mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-03-15 14:50:25 +01:00
linted
This commit is contained in:
parent
5a347e0506
commit
9839eb7f0c
1 changed files with 8 additions and 8 deletions
|
@ -110,7 +110,7 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
|
|||
This can take a while as the full correlation matrix
|
||||
has to be calculated (default False).
|
||||
correlated_fit : bool
|
||||
If true, use the full correlation matrix in the definition of the chisquare
|
||||
If true, use the full correlation matrix in the definition of the chisquare
|
||||
(only works for prior==None and when no method is given, at the moment).
|
||||
const_par : list, optional
|
||||
List of N Obs that are used to constrain the last N fit parameters of func.
|
||||
|
@ -181,7 +181,7 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
|
|||
const_par = kwargs['const_par']
|
||||
if isinstance(const_par, Obs):
|
||||
const_par = [const_par]
|
||||
|
||||
|
||||
def func(p, x):
|
||||
return func_aug(np.concatenate((p, [o.value for o in const_par])), x)
|
||||
else:
|
||||
|
@ -511,23 +511,23 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
|
|||
chol = np.linalg.cholesky(corr)
|
||||
chol_inv = np.linalg.inv(chol)
|
||||
chol_inv = np.dot(chol_inv, covdiag)
|
||||
|
||||
|
||||
def chisqfunc(p):
|
||||
model = func(p, x)
|
||||
chisq = anp.sum(anp.dot(chol_inv, (y_f - model)) ** 2)
|
||||
return chisq
|
||||
|
||||
|
||||
def chisqfunc_aug(p):
|
||||
model = func_aug(np.concatenate((p, [o.value for o in const_par])), x)
|
||||
chisq = anp.sum(anp.dot(chol_inv, (y_f - model)) ** 2)
|
||||
return chisq
|
||||
|
||||
|
||||
else:
|
||||
def chisqfunc(p):
|
||||
model = func(p, x)
|
||||
chisq = anp.sum(((y_f - model) / dy_f) ** 2)
|
||||
return chisq
|
||||
|
||||
|
||||
def chisqfunc_aug(p):
|
||||
model = func_aug(np.concatenate((p, [o.value for o in const_par])), x)
|
||||
chisq = anp.sum(((y_f - model) / dy_f) ** 2)
|
||||
|
@ -557,7 +557,7 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
|
|||
model = func(p, x)
|
||||
chisq = anp.dot(chol_inv, (y_f - model))
|
||||
return chisq
|
||||
|
||||
|
||||
else:
|
||||
def chisqfunc_residuals(p):
|
||||
model = func(p, x)
|
||||
|
@ -606,7 +606,7 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
|
|||
model = func_aug(d[:n_parms_aug], x)
|
||||
chisq = anp.sum(anp.dot(chol_inv, (d[n_parms_aug:] - model)) ** 2)
|
||||
return chisq
|
||||
|
||||
|
||||
else:
|
||||
def chisqfunc_compact(d):
|
||||
model = func_aug(d[:n_parms_aug], x)
|
||||
|
|
Loading…
Add table
Reference in a new issue