Merge pull request #12 from s-kuberski/feature/covobs

Feature/covobs
This commit is contained in:
Fabian Joswig 2021-12-01 14:49:07 +00:00 committed by GitHub
commit 9e3dbea78b
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 356 additions and 91 deletions

View file

@ -46,6 +46,19 @@ def test_least_squares():
assert((out.fit_parameters[0] - beta[0]).is_zero())
assert((out.fit_parameters[1] - beta[1]).is_zero())
oyc = []
for i, item in enumerate(x):
oyc.append(pe.cov_Obs(y[i], yerr[i]**2, 'cov' + str(i)))
outc = pe.least_squares(x, oyc, func)
betac = outc.fit_parameters
for i in range(2):
betac[i].gamma_method(S=1.0)
assert math.isclose(betac[i].value, popt[i], abs_tol=1e-5)
assert math.isclose(pcov[i, i], betac[i].dvalue ** 2, abs_tol=1e-3)
assert math.isclose(pe.covariance(betac[0], betac[1]), pcov[0, 1], abs_tol=1e-3)
num_samples = 400
N = 10
@ -135,6 +148,44 @@ def test_total_least_squares():
assert(diff / beta[0] < 1e-3 * beta[0].dvalue)
assert((out.fit_parameters[1] - beta[1]).is_zero())
oxc = []
for i, item in enumerate(x):
oxc.append(pe.cov_Obs(x[i], xerr[i]**2, 'covx' + str(i)))
oyc = []
for i, item in enumerate(x):
oyc.append(pe.cov_Obs(y[i], yerr[i]**2, 'covy' + str(i)))
outc = pe.total_least_squares(oxc, oyc, func)
betac = outc.fit_parameters
for i in range(2):
betac[i].gamma_method(S=1.0)
assert math.isclose(betac[i].value, output.beta[i], rel_tol=1e-3)
assert math.isclose(output.cov_beta[i, i], betac[i].dvalue ** 2, rel_tol=2.5e-1), str(output.cov_beta[i, i]) + ' ' + str(betac[i].dvalue ** 2)
assert math.isclose(pe.covariance(betac[0], betac[1]), output.cov_beta[0, 1], rel_tol=2.5e-1)
outc = pe.total_least_squares(oxc, oyc, func, const_par=[betac[1]])
diffc = outc.fit_parameters[0] - betac[0]
assert(diffc / betac[0] < 1e-3 * betac[0].dvalue)
assert((outc.fit_parameters[1] - betac[1]).is_zero())
outc = pe.total_least_squares(oxc, oy, func)
betac = outc.fit_parameters
for i in range(2):
betac[i].gamma_method(S=1.0)
assert math.isclose(betac[i].value, output.beta[i], rel_tol=1e-3)
assert math.isclose(output.cov_beta[i, i], betac[i].dvalue ** 2, rel_tol=2.5e-1), str(output.cov_beta[i, i]) + ' ' + str(betac[i].dvalue ** 2)
assert math.isclose(pe.covariance(betac[0], betac[1]), output.cov_beta[0, 1], rel_tol=2.5e-1)
outc = pe.total_least_squares(oxc, oy, func, const_par=[betac[1]])
diffc = outc.fit_parameters[0] - betac[0]
assert(diffc / betac[0] < 1e-3 * betac[0].dvalue)
assert((outc.fit_parameters[1] - betac[1]).is_zero())
def test_odr_derivatives():
x = []

View file

@ -543,3 +543,41 @@ def test_import_jackknife():
reconstructed_obs = pe.import_jackknife(my_jacks, 'test')
assert my_obs == reconstructed_obs
def test_covobs():
val = 1.123124
cov = .243423
name = 'Covariance'
co = pe.cov_Obs(val, cov, name)
co.gamma_method()
assert (co.dvalue == np.sqrt(cov))
assert (co.value == val)
do = 2 * co
assert (do.covobs[name].grad[0] == 2)
do = co * co
assert (do.covobs[name].grad[0] == 2 * val)
assert np.array_equal(do.covobs[name].cov, co.covobs[name].cov)
pi = [16.7457, -19.0475]
cov = [[3.49591, -6.07560], [-6.07560, 10.5834]]
cl = pe.cov_Obs(pi, cov, 'rAP')
pl = pe.misc.gen_correlated_data(pi, np.asarray(cov), 'rAPpseudo')
def rAP(p, g0sq):
return -0.0010666 * g0sq * (1 + np.exp(p[0] + p[1] / g0sq))
for g0sq in [1, 1.5, 1.8]:
oc = rAP(cl, g0sq)
oc.gamma_method()
op = rAP(pl, g0sq)
op.gamma_method()
assert(np.isclose(oc.value, op.value, rtol=1e-14, atol=1e-14))
assert(pe.covariance(cl[0], cl[1]) == cov[0][1])
assert(pe.covariance2(cl[0], cl[1]) == cov[1][0])
do = cl[0] * cl[1]
assert(np.array_equal(do.covobs['rAP'].grad, np.transpose([pi[1], pi[0]]).reshape(2, 1)))