mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-15 03:53:41 +02:00
Merge branch 'develop' into documentation
This commit is contained in:
commit
97334aa841
3 changed files with 76 additions and 151 deletions
|
@ -29,25 +29,26 @@ def get_complex_matrix(dimension):
|
|||
|
||||
|
||||
def test_matmul():
|
||||
for dim in [4, 8]:
|
||||
my_list = []
|
||||
length = 1000 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))
|
||||
my_array = np.array(my_list).reshape((dim, dim))
|
||||
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
assert e.is_zero(), t
|
||||
for dim in [4, 6]:
|
||||
for const in [1, pe.cov_Obs([1.0, 1.0], [[0.001,0.0001], [0.0001, 0.002]], 'norm')[1]]:
|
||||
my_list = []
|
||||
length = 100 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))
|
||||
my_array = const * np.array(my_list).reshape((dim, dim))
|
||||
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
assert e.is_zero(), t
|
||||
|
||||
my_list = []
|
||||
length = 1000 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']),
|
||||
pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])))
|
||||
my_array = np.array(my_list).reshape((dim, dim))
|
||||
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
assert e.is_zero(), t
|
||||
my_list = []
|
||||
length = 100 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']),
|
||||
pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])))
|
||||
my_array = np.array(my_list).reshape((dim, dim)) * const
|
||||
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
assert e.is_zero(), t
|
||||
|
||||
|
||||
def test_jack_matmul():
|
||||
|
@ -152,7 +153,7 @@ def test_multi_dot():
|
|||
length = 1000 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))
|
||||
my_array = np.array(my_list).reshape((dim, dim))
|
||||
my_array = pe.cov_Obs(1.0, 0.002, 'cov') * np.array(my_list).reshape((dim, dim))
|
||||
tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
assert e.is_zero(), t
|
||||
|
@ -162,7 +163,7 @@ def test_multi_dot():
|
|||
for i in range(dim ** 2):
|
||||
my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']),
|
||||
pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])))
|
||||
my_array = np.array(my_list).reshape((dim, dim))
|
||||
my_array = np.array(my_list).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov')
|
||||
tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
assert e.is_zero(), t
|
||||
|
@ -188,13 +189,13 @@ def test_matmul_irregular_histories():
|
|||
standard_array = []
|
||||
for i in range(dim ** 2):
|
||||
standard_array.append(pe.Obs([np.random.normal(1.1, 0.2, length)], ['ens1']))
|
||||
standard_matrix = np.array(standard_array).reshape((dim, dim))
|
||||
standard_matrix = np.array(standard_array).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov') * pe.pseudo_Obs(0.1, 0.002, 'qr')
|
||||
|
||||
for idl in [range(1, 501, 2), range(250, 273), [2, 8, 19, 20, 78]]:
|
||||
irregular_array = []
|
||||
for i in range(dim ** 2):
|
||||
irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl))], ['ens1'], idl=[idl]))
|
||||
irregular_matrix = np.array(irregular_array).reshape((dim, dim))
|
||||
irregular_matrix = np.array(irregular_array).reshape((dim, dim)) * pe.cov_Obs([1.0, 1.0], [[0.001,0.0001], [0.0001, 0.002]], 'norm')[0]
|
||||
|
||||
t1 = standard_matrix @ irregular_matrix
|
||||
t2 = pe.linalg.matmul(standard_matrix, irregular_matrix)
|
||||
|
@ -212,7 +213,7 @@ def test_irregular_matrix_inverse():
|
|||
irregular_array = []
|
||||
for i in range(dim ** 2):
|
||||
irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl)), np.random.normal(0.25, 0.1, 10)], ['ens1', 'ens2'], idl=[idl, range(1, 11)]))
|
||||
irregular_matrix = np.array(irregular_array).reshape((dim, dim))
|
||||
irregular_matrix = np.array(irregular_array).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov') * pe.pseudo_Obs(1.0, 0.002, 'ens2|r23')
|
||||
|
||||
invertible_irregular_matrix = np.identity(dim) + irregular_matrix @ irregular_matrix.T
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue