Merge branch 'develop' into documentation

This commit is contained in:
fjosw 2021-11-18 10:52:22 +00:00
commit 95fa13aaac
2 changed files with 24 additions and 17 deletions

View file

@ -174,20 +174,19 @@ def matmul(*operands):
return derived_array(multi_dot, operands)
def jack_matmul(a, b):
def jack_matmul(*operands):
"""Matrix multiply both operands making use of the jackknife approximation.
Parameters
----------
a : numpy.ndarray
First matrix, can be real or complex Obs valued
b : numpy.ndarray
Second matrix, can be real or complex Obs valued
operands : numpy.ndarray
Arbitrary number of 2d-numpy arrays which can be real or complex
Obs valued.
For large matrices this is considerably faster compared to matmul.
"""
if any(isinstance(o[0, 0], CObs) for o in [a, b]):
if any(isinstance(o[0, 0], CObs) for o in operands):
def _exp_to_jack(matrix):
base_matrix = np.empty_like(matrix)
for (n, m), entry in np.ndenumerate(matrix):
@ -201,10 +200,10 @@ def jack_matmul(a, b):
import_jackknife(entry.imag, name))
return base_matrix
j_a = _exp_to_jack(a)
j_b = _exp_to_jack(b)
r = j_a @ j_b
return _imp_from_jack(r, a.ravel()[0].real.names[0])
r = _exp_to_jack(operands[0])
for op in operands[1:]:
r = r @ _exp_to_jack(op)
return _imp_from_jack(r, op.ravel()[0].real.names[0])
else:
def _exp_to_jack(matrix):
base_matrix = np.empty_like(matrix)
@ -218,10 +217,10 @@ def jack_matmul(a, b):
base_matrix[n, m] = import_jackknife(entry, name)
return base_matrix
j_a = _exp_to_jack(a)
j_b = _exp_to_jack(b)
r = j_a @ j_b
return _imp_from_jack(r, a.ravel()[0].names[0])
r = _exp_to_jack(operands[0])
for op in operands[1:]:
r = r @ _exp_to_jack(op)
return _imp_from_jack(r, op.ravel()[0].names[0])
def inv(x):

View file

@ -418,9 +418,17 @@ class Obs:
"""
return self.is_zero() or np.abs(self.value) <= sigma * self.dvalue
def is_zero(self):
"""Checks whether the observable is zero within machine precision."""
return np.isclose(0.0, self.value) and all(np.allclose(0.0, delta) for delta in self.deltas.values())
def is_zero(self, rtol=1.e-5, atol=1.e-8):
"""Checks whether the observable is zero within a given tolerance.
Parameters
----------
rtol : float
Relative tolerance (for details see numpy documentation).
atol : float
Absolute tolerance (for details see numpy documentation).
"""
return np.isclose(0.0, self.value, rtol, atol) and all(np.allclose(0.0, delta, rtol, atol) for delta in self.deltas.values())
def plot_tauint(self, save=None):
"""Plot integrated autocorrelation time for each ensemble.