From 94cb6ab18bb202c6900e21be7e92342f9c502327 Mon Sep 17 00:00:00 2001 From: Fabian Joswig Date: Fri, 30 Sep 2022 16:25:40 +0100 Subject: [PATCH] docs: arXiv reference added. --- README.md | 2 +- pyerrors/__init__.py | 1 + 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index ca971c3c..d067fc03 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -[![flake8](https://github.com/fjosw/pyerrors/actions/workflows/flake8.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/flake8.yml) [![pytest](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml) [![](https://img.shields.io/badge/python-3.7+-blue.svg)](https://www.python.org/downloads/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) +[![flake8](https://github.com/fjosw/pyerrors/actions/workflows/flake8.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/flake8.yml) [![pytest](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml) [![](https://img.shields.io/badge/python-3.7+-blue.svg)](https://www.python.org/downloads/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![arXiv](https://img.shields.io/badge/arXiv-2209.14371-b31b1b.svg)](https://arxiv.org/abs/2209.14371) # pyerrors `pyerrors` is a python package for error computation and propagation of Markov chain Monte Carlo data. diff --git a/pyerrors/__init__.py b/pyerrors/__init__.py index 11bb2e2f..ef6d086f 100644 --- a/pyerrors/__init__.py +++ b/pyerrors/__init__.py @@ -11,6 +11,7 @@ It is based on the gamma method [arXiv:hep-lat/0306017](https://arxiv.org/abs/he More detailed examples can found in the [GitHub repository](https://github.com/fjosw/pyerrors/tree/develop/examples) [![badge](https://img.shields.io/badge/-try%20it%20out-579ACA.svg?logo=)](https://mybinder.org/v2/gh/fjosw/pyerrors/HEAD?labpath=examples). If you use `pyerrors` for research that leads to a publication please consider citing: +Fabian Joswig, Simon Kuberski, Justus T. Kuhlmann, Jan Neuendorf, *pyerrors: a python framework for error analysis of Monte Carlo data*. [arXiv:2209.14371 [hep-lat]]. - Ulli Wolff, *Monte Carlo errors with less errors*. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum). - Alberto Ramos, *Automatic differentiation for error analysis of Monte Carlo data*. Comput.Phys.Commun. 238 (2019) 19-35.