g. [4, 8]
  • \n
  • comp (Corr or list of Corr):\nCorrelator or list of correlators which are plotted for comparison.\nThe tags of these correlators are used as labels if available.
  • \n
  • logscale (bool):\nSets y-axis to logscale
  • \n
  • plateau (Obs):\nPlateau value to be visualized in the figure
  • \n
  • fit_res (Fit_result):\nFit_result object to be visualized
  • \n
  • ylabel (str):\nLabel for the y-axis
  • \n
  • save (str):\npath to file in which the figure should be saved
  • \n
  • auto_gamma (bool):\nApply the gamma method with standard parameters to all correlators and plateau values before plotting.
  • \n
  • hide_sigma (float):\nHides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors.
  • \n
  • references (list):\nList of floating point values that are displayed as horizontal lines for reference.
  • \n
\n", "signature": "(\n self,\n x_range=None,\n comp=None,\n y_range=None,\n logscale=False,\n plateau=None,\n fit_res=None,\n ylabel=None,\n save=None,\n auto_gamma=False,\n hide_sigma=None,\n references=None\n)", "funcdef": "def"}, "pyerrors.correlators.Corr.spaghetti_plot": {"fullname": "pyerrors.correlators.Corr.spaghetti_plot", "modulename": "pyerrors.correlators", "qualname": "Corr.spaghetti_plot", "type": "function", "doc": "

Produces a spaghetti plot of the correlator suited to monitor exceptional configurations.

\n\n
Parameters
\n\n
    \n
  • logscale (bool):\nDetermines whether the scale of the y-axis is logarithmic or standard.
  • \n
\n", "signature": "(self, logscale=True)", "funcdef": "def"}, "pyerrors.correlators.Corr.dump": {"fullname": "pyerrors.correlators.Corr.dump", "modulename": "pyerrors.correlators", "qualname": "Corr.dump", "type": "function", "doc": "

Dumps the Corr into a file of chosen type

\n\n
Parameters
\n\n
    \n
  • filename (str):\nName of the file to be saved.
  • \n
  • datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n", "signature": "(self, filename, datatype='json.gz', **kwargs)", "funcdef": "def"}, "pyerrors.correlators.Corr.print": {"fullname": "pyerrors.correlators.Corr.print", "modulename": "pyerrors.correlators", "qualname": "Corr.print", "type": "function", "doc": "

\n", "signature": "(self, range=[0, None])", "funcdef": "def"}, "pyerrors.correlators.Corr.sqrt": {"fullname": "pyerrors.correlators.Corr.sqrt", "modulename": "pyerrors.correlators", "qualname": "Corr.sqrt", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.log": {"fullname": "pyerrors.correlators.Corr.log", "modulename": "pyerrors.correlators", "qualname": "Corr.log", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.exp": {"fullname": "pyerrors.correlators.Corr.exp", "modulename": "pyerrors.correlators", "qualname": "Corr.exp", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.sin": {"fullname": "pyerrors.correlators.Corr.sin", "modulename": "pyerrors.correlators", "qualname": "Corr.sin", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.cos": {"fullname": "pyerrors.correlators.Corr.cos", "modulename": "pyerrors.correlators", "qualname": "Corr.cos", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.tan": {"fullname": "pyerrors.correlators.Corr.tan", "modulename": "pyerrors.correlators", "qualname": "Corr.tan", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.sinh": {"fullname": "pyerrors.correlators.Corr.sinh", "modulename": "pyerrors.correlators", "qualname": "Corr.sinh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.cosh": {"fullname": "pyerrors.correlators.Corr.cosh", "modulename": "pyerrors.correlators", "qualname": "Corr.cosh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.tanh": {"fullname": "pyerrors.correlators.Corr.tanh", "modulename": "pyerrors.correlators", "qualname": "Corr.tanh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsin": {"fullname": "pyerrors.correlators.Corr.arcsin", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsin", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.arccos": {"fullname": "pyerrors.correlators.Corr.arccos", "modulename": "pyerrors.correlators", "qualname": "Corr.arccos", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.arctan": {"fullname": "pyerrors.correlators.Corr.arctan", "modulename": "pyerrors.correlators", "qualname": "Corr.arctan", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsinh": {"fullname": "pyerrors.correlators.Corr.arcsinh", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsinh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.arccosh": {"fullname": "pyerrors.correlators.Corr.arccosh", "modulename": "pyerrors.correlators", "qualname": "Corr.arccosh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.arctanh": {"fullname": "pyerrors.correlators.Corr.arctanh", "modulename": "pyerrors.correlators", "qualname": "Corr.arctanh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.real": {"fullname": "pyerrors.correlators.Corr.real", "modulename": "pyerrors.correlators", "qualname": "Corr.real", "type": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.imag": {"fullname": "pyerrors.correlators.Corr.imag", "modulename": "pyerrors.correlators", "qualname": "Corr.imag", "type": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.prune": {"fullname": "pyerrors.correlators.Corr.prune", "modulename": "pyerrors.correlators", "qualname": "Corr.prune", "type": "function", "doc": "

Project large correlation matrix to lowest states

\n\n

This method can be used to reduce the size of an (N x N) correlation matrix\nto (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise\nis still small.

\n\n
Parameters
\n\n
    \n
  • Ntrunc (int):\nRank of the target matrix.
  • \n
  • tproj (int):\nTime where the eigenvectors are evaluated, corresponds to ts in the GEVP method.\nThe default value is 3.
  • \n
  • t0proj (int):\nTime where the correlation matrix is inverted. Choosing t0proj=1 is strongly\ndiscouraged for O(a) improved theories, since the correctness of the procedure\ncannot be granted in this case. The default value is 2.
  • \n
  • basematrix (Corr):\nCorrelation matrix that is used to determine the eigenvectors of the\nlowest states based on a GEVP. basematrix is taken to be the Corr itself if\nis is not specified.
  • \n
\n\n
Notes
\n\n

We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving\nthe GEVP $$C(t) v_n(t, t_0) = \\lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \\equiv t_\\mathrm{proj}$\nand $t_0 \\equiv t_{0, \\mathrm{proj}}$. The target matrix is projected onto the subspace of the\nresulting eigenvectors $v_n, n=1,\\dots,N_\\mathrm{trunc}$ via\n$$G^\\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large\ncorrelation matrix and to remove some noise that is added by irrelevant operators.\nThis may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated\nbound $t_0 \\leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$.

\n", "signature": "(self, Ntrunc, tproj=3, t0proj=2, basematrix=None)", "funcdef": "def"}, "pyerrors.covobs": {"fullname": "pyerrors.covobs", "modulename": "pyerrors.covobs", "type": "module", "doc": "

\n"}, "pyerrors.covobs.Covobs": {"fullname": "pyerrors.covobs.Covobs", "modulename": "pyerrors.covobs", "qualname": "Covobs", "type": "class", "doc": "

\n"}, "pyerrors.covobs.Covobs.__init__": {"fullname": "pyerrors.covobs.Covobs.__init__", "modulename": "pyerrors.covobs", "qualname": "Covobs.__init__", "type": "function", "doc": "

Initialize Covobs object.

\n\n
Parameters
\n\n
    \n
  • mean (float):\nMean value of the new Obs
  • \n
  • cov (list or array):\n2d Covariance matrix or 1d diagonal entries
  • \n
  • name (str):\nidentifier for the covariance matrix
  • \n
  • pos (int):\nPosition of the variance belonging to mean in cov.\nIs taken to be 1 if cov is 0-dimensional
  • \n
  • grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
  • \n
\n", "signature": "(self, mean, cov, name, pos=None, grad=None)", "funcdef": "def"}, "pyerrors.covobs.Covobs.errsq": {"fullname": "pyerrors.covobs.Covobs.errsq", "modulename": "pyerrors.covobs", "qualname": "Covobs.errsq", "type": "function", "doc": "

Return the variance (= square of the error) of the Covobs

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.covobs.Covobs.cov": {"fullname": "pyerrors.covobs.Covobs.cov", "modulename": "pyerrors.covobs", "qualname": "Covobs.cov", "type": "variable", "doc": "

\n"}, "pyerrors.covobs.Covobs.grad": {"fullname": "pyerrors.covobs.Covobs.grad", "modulename": "pyerrors.covobs", "qualname": "Covobs.grad", "type": "variable", "doc": "

\n"}, "pyerrors.dirac": {"fullname": "pyerrors.dirac", "modulename": "pyerrors.dirac", "type": "module", "doc": "

\n"}, "pyerrors.dirac.epsilon_tensor": {"fullname": "pyerrors.dirac.epsilon_tensor", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor", "type": "function", "doc": "

Rank-3 epsilon tensor

\n\n

Based on https://codegolf.stackexchange.com/a/160375

\n", "signature": "(i, j, k)", "funcdef": "def"}, "pyerrors.dirac.epsilon_tensor_rank4": {"fullname": "pyerrors.dirac.epsilon_tensor_rank4", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor_rank4", "type": "function", "doc": "

Rank-4 epsilon tensor

\n\n

Extension of https://codegolf.stackexchange.com/a/160375

\n", "signature": "(i, j, k, o)", "funcdef": "def"}, "pyerrors.dirac.Grid_gamma": {"fullname": "pyerrors.dirac.Grid_gamma", "modulename": "pyerrors.dirac", "qualname": "Grid_gamma", "type": "function", "doc": "

Returns gamma matrix in Grid labeling.

\n", "signature": "(gamma_tag)", "funcdef": "def"}, "pyerrors.fits": {"fullname": "pyerrors.fits", "modulename": "pyerrors.fits", "type": "module", "doc": "

\n"}, "pyerrors.fits.Fit_result": {"fullname": "pyerrors.fits.Fit_result", "modulename": "pyerrors.fits", "qualname": "Fit_result", "type": "class", "doc": "

Represents fit results.

\n\n
Attributes
\n\n
    \n
  • fit_parameters (list):\nresults for the individual fit parameters,\nalso accessible via indices.
  • \n
\n", "bases": "collections.abc.Sequence"}, "pyerrors.fits.Fit_result.__init__": {"fullname": "pyerrors.fits.Fit_result.__init__", "modulename": "pyerrors.fits", "qualname": "Fit_result.__init__", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.fits.Fit_result.gamma_method": {"fullname": "pyerrors.fits.Fit_result.gamma_method", "modulename": "pyerrors.fits", "qualname": "Fit_result.gamma_method", "type": "function", "doc": "

Apply the gamma method to all fit parameters

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.fits.least_squares": {"fullname": "pyerrors.fits.least_squares", "modulename": "pyerrors.fits", "qualname": "least_squares", "type": "function", "doc": "

Performs a non-linear fit to y = func(x).

\n\n
Parameters
\n\n
    \n
  • x (list):\nlist of floats.
  • \n
  • y (list):\nlist of Obs.
  • \n
  • func (object):\nfit function, has to be of the form

    \n\n
    import autograd.numpy as anp\n\ndef func(a, x):\n   return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
    \n\n

    For multiple x values func can be of the form

    \n\n
    def func(a, x):\n   (x1, x2) = x\n   return a[0] * x1 ** 2 + a[1] * x2\n
    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • priors (list, optional):\npriors has to be a list with an entry for every parameter in the fit. The entries can either be\nObs (e.g. results from a previous fit) or strings containing a value and an error formatted like\n0.548(23), 500(40) or 0.5(0.4)
  • \n
  • silent (bool, optional):\nIf true all output to the console is omitted (default False).
  • \n
  • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for\nnon-linear fits with many parameters.
  • \n
  • method (str, optional):\ncan be used to choose an alternative method for the minimization of chisquare.\nThe possible methods are the ones which can be used for scipy.optimize.minimize and\nmigrad of iminuit. If no method is specified, Levenberg-Marquard is used.\nReliable alternatives are migrad, Powell and Nelder-Mead.
  • \n
  • correlated_fit (bool):\nIf True, use the full inverse covariance matrix in the definition of the chisquare cost function.\nFor details about how the covariance matrix is estimated see pyerrors.obs.covariance.\nIn practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix).\nThis procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning).\nAt the moment this option only works for prior==None and when no method is given.
  • \n
  • expected_chisquare (bool):\nIf True estimates the expected chisquare which is\ncorrected by effects caused by correlated input data (default False).
  • \n
  • resplot (bool):\nIf True, a plot which displays fit, data and residuals is generated (default False).
  • \n
  • qqplot (bool):\nIf True, a quantile-quantile plot of the fit result is generated (default False).
  • \n
\n", "signature": "(x, y, func, priors=None, silent=False, **kwargs)", "funcdef": "def"}, "pyerrors.fits.total_least_squares": {"fullname": "pyerrors.fits.total_least_squares", "modulename": "pyerrors.fits", "qualname": "total_least_squares", "type": "function", "doc": "

Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.

\n\n
Parameters
\n\n
    \n
  • x (list):\nlist of Obs, or a tuple of lists of Obs
  • \n
  • y (list):\nlist of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
  • \n
  • func (object):\nfunc has to be of the form

    \n\n
    import autograd.numpy as anp\n\ndef func(a, x):\n   return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
    \n\n

    For multiple x values func can be of the form

    \n\n
    def func(a, x):\n   (x1, x2) = x\n   return a[0] * x1 ** 2 + a[1] * x2\n
    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • silent (bool, optional):\nIf true all output to the console is omitted (default False).
  • \n
  • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for non-linear\nfits with many parameters.
  • \n
  • expected_chisquare (bool):\nIf true prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
  • \n
\n\n
Notes
\n\n

Based on the orthogonal distance regression module of scipy

\n", "signature": "(x, y, func, silent=False, **kwargs)", "funcdef": "def"}, "pyerrors.fits.fit_lin": {"fullname": "pyerrors.fits.fit_lin", "modulename": "pyerrors.fits", "qualname": "fit_lin", "type": "function", "doc": "

Performs a linear fit to y = n + m * x and returns two Obs n, m.

\n\n
Parameters
\n\n
    \n
  • x (list):\nCan either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.
  • \n
  • y (list):\nList of Obs, the dvalues of the Obs are used as yerror for the fit.
  • \n
\n", "signature": "(x, y, **kwargs)", "funcdef": "def"}, "pyerrors.fits.qqplot": {"fullname": "pyerrors.fits.qqplot", "modulename": "pyerrors.fits", "qualname": "qqplot", "type": "function", "doc": "

Generates a quantile-quantile plot of the fit result which can be used to\ncheck if the residuals of the fit are gaussian distributed.

\n", "signature": "(x, o_y, func, p)", "funcdef": "def"}, "pyerrors.fits.residual_plot": {"fullname": "pyerrors.fits.residual_plot", "modulename": "pyerrors.fits", "qualname": "residual_plot", "type": "function", "doc": "

Generates a plot which compares the fit to the data and displays the corresponding residuals

\n", "signature": "(x, y, func, fit_res)", "funcdef": "def"}, "pyerrors.fits.error_band": {"fullname": "pyerrors.fits.error_band", "modulename": "pyerrors.fits", "qualname": "error_band", "type": "function", "doc": "

Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta.

\n", "signature": "(x, func, beta)", "funcdef": "def"}, "pyerrors.fits.ks_test": {"fullname": "pyerrors.fits.ks_test", "modulename": "pyerrors.fits", "qualname": "ks_test", "type": "function", "doc": "

Performs a Kolmogorov\u2013Smirnov test for the p-values of all fit object.

\n\n
Parameters
\n\n
    \n
  • objects (list):\nList of fit results to include in the analysis (optional).
  • \n
\n", "signature": "(objects=None)", "funcdef": "def"}, "pyerrors.input": {"fullname": "pyerrors.input", "modulename": "pyerrors.input", "type": "module", "doc": "

pyerrors includes an input submodule in which input routines and parsers for the output of various numerical programs are contained.

\n\n

Jackknife samples

\n\n

For comparison with other analysis workflows pyerrors can also generate jackknife samples from an Obs object or import jackknife samples into an Obs object.\nSee pyerrors.obs.Obs.export_jackknife and pyerrors.obs.import_jackknife for details.

\n"}, "pyerrors.input.bdio": {"fullname": "pyerrors.input.bdio", "modulename": "pyerrors.input.bdio", "type": "module", "doc": "

\n"}, "pyerrors.input.bdio.read_ADerrors": {"fullname": "pyerrors.input.bdio.read_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "read_ADerrors", "type": "function", "doc": "

Extract generic MCMC data from a bdio file

\n\n

read_ADerrors requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path -- path to the bdio file
  • \n
  • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs)", "funcdef": "def"}, "pyerrors.input.bdio.write_ADerrors": {"fullname": "pyerrors.input.bdio.write_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "write_ADerrors", "type": "function", "doc": "

Write Obs to a bdio file according to ADerrors conventions

\n\n

read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path -- path to the bdio file
  • \n
  • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
\n", "signature": "(obs_list, file_path, bdio_path='./libbdio.so', **kwargs)", "funcdef": "def"}, "pyerrors.input.bdio.read_mesons": {"fullname": "pyerrors.input.bdio.read_mesons", "modulename": "pyerrors.input.bdio", "qualname": "read_mesons", "type": "function", "doc": "

Extract mesons data from a bdio file and return it as a dictionary

\n\n

The dictionary can be accessed with a tuple consisting of (type, source_position, kappa1, kappa2)

\n\n

read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path (str):\npath to the bdio file
  • \n
  • bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
  • start (int):\nThe first configuration to be read (default 1)
  • \n
  • stop (int):\nThe last configuration to be read (default None)
  • \n
  • step (int):\nFixed step size between two measurements (default 1)
  • \n
  • alternative_ensemble_name (str):\nManually overwrite ensemble name
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs)", "funcdef": "def"}, "pyerrors.input.bdio.read_dSdm": {"fullname": "pyerrors.input.bdio.read_dSdm", "modulename": "pyerrors.input.bdio", "qualname": "read_dSdm", "type": "function", "doc": "

Extract dSdm data from a bdio file and return it as a dictionary

\n\n

The dictionary can be accessed with a tuple consisting of (type, kappa)

\n\n

read_dSdm requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path (str):\npath to the bdio file
  • \n
  • bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
  • start (int):\nThe first configuration to be read (default 1)
  • \n
  • stop (int):\nThe last configuration to be read (default None)
  • \n
  • step (int):\nFixed step size between two measurements (default 1)
  • \n
  • alternative_ensemble_name (str):\nManually overwrite ensemble name
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs)", "funcdef": "def"}, "pyerrors.input.dobs": {"fullname": "pyerrors.input.dobs", "modulename": "pyerrors.input.dobs", "type": "module", "doc": "

\n"}, "pyerrors.input.dobs.create_pobs_string": {"fullname": "pyerrors.input.dobs.create_pobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_pobs_string", "type": "function", "doc": "

Export a list of Obs or structures containing Obs to an xml string\naccording to the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
  • \n
\n", "signature": "(obsl, name, spec='', origin='', symbol=[], enstag=None)", "funcdef": "def"}, "pyerrors.input.dobs.write_pobs": {"fullname": "pyerrors.input.dobs.write_pobs", "modulename": "pyerrors.input.dobs", "qualname": "write_pobs", "type": "function", "doc": "

Export a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
  • \n
  • gz (bool):\nIf True, the output is a gzipped xml. If False, the output is an xml file.
  • \n
\n", "signature": "(\n obsl,\n fname,\n name,\n spec='',\n origin='',\n symbol=[],\n enstag=None,\n gz=True\n)", "funcdef": "def"}, "pyerrors.input.dobs.read_pobs": {"fullname": "pyerrors.input.dobs.read_pobs", "modulename": "pyerrors.input.dobs", "qualname": "read_pobs", "type": "function", "doc": "

Import a list of Obs from an xml.gz file in the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • separatior_insertion (str or int):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nNone (default): Replica names remain unchanged.
  • \n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=None)", "funcdef": "def"}, "pyerrors.input.dobs.import_dobs_string": {"fullname": "pyerrors.input.dobs.import_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "import_dobs_string", "type": "function", "doc": "

Import a list of Obs from a string in the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • content (str):\nXML string containing the data
  • \n
  • noemtpy (bool):\nIf True, ensembles with no contribution to the Obs are not included.\nIf False, ensembles are included as written in the file, possibly with vanishing entries.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
  • \n
\n", "signature": "(content, noempty=False, full_output=False, separator_insertion=True)", "funcdef": "def"}, "pyerrors.input.dobs.read_dobs": {"fullname": "pyerrors.input.dobs.read_dobs", "modulename": "pyerrors.input.dobs", "qualname": "read_dobs", "type": "function", "doc": "

Import a list of Obs from an xml.gz file in the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • noemtpy (bool):\nIf True, ensembles with no contribution to the Obs are not included.\nIf False, ensembles are included as written in the file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes XML file.
  • \n
  • separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
  • \n
\n", "signature": "(\n fname,\n noempty=False,\n full_output=False,\n gz=True,\n separator_insertion=True\n)", "funcdef": "def"}, "pyerrors.input.dobs.create_dobs_string": {"fullname": "pyerrors.input.dobs.create_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_dobs_string", "type": "function", "doc": "

Generate the string for the export of a list of Obs or structures containing Obs\nto a .xml.gz file according to the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically. The separator |is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • who (str):\nProvide the name of the person that exports the data.
  • \n
  • enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
  • \n
\n", "signature": "(\n obsl,\n name,\n spec='dobs v1.0',\n origin='',\n symbol=[],\n who=None,\n enstags={}\n)", "funcdef": "def"}, "pyerrors.input.dobs.write_dobs": {"fullname": "pyerrors.input.dobs.write_dobs", "modulename": "pyerrors.input.dobs", "qualname": "write_dobs", "type": "function", "doc": "

Export a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • who (str):\nProvide the name of the person that exports the data.
  • \n
  • enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
  • \n
  • gz (bool):\nIf True, the output is a gzipped XML. If False, the output is a XML file.
  • \n
\n", "signature": "(\n obsl,\n fname,\n name,\n spec='dobs v1.0',\n origin='',\n symbol=[],\n who=None,\n enstags={},\n gz=True\n)", "funcdef": "def"}, "pyerrors.input.hadrons": {"fullname": "pyerrors.input.hadrons", "modulename": "pyerrors.input.hadrons", "type": "module", "doc": "

\n"}, "pyerrors.input.hadrons.read_meson_hd5": {"fullname": "pyerrors.input.hadrons.read_meson_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_meson_hd5", "type": "function", "doc": "

Read hadrons meson hdf5 file and extract the meson labeled 'meson'

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • meson (str):\nlabel of the meson to be extracted, standard value meson_0 which\ncorresponds to the pseudoscalar pseudoscalar two-point function.
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n", "signature": "(path, filestem, ens_id, meson='meson_0', idl=None)", "funcdef": "def"}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"fullname": "pyerrors.input.hadrons.read_DistillationContraction_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_DistillationContraction_hd5", "type": "function", "doc": "

Read hadrons DistillationContraction hdf5 files in given directory structure

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the directories to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • diagrams (list):\nList of strings of the diagrams to extract, e.g. [\"direct\", \"box\", \"cross\"].
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n", "signature": "(path, ens_id, diagrams=['direct'], idl=None)", "funcdef": "def"}, "pyerrors.input.hadrons.Npr_matrix": {"fullname": "pyerrors.input.hadrons.Npr_matrix", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix", "type": "class", "doc": "

ndarray(shape, dtype=float, buffer=None, offset=0,\n strides=None, order=None)

\n\n

An array object represents a multidimensional, homogeneous array\nof fixed-size items. An associated data-type object describes the\nformat of each element in the array (its byte-order, how many bytes it\noccupies in memory, whether it is an integer, a floating point number,\nor something else, etc.)

\n\n

Arrays should be constructed using array, zeros or empty (refer\nto the See Also section below). The parameters given here refer to\na low-level method (ndarray(...)) for instantiating an array.

\n\n

For more information, refer to the numpy module and examine the\nmethods and attributes of an array.

\n\n
Parameters
\n\n
    \n
  • (for the __new__ method; see Notes below)
  • \n
  • shape (tuple of ints):\nShape of created array.
  • \n
  • dtype (data-type, optional):\nAny object that can be interpreted as a numpy data type.
  • \n
  • buffer (object exposing buffer interface, optional):\nUsed to fill the array with data.
  • \n
  • offset (int, optional):\nOffset of array data in buffer.
  • \n
  • strides (tuple of ints, optional):\nStrides of data in memory.
  • \n
  • order ({'C', 'F'}, optional):\nRow-major (C-style) or column-major (Fortran-style) order.
  • \n
\n\n
Attributes
\n\n
    \n
  • T (ndarray):\nTranspose of the array.
  • \n
  • data (buffer):\nThe array's elements, in memory.
  • \n
  • dtype (dtype object):\nDescribes the format of the elements in the array.
  • \n
  • flags (dict):\nDictionary containing information related to memory use, e.g.,\n'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
  • \n
  • flat (numpy.flatiter object):\nFlattened version of the array as an iterator. The iterator\nallows assignments, e.g., x.flat = 3 (See ndarray.flat for\nassignment examples; TODO).
  • \n
  • imag (ndarray):\nImaginary part of the array.
  • \n
  • real (ndarray):\nReal part of the array.
  • \n
  • size (int):\nNumber of elements in the array.
  • \n
  • itemsize (int):\nThe memory use of each array element in bytes.
  • \n
  • nbytes (int):\nThe total number of bytes required to store the array data,\ni.e., itemsize * size.
  • \n
  • ndim (int):\nThe array's number of dimensions.
  • \n
  • shape (tuple of ints):\nShape of the array.
  • \n
  • strides (tuple of ints):\nThe step-size required to move from one element to the next in\nmemory. For example, a contiguous (3, 4) array of type\nint16 in C-order has strides (8, 2). This implies that\nto move from element to element in memory requires jumps of 2 bytes.\nTo move from row-to-row, one needs to jump 8 bytes at a time\n(2 * 4).
  • \n
  • ctypes (ctypes object):\nClass containing properties of the array needed for interaction\nwith ctypes.
  • \n
  • base (ndarray):\nIf the array is a view into another array, that array is its base\n(unless that array is also a view). The base array is where the\narray data is actually stored.
  • \n
\n\n
See Also
\n\n

array: Construct an array.
\nzeros: Create an array, each element of which is zero.
\nempty: Create an array, but leave its allocated memory unchanged (i.e.,\nit contains \"garbage\").
\ndtype: Create a data-type.
\nnumpy.typing.NDArray: An ndarray alias :term:generic <generic type>\nw.r.t. its dtype.type <numpy.dtype.type>.

\n\n
Notes
\n\n

There are two modes of creating an array using __new__:

\n\n
    \n
  1. If buffer is None, then only shape, dtype, and order\nare used.
  2. \n
  3. If buffer is an object exposing the buffer interface, then\nall keywords are interpreted.
  4. \n
\n\n

No __init__ method is needed because the array is fully initialized\nafter the __new__ method.

\n\n
Examples
\n\n

These examples illustrate the low-level ndarray constructor. Refer\nto the See Also section above for easier ways of constructing an\nndarray.

\n\n

First mode, buffer is None:

\n\n
>>> np.ndarray(shape=(2,2), dtype=float, order='F')\narray([[0.0e+000, 0.0e+000], # random\n       [     nan, 2.5e-323]])\n
\n\n

Second mode:

\n\n
>>> np.ndarray((2,), buffer=np.array([1,2,3]),\n...            offset=np.int_().itemsize,\n...            dtype=int) # offset = 1*itemsize, i.e. skip first element\narray([2, 3])\n
\n", "bases": "numpy.ndarray"}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"fullname": "pyerrors.input.hadrons.Npr_matrix.__init__", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix.__init__", "type": "function", "doc": "

\n", "signature": "()", "funcdef": "def"}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"fullname": "pyerrors.input.hadrons.Npr_matrix.g5H", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix.g5H", "type": "variable", "doc": "

Gamma_5 hermitean conjugate

\n\n

Uses the fact that the propagator is gamma5 hermitean, so just the\nin and out momenta of the propagator are exchanged.

\n"}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"fullname": "pyerrors.input.hadrons.read_ExternalLeg_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_ExternalLeg_hd5", "type": "function", "doc": "

Read hadrons ExternalLeg hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None)", "funcdef": "def"}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"fullname": "pyerrors.input.hadrons.read_Bilinear_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Bilinear_hd5", "type": "function", "doc": "

Read hadrons Bilinear hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None)", "funcdef": "def"}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"fullname": "pyerrors.input.hadrons.read_Fourquark_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Fourquark_hd5", "type": "function", "doc": "

Read hadrons FourquarkFullyConnected hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
  • vertices (list):\nVertex functions to be extracted.
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None, vertices=['VA', 'AV'])", "funcdef": "def"}, "pyerrors.input.json": {"fullname": "pyerrors.input.json", "modulename": "pyerrors.input.json", "type": "module", "doc": "

\n"}, "pyerrors.input.json.create_json_string": {"fullname": "pyerrors.input.json.create_json_string", "modulename": "pyerrors.input.json", "qualname": "create_json_string", "type": "function", "doc": "

Generate the string for the export of a list of Obs or structures containing Obs\nto a .json(.gz) file

\n\n
Parameters
\n\n
    \n
  • ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
\n", "signature": "(ol, description='', indent=1)", "funcdef": "def"}, "pyerrors.input.json.dump_to_json": {"fullname": "pyerrors.input.json.dump_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_to_json", "type": "function", "doc": "

Export a list of Obs or structures containing Obs to a .json(.gz) file

\n\n
Parameters
\n\n
    \n
  • ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
  • gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
  • \n
\n", "signature": "(ol, fname, description='', indent=1, gz=True)", "funcdef": "def"}, "pyerrors.input.json.import_json_string": {"fullname": "pyerrors.input.json.import_json_string", "modulename": "pyerrors.input.json", "qualname": "import_json_string", "type": "function", "doc": "

Reconstruct a list of Obs or structures containing Obs from a json string.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.

\n\n
Parameters
\n\n
    \n
  • json_string (str):\njson string containing the data.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
\n", "signature": "(json_string, verbose=True, full_output=False)", "funcdef": "def"}, "pyerrors.input.json.load_json": {"fullname": "pyerrors.input.json.load_json", "modulename": "pyerrors.input.json", "qualname": "load_json", "type": "function", "doc": "

Import a list of Obs or structures containing Obs from a .json(.gz) file.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False)", "funcdef": "def"}, "pyerrors.input.json.dump_dict_to_json": {"fullname": "pyerrors.input.json.dump_dict_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_dict_to_json", "type": "function", "doc": "

Export a dict of Obs or structures containing Obs to a .json(.gz) file

\n\n
Parameters
\n\n
    \n
  • od (dict):\nDict of JSON valid structures and objects that will be exported.\nAt the moment, these objects can be either of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
  • reps (str):\nSpecify the structure of the placeholder in exported dict to be reps[0-9]+.
  • \n
  • gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
  • \n
\n", "signature": "(od, fname, description='', indent=1, reps='DICTOBS', gz=True)", "funcdef": "def"}, "pyerrors.input.json.load_json_dict": {"fullname": "pyerrors.input.json.load_json_dict", "modulename": "pyerrors.input.json", "qualname": "load_json_dict", "type": "function", "doc": "

Import a dict of Obs or structures containing Obs from a .json(.gz) file.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
  • reps (str):\nSpecify the structure of the placeholder in imported dict to be reps[0-9]+.
  • \n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False, reps='DICTOBS')", "funcdef": "def"}, "pyerrors.input.misc": {"fullname": "pyerrors.input.misc", "modulename": "pyerrors.input.misc", "type": "module", "doc": "

\n"}, "pyerrors.input.misc.read_pbp": {"fullname": "pyerrors.input.misc.read_pbp", "modulename": "pyerrors.input.misc", "qualname": "read_pbp", "type": "function", "doc": "

Read pbp format from given folder structure. Returns a list of length nrw

\n\n
Parameters
\n\n
    \n
  • r_start (list):\nlist which contains the first config to be read for each replicum
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum
  • \n
\n", "signature": "(path, prefix, **kwargs)", "funcdef": "def"}, "pyerrors.input.openQCD": {"fullname": "pyerrors.input.openQCD", "modulename": "pyerrors.input.openQCD", "type": "module", "doc": "

\n"}, "pyerrors.input.openQCD.read_rwms": {"fullname": "pyerrors.input.openQCD.read_rwms", "modulename": "pyerrors.input.openQCD", "qualname": "read_rwms", "type": "function", "doc": "

Read rwms format from given folder structure. Returns a list of length nrw

\n\n
Parameters
\n\n
    \n
  • path (str):\npath that contains the data files
  • \n
  • prefix (str):\nall files in path that start with prefix are considered as input files.\nMay be used together postfix to consider only special file endings.\nPrefix is ignored, if the keyword 'files' is used.
  • \n
  • version (str):\nversion of openQCD, default 2.0
  • \n
  • names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum
  • \n
  • r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
  • \n
  • postfix (str):\npostfix of the file to read, e.g. '.ms1' for openQCD-files
  • \n
  • files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
  • \n
  • print_err (bool):\nPrint additional information that is useful for debugging.
  • \n
\n", "signature": "(path, prefix, version='2.0', names=None, **kwargs)", "funcdef": "def"}, "pyerrors.input.openQCD.extract_t0": {"fullname": "pyerrors.input.openQCD.extract_t0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_t0", "type": "function", "doc": "

Extract t0 from given .ms.dat files. Returns t0 as Obs.

\n\n

It is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t^2 - 0.3\nis fitted with a linear function\nfrom which the exact root is extracted.

\n\n

It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to .ms.dat files
  • \n
  • prefix (str):\nEnsemble prefix
  • \n
  • dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
  • \n
  • xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
  • \n
  • spatial_extent (int):\nspatial extent of the lattice, required for normalization.
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
  • \n
  • plaquette (bool):\nIf true extract the plaquette estimate of t0 instead.
  • \n
  • names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
  • \n
  • files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
  • \n
  • assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
  • \n
\n", "signature": "(path, prefix, dtr_read, xmin, spatial_extent, fit_range=5, **kwargs)", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop": {"fullname": "pyerrors.input.openQCD.read_qtop", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop", "type": "function", "doc": "

Read the topologial charge based on openQCD gradient flow measurements.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath of the measurement files
  • \n
  • prefix (str):\nprefix of the measurement files, e.g. _id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files.
  • \n
  • c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
  • \n
  • dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
  • \n
  • steps (int):\n(optional) Distance between two configurations in units of trajectories /\ncycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
  • \n
  • version (str):\nEither openQCD or sfqcd, depending on the data.
  • \n
  • L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
  • \n
  • Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
  • \n
  • integer_charge (bool):\nIf True, the charge is rounded towards the nearest integer on each config.
  • \n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, version='openQCD', **kwargs)", "funcdef": "def"}, "pyerrors.input.openQCD.qtop_projection": {"fullname": "pyerrors.input.openQCD.qtop_projection", "modulename": "pyerrors.input.openQCD", "qualname": "qtop_projection", "type": "function", "doc": "

Returns the projection to the topological charge sector defined by target.

\n\n
Parameters
\n\n
    \n
  • path (Obs):\nTopological charge.
  • \n
  • target (int):\nSpecifies the topological sector to be reweighted to (default 0)
  • \n
\n", "signature": "(qtop, target=0)", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop_sector": {"fullname": "pyerrors.input.openQCD.read_qtop_sector", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop_sector", "type": "function", "doc": "

Constructs reweighting factors to a specified topological sector.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath of the measurement files
  • \n
  • prefix (str):\nprefix of the measurement files, e.g. _id0_r0.ms.dat
  • \n
  • c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L
  • \n
  • target (int):\nSpecifies the topological sector to be reweighted to (default 0)
  • \n
  • dtr_cnfg (int):\n(optional) parameter that specifies the number of trajectories\nbetween two configs.\nif it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
  • \n
  • steps (int):\n(optional) Distance between two configurations in units of trajectories /\ncycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
  • \n
  • version (str):\nversion string of the openQCD (sfqcd) version used to create\nthe ensemble. Default is 2.0. May also be set to sfqcd.
  • \n
  • L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
  • \n
  • r_start (list):\noffset of the first ensemble, making it easier to match\nlater on with other Obs
  • \n
  • r_stop (list):\nlast configurations that need to be read (per replicum)
  • \n
  • files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
  • \n
  • Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
  • \n
\n", "signature": "(path, prefix, c, target=0, **kwargs)", "funcdef": "def"}, "pyerrors.input.sfcf": {"fullname": "pyerrors.input.sfcf", "modulename": "pyerrors.input.sfcf", "type": "module", "doc": "

\n"}, "pyerrors.input.sfcf.read_sfcf": {"fullname": "pyerrors.input.sfcf.read_sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf", "type": "function", "doc": "

Read sfcf c format from given folder structure.

\n\n
Parameters
\n\n
    \n
  • quarks (str):\nLabel of the quarks used in the sfcf input file. e.g. \"quark quark\"\nfor version 0.0 this does NOT need to be given with the typical \" - \"\nthat is present in the output file,\nthis is done automatically for this version
  • \n
  • noffset (int):\nOffset of the source (only relevant when wavefunctions are used)
  • \n
  • wf (int):\nID of wave function
  • \n
  • wf2 (int):\nID of the second wavefunction\n(only relevant for boundary-to-boundary correlation functions)
  • \n
  • im (bool):\nif True, read imaginary instead of real part\nof the correlation function.
  • \n
  • corr_type (str):\nchange between bi (boundary - inner) (default) bib (boundary - inner - boundary) and bb (boundary - boundary)\ncorrelator types
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
  • \n
  • ens_name (str):\nreplaces the name of the ensemble
  • \n
  • version (str):\nversion of SFCF, with which the measurement was done.\nif the compact output option (-c) was specified,\nappend a \"c\" to the version (e.g. \"1.0c\")\nif the append output option (-a) was specified,\nappend an \"a\" to the version
  • \n
  • cfg_separator (str):\nString that separates the ensemble identifier from the configuration number (default 'n').
  • \n
  • replica (list):\nlist of replica to be read, default is all
  • \n
  • files (list):\nlist of files to be read per replica, default is all.\nfor non-compact output format, hand the folders to be read here.
  • \n
  • check_configs:: list of list of supposed configs, eg. [range(1,1000)]\nfor one replicum with 1000 configs
  • \n
\n", "signature": "(\n path,\n prefix,\n name,\n quarks='.*',\n corr_type='bi',\n noffset=0,\n wf=0,\n wf2=0,\n version='1.0c',\n cfg_separator='n',\n **kwargs\n)", "funcdef": "def"}, "pyerrors.input.utils": {"fullname": "pyerrors.input.utils", "modulename": "pyerrors.input.utils", "type": "module", "doc": "

Utilities for the input

\n"}, "pyerrors.input.utils.check_idl": {"fullname": "pyerrors.input.utils.check_idl", "modulename": "pyerrors.input.utils", "qualname": "check_idl", "type": "function", "doc": "

Checks if list of configurations is contained in an idl

\n\n
Parameters
\n\n
    \n
  • idl (range or list):\nidl of the current replicum
  • \n
  • che (list):\nlist of configurations to be checked against
  • \n
\n", "signature": "(idl, che)", "funcdef": "def"}, "pyerrors.linalg": {"fullname": "pyerrors.linalg", "modulename": "pyerrors.linalg", "type": "module", "doc": "

\n"}, "pyerrors.linalg.matmul": {"fullname": "pyerrors.linalg.matmul", "modulename": "pyerrors.linalg", "qualname": "matmul", "type": "function", "doc": "

Matrix multiply all operands.

\n\n
Parameters
\n\n
    \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
  • This implementation is faster compared to standard multiplication via the @ operator.
  • \n
\n", "signature": "(*operands)", "funcdef": "def"}, "pyerrors.linalg.jack_matmul": {"fullname": "pyerrors.linalg.jack_matmul", "modulename": "pyerrors.linalg", "qualname": "jack_matmul", "type": "function", "doc": "

Matrix multiply both operands making use of the jackknife approximation.

\n\n
Parameters
\n\n
    \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
  • For large matrices this is considerably faster compared to matmul.
  • \n
\n", "signature": "(*operands)", "funcdef": "def"}, "pyerrors.linalg.einsum": {"fullname": "pyerrors.linalg.einsum", "modulename": "pyerrors.linalg", "qualname": "einsum", "type": "function", "doc": "

Wrapper for numpy.einsum

\n\n
Parameters
\n\n
    \n
  • subscripts (str):\nSubscripts for summation (see numpy documentation for details)
  • \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
\n", "signature": "(subscripts, *operands)", "funcdef": "def"}, "pyerrors.linalg.inv": {"fullname": "pyerrors.linalg.inv", "modulename": "pyerrors.linalg", "qualname": "inv", "type": "function", "doc": "

Inverse of Obs or CObs valued matrices.

\n", "signature": "(x)", "funcdef": "def"}, "pyerrors.linalg.cholesky": {"fullname": "pyerrors.linalg.cholesky", "modulename": "pyerrors.linalg", "qualname": "cholesky", "type": "function", "doc": "

Cholesky decomposition of Obs valued matrices.

\n", "signature": "(x)", "funcdef": "def"}, "pyerrors.linalg.det": {"fullname": "pyerrors.linalg.det", "modulename": "pyerrors.linalg", "qualname": "det", "type": "function", "doc": "

Determinant of Obs valued matrices.

\n", "signature": "(x)", "funcdef": "def"}, "pyerrors.linalg.eigh": {"fullname": "pyerrors.linalg.eigh", "modulename": "pyerrors.linalg", "qualname": "eigh", "type": "function", "doc": "

Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.

\n", "signature": "(obs, **kwargs)", "funcdef": "def"}, "pyerrors.linalg.eig": {"fullname": "pyerrors.linalg.eig", "modulename": "pyerrors.linalg", "qualname": "eig", "type": "function", "doc": "

Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig.

\n", "signature": "(obs, **kwargs)", "funcdef": "def"}, "pyerrors.linalg.pinv": {"fullname": "pyerrors.linalg.pinv", "modulename": "pyerrors.linalg", "qualname": "pinv", "type": "function", "doc": "

Computes the Moore-Penrose pseudoinverse of a matrix of Obs.

\n", "signature": "(obs, **kwargs)", "funcdef": "def"}, "pyerrors.linalg.svd": {"fullname": "pyerrors.linalg.svd", "modulename": "pyerrors.linalg", "qualname": "svd", "type": "function", "doc": "

Computes the singular value decomposition of a matrix of Obs.

\n", "signature": "(obs, **kwargs)", "funcdef": "def"}, "pyerrors.misc": {"fullname": "pyerrors.misc", "modulename": "pyerrors.misc", "type": "module", "doc": "

\n"}, "pyerrors.misc.dump_object": {"fullname": "pyerrors.misc.dump_object", "modulename": "pyerrors.misc", "qualname": "dump_object", "type": "function", "doc": "

Dump object into pickle file.

\n\n
Parameters
\n\n
    \n
  • obj (object):\nobject to be saved in the pickle file
  • \n
  • name (str):\nname of the file
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n", "signature": "(obj, name, **kwargs)", "funcdef": "def"}, "pyerrors.misc.load_object": {"fullname": "pyerrors.misc.load_object", "modulename": "pyerrors.misc", "qualname": "load_object", "type": "function", "doc": "

Load object from pickle file.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the file
  • \n
\n", "signature": "(path)", "funcdef": "def"}, "pyerrors.misc.pseudo_Obs": {"fullname": "pyerrors.misc.pseudo_Obs", "modulename": "pyerrors.misc", "qualname": "pseudo_Obs", "type": "function", "doc": "

Generate an Obs object with given value, dvalue and name for test purposes

\n\n
Parameters
\n\n
    \n
  • value (float):\ncentral value of the Obs to be generated.
  • \n
  • dvalue (float):\nerror of the Obs to be generated.
  • \n
  • name (str):\nname of the ensemble for which the Obs is to be generated.
  • \n
  • samples (int):\nnumber of samples for the Obs (default 1000).
  • \n
\n", "signature": "(value, dvalue, name, samples=1000)", "funcdef": "def"}, "pyerrors.misc.gen_correlated_data": {"fullname": "pyerrors.misc.gen_correlated_data", "modulename": "pyerrors.misc", "qualname": "gen_correlated_data", "type": "function", "doc": "

Generate observables with given covariance and autocorrelation times.

\n\n
Parameters
\n\n
    \n
  • means (list):\nlist containing the mean value of each observable.
  • \n
  • cov (numpy.ndarray):\ncovariance matrix for the data to be generated.
  • \n
  • name (str):\nensemble name for the data to be geneated.
  • \n
  • tau (float or list):\ncan either be a real number or a list with an entry for\nevery dataset.
  • \n
  • samples (int):\nnumber of samples to be generated for each observable.
  • \n
\n", "signature": "(means, cov, name, tau=0.5, samples=1000)", "funcdef": "def"}, "pyerrors.mpm": {"fullname": "pyerrors.mpm", "modulename": "pyerrors.mpm", "type": "module", "doc": "

\n"}, "pyerrors.mpm.matrix_pencil_method": {"fullname": "pyerrors.mpm.matrix_pencil_method", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method", "type": "function", "doc": "

Matrix pencil method to extract k energy levels from data

\n\n

Implementation of the matrix pencil method based on\neq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)

\n\n
Parameters
\n\n
    \n
  • data (list):\ncan be a list of Obs for the analysis of a single correlator, or a list of lists\nof Obs if several correlators are to analyzed at once.
  • \n
  • k (int):\nNumber of states to extract (default 1).
  • \n
  • p (int):\nmatrix pencil parameter which filters noise. The optimal value is expected between\nlen(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is\nto len(data)/2 but could possibly suppress more noise (default len(data)//2).
  • \n
\n", "signature": "(corrs, k=1, p=None, **kwargs)", "funcdef": "def"}, "pyerrors.obs": {"fullname": "pyerrors.obs", "modulename": "pyerrors.obs", "type": "module", "doc": "

\n"}, "pyerrors.obs.Obs": {"fullname": "pyerrors.obs.Obs", "modulename": "pyerrors.obs", "qualname": "Obs", "type": "class", "doc": "

Class for a general observable.

\n\n

Instances of Obs are the basic objects of a pyerrors error analysis.\nThey are initialized with a list which contains arrays of samples for\ndifferent ensembles/replica and another list of same length which contains\nthe names of the ensembles/replica. Mathematical operations can be\nperformed on instances. The result is another instance of Obs. The error of\nan instance can be computed with the gamma_method. Also contains additional\nmethods for output and visualization of the error calculation.

\n\n
Attributes
\n\n
    \n
  • S_global (float):\nStandard value for S (default 2.0)
  • \n
  • S_dict (dict):\nDictionary for S values. If an entry for a given ensemble\nexists this overwrites the standard value for that ensemble.
  • \n
  • tau_exp_global (float):\nStandard value for tau_exp (default 0.0)
  • \n
  • tau_exp_dict (dict):\nDictionary for tau_exp values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
  • \n
  • N_sigma_global (float):\nStandard value for N_sigma (default 1.0)
  • \n
  • N_sigma_dict (dict):\nDictionary for N_sigma values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
  • \n
\n"}, "pyerrors.obs.Obs.__init__": {"fullname": "pyerrors.obs.Obs.__init__", "modulename": "pyerrors.obs", "qualname": "Obs.__init__", "type": "function", "doc": "

Initialize Obs object.

\n\n
Parameters
\n\n
    \n
  • samples (list):\nlist of numpy arrays containing the Monte Carlo samples
  • \n
  • names (list):\nlist of strings labeling the individual samples
  • \n
  • idl (list, optional):\nlist of ranges or lists on which the samples are defined
  • \n
\n", "signature": "(self, samples, names, idl=None, **kwargs)", "funcdef": "def"}, "pyerrors.obs.Obs.S_global": {"fullname": "pyerrors.obs.Obs.S_global", "modulename": "pyerrors.obs", "qualname": "Obs.S_global", "type": "variable", "doc": "

\n", "default_value": " = 2.0"}, "pyerrors.obs.Obs.S_dict": {"fullname": "pyerrors.obs.Obs.S_dict", "modulename": "pyerrors.obs", "qualname": "Obs.S_dict", "type": "variable", "doc": "

\n", "default_value": " = {}"}, "pyerrors.obs.Obs.tau_exp_global": {"fullname": "pyerrors.obs.Obs.tau_exp_global", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_global", "type": "variable", "doc": "

\n", "default_value": " = 0.0"}, "pyerrors.obs.Obs.tau_exp_dict": {"fullname": "pyerrors.obs.Obs.tau_exp_dict", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_dict", "type": "variable", "doc": "

\n", "default_value": " = {}"}, "pyerrors.obs.Obs.N_sigma_global": {"fullname": "pyerrors.obs.Obs.N_sigma_global", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_global", "type": "variable", "doc": "

\n", "default_value": " = 1.0"}, "pyerrors.obs.Obs.N_sigma_dict": {"fullname": "pyerrors.obs.Obs.N_sigma_dict", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_dict", "type": "variable", "doc": "

\n", "default_value": " = {}"}, "pyerrors.obs.Obs.filter_eps": {"fullname": "pyerrors.obs.Obs.filter_eps", "modulename": "pyerrors.obs", "qualname": "Obs.filter_eps", "type": "variable", "doc": "

\n", "default_value": " = 1e-10"}, "pyerrors.obs.Obs.names": {"fullname": "pyerrors.obs.Obs.names", "modulename": "pyerrors.obs", "qualname": "Obs.names", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.shape": {"fullname": "pyerrors.obs.Obs.shape", "modulename": "pyerrors.obs", "qualname": "Obs.shape", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.r_values": {"fullname": "pyerrors.obs.Obs.r_values", "modulename": "pyerrors.obs", "qualname": "Obs.r_values", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.deltas": {"fullname": "pyerrors.obs.Obs.deltas", "modulename": "pyerrors.obs", "qualname": "Obs.deltas", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.N": {"fullname": "pyerrors.obs.Obs.N", "modulename": "pyerrors.obs", "qualname": "Obs.N", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.is_merged": {"fullname": "pyerrors.obs.Obs.is_merged", "modulename": "pyerrors.obs", "qualname": "Obs.is_merged", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.idl": {"fullname": "pyerrors.obs.Obs.idl", "modulename": "pyerrors.obs", "qualname": "Obs.idl", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.ddvalue": {"fullname": "pyerrors.obs.Obs.ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.ddvalue", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.reweighted": {"fullname": "pyerrors.obs.Obs.reweighted", "modulename": "pyerrors.obs", "qualname": "Obs.reweighted", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.tag": {"fullname": "pyerrors.obs.Obs.tag", "modulename": "pyerrors.obs", "qualname": "Obs.tag", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.value": {"fullname": "pyerrors.obs.Obs.value", "modulename": "pyerrors.obs", "qualname": "Obs.value", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.dvalue": {"fullname": "pyerrors.obs.Obs.dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.dvalue", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_names": {"fullname": "pyerrors.obs.Obs.e_names", "modulename": "pyerrors.obs", "qualname": "Obs.e_names", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.cov_names": {"fullname": "pyerrors.obs.Obs.cov_names", "modulename": "pyerrors.obs", "qualname": "Obs.cov_names", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.mc_names": {"fullname": "pyerrors.obs.Obs.mc_names", "modulename": "pyerrors.obs", "qualname": "Obs.mc_names", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_content": {"fullname": "pyerrors.obs.Obs.e_content", "modulename": "pyerrors.obs", "qualname": "Obs.e_content", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.covobs": {"fullname": "pyerrors.obs.Obs.covobs", "modulename": "pyerrors.obs", "qualname": "Obs.covobs", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.gamma_method": {"fullname": "pyerrors.obs.Obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "Obs.gamma_method", "type": "function", "doc": "

Estimate the error and related properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
  • \n
  • tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
  • \n
  • N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
  • \n
  • fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
  • \n
\n", "signature": "(self, **kwargs)", "funcdef": "def"}, "pyerrors.obs.Obs.details": {"fullname": "pyerrors.obs.Obs.details", "modulename": "pyerrors.obs", "qualname": "Obs.details", "type": "function", "doc": "

Output detailed properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • ens_content (bool):\nprint details about the ensembles and replica if true.
  • \n
\n", "signature": "(self, ens_content=True)", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero_within_error": {"fullname": "pyerrors.obs.Obs.is_zero_within_error", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero_within_error", "type": "function", "doc": "

Checks whether the observable is zero within 'sigma' standard errors.

\n\n
Parameters
\n\n
    \n
  • sigma (int):\nNumber of standard errors used for the check.
  • \n
  • Works only properly when the gamma method was run.
  • \n
\n", "signature": "(self, sigma=1)", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero": {"fullname": "pyerrors.obs.Obs.is_zero", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero", "type": "function", "doc": "

Checks whether the observable is zero within a given tolerance.

\n\n
Parameters
\n\n
    \n
  • atol (float):\nAbsolute tolerance (for details see numpy documentation).
  • \n
\n", "signature": "(self, atol=1e-10)", "funcdef": "def"}, "pyerrors.obs.Obs.plot_tauint": {"fullname": "pyerrors.obs.Obs.plot_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.plot_tauint", "type": "function", "doc": "

Plot integrated autocorrelation time for each ensemble.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None)", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rho": {"fullname": "pyerrors.obs.Obs.plot_rho", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rho", "type": "function", "doc": "

Plot normalized autocorrelation function time for each ensemble.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None)", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rep_dist": {"fullname": "pyerrors.obs.Obs.plot_rep_dist", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rep_dist", "type": "function", "doc": "

Plot replica distribution for each ensemble with more than one replicum.

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.plot_history": {"fullname": "pyerrors.obs.Obs.plot_history", "modulename": "pyerrors.obs", "qualname": "Obs.plot_history", "type": "function", "doc": "

Plot derived Monte Carlo history for each ensemble

\n\n
Parameters
\n\n
    \n
  • expand (bool):\nshow expanded history for irregular Monte Carlo chains (default: True).
  • \n
\n", "signature": "(self, expand=True)", "funcdef": "def"}, "pyerrors.obs.Obs.plot_piechart": {"fullname": "pyerrors.obs.Obs.plot_piechart", "modulename": "pyerrors.obs", "qualname": "Obs.plot_piechart", "type": "function", "doc": "

Plot piechart which shows the fractional contribution of each\nensemble to the error and returns a dictionary containing the fractions.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None)", "funcdef": "def"}, "pyerrors.obs.Obs.dump": {"fullname": "pyerrors.obs.Obs.dump", "modulename": "pyerrors.obs", "qualname": "Obs.dump", "type": "function", "doc": "

Dump the Obs to a file 'name' of chosen format.

\n\n
Parameters
\n\n
    \n
  • filename (str):\nname of the file to be saved.
  • \n
  • datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
  • \n
  • description (str):\nDescription for output file, only relevant for json.gz format.
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n", "signature": "(self, filename, datatype='json.gz', description='', **kwargs)", "funcdef": "def"}, "pyerrors.obs.Obs.export_jackknife": {"fullname": "pyerrors.obs.Obs.export_jackknife", "modulename": "pyerrors.obs", "qualname": "Obs.export_jackknife", "type": "function", "doc": "

Export jackknife samples from the Obs

\n\n
Returns
\n\n
    \n
  • numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N jackknife samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived jackknife samples\nshould agree with samples from a full jackknife analysis up to O(1/N).
  • \n
\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.sqrt": {"fullname": "pyerrors.obs.Obs.sqrt", "modulename": "pyerrors.obs", "qualname": "Obs.sqrt", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.log": {"fullname": "pyerrors.obs.Obs.log", "modulename": "pyerrors.obs", "qualname": "Obs.log", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.exp": {"fullname": "pyerrors.obs.Obs.exp", "modulename": "pyerrors.obs", "qualname": "Obs.exp", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.sin": {"fullname": "pyerrors.obs.Obs.sin", "modulename": "pyerrors.obs", "qualname": "Obs.sin", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.cos": {"fullname": "pyerrors.obs.Obs.cos", "modulename": "pyerrors.obs", "qualname": "Obs.cos", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.tan": {"fullname": "pyerrors.obs.Obs.tan", "modulename": "pyerrors.obs", "qualname": "Obs.tan", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.arcsin": {"fullname": "pyerrors.obs.Obs.arcsin", "modulename": "pyerrors.obs", "qualname": "Obs.arcsin", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.arccos": {"fullname": "pyerrors.obs.Obs.arccos", "modulename": "pyerrors.obs", "qualname": "Obs.arccos", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.arctan": {"fullname": "pyerrors.obs.Obs.arctan", "modulename": "pyerrors.obs", "qualname": "Obs.arctan", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.sinh": {"fullname": "pyerrors.obs.Obs.sinh", "modulename": "pyerrors.obs", "qualname": "Obs.sinh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.cosh": {"fullname": "pyerrors.obs.Obs.cosh", "modulename": "pyerrors.obs", "qualname": "Obs.cosh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.tanh": {"fullname": "pyerrors.obs.Obs.tanh", "modulename": "pyerrors.obs", "qualname": "Obs.tanh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.arcsinh": {"fullname": "pyerrors.obs.Obs.arcsinh", "modulename": "pyerrors.obs", "qualname": "Obs.arcsinh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.arccosh": {"fullname": "pyerrors.obs.Obs.arccosh", "modulename": "pyerrors.obs", "qualname": "Obs.arccosh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.arctanh": {"fullname": "pyerrors.obs.Obs.arctanh", "modulename": "pyerrors.obs", "qualname": "Obs.arctanh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.N_sigma": {"fullname": "pyerrors.obs.Obs.N_sigma", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.S": {"fullname": "pyerrors.obs.Obs.S", "modulename": "pyerrors.obs", "qualname": "Obs.S", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_ddvalue": {"fullname": "pyerrors.obs.Obs.e_ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_ddvalue", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_drho": {"fullname": "pyerrors.obs.Obs.e_drho", "modulename": "pyerrors.obs", "qualname": "Obs.e_drho", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_dtauint": {"fullname": "pyerrors.obs.Obs.e_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_dtauint", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_dvalue": {"fullname": "pyerrors.obs.Obs.e_dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_dvalue", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_n_dtauint": {"fullname": "pyerrors.obs.Obs.e_n_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_dtauint", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_n_tauint": {"fullname": "pyerrors.obs.Obs.e_n_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_tauint", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_rho": {"fullname": "pyerrors.obs.Obs.e_rho", "modulename": "pyerrors.obs", "qualname": "Obs.e_rho", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_tauint": {"fullname": "pyerrors.obs.Obs.e_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_tauint", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_windowsize": {"fullname": "pyerrors.obs.Obs.e_windowsize", "modulename": "pyerrors.obs", "qualname": "Obs.e_windowsize", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.tau_exp": {"fullname": "pyerrors.obs.Obs.tau_exp", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp", "type": "variable", "doc": "

\n"}, "pyerrors.obs.CObs": {"fullname": "pyerrors.obs.CObs", "modulename": "pyerrors.obs", "qualname": "CObs", "type": "class", "doc": "

Class for a complex valued observable.

\n"}, "pyerrors.obs.CObs.__init__": {"fullname": "pyerrors.obs.CObs.__init__", "modulename": "pyerrors.obs", "qualname": "CObs.__init__", "type": "function", "doc": "

\n", "signature": "(self, real, imag=0.0)", "funcdef": "def"}, "pyerrors.obs.CObs.tag": {"fullname": "pyerrors.obs.CObs.tag", "modulename": "pyerrors.obs", "qualname": "CObs.tag", "type": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.real": {"fullname": "pyerrors.obs.CObs.real", "modulename": "pyerrors.obs", "qualname": "CObs.real", "type": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.imag": {"fullname": "pyerrors.obs.CObs.imag", "modulename": "pyerrors.obs", "qualname": "CObs.imag", "type": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.gamma_method": {"fullname": "pyerrors.obs.CObs.gamma_method", "modulename": "pyerrors.obs", "qualname": "CObs.gamma_method", "type": "function", "doc": "

Executes the gamma_method for the real and the imaginary part.

\n", "signature": "(self, **kwargs)", "funcdef": "def"}, "pyerrors.obs.CObs.is_zero": {"fullname": "pyerrors.obs.CObs.is_zero", "modulename": "pyerrors.obs", "qualname": "CObs.is_zero", "type": "function", "doc": "

Checks whether both real and imaginary part are zero within machine precision.

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.CObs.conjugate": {"fullname": "pyerrors.obs.CObs.conjugate", "modulename": "pyerrors.obs", "qualname": "CObs.conjugate", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.derived_observable": {"fullname": "pyerrors.obs.derived_observable", "modulename": "pyerrors.obs", "qualname": "derived_observable", "type": "function", "doc": "

Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.

\n\n
Parameters
\n\n
    \n
  • func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
  • \n
  • data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
  • \n
  • num_grad (bool):\nif True, numerical derivatives are used instead of autograd\n(default False). To control the numerical differentiation the\nkwargs of numdifftools.step_generators.MaxStepGenerator\ncan be used.
  • \n
  • man_grad (list):\nmanually supply a list or an array which contains the jacobian\nof func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
  • \n
\n\n
Notes
\n\n

For simple mathematical operations it can be practical to use anonymous\nfunctions. For the ratio of two observables one can e.g. use

\n\n

new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])

\n", "signature": "(func, data, array_mode=False, **kwargs)", "funcdef": "def"}, "pyerrors.obs.reweight": {"fullname": "pyerrors.obs.reweight", "modulename": "pyerrors.obs", "qualname": "reweight", "type": "function", "doc": "

Reweight a list of observables.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • obs (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
  • \n
\n", "signature": "(weight, obs, **kwargs)", "funcdef": "def"}, "pyerrors.obs.correlate": {"fullname": "pyerrors.obs.correlate", "modulename": "pyerrors.obs", "qualname": "correlate", "type": "function", "doc": "

Correlate two observables.

\n\n
Parameters
\n\n
    \n
  • obs_a (Obs):\nFirst observable
  • \n
  • obs_b (Obs):\nSecond observable
  • \n
\n\n
Notes
\n\n

Keep in mind to only correlate primary observables which have not been reweighted\nyet. The reweighting has to be applied after correlating the observables.\nCurrently only works if ensembles are identical (this is not strictly necessary).

\n", "signature": "(obs_a, obs_b)", "funcdef": "def"}, "pyerrors.obs.covariance": {"fullname": "pyerrors.obs.covariance", "modulename": "pyerrors.obs", "qualname": "covariance", "type": "function", "doc": "

Calculates the error covariance matrix of a set of observables.

\n\n

The gamma method has to be applied first to all observables.

\n\n
Parameters
\n\n
    \n
  • obs (list or numpy.ndarray):\nList or one dimensional array of Obs
  • \n
  • visualize (bool):\nIf True plots the corresponding normalized correlation matrix (default False).
  • \n
  • correlation (bool):\nIf True the correlation matrix instead of the error covariance matrix is returned (default False).
  • \n
  • smooth (None or int):\nIf smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue\nsmoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the\nlargest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely\nsmall ones.
  • \n
\n\n
Notes
\n\n

The error covariance is defined such that it agrees with the squared standard error for two identical observables\n$$\\operatorname{cov}(a,a)=\\sum_{s=1}^N\\delta_a^s\\delta_a^s/N^2=\\Gamma_{aa}(0)/N=\\operatorname{var}(a)/N=\\sigma_a^2$$\nin the absence of autocorrelation.\nThe error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite\n$$\\sum_{i,j}v_i\\Gamma_{ij}(0)v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i,j}v_i\\delta_i^s\\delta_j^s v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i}|v_i\\delta_i^s|^2\\geq 0\\,,$$ for every $v\\in\\mathbb{R}^M$, while such an identity does not hold for larger windows/lags.\nFor observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements.\n$$\\tau_{\\mathrm{int}, ij}=\\sqrt{\\tau_{\\mathrm{int}, i}\\times \\tau_{\\mathrm{int}, j}}$$\nThis construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors).

\n", "signature": "(obs, visualize=False, correlation=False, smooth=None, **kwargs)", "funcdef": "def"}, "pyerrors.obs.import_jackknife": {"fullname": "pyerrors.obs.import_jackknife", "modulename": "pyerrors.obs", "qualname": "import_jackknife", "type": "function", "doc": "

Imports jackknife samples and returns an Obs

\n\n
Parameters
\n\n
    \n
  • jacks (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N jackknife samples as first to Nth entry.
  • \n
  • name (str):\nname of the ensemble the samples are defined on.
  • \n
\n", "signature": "(jacks, name, idl=None)", "funcdef": "def"}, "pyerrors.obs.merge_obs": {"fullname": "pyerrors.obs.merge_obs", "modulename": "pyerrors.obs", "qualname": "merge_obs", "type": "function", "doc": "

Combine all observables in list_of_obs into one new observable

\n\n
Parameters
\n\n
    \n
  • list_of_obs (list):\nlist of the Obs object to be combined
  • \n
\n\n
Notes
\n\n

It is not possible to combine obs which are based on the same replicum

\n", "signature": "(list_of_obs)", "funcdef": "def"}, "pyerrors.obs.cov_Obs": {"fullname": "pyerrors.obs.cov_Obs", "modulename": "pyerrors.obs", "qualname": "cov_Obs", "type": "function", "doc": "

Create an Obs based on mean(s) and a covariance matrix

\n\n
Parameters
\n\n
    \n
  • mean (list of floats or float):\nN mean value(s) of the new Obs
  • \n
  • cov (list or array):\n2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance
  • \n
  • name (str):\nidentifier for the covariance matrix
  • \n
  • grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
  • \n
\n", "signature": "(means, cov, name, grad=None)", "funcdef": "def"}, "pyerrors.roots": {"fullname": "pyerrors.roots", "modulename": "pyerrors.roots", "type": "module", "doc": "

\n"}, "pyerrors.roots.find_root": {"fullname": "pyerrors.roots.find_root", "modulename": "pyerrors.roots", "qualname": "find_root", "type": "function", "doc": "

Finds the root of the function func(x, d) where d is an Obs.

\n\n
Parameters
\n\n
    \n
  • d (Obs):\nObs passed to the function.
  • \n
  • func (object):\nFunction to be minimized. Any numpy functions have to use the autograd.numpy wrapper.\nExample:\npython\nimport autograd.numpy as anp\ndef root_func(x, d):\n return anp.exp(-x ** 2) - d\n
  • \n
  • guess (float):\nInitial guess for the minimization.
  • \n
\n\n
Returns
\n\n
    \n
  • Obs: Obs valued root of the function.
  • \n
\n", "signature": "(d, func, guess=1.0, **kwargs)", "funcdef": "def"}, "pyerrors.version": {"fullname": "pyerrors.version", "modulename": "pyerrors.version", "type": "module", "doc": "

\n"}}, "docInfo": {"pyerrors": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 7902}, "pyerrors.correlators": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 108}, "pyerrors.correlators.Corr.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 94}, "pyerrors.correlators.Corr.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.projected": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 64}, "pyerrors.correlators.Corr.item": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.plottable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 31}, "pyerrors.correlators.Corr.symmetric": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.anti_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.matrix_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.GEVP": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 178}, "pyerrors.correlators.Corr.Eigenvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 181}, "pyerrors.correlators.Corr.Hankel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 67}, "pyerrors.correlators.Corr.roll": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 26}, "pyerrors.correlators.Corr.reverse": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.thin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 43}, "pyerrors.correlators.Corr.correlate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 79}, "pyerrors.correlators.Corr.T_symmetry": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 51}, "pyerrors.correlators.Corr.deriv": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 46}, "pyerrors.correlators.Corr.second_deriv": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 44}, "pyerrors.correlators.Corr.m_eff": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 135}, "pyerrors.correlators.Corr.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 110}, "pyerrors.correlators.Corr.plateau": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 92}, "pyerrors.correlators.Corr.set_prange": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 11}, "pyerrors.correlators.Corr.show": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 222}, "pyerrors.correlators.Corr.spaghetti_plot": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 42}, "pyerrors.correlators.Corr.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 69}, "pyerrors.correlators.Corr.print": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prune": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 325}, "pyerrors.covobs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 100}, "pyerrors.covobs.Covobs.errsq": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 12}, "pyerrors.covobs.Covobs.cov": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.grad": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.epsilon_tensor": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 13}, "pyerrors.dirac.epsilon_tensor_rank4": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 13}, "pyerrors.dirac.Grid_gamma": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 9}, "pyerrors.fits": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 32}, "pyerrors.fits.Fit_result.__init__": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result.gamma_method": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 10}, "pyerrors.fits.least_squares": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 609}, "pyerrors.fits.total_least_squares": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 417}, "pyerrors.fits.fit_lin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 90}, "pyerrors.fits.qqplot": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 27}, "pyerrors.fits.residual_plot": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 17}, "pyerrors.fits.error_band": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 23}, "pyerrors.fits.ks_test": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 40}, "pyerrors.input": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 81}, "pyerrors.input.bdio": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.bdio.read_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 106}, "pyerrors.input.bdio.write_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 108}, "pyerrors.input.bdio.read_mesons": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 194}, "pyerrors.input.bdio.read_dSdm": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 191}, "pyerrors.input.dobs": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.dobs.create_pobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 164}, "pyerrors.input.dobs.write_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 202}, "pyerrors.input.dobs.read_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 131}, "pyerrors.input.dobs.import_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 185}, "pyerrors.input.dobs.read_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 204}, "pyerrors.input.dobs.create_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 15, "bases": 0, "doc": 208}, "pyerrors.input.dobs.write_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 240}, "pyerrors.input.hadrons": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.hadrons.read_meson_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 110}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 89}, "pyerrors.input.hadrons.Npr_matrix": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 1065}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 2, "bases": 0, "doc": 3}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 30}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 81}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 81}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 94}, "pyerrors.input.json": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.json.create_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 116}, "pyerrors.input.json.dump_to_json": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 147}, "pyerrors.input.json.import_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 108}, "pyerrors.input.json.load_json": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 128}, "pyerrors.input.json.dump_dict_to_json": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 172}, "pyerrors.input.json.load_json_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 12, "bases": 0, "doc": 135}, "pyerrors.input.misc": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.misc.read_pbp": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 62}, "pyerrors.input.openQCD": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.openQCD.read_rwms": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 254}, "pyerrors.input.openQCD.extract_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 457}, "pyerrors.input.openQCD.read_qtop": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 346}, "pyerrors.input.openQCD.qtop_projection": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 49}, "pyerrors.input.openQCD.read_qtop_sector": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 340}, "pyerrors.input.sfcf": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.sfcf.read_sfcf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 331}, "pyerrors.input.utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "pyerrors.input.utils.check_idl": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 47}, "pyerrors.linalg": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.linalg.matmul": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 54}, "pyerrors.linalg.jack_matmul": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 58}, "pyerrors.linalg.einsum": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 52}, "pyerrors.linalg.inv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 10}, "pyerrors.linalg.cholesky": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 9}, "pyerrors.linalg.det": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 8}, "pyerrors.linalg.eigh": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 20}, "pyerrors.linalg.eig": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 17}, "pyerrors.linalg.pinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 13}, "pyerrors.linalg.svd": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 13}, "pyerrors.misc": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.misc.dump_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 57}, "pyerrors.misc.load_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 26}, "pyerrors.misc.pseudo_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 89}, "pyerrors.misc.gen_correlated_data": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 109}, "pyerrors.mpm": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.mpm.matrix_pencil_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 147}, "pyerrors.obs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 238}, "pyerrors.obs.Obs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 62}, "pyerrors.obs.Obs.S_global": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 3, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 3, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 3, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.filter_eps": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 3, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.names": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.shape": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.r_values": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.deltas": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.is_merged": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.idl": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.ddvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.dvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cov_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.mc_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_content": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.covobs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.details": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.is_zero_within_error": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 50}, "pyerrors.obs.Obs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.plot_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_rep_dist": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 14}, "pyerrors.obs.Obs.plot_history": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_piechart": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 47}, "pyerrors.obs.Obs.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 89}, "pyerrors.obs.Obs.export_jackknife": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 101}, "pyerrors.obs.Obs.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_ddvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_drho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dtauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_dtauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_tauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_windowsize": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "pyerrors.obs.CObs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 14}, "pyerrors.obs.CObs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 15}, "pyerrors.obs.CObs.conjugate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.derived_observable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 184}, "pyerrors.obs.reweight": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 97}, "pyerrors.obs.correlate": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 75}, "pyerrors.obs.covariance": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 346}, "pyerrors.obs.import_jackknife": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 61}, "pyerrors.obs.merge_obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 56}, "pyerrors.obs.cov_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 90}, "pyerrors.roots": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.roots.find_root": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 117}, "pyerrors.version": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 213, "save": true}, "index": {"qualname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 47, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 15}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 3}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {"pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}}, "df": 5}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 6, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 4}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.filter_eps": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 67, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.value": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}}}, "fullname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.filter_eps": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.version": {"tf": 1}}, "df": 213}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 47, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 48}}}, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.grad": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 42}}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 15}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 7}}}, "p": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 3}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 9}}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {"pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 8}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 11}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 11}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 6, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 4}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.filter_eps": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.shape": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.r_values": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_merged": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweighted": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tag": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.value": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cov_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.mc_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_content": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_drho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 81, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.value": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.version": {"tf": 1}}, "df": 1}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"0": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}, "1": {"0": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}}, "2": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 7}}, "signature": {"root": {"0": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 16, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 10, "e": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}, "2": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 3}, "3": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "5": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}, "docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.symmetric": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.print": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.sqrt": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.log": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.exp": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.sin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.cos": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.tan": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.sinh": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.cosh": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.tanh": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.arcsin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.arccos": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.arctan": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.arccosh": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.arctanh": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1.4142135623730951}, "pyerrors.linalg.inv": {"tf": 1.4142135623730951}, "pyerrors.linalg.cholesky": {"tf": 1.4142135623730951}, "pyerrors.linalg.det": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1.4142135623730951}, "pyerrors.linalg.eig": {"tf": 1.4142135623730951}, "pyerrors.linalg.pinv": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.conjugate": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 142, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 78}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 4}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5, "l": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 8}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 16}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 6}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 3}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 31}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 31}}}}}}, "v": {"1": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 4}}, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "l": {"docs": {"pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 15}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 8}}}}}, "j": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 13}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 6, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}}, "df": 2, "f": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 9, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 3}}}}, "z": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}, "v": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 10, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "v": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "doc": {"root": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"9": {"7": {"9": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"2": {"8": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"8": {"0": {"6": {"4": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"4": {"4": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"8": {"5": {"6": {"5": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"4": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"6": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2}}, "df": 23, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"0": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 3}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"7": {"2": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"4": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "4": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "7": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"0": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"0": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 19, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "+": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "*": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}, "2": {"0": {"0": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"2": {"1": {"8": {"6": {"6": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"7": {"7": {"6": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "9": {"9": {"0": {"9": {"7": {"0": {"3": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 12, "x": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "3": {"0": {"6": {"7": {"5": {"2": {"0": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"4": {"9": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"7": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "4": {"9": {"7": {"6": {"8": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 7.745966692414834}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 6, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "4": {"0": {"3": {"2": {"0": {"9": {"8": {"3": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "9": {"5": {"9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 6, "x": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "1": {"5": {"6": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"0": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"7": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"6": {"5": {"9": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 5, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "6": {"4": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "5": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}}, "df": 2}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"4": {"2": {"2": {"9": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"4": {"6": {"6": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"5": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"1": {"0": {"1": {"0": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"7": {"7": {"5": {"2": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "8": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}, "9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "3": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"9": {"3": {"0": {"3": {"5": {"7": {"8": {"5": {"1": {"6": {"0": {"9": {"3": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"1": {"9": {"8": {"8": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"0": {"0": {"7": {"1": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"3": {"6": {"5": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 62.37788069500277}, "pyerrors.correlators": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.reweighted": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.item": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.plottable": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.roll": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.deriv": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.second_deriv": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.fit": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plateau": {"tf": 5}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 7.937253933193772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.dump": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.print": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sqrt": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.log": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.exp": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.real": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.imag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 6.855654600401044}, "pyerrors.covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.916079783099616}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.grad": {"tf": 1.7320508075688772}, "pyerrors.dirac": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 2}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 2}, "pyerrors.dirac.Grid_gamma": {"tf": 1.7320508075688772}, "pyerrors.fits": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 3.872983346207417}, "pyerrors.fits.Fit_result.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 15.748015748023622}, "pyerrors.fits.total_least_squares": {"tf": 14.66287829861518}, "pyerrors.fits.fit_lin": {"tf": 4.795831523312719}, "pyerrors.fits.qqplot": {"tf": 1.7320508075688772}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.fits.ks_test": {"tf": 3.872983346207417}, "pyerrors.input": {"tf": 4.69041575982343}, "pyerrors.input.bdio": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 5.196152422706632}, "pyerrors.input.bdio.write_ADerrors": {"tf": 5.196152422706632}, "pyerrors.input.bdio.read_mesons": {"tf": 7.416198487095663}, "pyerrors.input.bdio.read_dSdm": {"tf": 7.416198487095663}, "pyerrors.input.dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7}, "pyerrors.input.dobs.write_pobs": {"tf": 7.810249675906654}, "pyerrors.input.dobs.read_pobs": {"tf": 5.744562646538029}, "pyerrors.input.dobs.import_dobs_string": {"tf": 6.244997998398398}, "pyerrors.input.dobs.read_dobs": {"tf": 6.782329983125268}, "pyerrors.input.dobs.create_dobs_string": {"tf": 7.3484692283495345}, "pyerrors.input.dobs.write_dobs": {"tf": 8.18535277187245}, "pyerrors.input.hadrons": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 6}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 5.656854249492381}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 20.808652046684813}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 5.385164807134504}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 5.385164807134504}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 5.916079783099616}, "pyerrors.input.json": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 5.0990195135927845}, "pyerrors.input.json.dump_to_json": {"tf": 6.164414002968976}, "pyerrors.input.json.import_json_string": {"tf": 5.477225575051661}, "pyerrors.input.json.load_json": {"tf": 6}, "pyerrors.input.json.dump_dict_to_json": {"tf": 6.6332495807108}, "pyerrors.input.json.load_json_dict": {"tf": 6.4031242374328485}, "pyerrors.input.misc": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 4.242640687119285}, "pyerrors.input.openQCD": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 7.874007874011811}, "pyerrors.input.openQCD.extract_t0": {"tf": 9.899494936611665}, "pyerrors.input.openQCD.read_qtop": {"tf": 9.433981132056603}, "pyerrors.input.openQCD.qtop_projection": {"tf": 4.58257569495584}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 9.219544457292887}, "pyerrors.input.sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 8.888194417315589}, "pyerrors.input.utils": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 4.242640687119285}, "pyerrors.linalg": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 4.58257569495584}, "pyerrors.linalg.jack_matmul": {"tf": 4.47213595499958}, "pyerrors.linalg.einsum": {"tf": 4.47213595499958}, "pyerrors.linalg.inv": {"tf": 1.7320508075688772}, "pyerrors.linalg.cholesky": {"tf": 1.7320508075688772}, "pyerrors.linalg.det": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1.7320508075688772}, "pyerrors.linalg.eig": {"tf": 1.7320508075688772}, "pyerrors.linalg.pinv": {"tf": 1.7320508075688772}, "pyerrors.linalg.svd": {"tf": 1.7320508075688772}, "pyerrors.misc": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 5}, "pyerrors.misc.load_object": {"tf": 3.7416573867739413}, "pyerrors.misc.pseudo_Obs": {"tf": 5.656854249492381}, "pyerrors.misc.gen_correlated_data": {"tf": 6.244997998398398}, "pyerrors.mpm": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 5.385164807134504}, "pyerrors.obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 6.928203230275509}, "pyerrors.obs.Obs.__init__": {"tf": 4.898979485566356}, "pyerrors.obs.Obs.S_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.filter_eps": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.shape": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.r_values": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.deltas": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_merged": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweighted": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.value": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cov_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.mc_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_content": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.covobs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.details": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.47213595499958}, "pyerrors.obs.Obs.is_zero": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_tauint": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rho": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.plot_piechart": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.dump": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.sqrt": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.log": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.exp": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_drho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_rho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.real": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.imag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.is_zero": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.conjugate": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 6.4031242374328485}, "pyerrors.obs.reweight": {"tf": 5.196152422706632}, "pyerrors.obs.correlate": {"tf": 4.898979485566356}, "pyerrors.obs.covariance": {"tf": 6.4031242374328485}, "pyerrors.obs.import_jackknife": {"tf": 4.47213595499958}, "pyerrors.obs.merge_obs": {"tf": 4.123105625617661}, "pyerrors.obs.cov_Obs": {"tf": 5.385164807134504}, "pyerrors.roots": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 6.782329983125268}, "pyerrors.version": {"tf": 1.7320508075688772}}, "df": 213, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 34}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 9}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 12}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 9}}}}}, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 29, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 8}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 12}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 3, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 11}}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 7, "s": {"docs": {"pyerrors": {"tf": 8}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.4641016151377544}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.4641016151377544}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 50}, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 19, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 9, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 8.12403840463596}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 39, "t": {"1": {"6": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 30, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 3}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 10}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 1}}, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}}, "df": 13}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 9}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 11, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "d": {"0": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 7, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 11}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 2.23606797749979}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 47}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}, "^": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "|": {"docs": {}, "df": 0, "^": {"2": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}}}}, "}": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 3, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 6.557438524302}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 85}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 19}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.872983346207417}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 3}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 9, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4}}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 11, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "^": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"pyerrors": {"tf": 8.306623862918075}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 65, "n": {"docs": {"pyerrors": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 29, "d": {"docs": {"pyerrors": {"tf": 6.928203230275509}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 56}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 7}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3}, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 5}}, "r": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, ":": {"1": {"0": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"5": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"0": {"4": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 42}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 6.082762530298219}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 9}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 3, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 4, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}}, "df": 6}}}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 7}}}}}}}}, "s": {"docs": {"pyerrors": {"tf": 6}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 20, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 7}, "s": {"docs": {"pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 29, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 6}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 18, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 12}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "i": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 2}}}, "y": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 6}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 6.782329983125268}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.449489742783178}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 58, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 7, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}}, "df": 15, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 4}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}}, "df": 30}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"1": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "+": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}}, "df": 14, "s": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 5}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 17}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 8}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 2}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2.23606797749979}}, "df": 35, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 11, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 4}}}}}, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 6, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}, "w": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 2}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 19}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 8}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 13, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}}, "df": 10, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 10, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 9, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.8284271247461903}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 3}}}}}}}}}, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 9}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 7, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"1": {"docs": {"pyerrors": {"tf": 3.4641016151377544}}, "df": 1, "|": {"docs": {}, "df": 0, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "2": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 28, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 7, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 10}}}, "y": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}}, "df": 7}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 10, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 2}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 14}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "q": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 3}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}}, "df": 7, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 5}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "/": {"1": {"6": {"0": {"3": {"7": {"5": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": null}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 24}}}, "s": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 11}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 4}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 7}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}}, "df": 4, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 17}}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 7}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 6.6332495807108}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 18, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 3, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 23, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}}}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 5}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}}, "df": 5}}, "v": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 4, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 6}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 1}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 3}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 5.656854249492381}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 26, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 7}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "p": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 3}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 7, "f": {"docs": {"pyerrors": {"tf": 10.295630140987}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.__init__": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 3}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.8284271247461903}, "pyerrors.input.dobs.write_dobs": {"tf": 2.8284271247461903}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_to_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.8284271247461903}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.1622776601683795}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.8284271247461903}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3.4641016151377544}, "pyerrors.input.utils.check_idl": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1.4142135623730951}, "pyerrors.linalg.eig": {"tf": 1.4142135623730951}, "pyerrors.linalg.pinv": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.derived_observable": {"tf": 2.449489742783178}, "pyerrors.obs.reweight": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 3.3166247903554}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 90, "f": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 29, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 18, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 26}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 17}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "2": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 9.591663046625438}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 55, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 16, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 13}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 2}}, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}, "j": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 20, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 6}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 41, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 22, "s": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}, "m": {"docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 19}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 7}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 5}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 8}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 5}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 16, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.449489742783178}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 8, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 7}}}}}}}}}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 1}}}}}, "y": {"docs": {"pyerrors": {"tf": 7.681145747868608}}, "df": 1}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"1": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3, "a": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 28, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}}, "df": 12, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "y": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 5}}}}}}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 5}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 4}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 7}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 4}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 15}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 30, "s": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 5}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}}, "df": 1, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 3}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 1}}}}, "b": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 8}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "{": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 6.082762530298219}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.6457513110645907}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 53, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 10}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 21, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 7}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 30}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}}}}}}}, "x": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}}, "df": 4}}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.prune": {"tf": 4.47213595499958}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 8, "h": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 16.1245154965971}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 3}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 2}, "pyerrors.correlators.Corr.deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 3}, "pyerrors.correlators.Corr.fit": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.plateau": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 4.795831523312719}, "pyerrors.covobs.Covobs.__init__": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.47213595499958}, "pyerrors.fits.total_least_squares": {"tf": 3.4641016151377544}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.7320508075688772}, "pyerrors.fits.residual_plot": {"tf": 1.7320508075688772}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 3.4641016151377544}, "pyerrors.input.dobs.write_pobs": {"tf": 3.872983346207417}, "pyerrors.input.dobs.read_pobs": {"tf": 3}, "pyerrors.input.dobs.import_dobs_string": {"tf": 3.605551275463989}, "pyerrors.input.dobs.read_dobs": {"tf": 3.605551275463989}, "pyerrors.input.dobs.create_dobs_string": {"tf": 4.47213595499958}, "pyerrors.input.dobs.write_dobs": {"tf": 4.58257569495584}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.830951894845301}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 2.8284271247461903}, "pyerrors.input.json.dump_to_json": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 2.6457513110645907}, "pyerrors.input.json.load_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_dict_to_json": {"tf": 3.3166247903554}, "pyerrors.input.json.load_json_dict": {"tf": 2.6457513110645907}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 3}, "pyerrors.input.openQCD.extract_t0": {"tf": 5.385164807134504}, "pyerrors.input.openQCD.read_qtop": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 4.242640687119285}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4.242640687119285}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.23606797749979}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.23606797749979}, "pyerrors.obs.Obs": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.3166247903554}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 2.8284271247461903}, "pyerrors.obs.reweight": {"tf": 2.23606797749979}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 5.196152422706632}, "pyerrors.obs.import_jackknife": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 2.449489742783178}}, "df": 105, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 6}}, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 6.244997998398398}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 29}, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 26}, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 27}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"pyerrors": {"tf": 8.660254037844387}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.plateau": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.7416573867739413}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 3.4641016151377544}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 2.23606797749979}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.8284271247461903}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 79, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 19}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 8}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 7}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 10, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 5}}}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}, "+": {"1": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2}, "2": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}}, "df": 1}}, "/": {"2": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 4}}}}, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 15, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 11}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"pyerrors": {"tf": 8.306623862918075}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 2}, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 5, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}}, "df": 4}}, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 26}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "z": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 13, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 7}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}, "^": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2, "/": {"0": {"3": {"0": {"6": {"0": {"1": {"7": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"1": {"2": {"0": {"8": {"7": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 9}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 5}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 2.449489742783178}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 3.1622776601683795}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 2.449489742783178}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 44, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 6}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 5, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 9}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}, "q": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 11, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 5, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 2, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 7}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 3, "s": {"1": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2.23606797749979}, "pyerrors.obs.import_jackknife": {"tf": 1.7320508075688772}}, "df": 8}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 12}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2.23606797749979}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 9}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 44, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 14, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 11}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 8}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 7}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 8}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 4}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 8}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 12}, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 8}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 3}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 5}}}, "w": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2, "{": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 11, "o": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 9, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 16}}, "t": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 26, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 7}}}, "w": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 21}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 18, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 4}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 23, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 15, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 3}}}, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 15}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2}}}, "x": {"0": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 6}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 3}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.total_least_squares": {"tf": 3}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 10, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}}, "df": 7}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "[": {"0": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "y": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 7, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 7, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 9}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}}, "df": 15, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 3}}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 4}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 8}, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 5}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 11, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 11}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2, "[": {"0": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 16}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 9}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 6}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 4}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 7}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}, "k": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}, "v": {"1": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "v": {"2": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 18, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 7}, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 9}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 5}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.449489742783178}}, "df": 6}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 3}}}}}}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "j": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 4, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 9}}}, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "}": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}, "^": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 5}}}, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 13, "d": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 22}, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils": {"tf": 1}}, "df": 1}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 10, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 9}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 18}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 16}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3}}, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 4}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}}, "u": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "k": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3}}, "y": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "\u2013": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"1": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"pyerrors": {"fullname": "pyerrors", "modulename": "pyerrors", "type": "module", "doc": "

What is pyerrors?

\n\n

pyerrors is a python package for error computation and propagation of Markov chain Monte Carlo data.\nIt is based on the gamma method arXiv:hep-lat/0306017. Some of its features are:

\n\n
    \n
  • automatic differentiation for exact liner error propagation as suggested in arXiv:1809.01289 (partly based on the autograd package).
  • \n
  • treatment of slow modes in the simulation as suggested in arXiv:1009.5228.
  • \n
  • coherent error propagation for data from different Markov chains.
  • \n
  • non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in arXiv:1809.01289.
  • \n
  • real and complex matrix operations and their error propagation based on automatic differentiation (Matrix inverse, Cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...).
  • \n
\n\n

There exist similar publicly available implementations of gamma method error analysis suites in Fortran, Julia and Python.

\n\n

Basic example

\n\n
import numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name']) # Initialize an Obs object\nmy_new_obs = 2 * np.log(my_obs) / my_obs ** 2 # Construct derived Obs object\nmy_new_obs.gamma_method()                     # Estimate the statistical error\nprint(my_new_obs)                             # Print the result to stdout\n> 0.31498(72)\n
\n\n

The Obs class

\n\n

pyerrors introduces a new datatype, Obs, which simplifies error propagation and estimation for auto- and cross-correlated data.\nAn Obs object can be initialized with two arguments, the first is a list containing the samples for an observable from a Monte Carlo chain.\nThe samples can either be provided as python list or as numpy array.\nThe second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble.

\n\n
import pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\n
\n\n

Error propagation

\n\n

When performing mathematical operations on Obs objects the correct error propagation is intrinsically taken care of using a first order Taylor expansion\n$$\\delta_f^i=\\sum_\\alpha \\bar{f}_\\alpha \\delta_\\alpha^i\\,,\\quad \\delta_\\alpha^i=a_\\alpha^i-\\bar{a}_\\alpha\\,,$$\nas introduced in arXiv:hep-lat/0306017.\nThe required derivatives $\\bar{f}_\\alpha$ are evaluated up to machine precision via automatic differentiation as suggested in arXiv:1809.01289.

\n\n

The Obs class is designed such that mathematical numpy functions can be used on Obs just as for regular floats.

\n\n
import numpy as np\nimport pyerrors as pe\n\nmy_obs1 = pe.Obs([samples1], ['ensemble_name'])\nmy_obs2 = pe.Obs([samples2], ['ensemble_name'])\n\nmy_sum = my_obs1 + my_obs2\n\nmy_m_eff = np.log(my_obs1 / my_obs2)\n\niamzero = my_m_eff - my_m_eff\n# Check that value and fluctuations are zero within machine precision\nprint(iamzero == 0.0)\n> True\n
\n\n

Error estimation

\n\n

The error estimation within pyerrors is based on the gamma method introduced in arXiv:hep-lat/0306017.\nAfter having arrived at the derived quantity of interest the gamma_method can be called as detailed in the following example.

\n\n
my_sum.gamma_method()\nprint(my_sum)\n> 1.70(57)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 5.72046658e-01 +/- 7.56746598e-02 (33.650%)\n>  t_int         2.71422900e+00 +/- 6.40320983e-01 S = 2.00\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n\n

We use the following definition of the integrated autocorrelation time established in Madras & Sokal 1988\n$$\\tau_\\mathrm{int}=\\frac{1}{2}+\\sum_{t=1}^{W}\\rho(t)\\geq \\frac{1}{2}\\,.$$\nThe window $W$ is determined via the automatic windowing procedure described in arXiv:hep-lat/0306017.\nThe standard value for the parameter $S$ of this automatic windowing procedure is $S=2$. Other values for $S$ can be passed to the gamma_method as parameter.

\n\n
my_sum.gamma_method(S=3.0)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 6.30675201e-01 +/- 1.04585650e-01 (37.099%)\n>  t_int         3.29909703e+00 +/- 9.77310102e-01 S = 3.00\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n\n

The integrated autocorrelation time $\\tau_\\mathrm{int}$ and the autocorrelation function $\\rho(W)$ can be monitored via the methods pyerrors.obs.Obs.plot_tauint and pyerrors.obs.Obs.plot_tauint.

\n\n

If the parameter $S$ is set to zero it is assumed that the dataset does not exhibit any autocorrelation and the windowsize is chosen to be zero.\nIn this case the error estimate is identical to the sample standard error.

\n\n

Exponential tails

\n\n

Slow modes in the Monte Carlo history can be accounted for by attaching an exponential tail to the autocorrelation function $\\rho$ as suggested in arXiv:1009.5228. The longest autocorrelation time in the history, $\\tau_\\mathrm{exp}$, can be passed to the gamma_method as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.

\n\n
my_sum.gamma_method(tau_exp=7.2)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 6.28097762e-01 +/- 5.79077524e-02 (36.947%)\n>  t_int         3.27218667e+00 +/- 7.99583654e-01 tau_exp = 7.20,  N_sigma = 1\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n\n

For the full API see pyerrors.obs.Obs.gamma_method.

\n\n

Multiple ensembles/replica

\n\n

Error propagation for multiple ensembles (Markov chains with different simulation parameters) is handled automatically. Ensembles are uniquely identified by their name.

\n\n
obs1 = pe.Obs([samples1], ['ensemble1'])\nobs2 = pe.Obs([samples2], ['ensemble2'])\n\nmy_sum = obs1 + obs2\nmy_sum.details()\n> Result   2.00697958e+00\n> 1500 samples in 2 ensembles:\n>   \u00b7 Ensemble 'ensemble1' : 1000 configurations (from 1 to 1000)\n>   \u00b7 Ensemble 'ensemble2' : 500 configurations (from 1 to 500)\n
\n\n

pyerrors identifies multiple replica (independent Markov chains with identical simulation parameters) by the vertical bar | in the name of the data set.

\n\n
obs1 = pe.Obs([samples1], ['ensemble1|r01'])\nobs2 = pe.Obs([samples2], ['ensemble1|r02'])\n\n> my_sum = obs1 + obs2\n> my_sum.details()\n> Result   2.00697958e+00\n> 1500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1'\n>     \u00b7 Replicum 'r01' : 1000 configurations (from 1 to 1000)\n>     \u00b7 Replicum 'r02' : 500 configurations (from 1 to 500)\n
\n\n

Error estimation for multiple ensembles

\n\n

In order to keep track of different error analysis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.

\n\n
pe.Obs.S_dict['ensemble1'] = 2.5\npe.Obs.tau_exp_dict['ensemble2'] = 8.0\npe.Obs.tau_exp_dict['ensemble3'] = 2.0\n
\n\n

In case the gamma_method is called without any parameters it will use the values specified in the dictionaries for the respective ensembles.\nPassing arguments to the gamma_method still dominates over the dictionaries.

\n\n

Irregular Monte Carlo chains

\n\n

Obs objects defined on irregular Monte Carlo chains can be initialized with the parameter idl.

\n\n
# Observable defined on configurations 20 to 519\nobs1 = pe.Obs([samples1], ['ensemble1'], idl=[range(20, 520)])\nobs1.details()\n> Result         9.98319881e-01\n> 500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 500 configurations (from 20 to 519)\n\n# Observable defined on every second configuration between 5 and 1003\nobs2 = pe.Obs([samples2], ['ensemble1'], idl=[range(5, 1005, 2)])\nobs2.details()\n> Result         9.99100712e-01\n> 500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 500 configurations (from 5 to 1003 in steps of 2)\n\n# Observable defined on configurations 2, 9, 28, 29 and 501\nobs3 = pe.Obs([samples3], ['ensemble1'], idl=[[2, 9, 28, 29, 501]])\nobs3.details()\n> Result         1.01718064e+00\n> 5 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 5 configurations (irregular range)\n
\n\n

Obs objects defined on regular and irregular histories of the same ensemble can be combined with each other and the correct error propagation and estimation is automatically taken care of.

\n\n

Warning: Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions.\nMake sure to check the autocorrelation time with e.g. pyerrors.obs.Obs.plot_rho or pyerrors.obs.Obs.plot_tauint.

\n\n

For the full API see pyerrors.obs.Obs.

\n\n

Correlators

\n\n

When one is not interested in single observables but correlation functions, pyerrors offers the Corr class which simplifies the corresponding error propagation and provides the user with a set of standard methods. In order to initialize a Corr objects one needs to arrange the data as a list of Obs

\n\n
my_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3])\nprint(my_corr)\n> x0/a  Corr(x0/a)\n> ------------------\n> 0      0.7957(80)\n> 1      0.5156(51)\n> 2      0.3227(33)\n> 3      0.2041(21)\n
\n\n

In case the correlation functions are not defined on the outermost timeslices, for example because of fixed boundary conditions, a padding can be introduced.

\n\n
my_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3], padding=[1, 1])\nprint(my_corr)\n> x0/a  Corr(x0/a)\n> ------------------\n> 0\n> 1      0.7957(80)\n> 2      0.5156(51)\n> 3      0.3227(33)\n> 4      0.2041(21)\n> 5\n
\n\n

The individual entries of a correlator can be accessed via slicing

\n\n
print(my_corr[3])\n> 0.3227(33)\n
\n\n

Error propagation with the Corr class works very similar to Obs objects. Mathematical operations are overloaded and Corr objects can be computed together with other Corr objects, Obs objects or real numbers and integers.

\n\n
my_new_corr = 0.3 * my_corr[2] * my_corr * my_corr + 12 / my_corr\n
\n\n

pyerrors provides the user with a set of regularly used methods for the manipulation of correlator objects:

\n\n
    \n
  • Corr.gamma_method applies the gamma method to all entries of the correlator.
  • \n
  • Corr.m_eff to construct effective masses. Various variants for periodic and fixed temporal boundary conditions are available.
  • \n
  • Corr.deriv returns the first derivative of the correlator as Corr. Different discretizations of the numerical derivative are available.
  • \n
  • Corr.second_deriv returns the second derivative of the correlator as Corr. Different discretizations of the numerical derivative are available.
  • \n
  • Corr.symmetric symmetrizes parity even correlations functions, assuming periodic boundary conditions.
  • \n
  • Corr.anti_symmetric anti-symmetrizes parity odd correlations functions, assuming periodic boundary conditions.
  • \n
  • Corr.T_symmetry averages a correlator with its time symmetry partner, assuming fixed boundary conditions.
  • \n
  • Corr.plateau extracts a plateau value from the correlator in a given range.
  • \n
  • Corr.roll periodically shifts the correlator.
  • \n
  • Corr.reverse reverses the time ordering of the correlator.
  • \n
  • Corr.correlate constructs a disconnected correlation function from the correlator and another Corr or Obs object.
  • \n
  • Corr.reweight reweights the correlator.
  • \n
\n\n

pyerrors can also handle matrices of correlation functions and extract energy states from these matrices via a generalized eigenvalue problem (see pyerrors.correlators.Corr.GEVP).

\n\n

For the full API see pyerrors.correlators.Corr.

\n\n

Complex valued observables

\n\n

pyerrors can handle complex valued observables via the class pyerrors.obs.CObs.\nCObs are initialized with a real and an imaginary part which both can be Obs valued.

\n\n
my_real_part = pe.Obs([samples1], ['ensemble1'])\nmy_imag_part = pe.Obs([samples2], ['ensemble1'])\n\nmy_cobs = pe.CObs(my_real_part, my_imag_part)\nmy_cobs.gamma_method()\nprint(my_cobs)\n> (0.9959(91)+0.659(28)j)\n
\n\n

Elementary mathematical operations are overloaded and samples are properly propagated as for the Obs class.

\n\n
my_derived_cobs = (my_cobs + my_cobs.conjugate()) / np.abs(my_cobs)\nmy_derived_cobs.gamma_method()\nprint(my_derived_cobs)\n> (1.668(23)+0.0j)\n
\n\n

The Covobs class

\n\n

In many projects, auxiliary data that is not based on Monte Carlo chains enters. Examples are experimentally determined mesons masses which are used to set the scale or renormalization constants. These numbers come with an error that has to be propagated through the analysis. The Covobs class allows to define such quantities in pyerrors. Furthermore, external input might consist of correlated quantities. An example are the parameters of an interpolation formula, which are defined via mean values and a covariance matrix between all parameters. The contribution of the interpolation formula to the error of a derived quantity therefore might depend on the complete covariance matrix.

\n\n

This concept is built into the definition of Covobs. In pyerrors, external input is defined by $M$ mean values, a $M\\times M$ covariance matrix, where $M=1$ is permissible, and a name that uniquely identifies the covariance matrix. Below, we define the pion mass, based on its mean value and error, 134.9768(5). Note, that the square of the error enters cov_Obs, since the second argument of this function is the covariance matrix of the Covobs.

\n\n
import pyerrors.obs as pe\n\nmpi = pe.cov_Obs(134.9768, 0.0005**2, 'pi^0 mass')\nmpi.gamma_method()\nmpi.details()\n> Result         1.34976800e+02 +/- 5.00000000e-04 +/- 0.00000000e+00 (0.000%)\n>  pi^0 mass     5.00000000e-04\n> 0 samples in 1 ensemble:\n>   \u00b7 Covobs   'pi^0 mass'\n
\n\n

The resulting object mpi is an Obs that contains a Covobs. In the following, it may be handled as any other Obs. The contribution of the covariance matrix to the error of an Obs is determined from the $M \\times M$ covariance matrix $\\Sigma$ and the gradient of the Obs with respect to the external quantities, which is the $1\\times M$ Jacobian matrix $J$, via\n$$s = \\sqrt{J^T \\Sigma J}\\,,$$\nwhere the Jacobian is computed for each derived quantity via automatic differentiation.

\n\n

Correlated auxiliary data is defined similarly to above, e.g., via

\n\n
RAP = pe.cov_Obs([16.7457, -19.0475], [[3.49591, -6.07560], [-6.07560, 10.5834]], 'R_AP, 1906.03445, (5.3a)')\nprint(RAP)\n> [Obs[16.7(1.9)], Obs[-19.0(3.3)]]\n
\n\n

where RAP now is a list of two Obs that contains the two correlated parameters.

\n\n

Since the gradient of a derived observable with respect to an external covariance matrix is propagated through the entire analysis, the Covobs class allows to quote the derivative of a result with respect to the external quantities. If these derivatives are published together with the result, small shifts in the definition of external quantities, e.g., the definition of the physical point, can be performed a posteriori based on the published information. This may help to compare results of different groups. The gradient of an Obs o with respect to a covariance matrix with the identifying string k may be accessed via

\n\n
o.covobs[k].grad\n
\n\n

Error propagation in iterative algorithms

\n\n

pyerrors supports exact linear error propagation for iterative algorithms like various variants of non-linear least sqaures fits or root finding. The derivatives required for the error propagation are calculated as described in arXiv:1809.01289.

\n\n

Least squares fits

\n\n

Standard non-linear least square fits with errors on the dependent but not the independent variables can be performed with pyerrors.fits.least_squares. As default solver the Levenberg-Marquardt algorithm implemented in scipy is used.

\n\n

Fit functions have to be of the following form

\n\n
import autograd.numpy as anp\n\ndef func(a, x):\n    return a[1] * anp.exp(-a[0] * x)\n
\n\n

It is important that numerical functions refer to autograd.numpy instead of numpy for the automatic differentiation in iterative algorithms to work properly.

\n\n

Fits can then be performed via

\n\n
fit_result = pe.fits.least_squares(x, y, func)\nprint("\\n", fit_result)\n> Fit with 2 parameters\n> Method: Levenberg-Marquardt\n> `ftol` termination condition is satisfied.\n> chisquare/d.o.f.: 0.9593035785160936\n\n>  Goodness of fit:\n> \u03c7\u00b2/d.o.f. = 0.959304\n> p-value   = 0.5673\n> Fit parameters:\n> 0      0.0548(28)\n> 1      1.933(64)\n
\n\n

where x is a list or numpy.array of floats and y is a list or numpy.array of Obs.

\n\n

Data stored in Corr objects can be fitted directly using the Corr.fit method.

\n\n
my_corr = pe.Corr(y)\nfit_result = my_corr.fit(func, fitrange=[12, 25])\n
\n\n

this can simplify working with absolute fit ranges and takes care of gaps in the data automatically.

\n\n

For fit functions with multiple independent variables the fit function can be of the form

\n\n
def func(a, x):\n    (x1, x2) = x\n    return a[0] * x1 ** 2 + a[1] * x2\n
\n\n

pyerrors also supports correlated fits which can be triggered via the parameter correlated_fit=True.\nDetails about how the required covariance matrix is estimated can be found in pyerrors.obs.covariance.

\n\n

Direct visualizations of the performed fits can be triggered via resplot=True or qqplot=True. For all available options see pyerrors.fits.least_squares.

\n\n

Total least squares fits

\n\n

pyerrors can also fit data with errors on both the dependent and independent variables using the total least squares method also referred to orthogonal distance regression as implemented in scipy, see pyerrors.fits.least_squares. The syntax is identical to the standard least squares case, the only diffrence being that x also has to be a list or numpy.array of Obs.

\n\n

For the full API see pyerrors.fits for fits and pyerrors.roots for finding roots of functions.

\n\n

Matrix operations

\n\n

pyerrors provides wrappers for Obs- and CObs-valued matrix operations based on numpy.linalg. The supported functions include:

\n\n
    \n
  • inv for the matrix inverse.
  • \n
  • cholseky for the Cholesky decomposition.
  • \n
  • det for the matrix determinant.
  • \n
  • eigh for eigenvalues and eigenvectors of hermitean matrices.
  • \n
  • eig for eigenvalues of general matrices.
  • \n
  • pinv for the Moore-Penrose pseudoinverse.
  • \n
  • svd for the singular-value-decomposition.
  • \n
\n\n

For the full API see pyerrors.linalg.

\n\n

Export data

\n\n

The preferred exported file format within pyerrors is json.gz. Files written to this format are valid JSON files that have been compressed using gzip. The structure of the content is inspired by the dobs format of the ALPHA collaboration. The aim of the format is to facilitate the storage of data in a self-contained way such that, even years after the creation of the file, it is possible to extract all necessary information:

\n\n
    \n
  • What observables are stored? Possibly: How exactly are they defined.
  • \n
  • How does each single ensemble or external quantity contribute to the error of the observable?
  • \n
  • Who did write the file when and on which machine?
  • \n
\n\n

This can be achieved by storing all information in one single file. The export routines of pyerrors are written such that as much information as possible is written automatically as described in the following example

\n\n
my_obs = pe.Obs([samples], ["test_ensemble"])\nmy_obs.tag = "My observable"\n\npe.input.json.dump_to_json(my_obs, "test_output_file", description="This file contains a test observable")\n# For a single observable one can equivalently use the class method dump\nmy_obs.dump("test_output_file", description="This file contains a test observable")\n\ncheck = pe.input.json.load_json("test_output_file")\n\nprint(my_obs == check)\n> True\n
\n\n

The format also allows to directly write out the content of Corr objects or lists and arrays of Obs objects by passing the desired data to pyerrors.input.json.dump_to_json.

\n\n

json.gz format specification

\n\n

The first entries of the file provide optional auxiliary information:

\n\n
    \n
  • program is a string that indicates which program was used to write the file.
  • \n
  • version is a string that specifies the version of the format.
  • \n
  • who is a string that specifies the user name of the creator of the file.
  • \n
  • date is a string and contains the creation date of the file.
  • \n
  • host is a string and contains the hostname of the machine where the file has been written.
  • \n
  • description contains information on the content of the file. This field is not filled automatically in pyerrors. The user is advised to provide as detailed information as possible in this field. Examples are: Input files of measurements or simulations, LaTeX formulae or references to publications to specify how the observables have been computed, details on the analysis strategy, ... This field may be any valid JSON type. Strings, arrays or objects (equivalent to dicts in python) are well suited to provide information.
  • \n
\n\n

The only necessary entry of the file is the field\n-obsdata, an array that contains the actual data.

\n\n

Each entry of the array belongs to a single structure of observables. Currently, these structures can be either of Obs, list, numpy.ndarray, Corr. All Obs inside a structure (with dimension > 0) have to be defined on the same set of configurations. Different structures, that are represented by entries of the array obsdata, are treated independently. Each entry of the array obsdata has the following required entries:

\n\n
    \n
  • type is a string that specifies the type of the structure. This allows to parse the content to the correct form after reading the file. It is always possible to interpret the content as list of Obs.
  • \n
  • value is an array that contains the mean values of the Obs inside the structure.\nThe following entries are optional:
  • \n
  • layout is a string that specifies the layout of multi-dimensional structures. Examples are \"2, 2\" for a 2x2 dimensional matrix or \"64, 4, 4\" for a Corr with $T=64$ and 4x4 matrices on each time slices. \"1\" denotes a single Obs. Multi-dimensional structures are stored in row-major format (see below).
  • \n
  • tag is any JSON type. It contains additional information concerning the structure. The tag of an Obs in pyerrors is written here.
  • \n
  • reweighted is a Bool that may be used to specify, whether the Obs in the structure have been reweighted.
  • \n
  • data is an array that contains the data from MC chains. We will define it below.
  • \n
  • cdata is an array that contains the data from external quantities with an error (Covobs in pyerrors). We will define it below.
  • \n
\n\n

The array data contains the data from MC chains. Each entry of the array corresponds to one ensemble and contains:

\n\n
    \n
  • id, a string that contains the name of the ensemble
  • \n
  • replica, an array that contains an entry per replica of the ensemble.
  • \n
\n\n

Each entry of replica contains\nname, a string that contains the name of the replica\ndeltas, an array that contains the actual data.

\n\n

Each entry in deltas corresponds to one configuration of the replica and has $1+N$ many entries. The first entry is an integer that specifies the configuration number that, together with ensemble and replica name, may be used to uniquely identify the configuration on which the data has been obtained. The following N entries specify the deltas, i.e., the deviation of the observable from the mean value on this configuration, of each Obs inside the structure. Multi-dimensional structures are stored in a row-major format. For primary observables, such as correlation functions, $value + delta_i$ matches the primary data obtained on the configuration.

\n\n

The array cdata contains information about the contribution of auxiliary observables, represented by Covobs in pyerrors, to the total error of the observables. Each entry of the array belongs to one auxiliary covariance matrix and contains:

\n\n
    \n
  • id, a string that identifies the covariance matrix
  • \n
  • layout, a string that defines the dimensions of the $M\\times M$ covariance matrix (has to be \"M, M\" or \"1\").
  • \n
  • cov, an array that contains the $M\\times M$ many entries of the covariance matrix, stored in row-major format.
  • \n
  • grad, an array that contains N entries, one for each Obs inside the structure. Each entry itself is an array, that contains the M gradients of the Nth observable with respect to the quantity that corresponds to the Mth diagonal entry of the covariance matrix.
  • \n
\n\n

A JSON schema that may be used to verify the correctness of a file with respect to the format definition is stored in ./examples/json_schema.json. The schema is a self-descriptive format definition and contains an exemplary file.

\n\n

Julia I/O routines for the json.gz format, compatible with ADerrors.jl, can be found here.

\n\n

Citing

\n\n

If you use pyerrors for research that leads to a publication please consider citing:

\n\n
    \n
  • Ulli Wolff, Monte Carlo errors with less errors. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
  • \n
  • Stefan Schaefer, Rainer Sommer, Francesco Virotta, Critical slowing down and error analysis in lattice QCD simulations. Nucl.Phys.B 845 (2011) 93-119.
  • \n
  • Alberto Ramos, Automatic differentiation for error analysis of Monte Carlo data. Comput.Phys.Commun. 238 (2019) 19-35.
  • \n
\n"}, "pyerrors.correlators": {"fullname": "pyerrors.correlators", "modulename": "pyerrors.correlators", "type": "module", "doc": "

\n"}, "pyerrors.correlators.Corr": {"fullname": "pyerrors.correlators.Corr", "modulename": "pyerrors.correlators", "qualname": "Corr", "type": "class", "doc": "

The class for a correlator (time dependent sequence of pe.Obs).

\n\n

Everything, this class does, can be achieved using lists or arrays of Obs.\nBut it is simply more convenient to have a dedicated object for correlators.\nOne often wants to add or multiply correlators of the same length at every timeslice and it is inconvenient\nto iterate over all timeslices for every operation. This is especially true, when dealing with matrices.

\n\n

The correlator can have two types of content: An Obs at every timeslice OR a GEVP\nmatrix at every timeslice. Other dependency (eg. spatial) are not supported.

\n"}, "pyerrors.correlators.Corr.__init__": {"fullname": "pyerrors.correlators.Corr.__init__", "modulename": "pyerrors.correlators", "qualname": "Corr.__init__", "type": "function", "doc": "

Initialize a Corr object.

\n\n
Parameters
\n\n
    \n
  • data_input (list or array):\nlist of Obs or list of arrays of Obs or array of Corrs
  • \n
  • padding (list, optional):\nList with two entries where the first labels the padding\nat the front of the correlator and the second the padding\nat the back.
  • \n
  • prange (list, optional):\nList containing the first and last timeslice of the plateau\nregion indentified for this correlator.
  • \n
\n", "signature": "(self, data_input, padding=[0, 0], prange=None)", "funcdef": "def"}, "pyerrors.correlators.Corr.reweighted": {"fullname": "pyerrors.correlators.Corr.reweighted", "modulename": "pyerrors.correlators", "qualname": "Corr.reweighted", "type": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.gamma_method": {"fullname": "pyerrors.correlators.Corr.gamma_method", "modulename": "pyerrors.correlators", "qualname": "Corr.gamma_method", "type": "function", "doc": "

Apply the gamma method to the content of the Corr.

\n", "signature": "(self, **kwargs)", "funcdef": "def"}, "pyerrors.correlators.Corr.projected": {"fullname": "pyerrors.correlators.Corr.projected", "modulename": "pyerrors.correlators", "qualname": "Corr.projected", "type": "function", "doc": "

We need to project the Correlator with a Vector to get a single value at each timeslice.

\n\n

The method can use one or two vectors.\nIf two are specified it returns v1@G@v2 (the order might be very important.)\nBy default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to

\n", "signature": "(self, vector_l=None, vector_r=None, normalize=False)", "funcdef": "def"}, "pyerrors.correlators.Corr.item": {"fullname": "pyerrors.correlators.Corr.item", "modulename": "pyerrors.correlators", "qualname": "Corr.item", "type": "function", "doc": "

Picks the element [i,j] from every matrix and returns a correlator containing one Obs per timeslice.

\n\n
Parameters
\n\n
    \n
  • i (int):\nFirst index to be picked.
  • \n
  • j (int):\nSecond index to be picked.
  • \n
\n", "signature": "(self, i, j)", "funcdef": "def"}, "pyerrors.correlators.Corr.plottable": {"fullname": "pyerrors.correlators.Corr.plottable", "modulename": "pyerrors.correlators", "qualname": "Corr.plottable", "type": "function", "doc": "

Outputs the correlator in a plotable format.

\n\n

Outputs three lists containing the timeslice index, the value on each\ntimeslice and the error on each timeslice.

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.symmetric": {"fullname": "pyerrors.correlators.Corr.symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.symmetric", "type": "function", "doc": "

Symmetrize the correlator around x0=0.

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.anti_symmetric": {"fullname": "pyerrors.correlators.Corr.anti_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.anti_symmetric", "type": "function", "doc": "

Anti-symmetrize the correlator around x0=0.

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.matrix_symmetric", "type": "function", "doc": "

Symmetrizes the correlator matrices on every timeslice.

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.GEVP": {"fullname": "pyerrors.correlators.Corr.GEVP", "modulename": "pyerrors.correlators", "qualname": "Corr.GEVP", "type": "function", "doc": "

Solve the generalized eigenvalue problem on the correlator matrix and returns the corresponding eigenvectors.

\n\n

The eigenvectors are sorted according to the descending eigenvalues, the zeroth eigenvector(s) correspond to the\nlargest eigenvalue(s). The eigenvector(s) for the individual states can be accessed via slicing

\n\n
C.GEVP(t0=2)[0]  # Ground state vector(s)\nC.GEVP(t0=2)[:3]  # Vectors for the lowest three states\n
\n\n
Parameters
\n\n
    \n
  • t0 (int):\nThe time t0 for the right hand side of the GEVP according to $G(t)v_i=\\lambda_i G(t_0)v_i$
  • \n
  • ts (int):\nfixed time $G(t_s)v_i=\\lambda_i G(t_0)v_i$ if sort=None.\nIf sort=\"Eigenvector\" it gives a reference point for the sorting method.
  • \n
  • sort (string):\nIf this argument is set, a list of self.T vectors per state is returned. If it is set to None, only one vector is returned.\n
      \n
    • \"Eigenvalue\": The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice.
    • \n
    • \"Eigenvector\": Use the method described in arXiv:2004.10472 to find the set of v(t) belonging to the state.\nThe reference state is identified by its eigenvalue at $t=t_s$.
    • \n
  • \n
\n\n
Other Parameters
\n\n
    \n
  • state (int):\nReturns only the vector(s) for a specified state. The lowest state is zero.
  • \n
\n", "signature": "(self, t0, ts=None, sort='Eigenvalue', **kwargs)", "funcdef": "def"}, "pyerrors.correlators.Corr.Eigenvalue": {"fullname": "pyerrors.correlators.Corr.Eigenvalue", "modulename": "pyerrors.correlators", "qualname": "Corr.Eigenvalue", "type": "function", "doc": "

Determines the eigenvalue of the GEVP by solving and projecting the correlator

\n\n
Parameters
\n\n
    \n
  • state (int):\nThe state one is interested in ordered by energy. The lowest state is zero.
  • \n
  • All other parameters are identical to the ones of Corr.GEVP.
  • \n
\n", "signature": "(self, t0, ts=None, state=0, sort='Eigenvalue')", "funcdef": "def"}, "pyerrors.correlators.Corr.Hankel": {"fullname": "pyerrors.correlators.Corr.Hankel", "modulename": "pyerrors.correlators", "qualname": "Corr.Hankel", "type": "function", "doc": "

Constructs an NxN Hankel matrix

\n\n

C(t) c(t+1) ... c(t+n-1)\nC(t+1) c(t+2) ... c(t+n)\n.................\nC(t+(n-1)) c(t+n) ... c(t+2(n-1))

\n\n
Parameters
\n\n
    \n
  • N (int):\nDimension of the Hankel matrix
  • \n
  • periodic (bool, optional):\ndetermines whether the matrix is extended periodically
  • \n
\n", "signature": "(self, N, periodic=False)", "funcdef": "def"}, "pyerrors.correlators.Corr.roll": {"fullname": "pyerrors.correlators.Corr.roll", "modulename": "pyerrors.correlators", "qualname": "Corr.roll", "type": "function", "doc": "

Periodically shift the correlator by dt timeslices

\n\n
Parameters
\n\n
    \n
  • dt (int):\nnumber of timeslices
  • \n
\n", "signature": "(self, dt)", "funcdef": "def"}, "pyerrors.correlators.Corr.reverse": {"fullname": "pyerrors.correlators.Corr.reverse", "modulename": "pyerrors.correlators", "qualname": "Corr.reverse", "type": "function", "doc": "

Reverse the time ordering of the Corr

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.thin": {"fullname": "pyerrors.correlators.Corr.thin", "modulename": "pyerrors.correlators", "qualname": "Corr.thin", "type": "function", "doc": "

Thin out a correlator to suppress correlations

\n\n
Parameters
\n\n
    \n
  • spacing (int):\nKeep only every 'spacing'th entry of the correlator
  • \n
  • offset (int):\nOffset the equal spacing
  • \n
\n", "signature": "(self, spacing=2, offset=0)", "funcdef": "def"}, "pyerrors.correlators.Corr.correlate": {"fullname": "pyerrors.correlators.Corr.correlate", "modulename": "pyerrors.correlators", "qualname": "Corr.correlate", "type": "function", "doc": "

Correlate the correlator with another correlator or Obs

\n\n
Parameters
\n\n
    \n
  • partner (Obs or Corr):\npartner to correlate the correlator with.\nCan either be an Obs which is correlated with all entries of the\ncorrelator or a Corr of same length.
  • \n
\n", "signature": "(self, partner)", "funcdef": "def"}, "pyerrors.correlators.Corr.reweight": {"fullname": "pyerrors.correlators.Corr.reweight", "modulename": "pyerrors.correlators", "qualname": "Corr.reweight", "type": "function", "doc": "

Reweight the correlator.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
  • \n
\n", "signature": "(self, weight, **kwargs)", "funcdef": "def"}, "pyerrors.correlators.Corr.T_symmetry": {"fullname": "pyerrors.correlators.Corr.T_symmetry", "modulename": "pyerrors.correlators", "qualname": "Corr.T_symmetry", "type": "function", "doc": "

Return the time symmetry average of the correlator and its partner

\n\n
Parameters
\n\n
    \n
  • partner (Corr):\nTime symmetry partner of the Corr
  • \n
  • partity (int):\nParity quantum number of the correlator, can be +1 or -1
  • \n
\n", "signature": "(self, partner, parity=1)", "funcdef": "def"}, "pyerrors.correlators.Corr.deriv": {"fullname": "pyerrors.correlators.Corr.deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.deriv", "type": "function", "doc": "

Return the first derivative of the correlator with respect to x0.

\n\n
Parameters
\n\n
    \n
  • variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice: symmetric, forward, backward, improved, default: symmetric
  • \n
\n", "signature": "(self, variant='symmetric')", "funcdef": "def"}, "pyerrors.correlators.Corr.second_deriv": {"fullname": "pyerrors.correlators.Corr.second_deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.second_deriv", "type": "function", "doc": "

Return the second derivative of the correlator with respect to x0.

\n\n
Parameters
\n\n
    \n
  • variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice: symmetric, improved, default: symmetric
  • \n
\n", "signature": "(self, variant='symmetric')", "funcdef": "def"}, "pyerrors.correlators.Corr.m_eff": {"fullname": "pyerrors.correlators.Corr.m_eff", "modulename": "pyerrors.correlators", "qualname": "Corr.m_eff", "type": "function", "doc": "

Returns the effective mass of the correlator as correlator object

\n\n
Parameters
\n\n
    \n
  • variant (str):\nlog : uses the standard effective mass log(C(t) / C(t+1))\ncosh, periodic : Use periodicitiy of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.\nsinh : Use anti-periodicitiy of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.\nSee, e.g., arXiv:1205.5380\narccosh : Uses the explicit form of the symmetrized correlator (not recommended)
  • \n
  • guess (float):\nguess for the root finder, only relevant for the root variant
  • \n
\n", "signature": "(self, variant='log', guess=1.0)", "funcdef": "def"}, "pyerrors.correlators.Corr.fit": {"fullname": "pyerrors.correlators.Corr.fit", "modulename": "pyerrors.correlators", "qualname": "Corr.fit", "type": "function", "doc": "

Fits function to the data

\n\n
Parameters
\n\n
    \n
  • function (obj):\nfunction to fit to the data. See fits.least_squares for details.
  • \n
  • fitrange (list):\nTwo element list containing the timeslices on which the fit is supposed to start and stop.\nCaution: This range is inclusive as opposed to standard python indexing.\nfitrange=[4, 6] corresponds to the three entries 4, 5 and 6.\nIf not specified, self.prange or all timeslices are used.
  • \n
  • silent (bool):\nDecides whether output is printed to the standard output.
  • \n
\n", "signature": "(self, function, fitrange=None, silent=False, **kwargs)", "funcdef": "def"}, "pyerrors.correlators.Corr.plateau": {"fullname": "pyerrors.correlators.Corr.plateau", "modulename": "pyerrors.correlators", "qualname": "Corr.plateau", "type": "function", "doc": "

Extract a plateau value from a Corr object

\n\n
Parameters
\n\n
    \n
  • plateau_range (list):\nlist with two entries, indicating the first and the last timeslice\nof the plateau region.
  • \n
  • method (str):\nmethod to extract the plateau.\n 'fit' fits a constant to the plateau region\n 'avg', 'average' or 'mean' just average over the given timeslices.
  • \n
  • auto_gamma (bool):\napply gamma_method with default parameters to the Corr. Defaults to None
  • \n
\n", "signature": "(self, plateau_range=None, method='fit', auto_gamma=False)", "funcdef": "def"}, "pyerrors.correlators.Corr.set_prange": {"fullname": "pyerrors.correlators.Corr.set_prange", "modulename": "pyerrors.correlators", "qualname": "Corr.set_prange", "type": "function", "doc": "

Sets the attribute prange of the Corr object.

\n", "signature": "(self, prange)", "funcdef": "def"}, "pyerrors.correlators.Corr.show": {"fullname": "pyerrors.correlators.Corr.show", "modulename": "pyerrors.correlators", "qualname": "Corr.show", "type": "function", "doc": "

Plots the correlator using the tag of the correlator as label if available.

\n\n
Parameters
\n\n
    \n
  • x_range (list):\nlist of two values, determining the range of the x-axis e.g. [4, 8]
  • \n
  • comp (Corr or list of Corr):\nCorrelator or list of correlators which are plotted for comparison.\nThe tags of these correlators are used as labels if available.
  • \n
  • logscale (bool):\nSets y-axis to logscale
  • \n
  • plateau (Obs):\nPlateau value to be visualized in the figure
  • \n
  • fit_res (Fit_result):\nFit_result object to be visualized
  • \n
  • ylabel (str):\nLabel for the y-axis
  • \n
  • save (str):\npath to file in which the figure should be saved
  • \n
  • auto_gamma (bool):\nApply the gamma method with standard parameters to all correlators and plateau values before plotting.
  • \n
  • hide_sigma (float):\nHides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors.
  • \n
  • references (list):\nList of floating point values that are displayed as horizontal lines for reference.
  • \n
\n", "signature": "(\n self,\n x_range=None,\n comp=None,\n y_range=None,\n logscale=False,\n plateau=None,\n fit_res=None,\n ylabel=None,\n save=None,\n auto_gamma=False,\n hide_sigma=None,\n references=None\n)", "funcdef": "def"}, "pyerrors.correlators.Corr.spaghetti_plot": {"fullname": "pyerrors.correlators.Corr.spaghetti_plot", "modulename": "pyerrors.correlators", "qualname": "Corr.spaghetti_plot", "type": "function", "doc": "

Produces a spaghetti plot of the correlator suited to monitor exceptional configurations.

\n\n
Parameters
\n\n
    \n
  • logscale (bool):\nDetermines whether the scale of the y-axis is logarithmic or standard.
  • \n
\n", "signature": "(self, logscale=True)", "funcdef": "def"}, "pyerrors.correlators.Corr.dump": {"fullname": "pyerrors.correlators.Corr.dump", "modulename": "pyerrors.correlators", "qualname": "Corr.dump", "type": "function", "doc": "

Dumps the Corr into a file of chosen type

\n\n
Parameters
\n\n
    \n
  • filename (str):\nName of the file to be saved.
  • \n
  • datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n", "signature": "(self, filename, datatype='json.gz', **kwargs)", "funcdef": "def"}, "pyerrors.correlators.Corr.print": {"fullname": "pyerrors.correlators.Corr.print", "modulename": "pyerrors.correlators", "qualname": "Corr.print", "type": "function", "doc": "

\n", "signature": "(self, range=[0, None])", "funcdef": "def"}, "pyerrors.correlators.Corr.sqrt": {"fullname": "pyerrors.correlators.Corr.sqrt", "modulename": "pyerrors.correlators", "qualname": "Corr.sqrt", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.log": {"fullname": "pyerrors.correlators.Corr.log", "modulename": "pyerrors.correlators", "qualname": "Corr.log", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.exp": {"fullname": "pyerrors.correlators.Corr.exp", "modulename": "pyerrors.correlators", "qualname": "Corr.exp", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.sin": {"fullname": "pyerrors.correlators.Corr.sin", "modulename": "pyerrors.correlators", "qualname": "Corr.sin", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.cos": {"fullname": "pyerrors.correlators.Corr.cos", "modulename": "pyerrors.correlators", "qualname": "Corr.cos", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.tan": {"fullname": "pyerrors.correlators.Corr.tan", "modulename": "pyerrors.correlators", "qualname": "Corr.tan", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.sinh": {"fullname": "pyerrors.correlators.Corr.sinh", "modulename": "pyerrors.correlators", "qualname": "Corr.sinh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.cosh": {"fullname": "pyerrors.correlators.Corr.cosh", "modulename": "pyerrors.correlators", "qualname": "Corr.cosh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.tanh": {"fullname": "pyerrors.correlators.Corr.tanh", "modulename": "pyerrors.correlators", "qualname": "Corr.tanh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsin": {"fullname": "pyerrors.correlators.Corr.arcsin", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsin", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.arccos": {"fullname": "pyerrors.correlators.Corr.arccos", "modulename": "pyerrors.correlators", "qualname": "Corr.arccos", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.arctan": {"fullname": "pyerrors.correlators.Corr.arctan", "modulename": "pyerrors.correlators", "qualname": "Corr.arctan", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsinh": {"fullname": "pyerrors.correlators.Corr.arcsinh", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsinh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.arccosh": {"fullname": "pyerrors.correlators.Corr.arccosh", "modulename": "pyerrors.correlators", "qualname": "Corr.arccosh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.arctanh": {"fullname": "pyerrors.correlators.Corr.arctanh", "modulename": "pyerrors.correlators", "qualname": "Corr.arctanh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.correlators.Corr.real": {"fullname": "pyerrors.correlators.Corr.real", "modulename": "pyerrors.correlators", "qualname": "Corr.real", "type": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.imag": {"fullname": "pyerrors.correlators.Corr.imag", "modulename": "pyerrors.correlators", "qualname": "Corr.imag", "type": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.prune": {"fullname": "pyerrors.correlators.Corr.prune", "modulename": "pyerrors.correlators", "qualname": "Corr.prune", "type": "function", "doc": "

Project large correlation matrix to lowest states

\n\n

This method can be used to reduce the size of an (N x N) correlation matrix\nto (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise\nis still small.

\n\n
Parameters
\n\n
    \n
  • Ntrunc (int):\nRank of the target matrix.
  • \n
  • tproj (int):\nTime where the eigenvectors are evaluated, corresponds to ts in the GEVP method.\nThe default value is 3.
  • \n
  • t0proj (int):\nTime where the correlation matrix is inverted. Choosing t0proj=1 is strongly\ndiscouraged for O(a) improved theories, since the correctness of the procedure\ncannot be granted in this case. The default value is 2.
  • \n
  • basematrix (Corr):\nCorrelation matrix that is used to determine the eigenvectors of the\nlowest states based on a GEVP. basematrix is taken to be the Corr itself if\nis is not specified.
  • \n
\n\n
Notes
\n\n

We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving\nthe GEVP $$C(t) v_n(t, t_0) = \\lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \\equiv t_\\mathrm{proj}$\nand $t_0 \\equiv t_{0, \\mathrm{proj}}$. The target matrix is projected onto the subspace of the\nresulting eigenvectors $v_n, n=1,\\dots,N_\\mathrm{trunc}$ via\n$$G^\\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large\ncorrelation matrix and to remove some noise that is added by irrelevant operators.\nThis may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated\nbound $t_0 \\leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$.

\n", "signature": "(self, Ntrunc, tproj=3, t0proj=2, basematrix=None)", "funcdef": "def"}, "pyerrors.covobs": {"fullname": "pyerrors.covobs", "modulename": "pyerrors.covobs", "type": "module", "doc": "

\n"}, "pyerrors.covobs.Covobs": {"fullname": "pyerrors.covobs.Covobs", "modulename": "pyerrors.covobs", "qualname": "Covobs", "type": "class", "doc": "

\n"}, "pyerrors.covobs.Covobs.__init__": {"fullname": "pyerrors.covobs.Covobs.__init__", "modulename": "pyerrors.covobs", "qualname": "Covobs.__init__", "type": "function", "doc": "

Initialize Covobs object.

\n\n
Parameters
\n\n
    \n
  • mean (float):\nMean value of the new Obs
  • \n
  • cov (list or array):\n2d Covariance matrix or 1d diagonal entries
  • \n
  • name (str):\nidentifier for the covariance matrix
  • \n
  • pos (int):\nPosition of the variance belonging to mean in cov.\nIs taken to be 1 if cov is 0-dimensional
  • \n
  • grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
  • \n
\n", "signature": "(self, mean, cov, name, pos=None, grad=None)", "funcdef": "def"}, "pyerrors.covobs.Covobs.errsq": {"fullname": "pyerrors.covobs.Covobs.errsq", "modulename": "pyerrors.covobs", "qualname": "Covobs.errsq", "type": "function", "doc": "

Return the variance (= square of the error) of the Covobs

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.covobs.Covobs.cov": {"fullname": "pyerrors.covobs.Covobs.cov", "modulename": "pyerrors.covobs", "qualname": "Covobs.cov", "type": "variable", "doc": "

\n"}, "pyerrors.covobs.Covobs.grad": {"fullname": "pyerrors.covobs.Covobs.grad", "modulename": "pyerrors.covobs", "qualname": "Covobs.grad", "type": "variable", "doc": "

\n"}, "pyerrors.dirac": {"fullname": "pyerrors.dirac", "modulename": "pyerrors.dirac", "type": "module", "doc": "

\n"}, "pyerrors.dirac.epsilon_tensor": {"fullname": "pyerrors.dirac.epsilon_tensor", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor", "type": "function", "doc": "

Rank-3 epsilon tensor

\n\n

Based on https://codegolf.stackexchange.com/a/160375

\n", "signature": "(i, j, k)", "funcdef": "def"}, "pyerrors.dirac.epsilon_tensor_rank4": {"fullname": "pyerrors.dirac.epsilon_tensor_rank4", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor_rank4", "type": "function", "doc": "

Rank-4 epsilon tensor

\n\n

Extension of https://codegolf.stackexchange.com/a/160375

\n", "signature": "(i, j, k, o)", "funcdef": "def"}, "pyerrors.dirac.Grid_gamma": {"fullname": "pyerrors.dirac.Grid_gamma", "modulename": "pyerrors.dirac", "qualname": "Grid_gamma", "type": "function", "doc": "

Returns gamma matrix in Grid labeling.

\n", "signature": "(gamma_tag)", "funcdef": "def"}, "pyerrors.fits": {"fullname": "pyerrors.fits", "modulename": "pyerrors.fits", "type": "module", "doc": "

\n"}, "pyerrors.fits.Fit_result": {"fullname": "pyerrors.fits.Fit_result", "modulename": "pyerrors.fits", "qualname": "Fit_result", "type": "class", "doc": "

Represents fit results.

\n\n
Attributes
\n\n
    \n
  • fit_parameters (list):\nresults for the individual fit parameters,\nalso accessible via indices.
  • \n
\n", "bases": "collections.abc.Sequence"}, "pyerrors.fits.Fit_result.__init__": {"fullname": "pyerrors.fits.Fit_result.__init__", "modulename": "pyerrors.fits", "qualname": "Fit_result.__init__", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.fits.Fit_result.gamma_method": {"fullname": "pyerrors.fits.Fit_result.gamma_method", "modulename": "pyerrors.fits", "qualname": "Fit_result.gamma_method", "type": "function", "doc": "

Apply the gamma method to all fit parameters

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.fits.least_squares": {"fullname": "pyerrors.fits.least_squares", "modulename": "pyerrors.fits", "qualname": "least_squares", "type": "function", "doc": "

Performs a non-linear fit to y = func(x).

\n\n
Parameters
\n\n
    \n
  • x (list):\nlist of floats.
  • \n
  • y (list):\nlist of Obs.
  • \n
  • func (object):\nfit function, has to be of the form

    \n\n
    import autograd.numpy as anp\n\ndef func(a, x):\n   return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
    \n\n

    For multiple x values func can be of the form

    \n\n
    def func(a, x):\n   (x1, x2) = x\n   return a[0] * x1 ** 2 + a[1] * x2\n
    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • priors (list, optional):\npriors has to be a list with an entry for every parameter in the fit. The entries can either be\nObs (e.g. results from a previous fit) or strings containing a value and an error formatted like\n0.548(23), 500(40) or 0.5(0.4)
  • \n
  • silent (bool, optional):\nIf true all output to the console is omitted (default False).
  • \n
  • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for\nnon-linear fits with many parameters.
  • \n
  • method (str, optional):\ncan be used to choose an alternative method for the minimization of chisquare.\nThe possible methods are the ones which can be used for scipy.optimize.minimize and\nmigrad of iminuit. If no method is specified, Levenberg-Marquard is used.\nReliable alternatives are migrad, Powell and Nelder-Mead.
  • \n
  • correlated_fit (bool):\nIf True, use the full inverse covariance matrix in the definition of the chisquare cost function.\nFor details about how the covariance matrix is estimated see pyerrors.obs.covariance.\nIn practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix).\nThis procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning).\nAt the moment this option only works for prior==None and when no method is given.
  • \n
  • expected_chisquare (bool):\nIf True estimates the expected chisquare which is\ncorrected by effects caused by correlated input data (default False).
  • \n
  • resplot (bool):\nIf True, a plot which displays fit, data and residuals is generated (default False).
  • \n
  • qqplot (bool):\nIf True, a quantile-quantile plot of the fit result is generated (default False).
  • \n
\n", "signature": "(x, y, func, priors=None, silent=False, **kwargs)", "funcdef": "def"}, "pyerrors.fits.total_least_squares": {"fullname": "pyerrors.fits.total_least_squares", "modulename": "pyerrors.fits", "qualname": "total_least_squares", "type": "function", "doc": "

Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.

\n\n
Parameters
\n\n
    \n
  • x (list):\nlist of Obs, or a tuple of lists of Obs
  • \n
  • y (list):\nlist of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
  • \n
  • func (object):\nfunc has to be of the form

    \n\n
    import autograd.numpy as anp\n\ndef func(a, x):\n   return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
    \n\n

    For multiple x values func can be of the form

    \n\n
    def func(a, x):\n   (x1, x2) = x\n   return a[0] * x1 ** 2 + a[1] * x2\n
    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • silent (bool, optional):\nIf true all output to the console is omitted (default False).
  • \n
  • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for non-linear\nfits with many parameters.
  • \n
  • expected_chisquare (bool):\nIf true prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
  • \n
\n\n
Notes
\n\n

Based on the orthogonal distance regression module of scipy

\n", "signature": "(x, y, func, silent=False, **kwargs)", "funcdef": "def"}, "pyerrors.fits.fit_lin": {"fullname": "pyerrors.fits.fit_lin", "modulename": "pyerrors.fits", "qualname": "fit_lin", "type": "function", "doc": "

Performs a linear fit to y = n + m * x and returns two Obs n, m.

\n\n
Parameters
\n\n
    \n
  • x (list):\nCan either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.
  • \n
  • y (list):\nList of Obs, the dvalues of the Obs are used as yerror for the fit.
  • \n
\n", "signature": "(x, y, **kwargs)", "funcdef": "def"}, "pyerrors.fits.qqplot": {"fullname": "pyerrors.fits.qqplot", "modulename": "pyerrors.fits", "qualname": "qqplot", "type": "function", "doc": "

Generates a quantile-quantile plot of the fit result which can be used to\ncheck if the residuals of the fit are gaussian distributed.

\n", "signature": "(x, o_y, func, p)", "funcdef": "def"}, "pyerrors.fits.residual_plot": {"fullname": "pyerrors.fits.residual_plot", "modulename": "pyerrors.fits", "qualname": "residual_plot", "type": "function", "doc": "

Generates a plot which compares the fit to the data and displays the corresponding residuals

\n", "signature": "(x, y, func, fit_res)", "funcdef": "def"}, "pyerrors.fits.error_band": {"fullname": "pyerrors.fits.error_band", "modulename": "pyerrors.fits", "qualname": "error_band", "type": "function", "doc": "

Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta.

\n", "signature": "(x, func, beta)", "funcdef": "def"}, "pyerrors.fits.ks_test": {"fullname": "pyerrors.fits.ks_test", "modulename": "pyerrors.fits", "qualname": "ks_test", "type": "function", "doc": "

Performs a Kolmogorov\u2013Smirnov test for the p-values of all fit object.

\n\n
Parameters
\n\n
    \n
  • objects (list):\nList of fit results to include in the analysis (optional).
  • \n
\n", "signature": "(objects=None)", "funcdef": "def"}, "pyerrors.input": {"fullname": "pyerrors.input", "modulename": "pyerrors.input", "type": "module", "doc": "

pyerrors includes an input submodule in which input routines and parsers for the output of various numerical programs are contained.

\n\n

Jackknife samples

\n\n

For comparison with other analysis workflows pyerrors can also generate jackknife samples from an Obs object or import jackknife samples into an Obs object.\nSee pyerrors.obs.Obs.export_jackknife and pyerrors.obs.import_jackknife for details.

\n"}, "pyerrors.input.bdio": {"fullname": "pyerrors.input.bdio", "modulename": "pyerrors.input.bdio", "type": "module", "doc": "

\n"}, "pyerrors.input.bdio.read_ADerrors": {"fullname": "pyerrors.input.bdio.read_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "read_ADerrors", "type": "function", "doc": "

Extract generic MCMC data from a bdio file

\n\n

read_ADerrors requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path -- path to the bdio file
  • \n
  • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs)", "funcdef": "def"}, "pyerrors.input.bdio.write_ADerrors": {"fullname": "pyerrors.input.bdio.write_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "write_ADerrors", "type": "function", "doc": "

Write Obs to a bdio file according to ADerrors conventions

\n\n

read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path -- path to the bdio file
  • \n
  • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
\n", "signature": "(obs_list, file_path, bdio_path='./libbdio.so', **kwargs)", "funcdef": "def"}, "pyerrors.input.bdio.read_mesons": {"fullname": "pyerrors.input.bdio.read_mesons", "modulename": "pyerrors.input.bdio", "qualname": "read_mesons", "type": "function", "doc": "

Extract mesons data from a bdio file and return it as a dictionary

\n\n

The dictionary can be accessed with a tuple consisting of (type, source_position, kappa1, kappa2)

\n\n

read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path (str):\npath to the bdio file
  • \n
  • bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
  • start (int):\nThe first configuration to be read (default 1)
  • \n
  • stop (int):\nThe last configuration to be read (default None)
  • \n
  • step (int):\nFixed step size between two measurements (default 1)
  • \n
  • alternative_ensemble_name (str):\nManually overwrite ensemble name
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs)", "funcdef": "def"}, "pyerrors.input.bdio.read_dSdm": {"fullname": "pyerrors.input.bdio.read_dSdm", "modulename": "pyerrors.input.bdio", "qualname": "read_dSdm", "type": "function", "doc": "

Extract dSdm data from a bdio file and return it as a dictionary

\n\n

The dictionary can be accessed with a tuple consisting of (type, kappa)

\n\n

read_dSdm requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path (str):\npath to the bdio file
  • \n
  • bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
  • start (int):\nThe first configuration to be read (default 1)
  • \n
  • stop (int):\nThe last configuration to be read (default None)
  • \n
  • step (int):\nFixed step size between two measurements (default 1)
  • \n
  • alternative_ensemble_name (str):\nManually overwrite ensemble name
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs)", "funcdef": "def"}, "pyerrors.input.dobs": {"fullname": "pyerrors.input.dobs", "modulename": "pyerrors.input.dobs", "type": "module", "doc": "

\n"}, "pyerrors.input.dobs.create_pobs_string": {"fullname": "pyerrors.input.dobs.create_pobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_pobs_string", "type": "function", "doc": "

Export a list of Obs or structures containing Obs to an xml string\naccording to the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
  • \n
\n", "signature": "(obsl, name, spec='', origin='', symbol=[], enstag=None)", "funcdef": "def"}, "pyerrors.input.dobs.write_pobs": {"fullname": "pyerrors.input.dobs.write_pobs", "modulename": "pyerrors.input.dobs", "qualname": "write_pobs", "type": "function", "doc": "

Export a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
  • \n
  • gz (bool):\nIf True, the output is a gzipped xml. If False, the output is an xml file.
  • \n
\n", "signature": "(\n obsl,\n fname,\n name,\n spec='',\n origin='',\n symbol=[],\n enstag=None,\n gz=True\n)", "funcdef": "def"}, "pyerrors.input.dobs.read_pobs": {"fullname": "pyerrors.input.dobs.read_pobs", "modulename": "pyerrors.input.dobs", "qualname": "read_pobs", "type": "function", "doc": "

Import a list of Obs from an xml.gz file in the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • separatior_insertion (str or int):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nNone (default): Replica names remain unchanged.
  • \n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=None)", "funcdef": "def"}, "pyerrors.input.dobs.import_dobs_string": {"fullname": "pyerrors.input.dobs.import_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "import_dobs_string", "type": "function", "doc": "

Import a list of Obs from a string in the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • content (str):\nXML string containing the data
  • \n
  • noemtpy (bool):\nIf True, ensembles with no contribution to the Obs are not included.\nIf False, ensembles are included as written in the file, possibly with vanishing entries.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
  • \n
\n", "signature": "(content, noempty=False, full_output=False, separator_insertion=True)", "funcdef": "def"}, "pyerrors.input.dobs.read_dobs": {"fullname": "pyerrors.input.dobs.read_dobs", "modulename": "pyerrors.input.dobs", "qualname": "read_dobs", "type": "function", "doc": "

Import a list of Obs from an xml.gz file in the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • noemtpy (bool):\nIf True, ensembles with no contribution to the Obs are not included.\nIf False, ensembles are included as written in the file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes XML file.
  • \n
  • separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
  • \n
\n", "signature": "(\n fname,\n noempty=False,\n full_output=False,\n gz=True,\n separator_insertion=True\n)", "funcdef": "def"}, "pyerrors.input.dobs.create_dobs_string": {"fullname": "pyerrors.input.dobs.create_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_dobs_string", "type": "function", "doc": "

Generate the string for the export of a list of Obs or structures containing Obs\nto a .xml.gz file according to the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically. The separator |is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • who (str):\nProvide the name of the person that exports the data.
  • \n
  • enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
  • \n
\n", "signature": "(\n obsl,\n name,\n spec='dobs v1.0',\n origin='',\n symbol=[],\n who=None,\n enstags={}\n)", "funcdef": "def"}, "pyerrors.input.dobs.write_dobs": {"fullname": "pyerrors.input.dobs.write_dobs", "modulename": "pyerrors.input.dobs", "qualname": "write_dobs", "type": "function", "doc": "

Export a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • who (str):\nProvide the name of the person that exports the data.
  • \n
  • enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
  • \n
  • gz (bool):\nIf True, the output is a gzipped XML. If False, the output is a XML file.
  • \n
\n", "signature": "(\n obsl,\n fname,\n name,\n spec='dobs v1.0',\n origin='',\n symbol=[],\n who=None,\n enstags={},\n gz=True\n)", "funcdef": "def"}, "pyerrors.input.hadrons": {"fullname": "pyerrors.input.hadrons", "modulename": "pyerrors.input.hadrons", "type": "module", "doc": "

\n"}, "pyerrors.input.hadrons.read_meson_hd5": {"fullname": "pyerrors.input.hadrons.read_meson_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_meson_hd5", "type": "function", "doc": "

Read hadrons meson hdf5 file and extract the meson labeled 'meson'

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • meson (str):\nlabel of the meson to be extracted, standard value meson_0 which\ncorresponds to the pseudoscalar pseudoscalar two-point function.
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n", "signature": "(path, filestem, ens_id, meson='meson_0', idl=None)", "funcdef": "def"}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"fullname": "pyerrors.input.hadrons.read_DistillationContraction_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_DistillationContraction_hd5", "type": "function", "doc": "

Read hadrons DistillationContraction hdf5 files in given directory structure

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the directories to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • diagrams (list):\nList of strings of the diagrams to extract, e.g. [\"direct\", \"box\", \"cross\"].
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n", "signature": "(path, ens_id, diagrams=['direct'], idl=None)", "funcdef": "def"}, "pyerrors.input.hadrons.Npr_matrix": {"fullname": "pyerrors.input.hadrons.Npr_matrix", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix", "type": "class", "doc": "

ndarray(shape, dtype=float, buffer=None, offset=0,\n strides=None, order=None)

\n\n

An array object represents a multidimensional, homogeneous array\nof fixed-size items. An associated data-type object describes the\nformat of each element in the array (its byte-order, how many bytes it\noccupies in memory, whether it is an integer, a floating point number,\nor something else, etc.)

\n\n

Arrays should be constructed using array, zeros or empty (refer\nto the See Also section below). The parameters given here refer to\na low-level method (ndarray(...)) for instantiating an array.

\n\n

For more information, refer to the numpy module and examine the\nmethods and attributes of an array.

\n\n
Parameters
\n\n
    \n
  • (for the __new__ method; see Notes below)
  • \n
  • shape (tuple of ints):\nShape of created array.
  • \n
  • dtype (data-type, optional):\nAny object that can be interpreted as a numpy data type.
  • \n
  • buffer (object exposing buffer interface, optional):\nUsed to fill the array with data.
  • \n
  • offset (int, optional):\nOffset of array data in buffer.
  • \n
  • strides (tuple of ints, optional):\nStrides of data in memory.
  • \n
  • order ({'C', 'F'}, optional):\nRow-major (C-style) or column-major (Fortran-style) order.
  • \n
\n\n
Attributes
\n\n
    \n
  • T (ndarray):\nTranspose of the array.
  • \n
  • data (buffer):\nThe array's elements, in memory.
  • \n
  • dtype (dtype object):\nDescribes the format of the elements in the array.
  • \n
  • flags (dict):\nDictionary containing information related to memory use, e.g.,\n'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
  • \n
  • flat (numpy.flatiter object):\nFlattened version of the array as an iterator. The iterator\nallows assignments, e.g., x.flat = 3 (See ndarray.flat for\nassignment examples; TODO).
  • \n
  • imag (ndarray):\nImaginary part of the array.
  • \n
  • real (ndarray):\nReal part of the array.
  • \n
  • size (int):\nNumber of elements in the array.
  • \n
  • itemsize (int):\nThe memory use of each array element in bytes.
  • \n
  • nbytes (int):\nThe total number of bytes required to store the array data,\ni.e., itemsize * size.
  • \n
  • ndim (int):\nThe array's number of dimensions.
  • \n
  • shape (tuple of ints):\nShape of the array.
  • \n
  • strides (tuple of ints):\nThe step-size required to move from one element to the next in\nmemory. For example, a contiguous (3, 4) array of type\nint16 in C-order has strides (8, 2). This implies that\nto move from element to element in memory requires jumps of 2 bytes.\nTo move from row-to-row, one needs to jump 8 bytes at a time\n(2 * 4).
  • \n
  • ctypes (ctypes object):\nClass containing properties of the array needed for interaction\nwith ctypes.
  • \n
  • base (ndarray):\nIf the array is a view into another array, that array is its base\n(unless that array is also a view). The base array is where the\narray data is actually stored.
  • \n
\n\n
See Also
\n\n

array: Construct an array.
\nzeros: Create an array, each element of which is zero.
\nempty: Create an array, but leave its allocated memory unchanged (i.e.,\nit contains \"garbage\").
\ndtype: Create a data-type.
\nnumpy.typing.NDArray: An ndarray alias :term:generic <generic type>\nw.r.t. its dtype.type <numpy.dtype.type>.

\n\n
Notes
\n\n

There are two modes of creating an array using __new__:

\n\n
    \n
  1. If buffer is None, then only shape, dtype, and order\nare used.
  2. \n
  3. If buffer is an object exposing the buffer interface, then\nall keywords are interpreted.
  4. \n
\n\n

No __init__ method is needed because the array is fully initialized\nafter the __new__ method.

\n\n
Examples
\n\n

These examples illustrate the low-level ndarray constructor. Refer\nto the See Also section above for easier ways of constructing an\nndarray.

\n\n

First mode, buffer is None:

\n\n
>>> np.ndarray(shape=(2,2), dtype=float, order='F')\narray([[0.0e+000, 0.0e+000], # random\n       [     nan, 2.5e-323]])\n
\n\n

Second mode:

\n\n
>>> np.ndarray((2,), buffer=np.array([1,2,3]),\n...            offset=np.int_().itemsize,\n...            dtype=int) # offset = 1*itemsize, i.e. skip first element\narray([2, 3])\n
\n", "bases": "numpy.ndarray"}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"fullname": "pyerrors.input.hadrons.Npr_matrix.__init__", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix.__init__", "type": "function", "doc": "

\n", "signature": "()", "funcdef": "def"}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"fullname": "pyerrors.input.hadrons.Npr_matrix.g5H", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix.g5H", "type": "variable", "doc": "

Gamma_5 hermitean conjugate

\n\n

Uses the fact that the propagator is gamma5 hermitean, so just the\nin and out momenta of the propagator are exchanged.

\n"}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"fullname": "pyerrors.input.hadrons.read_ExternalLeg_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_ExternalLeg_hd5", "type": "function", "doc": "

Read hadrons ExternalLeg hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None)", "funcdef": "def"}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"fullname": "pyerrors.input.hadrons.read_Bilinear_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Bilinear_hd5", "type": "function", "doc": "

Read hadrons Bilinear hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None)", "funcdef": "def"}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"fullname": "pyerrors.input.hadrons.read_Fourquark_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Fourquark_hd5", "type": "function", "doc": "

Read hadrons FourquarkFullyConnected hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
  • vertices (list):\nVertex functions to be extracted.
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None, vertices=['VA', 'AV'])", "funcdef": "def"}, "pyerrors.input.json": {"fullname": "pyerrors.input.json", "modulename": "pyerrors.input.json", "type": "module", "doc": "

\n"}, "pyerrors.input.json.create_json_string": {"fullname": "pyerrors.input.json.create_json_string", "modulename": "pyerrors.input.json", "qualname": "create_json_string", "type": "function", "doc": "

Generate the string for the export of a list of Obs or structures containing Obs\nto a .json(.gz) file

\n\n
Parameters
\n\n
    \n
  • ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
\n", "signature": "(ol, description='', indent=1)", "funcdef": "def"}, "pyerrors.input.json.dump_to_json": {"fullname": "pyerrors.input.json.dump_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_to_json", "type": "function", "doc": "

Export a list of Obs or structures containing Obs to a .json(.gz) file

\n\n
Parameters
\n\n
    \n
  • ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
  • gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
  • \n
\n", "signature": "(ol, fname, description='', indent=1, gz=True)", "funcdef": "def"}, "pyerrors.input.json.import_json_string": {"fullname": "pyerrors.input.json.import_json_string", "modulename": "pyerrors.input.json", "qualname": "import_json_string", "type": "function", "doc": "

Reconstruct a list of Obs or structures containing Obs from a json string.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.

\n\n
Parameters
\n\n
    \n
  • json_string (str):\njson string containing the data.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
\n", "signature": "(json_string, verbose=True, full_output=False)", "funcdef": "def"}, "pyerrors.input.json.load_json": {"fullname": "pyerrors.input.json.load_json", "modulename": "pyerrors.input.json", "qualname": "load_json", "type": "function", "doc": "

Import a list of Obs or structures containing Obs from a .json(.gz) file.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False)", "funcdef": "def"}, "pyerrors.input.json.dump_dict_to_json": {"fullname": "pyerrors.input.json.dump_dict_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_dict_to_json", "type": "function", "doc": "

Export a dict of Obs or structures containing Obs to a .json(.gz) file

\n\n
Parameters
\n\n
    \n
  • od (dict):\nDict of JSON valid structures and objects that will be exported.\nAt the moment, these objects can be either of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
  • reps (str):\nSpecify the structure of the placeholder in exported dict to be reps[0-9]+.
  • \n
  • gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
  • \n
\n", "signature": "(od, fname, description='', indent=1, reps='DICTOBS', gz=True)", "funcdef": "def"}, "pyerrors.input.json.load_json_dict": {"fullname": "pyerrors.input.json.load_json_dict", "modulename": "pyerrors.input.json", "qualname": "load_json_dict", "type": "function", "doc": "

Import a dict of Obs or structures containing Obs from a .json(.gz) file.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
  • reps (str):\nSpecify the structure of the placeholder in imported dict to be reps[0-9]+.
  • \n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False, reps='DICTOBS')", "funcdef": "def"}, "pyerrors.input.misc": {"fullname": "pyerrors.input.misc", "modulename": "pyerrors.input.misc", "type": "module", "doc": "

\n"}, "pyerrors.input.misc.read_pbp": {"fullname": "pyerrors.input.misc.read_pbp", "modulename": "pyerrors.input.misc", "qualname": "read_pbp", "type": "function", "doc": "

Read pbp format from given folder structure. Returns a list of length nrw

\n\n
Parameters
\n\n
    \n
  • r_start (list):\nlist which contains the first config to be read for each replicum
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum
  • \n
\n", "signature": "(path, prefix, **kwargs)", "funcdef": "def"}, "pyerrors.input.openQCD": {"fullname": "pyerrors.input.openQCD", "modulename": "pyerrors.input.openQCD", "type": "module", "doc": "

\n"}, "pyerrors.input.openQCD.read_rwms": {"fullname": "pyerrors.input.openQCD.read_rwms", "modulename": "pyerrors.input.openQCD", "qualname": "read_rwms", "type": "function", "doc": "

Read rwms format from given folder structure. Returns a list of length nrw

\n\n
Parameters
\n\n
    \n
  • path (str):\npath that contains the data files
  • \n
  • prefix (str):\nall files in path that start with prefix are considered as input files.\nMay be used together postfix to consider only special file endings.\nPrefix is ignored, if the keyword 'files' is used.
  • \n
  • version (str):\nversion of openQCD, default 2.0
  • \n
  • names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum
  • \n
  • r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
  • \n
  • postfix (str):\npostfix of the file to read, e.g. '.ms1' for openQCD-files
  • \n
  • files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
  • \n
  • print_err (bool):\nPrint additional information that is useful for debugging.
  • \n
\n", "signature": "(path, prefix, version='2.0', names=None, **kwargs)", "funcdef": "def"}, "pyerrors.input.openQCD.extract_t0": {"fullname": "pyerrors.input.openQCD.extract_t0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_t0", "type": "function", "doc": "

Extract t0 from given .ms.dat files. Returns t0 as Obs.

\n\n

It is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t^2 - 0.3\nis fitted with a linear function\nfrom which the exact root is extracted.

\n\n

It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to .ms.dat files
  • \n
  • prefix (str):\nEnsemble prefix
  • \n
  • dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
  • \n
  • xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
  • \n
  • spatial_extent (int):\nspatial extent of the lattice, required for normalization.
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
  • \n
  • plaquette (bool):\nIf true extract the plaquette estimate of t0 instead.
  • \n
  • names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
  • \n
  • files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
  • \n
  • assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
  • \n
\n", "signature": "(path, prefix, dtr_read, xmin, spatial_extent, fit_range=5, **kwargs)", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop": {"fullname": "pyerrors.input.openQCD.read_qtop", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop", "type": "function", "doc": "

Read the topologial charge based on openQCD gradient flow measurements.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath of the measurement files
  • \n
  • prefix (str):\nprefix of the measurement files, e.g. _id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files.
  • \n
  • c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
  • \n
  • dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
  • \n
  • steps (int):\n(optional) Distance between two configurations in units of trajectories /\ncycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
  • \n
  • version (str):\nEither openQCD or sfqcd, depending on the data.
  • \n
  • L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
  • \n
  • Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
  • \n
  • integer_charge (bool):\nIf True, the charge is rounded towards the nearest integer on each config.
  • \n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, version='openQCD', **kwargs)", "funcdef": "def"}, "pyerrors.input.openQCD.qtop_projection": {"fullname": "pyerrors.input.openQCD.qtop_projection", "modulename": "pyerrors.input.openQCD", "qualname": "qtop_projection", "type": "function", "doc": "

Returns the projection to the topological charge sector defined by target.

\n\n
Parameters
\n\n
    \n
  • path (Obs):\nTopological charge.
  • \n
  • target (int):\nSpecifies the topological sector to be reweighted to (default 0)
  • \n
\n", "signature": "(qtop, target=0)", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop_sector": {"fullname": "pyerrors.input.openQCD.read_qtop_sector", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop_sector", "type": "function", "doc": "

Constructs reweighting factors to a specified topological sector.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath of the measurement files
  • \n
  • prefix (str):\nprefix of the measurement files, e.g. _id0_r0.ms.dat
  • \n
  • c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L
  • \n
  • target (int):\nSpecifies the topological sector to be reweighted to (default 0)
  • \n
  • dtr_cnfg (int):\n(optional) parameter that specifies the number of trajectories\nbetween two configs.\nif it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
  • \n
  • steps (int):\n(optional) Distance between two configurations in units of trajectories /\ncycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
  • \n
  • version (str):\nversion string of the openQCD (sfqcd) version used to create\nthe ensemble. Default is 2.0. May also be set to sfqcd.
  • \n
  • L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
  • \n
  • r_start (list):\noffset of the first ensemble, making it easier to match\nlater on with other Obs
  • \n
  • r_stop (list):\nlast configurations that need to be read (per replicum)
  • \n
  • files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
  • \n
  • Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
  • \n
\n", "signature": "(path, prefix, c, target=0, **kwargs)", "funcdef": "def"}, "pyerrors.input.sfcf": {"fullname": "pyerrors.input.sfcf", "modulename": "pyerrors.input.sfcf", "type": "module", "doc": "

\n"}, "pyerrors.input.sfcf.read_sfcf": {"fullname": "pyerrors.input.sfcf.read_sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf", "type": "function", "doc": "

Read sfcf c format from given folder structure.

\n\n
Parameters
\n\n
    \n
  • quarks (str):\nLabel of the quarks used in the sfcf input file. e.g. \"quark quark\"\nfor version 0.0 this does NOT need to be given with the typical \" - \"\nthat is present in the output file,\nthis is done automatically for this version
  • \n
  • noffset (int):\nOffset of the source (only relevant when wavefunctions are used)
  • \n
  • wf (int):\nID of wave function
  • \n
  • wf2 (int):\nID of the second wavefunction\n(only relevant for boundary-to-boundary correlation functions)
  • \n
  • im (bool):\nif True, read imaginary instead of real part\nof the correlation function.
  • \n
  • corr_type (str):\nchange between bi (boundary - inner) (default) bib (boundary - inner - boundary) and bb (boundary - boundary)\ncorrelator types
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
  • \n
  • ens_name (str):\nreplaces the name of the ensemble
  • \n
  • version (str):\nversion of SFCF, with which the measurement was done.\nif the compact output option (-c) was specified,\nappend a \"c\" to the version (e.g. \"1.0c\")\nif the append output option (-a) was specified,\nappend an \"a\" to the version
  • \n
  • cfg_separator (str):\nString that separates the ensemble identifier from the configuration number (default 'n').
  • \n
  • replica (list):\nlist of replica to be read, default is all
  • \n
  • files (list):\nlist of files to be read per replica, default is all.\nfor non-compact output format, hand the folders to be read here.
  • \n
  • check_configs:: list of list of supposed configs, eg. [range(1,1000)]\nfor one replicum with 1000 configs
  • \n
\n", "signature": "(\n path,\n prefix,\n name,\n quarks='.*',\n corr_type='bi',\n noffset=0,\n wf=0,\n wf2=0,\n version='1.0c',\n cfg_separator='n',\n **kwargs\n)", "funcdef": "def"}, "pyerrors.input.utils": {"fullname": "pyerrors.input.utils", "modulename": "pyerrors.input.utils", "type": "module", "doc": "

Utilities for the input

\n"}, "pyerrors.input.utils.check_idl": {"fullname": "pyerrors.input.utils.check_idl", "modulename": "pyerrors.input.utils", "qualname": "check_idl", "type": "function", "doc": "

Checks if list of configurations is contained in an idl

\n\n
Parameters
\n\n
    \n
  • idl (range or list):\nidl of the current replicum
  • \n
  • che (list):\nlist of configurations to be checked against
  • \n
\n", "signature": "(idl, che)", "funcdef": "def"}, "pyerrors.linalg": {"fullname": "pyerrors.linalg", "modulename": "pyerrors.linalg", "type": "module", "doc": "

\n"}, "pyerrors.linalg.matmul": {"fullname": "pyerrors.linalg.matmul", "modulename": "pyerrors.linalg", "qualname": "matmul", "type": "function", "doc": "

Matrix multiply all operands.

\n\n
Parameters
\n\n
    \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
  • This implementation is faster compared to standard multiplication via the @ operator.
  • \n
\n", "signature": "(*operands)", "funcdef": "def"}, "pyerrors.linalg.jack_matmul": {"fullname": "pyerrors.linalg.jack_matmul", "modulename": "pyerrors.linalg", "qualname": "jack_matmul", "type": "function", "doc": "

Matrix multiply both operands making use of the jackknife approximation.

\n\n
Parameters
\n\n
    \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
  • For large matrices this is considerably faster compared to matmul.
  • \n
\n", "signature": "(*operands)", "funcdef": "def"}, "pyerrors.linalg.einsum": {"fullname": "pyerrors.linalg.einsum", "modulename": "pyerrors.linalg", "qualname": "einsum", "type": "function", "doc": "

Wrapper for numpy.einsum

\n\n
Parameters
\n\n
    \n
  • subscripts (str):\nSubscripts for summation (see numpy documentation for details)
  • \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
\n", "signature": "(subscripts, *operands)", "funcdef": "def"}, "pyerrors.linalg.inv": {"fullname": "pyerrors.linalg.inv", "modulename": "pyerrors.linalg", "qualname": "inv", "type": "function", "doc": "

Inverse of Obs or CObs valued matrices.

\n", "signature": "(x)", "funcdef": "def"}, "pyerrors.linalg.cholesky": {"fullname": "pyerrors.linalg.cholesky", "modulename": "pyerrors.linalg", "qualname": "cholesky", "type": "function", "doc": "

Cholesky decomposition of Obs valued matrices.

\n", "signature": "(x)", "funcdef": "def"}, "pyerrors.linalg.det": {"fullname": "pyerrors.linalg.det", "modulename": "pyerrors.linalg", "qualname": "det", "type": "function", "doc": "

Determinant of Obs valued matrices.

\n", "signature": "(x)", "funcdef": "def"}, "pyerrors.linalg.eigh": {"fullname": "pyerrors.linalg.eigh", "modulename": "pyerrors.linalg", "qualname": "eigh", "type": "function", "doc": "

Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.

\n", "signature": "(obs, **kwargs)", "funcdef": "def"}, "pyerrors.linalg.eig": {"fullname": "pyerrors.linalg.eig", "modulename": "pyerrors.linalg", "qualname": "eig", "type": "function", "doc": "

Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig.

\n", "signature": "(obs, **kwargs)", "funcdef": "def"}, "pyerrors.linalg.pinv": {"fullname": "pyerrors.linalg.pinv", "modulename": "pyerrors.linalg", "qualname": "pinv", "type": "function", "doc": "

Computes the Moore-Penrose pseudoinverse of a matrix of Obs.

\n", "signature": "(obs, **kwargs)", "funcdef": "def"}, "pyerrors.linalg.svd": {"fullname": "pyerrors.linalg.svd", "modulename": "pyerrors.linalg", "qualname": "svd", "type": "function", "doc": "

Computes the singular value decomposition of a matrix of Obs.

\n", "signature": "(obs, **kwargs)", "funcdef": "def"}, "pyerrors.misc": {"fullname": "pyerrors.misc", "modulename": "pyerrors.misc", "type": "module", "doc": "

\n"}, "pyerrors.misc.dump_object": {"fullname": "pyerrors.misc.dump_object", "modulename": "pyerrors.misc", "qualname": "dump_object", "type": "function", "doc": "

Dump object into pickle file.

\n\n
Parameters
\n\n
    \n
  • obj (object):\nobject to be saved in the pickle file
  • \n
  • name (str):\nname of the file
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n", "signature": "(obj, name, **kwargs)", "funcdef": "def"}, "pyerrors.misc.load_object": {"fullname": "pyerrors.misc.load_object", "modulename": "pyerrors.misc", "qualname": "load_object", "type": "function", "doc": "

Load object from pickle file.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the file
  • \n
\n", "signature": "(path)", "funcdef": "def"}, "pyerrors.misc.pseudo_Obs": {"fullname": "pyerrors.misc.pseudo_Obs", "modulename": "pyerrors.misc", "qualname": "pseudo_Obs", "type": "function", "doc": "

Generate an Obs object with given value, dvalue and name for test purposes

\n\n
Parameters
\n\n
    \n
  • value (float):\ncentral value of the Obs to be generated.
  • \n
  • dvalue (float):\nerror of the Obs to be generated.
  • \n
  • name (str):\nname of the ensemble for which the Obs is to be generated.
  • \n
  • samples (int):\nnumber of samples for the Obs (default 1000).
  • \n
\n", "signature": "(value, dvalue, name, samples=1000)", "funcdef": "def"}, "pyerrors.misc.gen_correlated_data": {"fullname": "pyerrors.misc.gen_correlated_data", "modulename": "pyerrors.misc", "qualname": "gen_correlated_data", "type": "function", "doc": "

Generate observables with given covariance and autocorrelation times.

\n\n
Parameters
\n\n
    \n
  • means (list):\nlist containing the mean value of each observable.
  • \n
  • cov (numpy.ndarray):\ncovariance matrix for the data to be generated.
  • \n
  • name (str):\nensemble name for the data to be geneated.
  • \n
  • tau (float or list):\ncan either be a real number or a list with an entry for\nevery dataset.
  • \n
  • samples (int):\nnumber of samples to be generated for each observable.
  • \n
\n", "signature": "(means, cov, name, tau=0.5, samples=1000)", "funcdef": "def"}, "pyerrors.mpm": {"fullname": "pyerrors.mpm", "modulename": "pyerrors.mpm", "type": "module", "doc": "

\n"}, "pyerrors.mpm.matrix_pencil_method": {"fullname": "pyerrors.mpm.matrix_pencil_method", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method", "type": "function", "doc": "

Matrix pencil method to extract k energy levels from data

\n\n

Implementation of the matrix pencil method based on\neq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)

\n\n
Parameters
\n\n
    \n
  • data (list):\ncan be a list of Obs for the analysis of a single correlator, or a list of lists\nof Obs if several correlators are to analyzed at once.
  • \n
  • k (int):\nNumber of states to extract (default 1).
  • \n
  • p (int):\nmatrix pencil parameter which filters noise. The optimal value is expected between\nlen(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is\nto len(data)/2 but could possibly suppress more noise (default len(data)//2).
  • \n
\n", "signature": "(corrs, k=1, p=None, **kwargs)", "funcdef": "def"}, "pyerrors.obs": {"fullname": "pyerrors.obs", "modulename": "pyerrors.obs", "type": "module", "doc": "

\n"}, "pyerrors.obs.Obs": {"fullname": "pyerrors.obs.Obs", "modulename": "pyerrors.obs", "qualname": "Obs", "type": "class", "doc": "

Class for a general observable.

\n\n

Instances of Obs are the basic objects of a pyerrors error analysis.\nThey are initialized with a list which contains arrays of samples for\ndifferent ensembles/replica and another list of same length which contains\nthe names of the ensembles/replica. Mathematical operations can be\nperformed on instances. The result is another instance of Obs. The error of\nan instance can be computed with the gamma_method. Also contains additional\nmethods for output and visualization of the error calculation.

\n\n
Attributes
\n\n
    \n
  • S_global (float):\nStandard value for S (default 2.0)
  • \n
  • S_dict (dict):\nDictionary for S values. If an entry for a given ensemble\nexists this overwrites the standard value for that ensemble.
  • \n
  • tau_exp_global (float):\nStandard value for tau_exp (default 0.0)
  • \n
  • tau_exp_dict (dict):\nDictionary for tau_exp values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
  • \n
  • N_sigma_global (float):\nStandard value for N_sigma (default 1.0)
  • \n
  • N_sigma_dict (dict):\nDictionary for N_sigma values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
  • \n
\n"}, "pyerrors.obs.Obs.__init__": {"fullname": "pyerrors.obs.Obs.__init__", "modulename": "pyerrors.obs", "qualname": "Obs.__init__", "type": "function", "doc": "

Initialize Obs object.

\n\n
Parameters
\n\n
    \n
  • samples (list):\nlist of numpy arrays containing the Monte Carlo samples
  • \n
  • names (list):\nlist of strings labeling the individual samples
  • \n
  • idl (list, optional):\nlist of ranges or lists on which the samples are defined
  • \n
\n", "signature": "(self, samples, names, idl=None, **kwargs)", "funcdef": "def"}, "pyerrors.obs.Obs.S_global": {"fullname": "pyerrors.obs.Obs.S_global", "modulename": "pyerrors.obs", "qualname": "Obs.S_global", "type": "variable", "doc": "

\n", "default_value": " = 2.0"}, "pyerrors.obs.Obs.S_dict": {"fullname": "pyerrors.obs.Obs.S_dict", "modulename": "pyerrors.obs", "qualname": "Obs.S_dict", "type": "variable", "doc": "

\n", "default_value": " = {}"}, "pyerrors.obs.Obs.tau_exp_global": {"fullname": "pyerrors.obs.Obs.tau_exp_global", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_global", "type": "variable", "doc": "

\n", "default_value": " = 0.0"}, "pyerrors.obs.Obs.tau_exp_dict": {"fullname": "pyerrors.obs.Obs.tau_exp_dict", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_dict", "type": "variable", "doc": "

\n", "default_value": " = {}"}, "pyerrors.obs.Obs.N_sigma_global": {"fullname": "pyerrors.obs.Obs.N_sigma_global", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_global", "type": "variable", "doc": "

\n", "default_value": " = 1.0"}, "pyerrors.obs.Obs.N_sigma_dict": {"fullname": "pyerrors.obs.Obs.N_sigma_dict", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_dict", "type": "variable", "doc": "

\n", "default_value": " = {}"}, "pyerrors.obs.Obs.filter_eps": {"fullname": "pyerrors.obs.Obs.filter_eps", "modulename": "pyerrors.obs", "qualname": "Obs.filter_eps", "type": "variable", "doc": "

\n", "default_value": " = 1e-10"}, "pyerrors.obs.Obs.names": {"fullname": "pyerrors.obs.Obs.names", "modulename": "pyerrors.obs", "qualname": "Obs.names", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.shape": {"fullname": "pyerrors.obs.Obs.shape", "modulename": "pyerrors.obs", "qualname": "Obs.shape", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.r_values": {"fullname": "pyerrors.obs.Obs.r_values", "modulename": "pyerrors.obs", "qualname": "Obs.r_values", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.deltas": {"fullname": "pyerrors.obs.Obs.deltas", "modulename": "pyerrors.obs", "qualname": "Obs.deltas", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.N": {"fullname": "pyerrors.obs.Obs.N", "modulename": "pyerrors.obs", "qualname": "Obs.N", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.is_merged": {"fullname": "pyerrors.obs.Obs.is_merged", "modulename": "pyerrors.obs", "qualname": "Obs.is_merged", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.idl": {"fullname": "pyerrors.obs.Obs.idl", "modulename": "pyerrors.obs", "qualname": "Obs.idl", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.ddvalue": {"fullname": "pyerrors.obs.Obs.ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.ddvalue", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.reweighted": {"fullname": "pyerrors.obs.Obs.reweighted", "modulename": "pyerrors.obs", "qualname": "Obs.reweighted", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.tag": {"fullname": "pyerrors.obs.Obs.tag", "modulename": "pyerrors.obs", "qualname": "Obs.tag", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.value": {"fullname": "pyerrors.obs.Obs.value", "modulename": "pyerrors.obs", "qualname": "Obs.value", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.dvalue": {"fullname": "pyerrors.obs.Obs.dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.dvalue", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_names": {"fullname": "pyerrors.obs.Obs.e_names", "modulename": "pyerrors.obs", "qualname": "Obs.e_names", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.cov_names": {"fullname": "pyerrors.obs.Obs.cov_names", "modulename": "pyerrors.obs", "qualname": "Obs.cov_names", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.mc_names": {"fullname": "pyerrors.obs.Obs.mc_names", "modulename": "pyerrors.obs", "qualname": "Obs.mc_names", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_content": {"fullname": "pyerrors.obs.Obs.e_content", "modulename": "pyerrors.obs", "qualname": "Obs.e_content", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.covobs": {"fullname": "pyerrors.obs.Obs.covobs", "modulename": "pyerrors.obs", "qualname": "Obs.covobs", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.gamma_method": {"fullname": "pyerrors.obs.Obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "Obs.gamma_method", "type": "function", "doc": "

Estimate the error and related properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
  • \n
  • tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
  • \n
  • N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
  • \n
  • fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
  • \n
\n", "signature": "(self, **kwargs)", "funcdef": "def"}, "pyerrors.obs.Obs.details": {"fullname": "pyerrors.obs.Obs.details", "modulename": "pyerrors.obs", "qualname": "Obs.details", "type": "function", "doc": "

Output detailed properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • ens_content (bool):\nprint details about the ensembles and replica if true.
  • \n
\n", "signature": "(self, ens_content=True)", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero_within_error": {"fullname": "pyerrors.obs.Obs.is_zero_within_error", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero_within_error", "type": "function", "doc": "

Checks whether the observable is zero within 'sigma' standard errors.

\n\n
Parameters
\n\n
    \n
  • sigma (int):\nNumber of standard errors used for the check.
  • \n
  • Works only properly when the gamma method was run.
  • \n
\n", "signature": "(self, sigma=1)", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero": {"fullname": "pyerrors.obs.Obs.is_zero", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero", "type": "function", "doc": "

Checks whether the observable is zero within a given tolerance.

\n\n
Parameters
\n\n
    \n
  • atol (float):\nAbsolute tolerance (for details see numpy documentation).
  • \n
\n", "signature": "(self, atol=1e-10)", "funcdef": "def"}, "pyerrors.obs.Obs.plot_tauint": {"fullname": "pyerrors.obs.Obs.plot_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.plot_tauint", "type": "function", "doc": "

Plot integrated autocorrelation time for each ensemble.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None)", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rho": {"fullname": "pyerrors.obs.Obs.plot_rho", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rho", "type": "function", "doc": "

Plot normalized autocorrelation function time for each ensemble.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None)", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rep_dist": {"fullname": "pyerrors.obs.Obs.plot_rep_dist", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rep_dist", "type": "function", "doc": "

Plot replica distribution for each ensemble with more than one replicum.

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.plot_history": {"fullname": "pyerrors.obs.Obs.plot_history", "modulename": "pyerrors.obs", "qualname": "Obs.plot_history", "type": "function", "doc": "

Plot derived Monte Carlo history for each ensemble

\n\n
Parameters
\n\n
    \n
  • expand (bool):\nshow expanded history for irregular Monte Carlo chains (default: True).
  • \n
\n", "signature": "(self, expand=True)", "funcdef": "def"}, "pyerrors.obs.Obs.plot_piechart": {"fullname": "pyerrors.obs.Obs.plot_piechart", "modulename": "pyerrors.obs", "qualname": "Obs.plot_piechart", "type": "function", "doc": "

Plot piechart which shows the fractional contribution of each\nensemble to the error and returns a dictionary containing the fractions.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None)", "funcdef": "def"}, "pyerrors.obs.Obs.dump": {"fullname": "pyerrors.obs.Obs.dump", "modulename": "pyerrors.obs", "qualname": "Obs.dump", "type": "function", "doc": "

Dump the Obs to a file 'name' of chosen format.

\n\n
Parameters
\n\n
    \n
  • filename (str):\nname of the file to be saved.
  • \n
  • datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
  • \n
  • description (str):\nDescription for output file, only relevant for json.gz format.
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n", "signature": "(self, filename, datatype='json.gz', description='', **kwargs)", "funcdef": "def"}, "pyerrors.obs.Obs.export_jackknife": {"fullname": "pyerrors.obs.Obs.export_jackknife", "modulename": "pyerrors.obs", "qualname": "Obs.export_jackknife", "type": "function", "doc": "

Export jackknife samples from the Obs

\n\n
Returns
\n\n
    \n
  • numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N jackknife samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived jackknife samples\nshould agree with samples from a full jackknife analysis up to O(1/N).
  • \n
\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.sqrt": {"fullname": "pyerrors.obs.Obs.sqrt", "modulename": "pyerrors.obs", "qualname": "Obs.sqrt", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.log": {"fullname": "pyerrors.obs.Obs.log", "modulename": "pyerrors.obs", "qualname": "Obs.log", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.exp": {"fullname": "pyerrors.obs.Obs.exp", "modulename": "pyerrors.obs", "qualname": "Obs.exp", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.sin": {"fullname": "pyerrors.obs.Obs.sin", "modulename": "pyerrors.obs", "qualname": "Obs.sin", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.cos": {"fullname": "pyerrors.obs.Obs.cos", "modulename": "pyerrors.obs", "qualname": "Obs.cos", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.tan": {"fullname": "pyerrors.obs.Obs.tan", "modulename": "pyerrors.obs", "qualname": "Obs.tan", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.arcsin": {"fullname": "pyerrors.obs.Obs.arcsin", "modulename": "pyerrors.obs", "qualname": "Obs.arcsin", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.arccos": {"fullname": "pyerrors.obs.Obs.arccos", "modulename": "pyerrors.obs", "qualname": "Obs.arccos", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.arctan": {"fullname": "pyerrors.obs.Obs.arctan", "modulename": "pyerrors.obs", "qualname": "Obs.arctan", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.sinh": {"fullname": "pyerrors.obs.Obs.sinh", "modulename": "pyerrors.obs", "qualname": "Obs.sinh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.cosh": {"fullname": "pyerrors.obs.Obs.cosh", "modulename": "pyerrors.obs", "qualname": "Obs.cosh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.tanh": {"fullname": "pyerrors.obs.Obs.tanh", "modulename": "pyerrors.obs", "qualname": "Obs.tanh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.arcsinh": {"fullname": "pyerrors.obs.Obs.arcsinh", "modulename": "pyerrors.obs", "qualname": "Obs.arcsinh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.arccosh": {"fullname": "pyerrors.obs.Obs.arccosh", "modulename": "pyerrors.obs", "qualname": "Obs.arccosh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.arctanh": {"fullname": "pyerrors.obs.Obs.arctanh", "modulename": "pyerrors.obs", "qualname": "Obs.arctanh", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.Obs.N_sigma": {"fullname": "pyerrors.obs.Obs.N_sigma", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.S": {"fullname": "pyerrors.obs.Obs.S", "modulename": "pyerrors.obs", "qualname": "Obs.S", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_ddvalue": {"fullname": "pyerrors.obs.Obs.e_ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_ddvalue", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_drho": {"fullname": "pyerrors.obs.Obs.e_drho", "modulename": "pyerrors.obs", "qualname": "Obs.e_drho", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_dtauint": {"fullname": "pyerrors.obs.Obs.e_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_dtauint", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_dvalue": {"fullname": "pyerrors.obs.Obs.e_dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_dvalue", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_n_dtauint": {"fullname": "pyerrors.obs.Obs.e_n_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_dtauint", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_n_tauint": {"fullname": "pyerrors.obs.Obs.e_n_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_tauint", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_rho": {"fullname": "pyerrors.obs.Obs.e_rho", "modulename": "pyerrors.obs", "qualname": "Obs.e_rho", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_tauint": {"fullname": "pyerrors.obs.Obs.e_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_tauint", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_windowsize": {"fullname": "pyerrors.obs.Obs.e_windowsize", "modulename": "pyerrors.obs", "qualname": "Obs.e_windowsize", "type": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.tau_exp": {"fullname": "pyerrors.obs.Obs.tau_exp", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp", "type": "variable", "doc": "

\n"}, "pyerrors.obs.CObs": {"fullname": "pyerrors.obs.CObs", "modulename": "pyerrors.obs", "qualname": "CObs", "type": "class", "doc": "

Class for a complex valued observable.

\n"}, "pyerrors.obs.CObs.__init__": {"fullname": "pyerrors.obs.CObs.__init__", "modulename": "pyerrors.obs", "qualname": "CObs.__init__", "type": "function", "doc": "

\n", "signature": "(self, real, imag=0.0)", "funcdef": "def"}, "pyerrors.obs.CObs.tag": {"fullname": "pyerrors.obs.CObs.tag", "modulename": "pyerrors.obs", "qualname": "CObs.tag", "type": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.real": {"fullname": "pyerrors.obs.CObs.real", "modulename": "pyerrors.obs", "qualname": "CObs.real", "type": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.imag": {"fullname": "pyerrors.obs.CObs.imag", "modulename": "pyerrors.obs", "qualname": "CObs.imag", "type": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.gamma_method": {"fullname": "pyerrors.obs.CObs.gamma_method", "modulename": "pyerrors.obs", "qualname": "CObs.gamma_method", "type": "function", "doc": "

Executes the gamma_method for the real and the imaginary part.

\n", "signature": "(self, **kwargs)", "funcdef": "def"}, "pyerrors.obs.CObs.is_zero": {"fullname": "pyerrors.obs.CObs.is_zero", "modulename": "pyerrors.obs", "qualname": "CObs.is_zero", "type": "function", "doc": "

Checks whether both real and imaginary part are zero within machine precision.

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.CObs.conjugate": {"fullname": "pyerrors.obs.CObs.conjugate", "modulename": "pyerrors.obs", "qualname": "CObs.conjugate", "type": "function", "doc": "

\n", "signature": "(self)", "funcdef": "def"}, "pyerrors.obs.derived_observable": {"fullname": "pyerrors.obs.derived_observable", "modulename": "pyerrors.obs", "qualname": "derived_observable", "type": "function", "doc": "

Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.

\n\n
Parameters
\n\n
    \n
  • func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
  • \n
  • data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
  • \n
  • num_grad (bool):\nif True, numerical derivatives are used instead of autograd\n(default False). To control the numerical differentiation the\nkwargs of numdifftools.step_generators.MaxStepGenerator\ncan be used.
  • \n
  • man_grad (list):\nmanually supply a list or an array which contains the jacobian\nof func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
  • \n
\n\n
Notes
\n\n

For simple mathematical operations it can be practical to use anonymous\nfunctions. For the ratio of two observables one can e.g. use

\n\n

new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])

\n", "signature": "(func, data, array_mode=False, **kwargs)", "funcdef": "def"}, "pyerrors.obs.reweight": {"fullname": "pyerrors.obs.reweight", "modulename": "pyerrors.obs", "qualname": "reweight", "type": "function", "doc": "

Reweight a list of observables.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • obs (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
  • \n
\n", "signature": "(weight, obs, **kwargs)", "funcdef": "def"}, "pyerrors.obs.correlate": {"fullname": "pyerrors.obs.correlate", "modulename": "pyerrors.obs", "qualname": "correlate", "type": "function", "doc": "

Correlate two observables.

\n\n
Parameters
\n\n
    \n
  • obs_a (Obs):\nFirst observable
  • \n
  • obs_b (Obs):\nSecond observable
  • \n
\n\n
Notes
\n\n

Keep in mind to only correlate primary observables which have not been reweighted\nyet. The reweighting has to be applied after correlating the observables.\nCurrently only works if ensembles are identical (this is not strictly necessary).

\n", "signature": "(obs_a, obs_b)", "funcdef": "def"}, "pyerrors.obs.covariance": {"fullname": "pyerrors.obs.covariance", "modulename": "pyerrors.obs", "qualname": "covariance", "type": "function", "doc": "

Calculates the error covariance matrix of a set of observables.

\n\n

The gamma method has to be applied first to all observables.

\n\n
Parameters
\n\n
    \n
  • obs (list or numpy.ndarray):\nList or one dimensional array of Obs
  • \n
  • visualize (bool):\nIf True plots the corresponding normalized correlation matrix (default False).
  • \n
  • correlation (bool):\nIf True the correlation matrix instead of the error covariance matrix is returned (default False).
  • \n
  • smooth (None or int):\nIf smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue\nsmoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the\nlargest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely\nsmall ones.
  • \n
\n\n
Notes
\n\n

The error covariance is defined such that it agrees with the squared standard error for two identical observables\n$$\\operatorname{cov}(a,a)=\\sum_{s=1}^N\\delta_a^s\\delta_a^s/N^2=\\Gamma_{aa}(0)/N=\\operatorname{var}(a)/N=\\sigma_a^2$$\nin the absence of autocorrelation.\nThe error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite\n$$\\sum_{i,j}v_i\\Gamma_{ij}(0)v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i,j}v_i\\delta_i^s\\delta_j^s v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i}|v_i\\delta_i^s|^2\\geq 0\\,,$$ for every $v\\in\\mathbb{R}^M$, while such an identity does not hold for larger windows/lags.\nFor observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements.\n$$\\tau_{\\mathrm{int}, ij}=\\sqrt{\\tau_{\\mathrm{int}, i}\\times \\tau_{\\mathrm{int}, j}}$$\nThis construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors).

\n", "signature": "(obs, visualize=False, correlation=False, smooth=None, **kwargs)", "funcdef": "def"}, "pyerrors.obs.import_jackknife": {"fullname": "pyerrors.obs.import_jackknife", "modulename": "pyerrors.obs", "qualname": "import_jackknife", "type": "function", "doc": "

Imports jackknife samples and returns an Obs

\n\n
Parameters
\n\n
    \n
  • jacks (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N jackknife samples as first to Nth entry.
  • \n
  • name (str):\nname of the ensemble the samples are defined on.
  • \n
\n", "signature": "(jacks, name, idl=None)", "funcdef": "def"}, "pyerrors.obs.merge_obs": {"fullname": "pyerrors.obs.merge_obs", "modulename": "pyerrors.obs", "qualname": "merge_obs", "type": "function", "doc": "

Combine all observables in list_of_obs into one new observable

\n\n
Parameters
\n\n
    \n
  • list_of_obs (list):\nlist of the Obs object to be combined
  • \n
\n\n
Notes
\n\n

It is not possible to combine obs which are based on the same replicum

\n", "signature": "(list_of_obs)", "funcdef": "def"}, "pyerrors.obs.cov_Obs": {"fullname": "pyerrors.obs.cov_Obs", "modulename": "pyerrors.obs", "qualname": "cov_Obs", "type": "function", "doc": "

Create an Obs based on mean(s) and a covariance matrix

\n\n
Parameters
\n\n
    \n
  • mean (list of floats or float):\nN mean value(s) of the new Obs
  • \n
  • cov (list or array):\n2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance
  • \n
  • name (str):\nidentifier for the covariance matrix
  • \n
  • grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
  • \n
\n", "signature": "(means, cov, name, grad=None)", "funcdef": "def"}, "pyerrors.roots": {"fullname": "pyerrors.roots", "modulename": "pyerrors.roots", "type": "module", "doc": "

\n"}, "pyerrors.roots.find_root": {"fullname": "pyerrors.roots.find_root", "modulename": "pyerrors.roots", "qualname": "find_root", "type": "function", "doc": "

Finds the root of the function func(x, d) where d is an Obs.

\n\n
Parameters
\n\n
    \n
  • d (Obs):\nObs passed to the function.
  • \n
  • func (object):\nFunction to be minimized. Any numpy functions have to use the autograd.numpy wrapper.\nExample:\npython\nimport autograd.numpy as anp\ndef root_func(x, d):\n return anp.exp(-x ** 2) - d\n
  • \n
  • guess (float):\nInitial guess for the minimization.
  • \n
\n\n
Returns
\n\n
    \n
  • Obs: Obs valued root of the function.
  • \n
\n", "signature": "(d, func, guess=1.0, **kwargs)", "funcdef": "def"}, "pyerrors.version": {"fullname": "pyerrors.version", "modulename": "pyerrors.version", "type": "module", "doc": "

\n"}}, "docInfo": {"pyerrors": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 7902}, "pyerrors.correlators": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 108}, "pyerrors.correlators.Corr.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 94}, "pyerrors.correlators.Corr.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.projected": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 64}, "pyerrors.correlators.Corr.item": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.plottable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 31}, "pyerrors.correlators.Corr.symmetric": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.anti_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.matrix_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.GEVP": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 324}, "pyerrors.correlators.Corr.Eigenvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 59}, "pyerrors.correlators.Corr.Hankel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 67}, "pyerrors.correlators.Corr.roll": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 26}, "pyerrors.correlators.Corr.reverse": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.thin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 43}, "pyerrors.correlators.Corr.correlate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 79}, "pyerrors.correlators.Corr.T_symmetry": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 51}, "pyerrors.correlators.Corr.deriv": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 46}, "pyerrors.correlators.Corr.second_deriv": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 44}, "pyerrors.correlators.Corr.m_eff": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 135}, "pyerrors.correlators.Corr.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 110}, "pyerrors.correlators.Corr.plateau": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 92}, "pyerrors.correlators.Corr.set_prange": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 11}, "pyerrors.correlators.Corr.show": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 222}, "pyerrors.correlators.Corr.spaghetti_plot": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 42}, "pyerrors.correlators.Corr.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 69}, "pyerrors.correlators.Corr.print": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prune": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 325}, "pyerrors.covobs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 100}, "pyerrors.covobs.Covobs.errsq": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 12}, "pyerrors.covobs.Covobs.cov": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.grad": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.epsilon_tensor": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 13}, "pyerrors.dirac.epsilon_tensor_rank4": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 13}, "pyerrors.dirac.Grid_gamma": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 9}, "pyerrors.fits": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 32}, "pyerrors.fits.Fit_result.__init__": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result.gamma_method": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 10}, "pyerrors.fits.least_squares": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 609}, "pyerrors.fits.total_least_squares": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 417}, "pyerrors.fits.fit_lin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 90}, "pyerrors.fits.qqplot": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 27}, "pyerrors.fits.residual_plot": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 17}, "pyerrors.fits.error_band": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 23}, "pyerrors.fits.ks_test": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 40}, "pyerrors.input": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 81}, "pyerrors.input.bdio": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.bdio.read_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 106}, "pyerrors.input.bdio.write_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 108}, "pyerrors.input.bdio.read_mesons": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 194}, "pyerrors.input.bdio.read_dSdm": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 191}, "pyerrors.input.dobs": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.dobs.create_pobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 164}, "pyerrors.input.dobs.write_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 202}, "pyerrors.input.dobs.read_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 131}, "pyerrors.input.dobs.import_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 185}, "pyerrors.input.dobs.read_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 204}, "pyerrors.input.dobs.create_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 15, "bases": 0, "doc": 208}, "pyerrors.input.dobs.write_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 240}, "pyerrors.input.hadrons": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.hadrons.read_meson_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 110}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 89}, "pyerrors.input.hadrons.Npr_matrix": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 1065}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 2, "bases": 0, "doc": 3}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 30}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 81}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 81}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 94}, "pyerrors.input.json": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.json.create_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 116}, "pyerrors.input.json.dump_to_json": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 147}, "pyerrors.input.json.import_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 108}, "pyerrors.input.json.load_json": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 128}, "pyerrors.input.json.dump_dict_to_json": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 172}, "pyerrors.input.json.load_json_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 12, "bases": 0, "doc": 135}, "pyerrors.input.misc": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.misc.read_pbp": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 62}, "pyerrors.input.openQCD": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.openQCD.read_rwms": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 254}, "pyerrors.input.openQCD.extract_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 457}, "pyerrors.input.openQCD.read_qtop": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 346}, "pyerrors.input.openQCD.qtop_projection": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 49}, "pyerrors.input.openQCD.read_qtop_sector": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 340}, "pyerrors.input.sfcf": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.sfcf.read_sfcf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 331}, "pyerrors.input.utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "pyerrors.input.utils.check_idl": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 47}, "pyerrors.linalg": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.linalg.matmul": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 54}, "pyerrors.linalg.jack_matmul": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 58}, "pyerrors.linalg.einsum": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 52}, "pyerrors.linalg.inv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 10}, "pyerrors.linalg.cholesky": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 9}, "pyerrors.linalg.det": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 8}, "pyerrors.linalg.eigh": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 20}, "pyerrors.linalg.eig": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 17}, "pyerrors.linalg.pinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 13}, "pyerrors.linalg.svd": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 13}, "pyerrors.misc": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.misc.dump_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 57}, "pyerrors.misc.load_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 26}, "pyerrors.misc.pseudo_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 89}, "pyerrors.misc.gen_correlated_data": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 109}, "pyerrors.mpm": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.mpm.matrix_pencil_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 147}, "pyerrors.obs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 238}, "pyerrors.obs.Obs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 62}, "pyerrors.obs.Obs.S_global": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 3, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 3, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 3, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.filter_eps": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 3, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.names": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.shape": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.r_values": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.deltas": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.is_merged": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.idl": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.ddvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.dvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cov_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.mc_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_content": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.covobs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.details": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.is_zero_within_error": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 50}, "pyerrors.obs.Obs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.plot_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_rep_dist": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 14}, "pyerrors.obs.Obs.plot_history": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_piechart": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 47}, "pyerrors.obs.Obs.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 89}, "pyerrors.obs.Obs.export_jackknife": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 101}, "pyerrors.obs.Obs.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_ddvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_drho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dtauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_dtauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_tauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_windowsize": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "pyerrors.obs.CObs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 14}, "pyerrors.obs.CObs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 15}, "pyerrors.obs.CObs.conjugate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 3, "bases": 0, "doc": 3}, "pyerrors.obs.derived_observable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 184}, "pyerrors.obs.reweight": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 97}, "pyerrors.obs.correlate": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 75}, "pyerrors.obs.covariance": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 346}, "pyerrors.obs.import_jackknife": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 6, "bases": 0, "doc": 61}, "pyerrors.obs.merge_obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 5, "bases": 0, "doc": 56}, "pyerrors.obs.cov_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 90}, "pyerrors.roots": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.roots.find_root": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 8, "bases": 0, "doc": 117}, "pyerrors.version": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 213, "save": true}, "index": {"qualname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 47, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 15}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 3}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {"pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}}, "df": 5}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 6, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 4}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.filter_eps": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 67, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.value": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}}}, "fullname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.filter_eps": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.version": {"tf": 1}}, "df": 213}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 47, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 48}}}, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.grad": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 6}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 42}}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 15}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.obs.Obs.is_merged": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 7}}}, "p": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 3}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 9}}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "t": {"0": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {"pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 8}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 11}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 11}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 6, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 4}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.filter_eps": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.shape": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.r_values": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_merged": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweighted": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tag": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.value": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cov_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.mc_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_content": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_drho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 81, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.value": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.version": {"tf": 1}}, "df": 1}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"0": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}, "1": {"0": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 1}}, "2": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.filter_eps": {"tf": 1}}, "df": 7}}, "signature": {"root": {"0": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 15, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 10, "e": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}, "2": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 3}, "3": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "5": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}, "docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.symmetric": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.print": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.sqrt": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.log": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.exp": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.sin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.cos": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.tan": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.sinh": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.cosh": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.tanh": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.arcsin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.arccos": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.arctan": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.arccosh": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.arctanh": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1.4142135623730951}, "pyerrors.linalg.inv": {"tf": 1.4142135623730951}, "pyerrors.linalg.cholesky": {"tf": 1.4142135623730951}, "pyerrors.linalg.det": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1.4142135623730951}, "pyerrors.linalg.eig": {"tf": 1.4142135623730951}, "pyerrors.linalg.pinv": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.conjugate": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 142, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.Fit_result.__init__": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 78}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}}}}}, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 4}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5, "l": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 8}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 16}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 6}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 3}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 31}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 32}}}}}}, "v": {"1": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "l": {"docs": {"pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 15}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 8}}}}}, "j": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 13}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 6, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}}, "df": 2, "f": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 9, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 3}}}}, "z": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}, "v": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 10, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "v": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "doc": {"root": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"9": {"7": {"9": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"2": {"8": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"8": {"0": {"6": {"4": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"4": {"4": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"8": {"5": {"6": {"5": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"4": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"6": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2}}, "df": 22, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"0": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 3}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"7": {"2": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"4": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "4": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "7": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"0": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"0": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 19, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "+": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "*": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1}}}, "2": {"0": {"0": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"2": {"1": {"8": {"6": {"6": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"7": {"7": {"6": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "9": {"9": {"0": {"9": {"7": {"0": {"3": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 13, "x": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "3": {"0": {"6": {"7": {"5": {"2": {"0": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"4": {"9": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"7": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "4": {"9": {"7": {"6": {"8": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 7.745966692414834}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 7, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "4": {"0": {"3": {"2": {"0": {"9": {"8": {"3": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "9": {"5": {"9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 6, "x": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "1": {"5": {"6": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"0": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"7": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"6": {"5": {"9": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 5, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "6": {"4": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "5": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}}, "df": 2}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"4": {"2": {"2": {"9": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"4": {"6": {"6": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"5": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"1": {"0": {"1": {"0": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"7": {"7": {"5": {"2": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "8": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}, "9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "3": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"9": {"3": {"0": {"3": {"5": {"7": {"8": {"5": {"1": {"6": {"0": {"9": {"3": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"1": {"9": {"8": {"8": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"0": {"0": {"7": {"1": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"3": {"6": {"5": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 62.37788069500277}, "pyerrors.correlators": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.reweighted": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.item": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.plottable": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 10.44030650891055}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.roll": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.deriv": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.second_deriv": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.fit": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plateau": {"tf": 5}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 7.937253933193772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.dump": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.print": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sqrt": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.log": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.exp": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.real": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.imag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 6.855654600401044}, "pyerrors.covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.916079783099616}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.grad": {"tf": 1.7320508075688772}, "pyerrors.dirac": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 2}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 2}, "pyerrors.dirac.Grid_gamma": {"tf": 1.7320508075688772}, "pyerrors.fits": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 3.872983346207417}, "pyerrors.fits.Fit_result.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 15.748015748023622}, "pyerrors.fits.total_least_squares": {"tf": 14.66287829861518}, "pyerrors.fits.fit_lin": {"tf": 4.795831523312719}, "pyerrors.fits.qqplot": {"tf": 1.7320508075688772}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.fits.ks_test": {"tf": 3.872983346207417}, "pyerrors.input": {"tf": 4.69041575982343}, "pyerrors.input.bdio": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 5.196152422706632}, "pyerrors.input.bdio.write_ADerrors": {"tf": 5.196152422706632}, "pyerrors.input.bdio.read_mesons": {"tf": 7.416198487095663}, "pyerrors.input.bdio.read_dSdm": {"tf": 7.416198487095663}, "pyerrors.input.dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7}, "pyerrors.input.dobs.write_pobs": {"tf": 7.810249675906654}, "pyerrors.input.dobs.read_pobs": {"tf": 5.744562646538029}, "pyerrors.input.dobs.import_dobs_string": {"tf": 6.244997998398398}, "pyerrors.input.dobs.read_dobs": {"tf": 6.782329983125268}, "pyerrors.input.dobs.create_dobs_string": {"tf": 7.3484692283495345}, "pyerrors.input.dobs.write_dobs": {"tf": 8.18535277187245}, "pyerrors.input.hadrons": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 6}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 5.656854249492381}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 20.808652046684813}, "pyerrors.input.hadrons.Npr_matrix.__init__": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 5.385164807134504}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 5.385164807134504}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 5.916079783099616}, "pyerrors.input.json": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 5.0990195135927845}, "pyerrors.input.json.dump_to_json": {"tf": 6.164414002968976}, "pyerrors.input.json.import_json_string": {"tf": 5.477225575051661}, "pyerrors.input.json.load_json": {"tf": 6}, "pyerrors.input.json.dump_dict_to_json": {"tf": 6.6332495807108}, "pyerrors.input.json.load_json_dict": {"tf": 6.4031242374328485}, "pyerrors.input.misc": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 4.242640687119285}, "pyerrors.input.openQCD": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 7.874007874011811}, "pyerrors.input.openQCD.extract_t0": {"tf": 9.899494936611665}, "pyerrors.input.openQCD.read_qtop": {"tf": 9.433981132056603}, "pyerrors.input.openQCD.qtop_projection": {"tf": 4.58257569495584}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 9.219544457292887}, "pyerrors.input.sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 8.888194417315589}, "pyerrors.input.utils": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 4.242640687119285}, "pyerrors.linalg": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 4.58257569495584}, "pyerrors.linalg.jack_matmul": {"tf": 4.47213595499958}, "pyerrors.linalg.einsum": {"tf": 4.47213595499958}, "pyerrors.linalg.inv": {"tf": 1.7320508075688772}, "pyerrors.linalg.cholesky": {"tf": 1.7320508075688772}, "pyerrors.linalg.det": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1.7320508075688772}, "pyerrors.linalg.eig": {"tf": 1.7320508075688772}, "pyerrors.linalg.pinv": {"tf": 1.7320508075688772}, "pyerrors.linalg.svd": {"tf": 1.7320508075688772}, "pyerrors.misc": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 5}, "pyerrors.misc.load_object": {"tf": 3.7416573867739413}, "pyerrors.misc.pseudo_Obs": {"tf": 5.656854249492381}, "pyerrors.misc.gen_correlated_data": {"tf": 6.244997998398398}, "pyerrors.mpm": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 5.385164807134504}, "pyerrors.obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 6.928203230275509}, "pyerrors.obs.Obs.__init__": {"tf": 4.898979485566356}, "pyerrors.obs.Obs.S_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.filter_eps": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.shape": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.r_values": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.deltas": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_merged": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweighted": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.value": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cov_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.mc_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_content": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.covobs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.details": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.47213595499958}, "pyerrors.obs.Obs.is_zero": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_tauint": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rho": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.plot_piechart": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.dump": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.sqrt": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.log": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.exp": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_drho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_rho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.real": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.imag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.is_zero": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.conjugate": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 6.4031242374328485}, "pyerrors.obs.reweight": {"tf": 5.196152422706632}, "pyerrors.obs.correlate": {"tf": 4.898979485566356}, "pyerrors.obs.covariance": {"tf": 6.4031242374328485}, "pyerrors.obs.import_jackknife": {"tf": 4.47213595499958}, "pyerrors.obs.merge_obs": {"tf": 4.123105625617661}, "pyerrors.obs.cov_Obs": {"tf": 5.385164807134504}, "pyerrors.roots": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 6.782329983125268}, "pyerrors.version": {"tf": 1.7320508075688772}}, "df": 213, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 33}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 9}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 12}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 9}}}}}, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 29, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 8}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 12}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 3, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 11}}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 8}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.4641016151377544}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.4641016151377544}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 50}, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 18, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 8, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 8.12403840463596}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 39, "t": {"1": {"6": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 30, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 10}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 1}}, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}}, "df": 13}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 9}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 11, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "d": {"0": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 7, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 11}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 2.23606797749979}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 46}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}, "^": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "|": {"docs": {}, "df": 0, "^": {"2": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}}}}, "}": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 3, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 6.557438524302}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 85}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 19}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.872983346207417}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 3}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 9, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 5, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4}}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 11, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "^": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"pyerrors": {"tf": 8.306623862918075}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.total_least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 64, "n": {"docs": {"pyerrors": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 29, "d": {"docs": {"pyerrors": {"tf": 6.928203230275509}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 56}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 7}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3}, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 5}}, "r": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, ":": {"1": {"0": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"5": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"0": {"4": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 44}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 6.082762530298219}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 9}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 3, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 4, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 9}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}}, "df": 6}}}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 7}}}}}}}}, "s": {"docs": {"pyerrors": {"tf": 6}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 18, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 7}, "s": {"docs": {"pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 30, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 6}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 17, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 3}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 11}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "i": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 2}}}, "y": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 6}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 6.782329983125268}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.449489742783178}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 57, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 7, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}}, "df": 15, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 4}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}}, "df": 30}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"1": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "+": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}}, "df": 14, "s": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 5}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 17}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 7}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 2}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2.23606797749979}}, "df": 35, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 11, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 4}}}}}, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 6, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 7}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}, "w": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 2}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 17}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 8}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 13, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}}, "df": 10, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 10, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 9, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.8284271247461903}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 5}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 4}}}}}}}}}, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 9}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 7, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"1": {"docs": {"pyerrors": {"tf": 3.4641016151377544}}, "df": 1, "|": {"docs": {}, "df": 0, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "2": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 28, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 7, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 10}}}, "y": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}}, "df": 7}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 9, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 2}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 14}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "q": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 3}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}}, "df": 8, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 5}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "/": {"1": {"6": {"0": {"3": {"7": {"5": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": null}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 24}}}, "s": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 11}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 4}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 7}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}}, "df": 4, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 17}}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 7}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 6.6332495807108}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 19, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 3, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 23, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 5}}}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 5}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}}, "df": 5}}, "v": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 4, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 6}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 1}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 3}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 5.656854249492381}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 27, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 7}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "p": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 3}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 7, "f": {"docs": {"pyerrors": {"tf": 10.295630140987}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.__init__": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 3}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.8284271247461903}, "pyerrors.input.dobs.write_dobs": {"tf": 2.8284271247461903}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_to_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.8284271247461903}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.1622776601683795}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.8284271247461903}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3.4641016151377544}, "pyerrors.input.utils.check_idl": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1.4142135623730951}, "pyerrors.linalg.eig": {"tf": 1.4142135623730951}, "pyerrors.linalg.pinv": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.derived_observable": {"tf": 2.449489742783178}, "pyerrors.obs.reweight": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 3.3166247903554}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 90, "f": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 28, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 18, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 25}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 17}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "2": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 9.591663046625438}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 55, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 16, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 13}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 2}}, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}, "j": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 20, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 6}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 41, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 22, "s": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}, "m": {"docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 20}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 7}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 5}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 8}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 5}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 15, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.449489742783178}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 8, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 7}}}}}}}}}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 1}}}}}, "y": {"docs": {"pyerrors": {"tf": 7.681145747868608}}, "df": 1}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"1": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3, "a": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 28, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}}, "df": 12, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "y": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 5}}}}}}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 5}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 4}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 7}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 4}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 15}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 30, "s": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 5}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}}, "df": 1, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 3}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 1}}}}, "b": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 8}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}}, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "{": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 6.082762530298219}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.6457513110645907}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 54, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 10}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 21, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 7}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 30}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}}}}}}}, "x": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}}, "df": 4}}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.prune": {"tf": 4.47213595499958}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 7, "h": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 16.1245154965971}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 3}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 2}, "pyerrors.correlators.Corr.deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 3}, "pyerrors.correlators.Corr.fit": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.plateau": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 4.795831523312719}, "pyerrors.covobs.Covobs.__init__": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.47213595499958}, "pyerrors.fits.total_least_squares": {"tf": 3.4641016151377544}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.7320508075688772}, "pyerrors.fits.residual_plot": {"tf": 1.7320508075688772}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 3.4641016151377544}, "pyerrors.input.dobs.write_pobs": {"tf": 3.872983346207417}, "pyerrors.input.dobs.read_pobs": {"tf": 3}, "pyerrors.input.dobs.import_dobs_string": {"tf": 3.605551275463989}, "pyerrors.input.dobs.read_dobs": {"tf": 3.605551275463989}, "pyerrors.input.dobs.create_dobs_string": {"tf": 4.47213595499958}, "pyerrors.input.dobs.write_dobs": {"tf": 4.58257569495584}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.830951894845301}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 2.8284271247461903}, "pyerrors.input.json.dump_to_json": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 2.6457513110645907}, "pyerrors.input.json.load_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_dict_to_json": {"tf": 3.3166247903554}, "pyerrors.input.json.load_json_dict": {"tf": 2.6457513110645907}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 3}, "pyerrors.input.openQCD.extract_t0": {"tf": 5.385164807134504}, "pyerrors.input.openQCD.read_qtop": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 4.242640687119285}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4.242640687119285}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.23606797749979}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.23606797749979}, "pyerrors.obs.Obs": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.3166247903554}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 2.8284271247461903}, "pyerrors.obs.reweight": {"tf": 2.23606797749979}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 5.196152422706632}, "pyerrors.obs.import_jackknife": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 2.449489742783178}}, "df": 105, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 6}}, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 6.244997998398398}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 29}, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 25}, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 25}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"pyerrors": {"tf": 8.660254037844387}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.plateau": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.7416573867739413}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 3.4641016151377544}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 2.23606797749979}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.8284271247461903}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 79, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 19}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 8}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 7}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 10, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 5}}}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "+": {"1": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2}, "2": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}}, "df": 1}}, "/": {"2": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 4}}}}, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 14, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 11}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"pyerrors": {"tf": 8.306623862918075}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 2}, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 5, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}}, "df": 5}}, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 26}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "z": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 13, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 7}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}, "^": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"0": {"3": {"0": {"6": {"0": {"1": {"7": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"1": {"2": {"0": {"8": {"7": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 9}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 5}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 2.449489742783178}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 3.1622776601683795}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 2.449489742783178}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 43, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 6}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 3, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 9}}}}, "q": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 10, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 5, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 2, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 7}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 3, "s": {"1": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2.23606797749979}, "pyerrors.obs.import_jackknife": {"tf": 1.7320508075688772}}, "df": 8}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 12}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 9}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 44, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 11}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 8}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 7}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 8}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 8}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 13}, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 8}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 3}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 5}}}, "w": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2, "{": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 11, "o": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 9, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 15}}, "t": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 26, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 7}}}, "w": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 21}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}}, "df": 18, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 4}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 23, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 15, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 4}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 3}}}, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 15}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2}}}, "x": {"0": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 6}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 3}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.total_least_squares": {"tf": 3}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 10, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}}, "df": 7}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "[": {"0": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "y": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 7, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 7, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 9}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}}, "df": 15, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}}, "df": 3}}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 4}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 8}, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 5}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 11, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 11}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2, "[": {"0": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 17}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 8}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 6}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 4}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 7}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}, "k": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}, "v": {"1": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "v": {"2": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 18, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 7}, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 9}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}}, "df": 6}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.449489742783178}}, "df": 6}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "j": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 4, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 9}}}, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "}": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}, "^": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 5}}}, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 12, "d": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 22}, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils": {"tf": 1}}, "df": 1}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 10, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 3}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 9}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 18}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 16}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 4}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}}, "u": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "k": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3}}, "y": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "\u2013": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"1": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough.