mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-03-15 14:50:25 +01:00
feat: prototype for boot_matmul written
This commit is contained in:
parent
a673a8f656
commit
92d3e3d882
1 changed files with 86 additions and 0 deletions
|
@ -224,6 +224,92 @@ def jack_matmul(a, b):
|
|||
return _imp_from_jack(r, a.ravel()[0].names[0])
|
||||
|
||||
|
||||
def boot_matmul(a, b):
|
||||
"""Matrix multiply both operands making use of the bootstrap approximation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : numpy.ndarray
|
||||
First matrix, can be real or complex Obs valued
|
||||
b : numpy.ndarray
|
||||
Second matrix, can be real or complex Obs valued
|
||||
|
||||
For large matrices this is considerably faster compared to matmul.
|
||||
"""
|
||||
|
||||
def export_boot(obs):
|
||||
ret = np.zeros(obs.N + 1)
|
||||
ret[0] = obs.value
|
||||
ret[1:] = proj @ obs.deltas[name]
|
||||
return ret
|
||||
|
||||
def import_boot(boots):
|
||||
samples = inv_proj @ boots[1:]
|
||||
ret = Obs([samples], [name])
|
||||
ret._value = boots[0]
|
||||
return ret
|
||||
|
||||
if any(isinstance(o[0, 0], CObs) for o in [a, b]):
|
||||
assert len(a[0, 0].real.names) == 1
|
||||
|
||||
name = a[0, 0].real.names[0]
|
||||
|
||||
length = a[0, 0].real.N
|
||||
|
||||
random_numbers = np.random.randint(0, length, (length, length))
|
||||
|
||||
proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]).T / length
|
||||
|
||||
inv_proj = np.linalg.inv(proj)
|
||||
|
||||
def _exp_to_boot(matrix):
|
||||
base_matrix = np.empty_like(matrix)
|
||||
for (n, m), entry in np.ndenumerate(matrix):
|
||||
base_matrix[n, m] = export_boot(entry.real) + 1j * export_boot(entry.imag)
|
||||
return base_matrix
|
||||
|
||||
def _imp_from_boot(matrix, name):
|
||||
base_matrix = np.empty_like(matrix)
|
||||
for (n, m), entry in np.ndenumerate(matrix):
|
||||
base_matrix[n, m] = CObs(import_boot(entry.real),
|
||||
import_boot(entry.imag))
|
||||
return base_matrix
|
||||
|
||||
j_a = _exp_to_boot(a)
|
||||
j_b = _exp_to_boot(b)
|
||||
r = j_a @ j_b
|
||||
return _imp_from_boot(r, a.ravel()[0].real.names[0])
|
||||
else:
|
||||
assert len(a[0, 0].names) == 1
|
||||
|
||||
name = a[0, 0].names[0]
|
||||
|
||||
length = a[0, 0].N
|
||||
|
||||
random_numbers = np.random.randint(0, length, (length, length))
|
||||
|
||||
proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]).T / length
|
||||
|
||||
inv_proj = np.linalg.inv(proj)
|
||||
|
||||
def _exp_to_boot(matrix):
|
||||
base_matrix = np.empty_like(matrix)
|
||||
for (n, m), entry in np.ndenumerate(matrix):
|
||||
base_matrix[n, m] = export_boot(entry)
|
||||
return base_matrix
|
||||
|
||||
def _imp_from_boot(matrix, name):
|
||||
base_matrix = np.empty_like(matrix)
|
||||
for (n, m), entry in np.ndenumerate(matrix):
|
||||
base_matrix[n, m] = import_boot(entry)
|
||||
return base_matrix
|
||||
|
||||
j_a = _exp_to_boot(a)
|
||||
j_b = _exp_to_boot(b)
|
||||
r = j_a @ j_b
|
||||
return _imp_from_boot(r, a.ravel()[0].names[0])
|
||||
|
||||
|
||||
def inv(x):
|
||||
"""Inverse of Obs or CObs valued matrices."""
|
||||
return _mat_mat_op(anp.linalg.inv, x)
|
||||
|
|
Loading…
Add table
Reference in a new issue