mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-03-16 07:10:24 +01:00
Merge branch 'develop' into documentation
This commit is contained in:
commit
97334aa841
3 changed files with 76 additions and 151 deletions
|
@ -1,123 +1,11 @@
|
|||
import numpy as np
|
||||
from autograd import jacobian
|
||||
import autograd.numpy as anp # Thinly-wrapped numpy
|
||||
from .obs import derived_observable, CObs, Obs, _merge_idx, _expand_deltas_for_merge, _filter_zeroes, import_jackknife
|
||||
from .obs import derived_observable, CObs, Obs, import_jackknife
|
||||
|
||||
from functools import partial
|
||||
from autograd.extend import defvjp
|
||||
|
||||
|
||||
def derived_array(func, data, **kwargs):
|
||||
"""Construct a derived Obs for a matrix valued function according to func(data, **kwargs) using automatic differentiation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : object
|
||||
arbitrary function of the form func(data, **kwargs). For the
|
||||
automatic differentiation to work, all numpy functions have to have
|
||||
the autograd wrapper (use 'import autograd.numpy as anp').
|
||||
data : list
|
||||
list of Obs, e.g. [obs1, obs2, obs3].
|
||||
man_grad : list
|
||||
manually supply a list or an array which contains the jacobian
|
||||
of func. Use cautiously, supplying the wrong derivative will
|
||||
not be intercepted.
|
||||
"""
|
||||
|
||||
data = np.asarray(data)
|
||||
raveled_data = data.ravel()
|
||||
|
||||
# Workaround for matrix operations containing non Obs data
|
||||
for i_data in raveled_data:
|
||||
if isinstance(i_data, Obs):
|
||||
first_name = i_data.names[0]
|
||||
first_shape = i_data.shape[first_name]
|
||||
first_idl = i_data.idl[first_name]
|
||||
break
|
||||
|
||||
for i in range(len(raveled_data)):
|
||||
if isinstance(raveled_data[i], (int, float)):
|
||||
raveled_data[i] = Obs([raveled_data[i] + np.zeros(first_shape)], [first_name], idl=[first_idl])
|
||||
|
||||
n_obs = len(raveled_data)
|
||||
new_names = sorted(set([y for x in [o.names for o in raveled_data] for y in x]))
|
||||
|
||||
is_merged = {name: (len(list(filter(lambda o: o.is_merged.get(name, False) is True, raveled_data))) > 0) for name in new_names}
|
||||
reweighted = len(list(filter(lambda o: o.reweighted is True, raveled_data))) > 0
|
||||
new_idl_d = {}
|
||||
for name in new_names:
|
||||
idl = []
|
||||
for i_data in raveled_data:
|
||||
tmp = i_data.idl.get(name)
|
||||
if tmp is not None:
|
||||
idl.append(tmp)
|
||||
new_idl_d[name] = _merge_idx(idl)
|
||||
if not is_merged[name]:
|
||||
is_merged[name] = (1 != len(set([len(idx) for idx in [*idl, new_idl_d[name]]])))
|
||||
|
||||
if data.ndim == 1:
|
||||
values = np.array([o.value for o in data])
|
||||
else:
|
||||
values = np.vectorize(lambda x: x.value)(data)
|
||||
|
||||
new_values = func(values, **kwargs)
|
||||
|
||||
new_r_values = {}
|
||||
for name in new_names:
|
||||
tmp_values = np.zeros(n_obs)
|
||||
for i, item in enumerate(raveled_data):
|
||||
tmp = item.r_values.get(name)
|
||||
if tmp is None:
|
||||
tmp = item.value
|
||||
tmp_values[i] = tmp
|
||||
tmp_values = np.array(tmp_values).reshape(data.shape)
|
||||
new_r_values[name] = func(tmp_values, **kwargs)
|
||||
|
||||
if 'man_grad' in kwargs:
|
||||
deriv = np.asarray(kwargs.get('man_grad'))
|
||||
if new_values.shape + data.shape != deriv.shape:
|
||||
raise Exception('Manual derivative does not have correct shape.')
|
||||
else:
|
||||
deriv = jacobian(func)(values, **kwargs)
|
||||
|
||||
final_result = np.zeros(new_values.shape, dtype=object)
|
||||
|
||||
d_extracted = {}
|
||||
for name in new_names:
|
||||
d_extracted[name] = []
|
||||
for i_dat, dat in enumerate(data):
|
||||
ens_length = len(new_idl_d[name])
|
||||
d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas[name], o.idl[name], o.shape[name], new_idl_d[name]) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, )))
|
||||
|
||||
for i_val, new_val in np.ndenumerate(new_values):
|
||||
new_deltas = {}
|
||||
for name in new_names:
|
||||
ens_length = d_extracted[name][0].shape[-1]
|
||||
new_deltas[name] = np.zeros(ens_length)
|
||||
for i_dat, dat in enumerate(d_extracted[name]):
|
||||
new_deltas[name] += np.tensordot(deriv[i_val + (i_dat, )], dat)
|
||||
|
||||
new_samples = []
|
||||
new_means = []
|
||||
new_idl = []
|
||||
for name in new_names:
|
||||
if is_merged[name]:
|
||||
filtered_deltas, filtered_idl_d = _filter_zeroes(new_deltas[name], new_idl_d[name])
|
||||
else:
|
||||
filtered_deltas = new_deltas[name]
|
||||
filtered_idl_d = new_idl_d[name]
|
||||
|
||||
new_samples.append(filtered_deltas)
|
||||
new_idl.append(filtered_idl_d)
|
||||
new_means.append(new_r_values[name][i_val])
|
||||
final_result[i_val] = Obs(new_samples, new_names, means=new_means, idl=new_idl)
|
||||
final_result[i_val]._value = new_val
|
||||
final_result[i_val].is_merged = is_merged
|
||||
final_result[i_val].reweighted = reweighted
|
||||
|
||||
return final_result
|
||||
|
||||
|
||||
def matmul(*operands):
|
||||
"""Matrix multiply all operands.
|
||||
|
||||
|
@ -157,8 +45,8 @@ def matmul(*operands):
|
|||
def multi_dot_i(operands):
|
||||
return multi_dot(operands, 'Imag')
|
||||
|
||||
Nr = derived_array(multi_dot_r, extended_operands)
|
||||
Ni = derived_array(multi_dot_i, extended_operands)
|
||||
Nr = derived_observable(multi_dot_r, extended_operands, array_mode=True)
|
||||
Ni = derived_observable(multi_dot_i, extended_operands, array_mode=True)
|
||||
|
||||
res = np.empty_like(Nr)
|
||||
for (n, m), entry in np.ndenumerate(Nr):
|
||||
|
@ -171,7 +59,7 @@ def matmul(*operands):
|
|||
for op in operands[1:]:
|
||||
stack = stack @ op
|
||||
return stack
|
||||
return derived_array(multi_dot, operands)
|
||||
return derived_observable(multi_dot, operands, array_mode=True)
|
||||
|
||||
|
||||
def jack_matmul(*operands):
|
||||
|
@ -360,7 +248,7 @@ def _mat_mat_op(op, obs, **kwargs):
|
|||
if kwargs.get('num_grad') is True:
|
||||
op_big_matrix = _num_diff_mat_mat_op(op, big_matrix, **kwargs)
|
||||
else:
|
||||
op_big_matrix = derived_array(lambda x, **kwargs: op(x), [big_matrix])[0]
|
||||
op_big_matrix = derived_observable(lambda x, **kwargs: op(x), [big_matrix], array_mode=True)[0]
|
||||
dim = op_big_matrix.shape[0]
|
||||
op_A = op_big_matrix[0: dim // 2, 0: dim // 2]
|
||||
op_B = op_big_matrix[dim // 2:, 0: dim // 2]
|
||||
|
@ -371,7 +259,7 @@ def _mat_mat_op(op, obs, **kwargs):
|
|||
else:
|
||||
if kwargs.get('num_grad') is True:
|
||||
return _num_diff_mat_mat_op(op, obs, **kwargs)
|
||||
return derived_array(lambda x, **kwargs: op(x), [obs])[0]
|
||||
return derived_observable(lambda x, **kwargs: op(x), [obs], array_mode=True)[0]
|
||||
|
||||
|
||||
def eigh(obs, **kwargs):
|
||||
|
|
|
@ -1020,7 +1020,7 @@ def _filter_zeroes(deltas, idx, eps=Obs.filter_eps):
|
|||
return deltas, idx
|
||||
|
||||
|
||||
def derived_observable(func, data, **kwargs):
|
||||
def derived_observable(func, data, array_mode=False, **kwargs):
|
||||
"""Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.
|
||||
|
||||
Parameters
|
||||
|
@ -1053,6 +1053,7 @@ def derived_observable(func, data, **kwargs):
|
|||
raveled_data = data.ravel()
|
||||
|
||||
# Workaround for matrix operations containing non Obs data
|
||||
# TODO: Find more elegant solution here.
|
||||
for i_data in raveled_data:
|
||||
if isinstance(i_data, Obs):
|
||||
first_name = i_data.names[0]
|
||||
|
@ -1075,11 +1076,13 @@ def derived_observable(func, data, **kwargs):
|
|||
|
||||
n_obs = len(raveled_data)
|
||||
new_names = sorted(set([y for x in [o.names for o in raveled_data] for y in x]))
|
||||
new_cov_names = sorted(set([y for x in [o.cov_names for o in raveled_data] for y in x]))
|
||||
new_sample_names = sorted(set(new_names) - set(new_cov_names))
|
||||
|
||||
is_merged = {name: (len(list(filter(lambda o: o.is_merged.get(name, False) is True, raveled_data))) > 0) for name in new_names}
|
||||
is_merged = {name: (len(list(filter(lambda o: o.is_merged.get(name, False) is True, raveled_data))) > 0) for name in new_sample_names}
|
||||
reweighted = len(list(filter(lambda o: o.reweighted is True, raveled_data))) > 0
|
||||
new_idl_d = {}
|
||||
for name in new_names:
|
||||
for name in new_sample_names:
|
||||
idl = []
|
||||
for i_data in raveled_data:
|
||||
tmp = i_data.idl.get(name)
|
||||
|
@ -1101,7 +1104,7 @@ def derived_observable(func, data, **kwargs):
|
|||
multi = 1
|
||||
|
||||
new_r_values = {}
|
||||
for name in new_names:
|
||||
for name in new_sample_names:
|
||||
tmp_values = np.zeros(n_obs)
|
||||
for i, item in enumerate(raveled_data):
|
||||
tmp = item.r_values.get(name)
|
||||
|
@ -1143,15 +1146,48 @@ def derived_observable(func, data, **kwargs):
|
|||
|
||||
final_result = np.zeros(new_values.shape, dtype=object)
|
||||
|
||||
if array_mode is True:
|
||||
|
||||
new_covobs_lengths = dict(set([y for x in [[(n, o.covobs[n].N) for n in o.cov_names] for o in raveled_data] for y in x]))
|
||||
|
||||
class _Zero_grad():
|
||||
def __init__(self, N):
|
||||
# self.grad = np.zeros(N)
|
||||
self.grad = np.zeros((N, 1))
|
||||
|
||||
d_extracted = {}
|
||||
g_extracted = {}
|
||||
for name in new_sample_names:
|
||||
d_extracted[name] = []
|
||||
ens_length = len(new_idl_d[name])
|
||||
for i_dat, dat in enumerate(data):
|
||||
d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas.get(name, np.zeros(ens_length)), o.idl.get(name, new_idl_d[name]), o.shape.get(name, ens_length), new_idl_d[name]) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, )))
|
||||
for name in new_cov_names:
|
||||
g_extracted[name] = []
|
||||
zero_grad = _Zero_grad(new_covobs_lengths[name])
|
||||
for i_dat, dat in enumerate(data):
|
||||
g_extracted[name].append(np.array([o.covobs.get(name, zero_grad).grad for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (new_covobs_lengths[name], 1)))
|
||||
|
||||
for i_val, new_val in np.ndenumerate(new_values):
|
||||
new_deltas = {}
|
||||
new_grad = {}
|
||||
for j_obs, obs in np.ndenumerate(data):
|
||||
for name in obs.names:
|
||||
if name in obs.cov_names:
|
||||
new_grad[name] = new_grad.get(name, 0) + deriv[i_val + j_obs] * obs.covobs[name].grad
|
||||
else:
|
||||
new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name])
|
||||
if array_mode is True:
|
||||
for name in new_sample_names:
|
||||
ens_length = d_extracted[name][0].shape[-1]
|
||||
new_deltas[name] = np.zeros(ens_length)
|
||||
for i_dat, dat in enumerate(d_extracted[name]):
|
||||
new_deltas[name] += np.tensordot(deriv[i_val + (i_dat, )], dat)
|
||||
for name in new_cov_names:
|
||||
new_grad[name] = 0
|
||||
for i_dat, dat in enumerate(g_extracted[name]):
|
||||
new_grad[name] += np.tensordot(deriv[i_val + (i_dat, )], dat)
|
||||
else:
|
||||
for j_obs, obs in np.ndenumerate(data):
|
||||
for name in obs.names:
|
||||
if name in obs.cov_names:
|
||||
new_grad[name] = new_grad.get(name, 0) + deriv[i_val + j_obs] * obs.covobs[name].grad
|
||||
else:
|
||||
new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name])
|
||||
|
||||
new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad}
|
||||
|
||||
|
|
|
@ -29,25 +29,26 @@ def get_complex_matrix(dimension):
|
|||
|
||||
|
||||
def test_matmul():
|
||||
for dim in [4, 8]:
|
||||
my_list = []
|
||||
length = 1000 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))
|
||||
my_array = np.array(my_list).reshape((dim, dim))
|
||||
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
assert e.is_zero(), t
|
||||
for dim in [4, 6]:
|
||||
for const in [1, pe.cov_Obs([1.0, 1.0], [[0.001,0.0001], [0.0001, 0.002]], 'norm')[1]]:
|
||||
my_list = []
|
||||
length = 100 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))
|
||||
my_array = const * np.array(my_list).reshape((dim, dim))
|
||||
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
assert e.is_zero(), t
|
||||
|
||||
my_list = []
|
||||
length = 1000 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']),
|
||||
pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])))
|
||||
my_array = np.array(my_list).reshape((dim, dim))
|
||||
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
assert e.is_zero(), t
|
||||
my_list = []
|
||||
length = 100 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']),
|
||||
pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])))
|
||||
my_array = np.array(my_list).reshape((dim, dim)) * const
|
||||
tt = pe.linalg.matmul(my_array, my_array) - my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
assert e.is_zero(), t
|
||||
|
||||
|
||||
def test_jack_matmul():
|
||||
|
@ -152,7 +153,7 @@ def test_multi_dot():
|
|||
length = 1000 + np.random.randint(200)
|
||||
for i in range(dim ** 2):
|
||||
my_list.append(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']))
|
||||
my_array = np.array(my_list).reshape((dim, dim))
|
||||
my_array = pe.cov_Obs(1.0, 0.002, 'cov') * np.array(my_list).reshape((dim, dim))
|
||||
tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
assert e.is_zero(), t
|
||||
|
@ -162,7 +163,7 @@ def test_multi_dot():
|
|||
for i in range(dim ** 2):
|
||||
my_list.append(pe.CObs(pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2']),
|
||||
pe.Obs([np.random.rand(length), np.random.rand(length + 1)], ['t1', 't2'])))
|
||||
my_array = np.array(my_list).reshape((dim, dim))
|
||||
my_array = np.array(my_list).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov')
|
||||
tt = pe.linalg.matmul(my_array, my_array, my_array, my_array) - my_array @ my_array @ my_array @ my_array
|
||||
for t, e in np.ndenumerate(tt):
|
||||
assert e.is_zero(), t
|
||||
|
@ -188,13 +189,13 @@ def test_matmul_irregular_histories():
|
|||
standard_array = []
|
||||
for i in range(dim ** 2):
|
||||
standard_array.append(pe.Obs([np.random.normal(1.1, 0.2, length)], ['ens1']))
|
||||
standard_matrix = np.array(standard_array).reshape((dim, dim))
|
||||
standard_matrix = np.array(standard_array).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov') * pe.pseudo_Obs(0.1, 0.002, 'qr')
|
||||
|
||||
for idl in [range(1, 501, 2), range(250, 273), [2, 8, 19, 20, 78]]:
|
||||
irregular_array = []
|
||||
for i in range(dim ** 2):
|
||||
irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl))], ['ens1'], idl=[idl]))
|
||||
irregular_matrix = np.array(irregular_array).reshape((dim, dim))
|
||||
irregular_matrix = np.array(irregular_array).reshape((dim, dim)) * pe.cov_Obs([1.0, 1.0], [[0.001,0.0001], [0.0001, 0.002]], 'norm')[0]
|
||||
|
||||
t1 = standard_matrix @ irregular_matrix
|
||||
t2 = pe.linalg.matmul(standard_matrix, irregular_matrix)
|
||||
|
@ -212,7 +213,7 @@ def test_irregular_matrix_inverse():
|
|||
irregular_array = []
|
||||
for i in range(dim ** 2):
|
||||
irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl)), np.random.normal(0.25, 0.1, 10)], ['ens1', 'ens2'], idl=[idl, range(1, 11)]))
|
||||
irregular_matrix = np.array(irregular_array).reshape((dim, dim))
|
||||
irregular_matrix = np.array(irregular_array).reshape((dim, dim)) * pe.cov_Obs(1.0, 0.002, 'cov') * pe.pseudo_Obs(1.0, 0.002, 'ens2|r23')
|
||||
|
||||
invertible_irregular_matrix = np.identity(dim) + irregular_matrix @ irregular_matrix.T
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue