linting tested again

This commit is contained in:
JanNeuendorf 2022-01-18 16:46:14 +01:00
parent 2f11d0d30b
commit 909ef85ff8

View file

@ -123,13 +123,13 @@ class Corr:
raise Exception("Vectors are of wrong shape!")
if normalize:
vector_l, vector_r = vector_l / np.sqrt((vector_l @ vector_l)), vector_r / np.sqrt(vector_r @ vector_r)
#if (not (0.95 < vector_r @ vector_r < 1.05)) or (not (0.95 < vector_l @ vector_l < 1.05)):
#print("Vectors are normalized before projection!")
# if (not (0.95 < vector_r @ vector_r < 1.05)) or (not (0.95 < vector_l @ vector_l < 1.05)):
# print("Vectors are normalized before projection!")
newcontent = [None if (item is None) else np.asarray([vector_l.T @ item @ vector_r]) for item in self.content]
else:
#There are no checks here yet. There are so many possible scenarios, where this can go wrong.
# There are no checks here yet. There are so many possible scenarios, where this can go wrong.
if normalize:
for t in range(self.T):
vector_l[t], vector_r[t] = vector_l[t] / np.sqrt((vector_l[t] @ vector_l[t])), vector_r[t] / np.sqrt(vector_r[t] @ vector_r[t])
@ -286,18 +286,18 @@ class Corr:
def wrap(i):
if i >= self.T:
return i-self.T
return i - self.T
return i
for t in range(self.T):
for i in range(N):
for j in range(N):
if periodic:
new_content[t][i, j] = self.content[wrap(t+i+j)][0]
elif (t+i+j) >= self.T:
new_content[t]=None
new_content[t][i, j] = self.content[wrap(t + i + j)][0]
elif (t + i + j) >= self.T:
new_content[t] = None
else:
new_content[t][i, j] = self.content[t+i+j][0]
new_content[t][i, j] = self.content[t + i + j][0]
return Corr(new_content)
@ -313,7 +313,7 @@ class Corr:
def reverse(self):
"""Reverse the time ordering of the Corr"""
return Corr(self.content[::-1])
return Corr(self.content[:: -1])
def correlate(self, partner):
"""Correlate the correlator with another correlator or Obs
@ -335,7 +335,7 @@ class Corr:
new_content.append(None)
else:
new_content.append(np.array([correlate(o, partner.content[x0][0]) for o in t_slice]))
elif isinstance(partner, Obs): # Should this include CObs?
elif isinstance(partner, Obs): # Should this include CObs?
new_content.append(np.array([correlate(o, partner) for o in t_slice]))
else:
raise Exception("Can only correlate with an Obs or a Corr.")
@ -676,18 +676,15 @@ class Corr:
def __repr__(self, range=[0, None]):
content_string = ""
content_string+="Corr T="+str(self.T)+" N="+str(self.N) +"\n"#+" filled with"+ str(type(self.content[0][0])) there should be a good solution here
content_string += "Corr T=" + str(self.T) + " N=" + str(self.N) + "\n" # +" filled with"+ str(type(self.content[0][0])) there should be a good solution here
if self.tag is not None:
content_string += "Description: " + self.tag + "\n"
if self.N!=1:
if self.N != 1:
return content_string
# This avoids a crash for N>1. I do not know, what else to do here. I like the list representation for N==1. We could print only one "smearing" or one matrix. Printing everything will just
# be a wall of numbers.
if range[1]:
range[1] += 1
content_string += 'x0/a\tCorr(x0/a)\n------------------\n'
@ -837,7 +834,7 @@ class Corr:
return Corr(newcontent, prange=self.prange)
def _apply_func_to_corr(self, func):
newcontent = [None if (item is None ) else func(item) for item in self.content]
newcontent = [None if (item is None) else func(item) for item in self.content]
for t in range(self.T):
if newcontent[t] is None:
continue
@ -902,7 +899,7 @@ class Corr:
if isinstance(obs_OR_cobs, CObs):
return obs_OR_cobs.real
else:
return obs_OR_cobs
return obs_OR_cobs
return self._apply_func_to_corr(return_real)
@ -912,72 +909,53 @@ class Corr:
if isinstance(obs_OR_cobs, CObs):
return obs_OR_cobs.imag
else:
return obs_OR_cobs*0 # So it stays the right type
return obs_OR_cobs * 0 # So it stays the right type
return self._apply_func_to_corr(return_imag)
def sort_vectors(vec_set, ts): # Helper function used to find a set of Eigenvectors consistent over all timeslices
reference_sorting=np.array(vec_set[ts])
N=reference_sorting.shape[0]
sorted_vec_set=[]
def sort_vectors(vec_set, ts): # Helper function used to find a set of Eigenvectors consistent over all timeslices
reference_sorting = np.array(vec_set[ts])
N = reference_sorting.shape[0]
sorted_vec_set = []
for t in range(len(vec_set)):
if vec_set[t] is None:
sorted_vec_set.append(None)
elif not t==ts:
perms=permutation([i for i in range(N)])
best_score=0
elif not t == ts:
perms = permutation([i for i in range(N)])
best_score = 0
for perm in perms:
current_score=1
current_score = 1
for k in range(N):
new_sorting=reference_sorting.copy()
new_sorting[perm[k],:]=vec_set[t][k]
new_sorting = reference_sorting.copy()
new_sorting[perm[k], :] = vec_set[t][k]
current_score *= abs(np.linalg.det(new_sorting))
if current_score>best_score:
best_score=current_score
best_perm=perm
#print("best perm", best_perm)
if current_score > best_score:
best_score = current_score
best_perm = perm
# print("best perm", best_perm)
sorted_vec_set.append([vec_set[t][k] for k in best_perm])
else:
sorted_vec_set.append(vec_set[t])
return sorted_vec_set
def permutation(lst): # Shamelessly copied
def permutation(lst): # Shamelessly copied
if len(lst) == 1:
return [lst]
l = []
ll = []
for i in range(len(lst)):
m = lst[i]
remLst = lst[:i] + lst[i+1:]
remLst = lst[:i] + lst[i + 1:]
# Generating all permutations where m is first
for p in permutation(remLst):
l.append([m] + p)
return l
ll.append([m] + p)
return ll
def GEVP_solver(Gt,G0): # Just so normalization an sorting does not need to be repeated. Here we could later put in some checks
def GEVP_solver(Gt, G0): # Just so normalization an sorting does not need to be repeated. Here we could later put in some checks
sp_val, sp_vecs = scipy.linalg.eig(Gt, G0)
sp_vecs=[sp_vecs[:, np.argsort(sp_val)[-i]]for i in range(1,sp_vecs.shape[0]+1) ]
sp_vecs=[v/np.sqrt((v.T@G0@v)) for v in sp_vecs]
sp_vecs = [sp_vecs[:, np.argsort(sp_val)[-i]] for i in range(1, sp_vecs.shape[0] + 1)]
sp_vecs = [v / np.sqrt((v.T @ G0 @ v)) for v in sp_vecs]
return sp_vecs