mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-15 03:53:41 +02:00
commit
9253f82942
5 changed files with 56 additions and 11 deletions
|
@ -301,8 +301,7 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
|
||||||
|
|
||||||
result = []
|
result = []
|
||||||
for i in range(n_parms):
|
for i in range(n_parms):
|
||||||
result.append(derived_observable(lambda x, **kwargs: x[0], list(x.ravel()) + list(y), man_grad=list(deriv_x[i]) + list(deriv_y[i])))
|
result.append(derived_observable(lambda my_var, **kwargs: my_var[0] / x.ravel()[0].value * out.beta[i], list(x.ravel()) + list(y), man_grad=list(deriv_x[i]) + list(deriv_y[i])))
|
||||||
result[-1]._value = out.beta[i]
|
|
||||||
|
|
||||||
output.fit_parameters = result + const_par
|
output.fit_parameters = result + const_par
|
||||||
|
|
||||||
|
@ -419,8 +418,7 @@ def _prior_fit(x, y, func, priors, silent=False, **kwargs):
|
||||||
|
|
||||||
result = []
|
result = []
|
||||||
for i in range(n_parms):
|
for i in range(n_parms):
|
||||||
result.append(derived_observable(lambda x, **kwargs: x[0], list(y) + list(loc_priors), man_grad=list(deriv[i])))
|
result.append(derived_observable(lambda x, **kwargs: x[0] / y[0].value * params[i], list(y) + list(loc_priors), man_grad=list(deriv[i])))
|
||||||
result[-1]._value = params[i]
|
|
||||||
|
|
||||||
output.fit_parameters = result
|
output.fit_parameters = result
|
||||||
output.chisquare = chisqfunc(np.asarray(params))
|
output.chisquare = chisqfunc(np.asarray(params))
|
||||||
|
@ -614,8 +612,7 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
|
||||||
|
|
||||||
result = []
|
result = []
|
||||||
for i in range(n_parms):
|
for i in range(n_parms):
|
||||||
result.append(derived_observable(lambda x, **kwargs: x[0], list(y), man_grad=list(deriv[i])))
|
result.append(derived_observable(lambda x, **kwargs: x[0] / y[0].value * fit_result.x[i], list(y), man_grad=list(deriv[i])))
|
||||||
result[-1]._value = fit_result.x[i]
|
|
||||||
|
|
||||||
output.fit_parameters = result + const_par
|
output.fit_parameters = result + const_par
|
||||||
|
|
||||||
|
|
|
@ -33,6 +33,5 @@ def find_root(d, func, guess=1.0, **kwargs):
|
||||||
da = jacobian(lambda u, v: func(v, u))(d.value, root[0])
|
da = jacobian(lambda u, v: func(v, u))(d.value, root[0])
|
||||||
deriv = - da / dx
|
deriv = - da / dx
|
||||||
|
|
||||||
res = derived_observable(lambda x, **kwargs: x[0], [d], man_grad=[deriv])
|
res = derived_observable(lambda x, **kwargs: x[0] / d.value * root[0], [d], man_grad=[deriv])
|
||||||
res._value = root[0]
|
|
||||||
return res
|
return res
|
||||||
|
|
|
@ -52,7 +52,7 @@ def test_least_squares():
|
||||||
|
|
||||||
outc = pe.least_squares(x, oyc, func)
|
outc = pe.least_squares(x, oyc, func)
|
||||||
betac = outc.fit_parameters
|
betac = outc.fit_parameters
|
||||||
|
|
||||||
for i in range(2):
|
for i in range(2):
|
||||||
betac[i].gamma_method(S=1.0)
|
betac[i].gamma_method(S=1.0)
|
||||||
assert math.isclose(betac[i].value, popt[i], abs_tol=1e-5)
|
assert math.isclose(betac[i].value, popt[i], abs_tol=1e-5)
|
||||||
|
@ -97,7 +97,7 @@ def test_least_squares():
|
||||||
return p[1] * np.exp(-p[0] * x)
|
return p[1] * np.exp(-p[0] * x)
|
||||||
|
|
||||||
fitp = pe.least_squares(x, data, fitf, expected_chisquare=True)
|
fitp = pe.least_squares(x, data, fitf, expected_chisquare=True)
|
||||||
|
|
||||||
fitpc = pe.least_squares(x, data, fitf, correlated_fit=True)
|
fitpc = pe.least_squares(x, data, fitf, correlated_fit=True)
|
||||||
for i in range(2):
|
for i in range(2):
|
||||||
diff = fitp[i] - fitpc[i]
|
diff = fitp[i] - fitpc[i]
|
||||||
|
@ -170,7 +170,7 @@ def test_total_least_squares():
|
||||||
diffc = outc.fit_parameters[0] - betac[0]
|
diffc = outc.fit_parameters[0] - betac[0]
|
||||||
assert(diffc / betac[0] < 1e-3 * betac[0].dvalue)
|
assert(diffc / betac[0] < 1e-3 * betac[0].dvalue)
|
||||||
assert((outc.fit_parameters[1] - betac[1]).is_zero())
|
assert((outc.fit_parameters[1] - betac[1]).is_zero())
|
||||||
|
|
||||||
outc = pe.total_least_squares(oxc, oy, func)
|
outc = pe.total_least_squares(oxc, oy, func)
|
||||||
betac = outc.fit_parameters
|
betac = outc.fit_parameters
|
||||||
|
|
||||||
|
@ -208,3 +208,41 @@ def test_odr_derivatives():
|
||||||
tfit = pe.fits.fit_general(x, y, func, base_step=0.1, step_ratio=1.1, num_steps=20)
|
tfit = pe.fits.fit_general(x, y, func, base_step=0.1, step_ratio=1.1, num_steps=20)
|
||||||
assert np.abs(np.max(np.array(list(fit1[1].deltas.values()))
|
assert np.abs(np.max(np.array(list(fit1[1].deltas.values()))
|
||||||
- np.array(list(tfit[1].deltas.values())))) < 10e-8
|
- np.array(list(tfit[1].deltas.values())))) < 10e-8
|
||||||
|
|
||||||
|
|
||||||
|
def test_r_value_persistence():
|
||||||
|
def f(a, x):
|
||||||
|
return a[0] + a[1] * x
|
||||||
|
|
||||||
|
a = pe.pseudo_Obs(1.1, .1, 'a')
|
||||||
|
assert np.isclose(a.value, a.r_values['a'])
|
||||||
|
|
||||||
|
a_2 = a ** 2
|
||||||
|
assert np.isclose(a_2.value, a_2.r_values['a'])
|
||||||
|
|
||||||
|
b = pe.pseudo_Obs(2.1, .2, 'b')
|
||||||
|
|
||||||
|
y = [a, b]
|
||||||
|
[o.gamma_method() for o in y]
|
||||||
|
|
||||||
|
fitp = pe.fits.least_squares([1, 2], y, f)
|
||||||
|
|
||||||
|
assert np.isclose(fitp[0].value, fitp[0].r_values['a'])
|
||||||
|
assert np.isclose(fitp[0].value, fitp[0].r_values['b'])
|
||||||
|
assert np.isclose(fitp[1].value, fitp[1].r_values['a'])
|
||||||
|
assert np.isclose(fitp[1].value, fitp[1].r_values['b'])
|
||||||
|
|
||||||
|
fitp = pe.fits.total_least_squares(y, y, f)
|
||||||
|
|
||||||
|
assert np.isclose(fitp[0].value, fitp[0].r_values['a'])
|
||||||
|
assert np.isclose(fitp[0].value, fitp[0].r_values['b'])
|
||||||
|
assert np.isclose(fitp[1].value, fitp[1].r_values['a'])
|
||||||
|
assert np.isclose(fitp[1].value, fitp[1].r_values['b'])
|
||||||
|
|
||||||
|
fitp = pe.fits.least_squares([1, 2], y, f, priors=y)
|
||||||
|
|
||||||
|
assert np.isclose(fitp[0].value, fitp[0].r_values['a'])
|
||||||
|
assert np.isclose(fitp[0].value, fitp[0].r_values['b'])
|
||||||
|
assert np.isclose(fitp[1].value, fitp[1].r_values['a'])
|
||||||
|
assert np.isclose(fitp[1].value, fitp[1].r_values['b'])
|
||||||
|
|
||||||
|
|
|
@ -381,6 +381,16 @@ def test_merge_obs():
|
||||||
assert diff == -(my_obs1.value + my_obs2.value) / 2
|
assert diff == -(my_obs1.value + my_obs2.value) / 2
|
||||||
|
|
||||||
|
|
||||||
|
def test_merge_obs_r_values():
|
||||||
|
a1 = pe.pseudo_Obs(1.1, .1, 'a|1')
|
||||||
|
a2 = pe.pseudo_Obs(1.2, .1, 'a|2')
|
||||||
|
a = pe.merge_obs([a1, a2])
|
||||||
|
|
||||||
|
assert np.isclose(a.r_values['a|1'], a1.value)
|
||||||
|
assert np.isclose(a.r_values['a|2'], a2.value)
|
||||||
|
assert np.isclose(a.value, np.mean([a1.value, a2.value]))
|
||||||
|
|
||||||
|
|
||||||
def test_correlate():
|
def test_correlate():
|
||||||
my_obs1 = pe.Obs([np.random.rand(100)], ['t'])
|
my_obs1 = pe.Obs([np.random.rand(100)], ['t'])
|
||||||
my_obs2 = pe.Obs([np.random.rand(100)], ['t'])
|
my_obs2 = pe.Obs([np.random.rand(100)], ['t'])
|
||||||
|
|
|
@ -15,6 +15,7 @@ def test_root_linear():
|
||||||
my_root = pe.roots.find_root(my_obs, root_function)
|
my_root = pe.roots.find_root(my_obs, root_function)
|
||||||
|
|
||||||
assert np.isclose(my_root.value, value)
|
assert np.isclose(my_root.value, value)
|
||||||
|
assert np.isclose(my_root.value, my_root.r_values['t'])
|
||||||
difference = my_obs - my_root
|
difference = my_obs - my_root
|
||||||
assert difference.is_zero()
|
assert difference.is_zero()
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue