mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-15 03:53:41 +02:00
Refined covobs implementation
This commit is contained in:
parent
9db709a171
commit
950fb17c84
2 changed files with 196 additions and 147 deletions
305
pyerrors/obs.py
305
pyerrors/obs.py
|
@ -38,11 +38,11 @@ class Obs:
|
||||||
Dictionary for N_sigma values. If an entry for a given ensemble exists
|
Dictionary for N_sigma values. If an entry for a given ensemble exists
|
||||||
this overwrites the standard value for that ensemble.
|
this overwrites the standard value for that ensemble.
|
||||||
"""
|
"""
|
||||||
#__slots__ = ['names', 'shape', 'r_values', 'deltas', 'N', '_value', '_dvalue',
|
__slots__ = ['names', 'shape', 'r_values', 'deltas', 'N', '_value', '_dvalue',
|
||||||
# 'ddvalue', 'reweighted', 'S', 'tau_exp', 'N_sigma',
|
'ddvalue', 'reweighted', 'S', 'tau_exp', 'N_sigma',
|
||||||
# 'e_dvalue', 'e_ddvalue', 'e_tauint', 'e_dtauint',
|
'e_dvalue', 'e_ddvalue', 'e_tauint', 'e_dtauint',
|
||||||
# 'e_windowsize', 'e_rho', 'e_drho', 'e_n_tauint', 'e_n_dtauint',
|
'e_windowsize', 'e_rho', 'e_drho', 'e_n_tauint', 'e_n_dtauint',
|
||||||
# 'idl', 'is_merged', 'tag', '__dict__']
|
'idl', 'is_merged', 'tag', 'covobs', '__dict__']
|
||||||
|
|
||||||
S_global = 2.0
|
S_global = 2.0
|
||||||
S_dict = {}
|
S_dict = {}
|
||||||
|
@ -68,7 +68,7 @@ class Obs:
|
||||||
already subtracted from the samples
|
already subtracted from the samples
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if means is None and not kwargs.get('empty', False):
|
if means is None and samples is not None:
|
||||||
if len(samples) != len(names):
|
if len(samples) != len(names):
|
||||||
raise Exception('Length of samples and names incompatible.')
|
raise Exception('Length of samples and names incompatible.')
|
||||||
if idl is not None:
|
if idl is not None:
|
||||||
|
@ -81,10 +81,10 @@ class Obs:
|
||||||
if min(len(x) for x in samples) <= 4:
|
if min(len(x) for x in samples) <= 4:
|
||||||
raise Exception('Samples have to have at least 5 entries.')
|
raise Exception('Samples have to have at least 5 entries.')
|
||||||
|
|
||||||
if kwargs.get('empty', False):
|
if names:
|
||||||
self.names = []
|
|
||||||
else:
|
|
||||||
self.names = sorted(names)
|
self.names = sorted(names)
|
||||||
|
else:
|
||||||
|
self.names = []
|
||||||
|
|
||||||
self.shape = {}
|
self.shape = {}
|
||||||
self.r_values = {}
|
self.r_values = {}
|
||||||
|
@ -95,7 +95,7 @@ class Obs:
|
||||||
self.covobs = covobs
|
self.covobs = covobs
|
||||||
|
|
||||||
self.idl = {}
|
self.idl = {}
|
||||||
if not kwargs.get('empty', False):
|
if samples is not None:
|
||||||
if idl is not None:
|
if idl is not None:
|
||||||
for name, idx in sorted(zip(names, idl)):
|
for name, idx in sorted(zip(names, idl)):
|
||||||
if isinstance(idx, range):
|
if isinstance(idx, range):
|
||||||
|
@ -159,6 +159,14 @@ class Obs:
|
||||||
def e_names(self):
|
def e_names(self):
|
||||||
return sorted(set([o.split('|')[0] for o in self.names]))
|
return sorted(set([o.split('|')[0] for o in self.names]))
|
||||||
|
|
||||||
|
@property
|
||||||
|
def cov_names(self):
|
||||||
|
return sorted(set([o for o in self.covobs.keys()]))
|
||||||
|
|
||||||
|
@property
|
||||||
|
def mc_names(self):
|
||||||
|
return sorted(set([o.split('|')[0] for o in self.names if o not in self.cov_names]))
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def e_content(self):
|
def e_content(self):
|
||||||
res = {}
|
res = {}
|
||||||
|
@ -233,97 +241,96 @@ class Obs:
|
||||||
_parse_kwarg('tau_exp')
|
_parse_kwarg('tau_exp')
|
||||||
_parse_kwarg('N_sigma')
|
_parse_kwarg('N_sigma')
|
||||||
|
|
||||||
for e, e_name in enumerate(self.e_names):
|
for e, e_name in enumerate(self.mc_names):
|
||||||
if e_name not in self.covobs:
|
r_length = []
|
||||||
r_length = []
|
for r_name in e_content[e_name]:
|
||||||
for r_name in e_content[e_name]:
|
if isinstance(self.idl[r_name], range):
|
||||||
if isinstance(self.idl[r_name], range):
|
r_length.append(len(self.idl[r_name]))
|
||||||
r_length.append(len(self.idl[r_name]))
|
else:
|
||||||
else:
|
r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1))
|
||||||
r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1))
|
|
||||||
|
|
||||||
e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]])
|
e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]])
|
||||||
w_max = max(r_length) // 2
|
w_max = max(r_length) // 2
|
||||||
e_gamma[e_name] = np.zeros(w_max)
|
e_gamma[e_name] = np.zeros(w_max)
|
||||||
self.e_rho[e_name] = np.zeros(w_max)
|
self.e_rho[e_name] = np.zeros(w_max)
|
||||||
self.e_drho[e_name] = np.zeros(w_max)
|
self.e_drho[e_name] = np.zeros(w_max)
|
||||||
|
|
||||||
for r_name in e_content[e_name]:
|
for r_name in e_content[e_name]:
|
||||||
e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft)
|
e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft)
|
||||||
|
|
||||||
gamma_div = np.zeros(w_max)
|
gamma_div = np.zeros(w_max)
|
||||||
for r_name in e_content[e_name]:
|
for r_name in e_content[e_name]:
|
||||||
gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft)
|
gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft)
|
||||||
e_gamma[e_name] /= gamma_div[:w_max]
|
e_gamma[e_name] /= gamma_div[:w_max]
|
||||||
|
|
||||||
if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero
|
if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero
|
||||||
|
self.e_tauint[e_name] = 0.5
|
||||||
|
self.e_dtauint[e_name] = 0.0
|
||||||
|
self.e_dvalue[e_name] = 0.0
|
||||||
|
self.e_ddvalue[e_name] = 0.0
|
||||||
|
self.e_windowsize[e_name] = 0
|
||||||
|
continue
|
||||||
|
|
||||||
|
self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0]
|
||||||
|
self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:])))
|
||||||
|
# Make sure no entry of tauint is smaller than 0.5
|
||||||
|
self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps
|
||||||
|
# hep-lat/0306017 eq. (42)
|
||||||
|
self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) + 0.5 - self.e_n_tauint[e_name]) / e_N)
|
||||||
|
self.e_n_dtauint[e_name][0] = 0.0
|
||||||
|
|
||||||
|
def _compute_drho(i):
|
||||||
|
tmp = self.e_rho[e_name][i + 1:w_max] + np.concatenate([self.e_rho[e_name][i - 1::-1], self.e_rho[e_name][1:w_max - 2 * i]]) - 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i]
|
||||||
|
self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N)
|
||||||
|
|
||||||
|
_compute_drho(1)
|
||||||
|
if self.tau_exp[e_name] > 0:
|
||||||
|
texp = self.tau_exp[e_name]
|
||||||
|
# if type(self.idl[e_name]) is range: # scale tau_exp according to step size
|
||||||
|
# texp /= self.idl[e_name].step
|
||||||
|
# Critical slowing down analysis
|
||||||
|
if w_max // 2 <= 1:
|
||||||
|
raise Exception("Need at least 8 samples for tau_exp error analysis")
|
||||||
|
for n in range(1, w_max // 2):
|
||||||
|
_compute_drho(n + 1)
|
||||||
|
if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2:
|
||||||
|
# Bias correction hep-lat/0306017 eq. (49) included
|
||||||
|
self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive
|
||||||
|
self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2)
|
||||||
|
# Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2
|
||||||
|
self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N)
|
||||||
|
self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N)
|
||||||
|
self.e_windowsize[e_name] = n
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
if self.S[e_name] == 0.0:
|
||||||
self.e_tauint[e_name] = 0.5
|
self.e_tauint[e_name] = 0.5
|
||||||
self.e_dtauint[e_name] = 0.0
|
self.e_dtauint[e_name] = 0.0
|
||||||
self.e_dvalue[e_name] = 0.0
|
self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1))
|
||||||
self.e_ddvalue[e_name] = 0.0
|
self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N)
|
||||||
self.e_windowsize[e_name] = 0
|
self.e_windowsize[e_name] = 0
|
||||||
continue
|
else:
|
||||||
|
# Standard automatic windowing procedure
|
||||||
self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0]
|
tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][1:] + 1) / (2 * self.e_n_tauint[e_name][1:] - 1))
|
||||||
self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:])))
|
g_w = np.exp(- np.arange(1, w_max) / tau) - tau / np.sqrt(np.arange(1, w_max) * e_N)
|
||||||
# Make sure no entry of tauint is smaller than 0.5
|
for n in range(1, w_max):
|
||||||
self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps
|
if n < w_max // 2 - 2:
|
||||||
# hep-lat/0306017 eq. (42)
|
_compute_drho(n + 1)
|
||||||
self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) + 0.5 - self.e_n_tauint[e_name]) / e_N)
|
if g_w[n - 1] < 0 or n >= w_max - 1:
|
||||||
self.e_n_dtauint[e_name][0] = 0.0
|
self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49)
|
||||||
|
self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n]
|
||||||
def _compute_drho(i):
|
|
||||||
tmp = self.e_rho[e_name][i + 1:w_max] + np.concatenate([self.e_rho[e_name][i - 1::-1], self.e_rho[e_name][1:w_max - 2 * i]]) - 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i]
|
|
||||||
self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N)
|
|
||||||
|
|
||||||
_compute_drho(1)
|
|
||||||
if self.tau_exp[e_name] > 0:
|
|
||||||
texp = self.tau_exp[e_name]
|
|
||||||
# if type(self.idl[e_name]) is range: # scale tau_exp according to step size
|
|
||||||
# texp /= self.idl[e_name].step
|
|
||||||
# Critical slowing down analysis
|
|
||||||
if w_max // 2 <= 1:
|
|
||||||
raise Exception("Need at least 8 samples for tau_exp error analysis")
|
|
||||||
for n in range(1, w_max // 2):
|
|
||||||
_compute_drho(n + 1)
|
|
||||||
if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2:
|
|
||||||
# Bias correction hep-lat/0306017 eq. (49) included
|
|
||||||
self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive
|
|
||||||
self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2)
|
|
||||||
# Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2
|
|
||||||
self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N)
|
self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N)
|
||||||
self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N)
|
self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N)
|
||||||
self.e_windowsize[e_name] = n
|
self.e_windowsize[e_name] = n
|
||||||
break
|
break
|
||||||
else:
|
|
||||||
if self.S[e_name] == 0.0:
|
|
||||||
self.e_tauint[e_name] = 0.5
|
|
||||||
self.e_dtauint[e_name] = 0.0
|
|
||||||
self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1))
|
|
||||||
self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N)
|
|
||||||
self.e_windowsize[e_name] = 0
|
|
||||||
else:
|
|
||||||
# Standard automatic windowing procedure
|
|
||||||
tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][1:] + 1) / (2 * self.e_n_tauint[e_name][1:] - 1))
|
|
||||||
g_w = np.exp(- np.arange(1, w_max) / tau) - tau / np.sqrt(np.arange(1, w_max) * e_N)
|
|
||||||
for n in range(1, w_max):
|
|
||||||
if n < w_max // 2 - 2:
|
|
||||||
_compute_drho(n + 1)
|
|
||||||
if g_w[n - 1] < 0 or n >= w_max - 1:
|
|
||||||
self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49)
|
|
||||||
self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n]
|
|
||||||
self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N)
|
|
||||||
self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N)
|
|
||||||
self.e_windowsize[e_name] = n
|
|
||||||
break
|
|
||||||
|
|
||||||
self._dvalue += self.e_dvalue[e_name] ** 2
|
self._dvalue += self.e_dvalue[e_name] ** 2
|
||||||
self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2
|
self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2
|
||||||
|
|
||||||
else:
|
for e_name in self.cov_names:
|
||||||
self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq())
|
self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq())
|
||||||
self.e_ddvalue[e_name] = 0
|
self.e_ddvalue[e_name] = 0
|
||||||
self._dvalue += self.e_dvalue[e_name]**2
|
self._dvalue += self.e_dvalue[e_name]**2
|
||||||
|
|
||||||
self._dvalue = np.sqrt(self.dvalue)
|
self._dvalue = np.sqrt(self.dvalue)
|
||||||
if self._dvalue == 0.0:
|
if self._dvalue == 0.0:
|
||||||
|
@ -385,16 +392,15 @@ class Obs:
|
||||||
print('Result\t %3.8e +/- %3.8e +/- %3.8e (%3.3f%%)' % (self.value, self.dvalue, self.ddvalue, percentage))
|
print('Result\t %3.8e +/- %3.8e +/- %3.8e (%3.3f%%)' % (self.value, self.dvalue, self.ddvalue, percentage))
|
||||||
if len(self.e_names) > 1:
|
if len(self.e_names) > 1:
|
||||||
print(' Ensemble errors:')
|
print(' Ensemble errors:')
|
||||||
for e_name in self.e_names:
|
for e_name in self.mc_names:
|
||||||
if e_name not in self.covobs:
|
if len(self.e_names) > 1:
|
||||||
if len(self.e_names) > 1:
|
print('', e_name, '\t %3.8e +/- %3.8e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name]))
|
||||||
print('', e_name, '\t %3.8e +/- %3.8e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name]))
|
if self.tau_exp[e_name] > 0:
|
||||||
if self.tau_exp[e_name] > 0:
|
print(' t_int\t %3.8e +/- %3.8e tau_exp = %3.2f, N_sigma = %1.0i' % (self.e_tauint[e_name], self.e_dtauint[e_name], self.tau_exp[e_name], self.N_sigma[e_name]))
|
||||||
print(' t_int\t %3.8e +/- %3.8e tau_exp = %3.2f, N_sigma = %1.0i' % (self.e_tauint[e_name], self.e_dtauint[e_name], self.tau_exp[e_name], self.N_sigma[e_name]))
|
|
||||||
else:
|
|
||||||
print(' t_int\t %3.8e +/- %3.8e S = %3.2f' % (self.e_tauint[e_name], self.e_dtauint[e_name], self.S[e_name]))
|
|
||||||
else:
|
else:
|
||||||
print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name]))
|
print(' t_int\t %3.8e +/- %3.8e S = %3.2f' % (self.e_tauint[e_name], self.e_dtauint[e_name], self.S[e_name]))
|
||||||
|
for e_name in self.cov_names:
|
||||||
|
print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name]))
|
||||||
if ens_content is True:
|
if ens_content is True:
|
||||||
if len(self.e_names) == 1:
|
if len(self.e_names) == 1:
|
||||||
print(self.N, 'samples in', len(self.e_names), 'ensemble:')
|
print(self.N, 'samples in', len(self.e_names), 'ensemble:')
|
||||||
|
@ -467,7 +473,7 @@ class Obs:
|
||||||
raise Exception('Run the gamma method first.')
|
raise Exception('Run the gamma method first.')
|
||||||
|
|
||||||
fig = plt.figure()
|
fig = plt.figure()
|
||||||
for e, e_name in enumerate(self.e_names):
|
for e, e_name in enumerate(self.mc_names):
|
||||||
plt.xlabel(r'$W$')
|
plt.xlabel(r'$W$')
|
||||||
plt.ylabel(r'$\tau_\mathrm{int}$')
|
plt.ylabel(r'$\tau_\mathrm{int}$')
|
||||||
length = int(len(self.e_n_tauint[e_name]))
|
length = int(len(self.e_n_tauint[e_name]))
|
||||||
|
@ -498,7 +504,7 @@ class Obs:
|
||||||
"""Plot normalized autocorrelation function time for each ensemble."""
|
"""Plot normalized autocorrelation function time for each ensemble."""
|
||||||
if not hasattr(self, 'e_dvalue'):
|
if not hasattr(self, 'e_dvalue'):
|
||||||
raise Exception('Run the gamma method first.')
|
raise Exception('Run the gamma method first.')
|
||||||
for e, e_name in enumerate(self.e_names):
|
for e, e_name in enumerate(self.mc_names):
|
||||||
plt.xlabel('W')
|
plt.xlabel('W')
|
||||||
plt.ylabel('rho')
|
plt.ylabel('rho')
|
||||||
length = int(len(self.e_drho[e_name]))
|
length = int(len(self.e_drho[e_name]))
|
||||||
|
@ -520,7 +526,7 @@ class Obs:
|
||||||
"""Plot replica distribution for each ensemble with more than one replicum."""
|
"""Plot replica distribution for each ensemble with more than one replicum."""
|
||||||
if not hasattr(self, 'e_dvalue'):
|
if not hasattr(self, 'e_dvalue'):
|
||||||
raise Exception('Run the gamma method first.')
|
raise Exception('Run the gamma method first.')
|
||||||
for e, e_name in enumerate(self.e_names):
|
for e, e_name in enumerate(self.mc_names):
|
||||||
if len(self.e_content[e_name]) == 1:
|
if len(self.e_content[e_name]) == 1:
|
||||||
print('No replica distribution for a single replicum (', e_name, ')')
|
print('No replica distribution for a single replicum (', e_name, ')')
|
||||||
continue
|
continue
|
||||||
|
@ -546,7 +552,7 @@ class Obs:
|
||||||
expand : bool
|
expand : bool
|
||||||
show expanded history for irregular Monte Carlo chains (default: True).
|
show expanded history for irregular Monte Carlo chains (default: True).
|
||||||
"""
|
"""
|
||||||
for e, e_name in enumerate(self.e_names):
|
for e, e_name in enumerate(self.mc_names):
|
||||||
plt.figure()
|
plt.figure()
|
||||||
r_length = []
|
r_length = []
|
||||||
tmp = []
|
tmp = []
|
||||||
|
@ -1055,7 +1061,7 @@ def derived_observable(func, data, **kwargs):
|
||||||
|
|
||||||
allcov = {}
|
allcov = {}
|
||||||
for o in raveled_data:
|
for o in raveled_data:
|
||||||
for name in o.covobs:
|
for name in o.cov_names:
|
||||||
if name in allcov:
|
if name in allcov:
|
||||||
if not np.array_equal(allcov[name], o.covobs[name].cov):
|
if not np.array_equal(allcov[name], o.covobs[name].cov):
|
||||||
raise Exception('Inconsistent covariance matrices for %s!' % (name))
|
raise Exception('Inconsistent covariance matrices for %s!' % (name))
|
||||||
|
@ -1137,7 +1143,7 @@ def derived_observable(func, data, **kwargs):
|
||||||
new_grad = {}
|
new_grad = {}
|
||||||
for j_obs, obs in np.ndenumerate(data):
|
for j_obs, obs in np.ndenumerate(data):
|
||||||
for name in obs.names:
|
for name in obs.names:
|
||||||
if name in obs.covobs:
|
if name in obs.cov_names:
|
||||||
if name in new_grad:
|
if name in new_grad:
|
||||||
new_grad[name] += deriv[i_val + j_obs] * obs.covobs[name].grad
|
new_grad[name] += deriv[i_val + j_obs] * obs.covobs[name].grad
|
||||||
else:
|
else:
|
||||||
|
@ -1231,6 +1237,8 @@ def reweight(weight, obs, **kwargs):
|
||||||
"""
|
"""
|
||||||
result = []
|
result = []
|
||||||
for i in range(len(obs)):
|
for i in range(len(obs)):
|
||||||
|
if len(obs[i].cov_names):
|
||||||
|
raise Exception('Error: Not possible to reweight an Obs that contains covobs!')
|
||||||
if sorted(weight.names) != sorted(obs[i].names):
|
if sorted(weight.names) != sorted(obs[i].names):
|
||||||
raise Exception('Error: Ensembles do not fit')
|
raise Exception('Error: Ensembles do not fit')
|
||||||
for name in weight.names:
|
for name in weight.names:
|
||||||
|
@ -1272,6 +1280,8 @@ def correlate(obs_a, obs_b):
|
||||||
|
|
||||||
if sorted(obs_a.names) != sorted(obs_b.names):
|
if sorted(obs_a.names) != sorted(obs_b.names):
|
||||||
raise Exception('Ensembles do not fit')
|
raise Exception('Ensembles do not fit')
|
||||||
|
if len(obs_a.cov_names) or len(obs_b.cov_names):
|
||||||
|
raise Exception('Error: Not possible to correlate Obs that contain covobs!')
|
||||||
for name in obs_a.names:
|
for name in obs_a.names:
|
||||||
if obs_a.shape[name] != obs_b.shape[name]:
|
if obs_a.shape[name] != obs_b.shape[name]:
|
||||||
raise Exception('Shapes of ensemble', name, 'do not fit')
|
raise Exception('Shapes of ensemble', name, 'do not fit')
|
||||||
|
@ -1329,7 +1339,7 @@ def covariance(obs1, obs2, correlation=False, **kwargs):
|
||||||
|
|
||||||
dvalue = 0
|
dvalue = 0
|
||||||
|
|
||||||
for e_name in obs1.e_names:
|
for e_name in obs1.mc_names:
|
||||||
|
|
||||||
if e_name not in obs2.e_names:
|
if e_name not in obs2.e_names:
|
||||||
continue
|
continue
|
||||||
|
@ -1349,6 +1359,13 @@ def covariance(obs1, obs2, correlation=False, **kwargs):
|
||||||
tau_combined = (obs1.e_tauint[e_name] + obs2.e_tauint[e_name]) / 2
|
tau_combined = (obs1.e_tauint[e_name] + obs2.e_tauint[e_name]) / 2
|
||||||
dvalue += gamma / e_N * (1 + 1 / e_N) / e_N * 2 * tau_combined
|
dvalue += gamma / e_N * (1 + 1 / e_N) / e_N * 2 * tau_combined
|
||||||
|
|
||||||
|
for e_name in obs1.cov_names:
|
||||||
|
|
||||||
|
if e_name not in obs2.cov_names:
|
||||||
|
continue
|
||||||
|
|
||||||
|
dvalue += float(np.dot(np.transpose(obs1.covobs[e_name].grad), np.dot(obs1.covobs[e_name].cov, obs2.covobs[e_name].grad)))
|
||||||
|
|
||||||
if np.abs(dvalue / obs1.dvalue / obs2.dvalue) > 1.0:
|
if np.abs(dvalue / obs1.dvalue / obs2.dvalue) > 1.0:
|
||||||
dvalue = np.sign(dvalue) * obs1.dvalue * obs2.dvalue
|
dvalue = np.sign(dvalue) * obs1.dvalue * obs2.dvalue
|
||||||
|
|
||||||
|
@ -1420,9 +1437,9 @@ def covariance2(obs1, obs2, correlation=False, **kwargs):
|
||||||
e_n_tauint = {}
|
e_n_tauint = {}
|
||||||
e_rho = {}
|
e_rho = {}
|
||||||
|
|
||||||
for e_name in obs1.e_names:
|
for e_name in obs1.mc_names:
|
||||||
|
|
||||||
if e_name not in obs2.e_names:
|
if e_name not in obs2.mc_names:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
idl_d = {}
|
idl_d = {}
|
||||||
|
@ -1473,6 +1490,13 @@ def covariance2(obs1, obs2, correlation=False, **kwargs):
|
||||||
|
|
||||||
dvalue += e_dvalue[e_name]
|
dvalue += e_dvalue[e_name]
|
||||||
|
|
||||||
|
for e_name in obs1.cov_names:
|
||||||
|
|
||||||
|
if e_name not in obs2.cov_names:
|
||||||
|
continue
|
||||||
|
|
||||||
|
dvalue += float(np.dot(np.transpose(obs1.covobs[e_name].grad), np.dot(obs1.covobs[e_name].cov, obs2.covobs[e_name].grad)))
|
||||||
|
|
||||||
if np.abs(dvalue / obs1.dvalue / obs2.dvalue) > 1.0:
|
if np.abs(dvalue / obs1.dvalue / obs2.dvalue) > 1.0:
|
||||||
dvalue = np.sign(dvalue) * obs1.dvalue * obs2.dvalue
|
dvalue = np.sign(dvalue) * obs1.dvalue * obs2.dvalue
|
||||||
|
|
||||||
|
@ -1610,6 +1634,8 @@ def merge_obs(list_of_obs):
|
||||||
replist = [item for obs in list_of_obs for item in obs.names]
|
replist = [item for obs in list_of_obs for item in obs.names]
|
||||||
if (len(replist) == len(set(replist))) is False:
|
if (len(replist) == len(set(replist))) is False:
|
||||||
raise Exception('list_of_obs contains duplicate replica: %s' % (str(replist)))
|
raise Exception('list_of_obs contains duplicate replica: %s' % (str(replist)))
|
||||||
|
if any([len(o.cov_names) for o in list_of_obs]):
|
||||||
|
raise Exception('Not possible to merge data that contains covobs!')
|
||||||
new_dict = {}
|
new_dict = {}
|
||||||
idl_dict = {}
|
idl_dict = {}
|
||||||
for o in list_of_obs:
|
for o in list_of_obs:
|
||||||
|
@ -1624,61 +1650,46 @@ def merge_obs(list_of_obs):
|
||||||
return o
|
return o
|
||||||
|
|
||||||
|
|
||||||
def covobs_to_obs(co):
|
def cov_Obs(means, cov, name, grad=None):
|
||||||
"""Make an Obs out of a Covobs
|
"""Create an Obs based on mean(s) and a covariance matrix
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
co : Covobs
|
mean : list of floats or float
|
||||||
Covobs to be embedded into the Obs
|
N mean value(s) of the new Obs
|
||||||
"""
|
|
||||||
o = Obs(None, None, empty=True)
|
|
||||||
o._value = co.value
|
|
||||||
o.names.append(co.name)
|
|
||||||
o.covobs[co.name] = co
|
|
||||||
o._dvalue = np.sqrt(co.errsq())
|
|
||||||
o.shape[co.name] = 1
|
|
||||||
o.idl[co.name] = []
|
|
||||||
return o
|
|
||||||
|
|
||||||
|
|
||||||
def create_Covobs(mean, cov, name, pos=None, grad=None):
|
|
||||||
"""Make an Obs based on a Covobs
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
mean : float
|
|
||||||
Mean value of the new Obs
|
|
||||||
cov : list or array
|
cov : list or array
|
||||||
2d Covariance matrix or 1d diagonal entries
|
2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance
|
||||||
name : str
|
|
||||||
identifier for the covariance matrix
|
|
||||||
pos : int
|
|
||||||
Position of the variance belonging to mean in cov.
|
|
||||||
Is taken to be 1 if cov is 0-dimensional
|
|
||||||
grad : list or array
|
|
||||||
Gradient of the Covobs wrt. the means belonging to cov.
|
|
||||||
"""
|
|
||||||
return covobs_to_obs(Covobs(mean, cov, name, pos=pos, grad=grad))
|
|
||||||
|
|
||||||
|
|
||||||
def create_Covobs_list(means, cov, name, grad=None):
|
|
||||||
"""Make a list of Obs based Covobs
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
mean : list of floats
|
|
||||||
N mean values of the new Obs
|
|
||||||
cov : list or array
|
|
||||||
2d (NxN) Covariance matrix or 1d diagonal entries
|
|
||||||
name : str
|
name : str
|
||||||
identifier for the covariance matrix
|
identifier for the covariance matrix
|
||||||
grad : list or array
|
grad : list or array
|
||||||
Gradient of the Covobs wrt. the means belonging to cov.
|
Gradient of the Covobs wrt. the means belonging to cov.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
def covobs_to_obs(co):
|
||||||
|
"""Make an Obs out of a Covobs
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
co : Covobs
|
||||||
|
Covobs to be embedded into the Obs
|
||||||
|
"""
|
||||||
|
o = Obs(None, None, empty=True)
|
||||||
|
o._value = co.value
|
||||||
|
o.names.append(co.name)
|
||||||
|
o.covobs[co.name] = co
|
||||||
|
o._dvalue = np.sqrt(co.errsq())
|
||||||
|
o.shape[co.name] = 1
|
||||||
|
o.idl[co.name] = []
|
||||||
|
return o
|
||||||
|
|
||||||
ol = []
|
ol = []
|
||||||
|
if isinstance(means, (float, int)):
|
||||||
|
means = [means]
|
||||||
|
|
||||||
for i in range(len(means)):
|
for i in range(len(means)):
|
||||||
ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad)))
|
ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad)))
|
||||||
if ol[0].covobs[name].N != len(means):
|
if ol[0].covobs[name].N != len(means):
|
||||||
raise Exception('You have to provide %d mean values!' % (ol[0].N))
|
raise Exception('You have to provide %d mean values!' % (ol[0].N))
|
||||||
|
if len(ol) == 1:
|
||||||
|
return ol[0]
|
||||||
return ol
|
return ol
|
||||||
|
|
|
@ -543,3 +543,41 @@ def test_import_jackknife():
|
||||||
reconstructed_obs = pe.import_jackknife(my_jacks, 'test')
|
reconstructed_obs = pe.import_jackknife(my_jacks, 'test')
|
||||||
assert my_obs == reconstructed_obs
|
assert my_obs == reconstructed_obs
|
||||||
|
|
||||||
|
|
||||||
|
def test_covobs():
|
||||||
|
val = 1.123124
|
||||||
|
cov = .243423
|
||||||
|
name = 'Covariance'
|
||||||
|
co = pe.cov_Obs(val, cov, name)
|
||||||
|
co.gamma_method()
|
||||||
|
assert (co.dvalue == np.sqrt(cov))
|
||||||
|
assert (co.value == val)
|
||||||
|
|
||||||
|
do = 2 * co
|
||||||
|
assert (do.covobs[name].grad[0] == 2)
|
||||||
|
|
||||||
|
do = co * co
|
||||||
|
assert (do.covobs[name].grad[0] == 2 * val)
|
||||||
|
assert np.array_equal(do.covobs[name].cov, co.covobs[name].cov)
|
||||||
|
|
||||||
|
pi = [16.7457, -19.0475]
|
||||||
|
cov = [[3.49591, -6.07560], [-6.07560, 10.5834]]
|
||||||
|
|
||||||
|
cl = pe.cov_Obs(pi, cov, 'rAP')
|
||||||
|
pl = pe.misc.gen_correlated_data(pi, np.asarray(cov), 'rAPpseudo')
|
||||||
|
|
||||||
|
def rAP(p, g0sq):
|
||||||
|
return -0.0010666 * g0sq * (1 + np.exp(p[0] + p[1] / g0sq))
|
||||||
|
|
||||||
|
for g0sq in [1, 1.5, 1.8]:
|
||||||
|
oc = rAP(cl, g0sq)
|
||||||
|
oc.gamma_method()
|
||||||
|
op = rAP(pl, g0sq)
|
||||||
|
op.gamma_method()
|
||||||
|
assert(np.isclose(oc.value, op.value, rtol=1e-14, atol=1e-14))
|
||||||
|
|
||||||
|
assert(pe.covariance(cl[0], cl[1]) == cov[0][1])
|
||||||
|
assert(pe.covariance2(cl[0], cl[1]) == cov[1][0])
|
||||||
|
|
||||||
|
do = cl[0] * cl[1]
|
||||||
|
assert(np.array_equal(do.covobs['rAP'].grad, np.transpose([pi[1], pi[0]]).reshape(2, 1)))
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue