diff --git a/docs/pyerrors/input/dobs.html b/docs/pyerrors/input/dobs.html index 622f2963..b148d5c3 100644 --- a/docs/pyerrors/input/dobs.html +++ b/docs/pyerrors/input/dobs.html @@ -625,395 +625,396 @@ 529 deltas.append(repdeltas) 530 idl.append(repidl) 531 -532 res.append(Obs(deltas, obs_names, idl=idl)) -533 res[-1]._value = mean[i] -534 _check(len(e_names) == ne) -535 -536 cnames = list(covd.keys()) -537 for i in range(len(res)): -538 new_covobs = {name: Covobs(0, covd[name], name, grad=gradd[name][i]) for name in cnames} -539 for name in cnames: -540 if np.all(new_covobs[name].grad == 0): -541 del new_covobs[name] -542 cnames_loc = list(new_covobs.keys()) -543 for name in cnames_loc: -544 res[i].names.append(name) -545 res[i].shape[name] = 1 -546 res[i].idl[name] = [] -547 res[i]._covobs = new_covobs -548 -549 if symbol: -550 for i in range(len(res)): -551 res[i].tag = symbol[i] -552 if res[i].tag == 'None': -553 res[i].tag = None -554 if full_output: -555 retd = {} -556 tool = file_origin.get('tool', None) -557 if tool: -558 program = tool['name'] + ' ' + tool['version'] -559 else: -560 program = '' -561 retd['program'] = program -562 retd['version'] = version -563 retd['who'] = file_origin['who'] -564 retd['date'] = file_origin['date'] -565 retd['host'] = file_origin['host'] -566 retd['description'] = descriptiond -567 retd['enstags'] = enstags -568 retd['obsdata'] = res -569 return retd -570 else: -571 return res -572 +532 obsmeans = [np.average(deltas[j]) for j in range(len(deltas))] +533 res.append(Obs([np.array(deltas[j]) - obsmeans[j] for j in range(len(obsmeans))], obs_names, idl=idl, means=obsmeans)) +534 res[-1]._value = mean[i] +535 _check(len(e_names) == ne) +536 +537 cnames = list(covd.keys()) +538 for i in range(len(res)): +539 new_covobs = {name: Covobs(0, covd[name], name, grad=gradd[name][i]) for name in cnames} +540 for name in cnames: +541 if np.all(new_covobs[name].grad == 0): +542 del new_covobs[name] +543 cnames_loc = list(new_covobs.keys()) +544 for name in cnames_loc: +545 res[i].names.append(name) +546 res[i].shape[name] = 1 +547 res[i].idl[name] = [] +548 res[i]._covobs = new_covobs +549 +550 if symbol: +551 for i in range(len(res)): +552 res[i].tag = symbol[i] +553 if res[i].tag == 'None': +554 res[i].tag = None +555 if full_output: +556 retd = {} +557 tool = file_origin.get('tool', None) +558 if tool: +559 program = tool['name'] + ' ' + tool['version'] +560 else: +561 program = '' +562 retd['program'] = program +563 retd['version'] = version +564 retd['who'] = file_origin['who'] +565 retd['date'] = file_origin['date'] +566 retd['host'] = file_origin['host'] +567 retd['description'] = descriptiond +568 retd['enstags'] = enstags +569 retd['obsdata'] = res +570 return retd +571 else: +572 return res 573 -574def read_dobs(fname, full_output=False, gz=True, separator_insertion=True): -575 """Import a list of Obs from an xml.gz file in the Zeuthen dobs format. -576 -577 Tags are not written or recovered automatically. -578 -579 Parameters -580 ---------- -581 fname : str -582 Filename of the input file. -583 full_output : bool -584 If True, a dict containing auxiliary information and the data is returned. -585 If False, only the data is returned as list. -586 gz : bool -587 If True, assumes that data is gzipped. If False, assumes XML file. -588 separatior_insertion: str, int or bool -589 str: replace all occurences of "separator_insertion" within the replica names -590 by "|%s" % (separator_insertion) when constructing the names of the replica. -591 int: Insert the separator "|" at the position given by separator_insertion. -592 True (default): separator "|" is inserted after len(ensname), assuming that the -593 ensemble name is a prefix to the replica name. -594 None or False: No separator is inserted. -595 -596 Returns -597 ------- -598 res : list[Obs] -599 Imported data -600 or -601 res : dict -602 Imported data and meta-data -603 """ -604 -605 if not fname.endswith('.xml') and not fname.endswith('.gz'): -606 fname += '.xml' -607 if gz: -608 if not fname.endswith('.gz'): -609 fname += '.gz' -610 with gzip.open(fname, 'r') as fin: -611 content = fin.read() -612 else: -613 if fname.endswith('.gz'): -614 warnings.warn("Trying to read from %s without unzipping!" % fname, UserWarning) -615 with open(fname, 'r') as fin: -616 content = fin.read() -617 -618 return import_dobs_string(content, full_output, separator_insertion=separator_insertion) -619 +574 +575def read_dobs(fname, full_output=False, gz=True, separator_insertion=True): +576 """Import a list of Obs from an xml.gz file in the Zeuthen dobs format. +577 +578 Tags are not written or recovered automatically. +579 +580 Parameters +581 ---------- +582 fname : str +583 Filename of the input file. +584 full_output : bool +585 If True, a dict containing auxiliary information and the data is returned. +586 If False, only the data is returned as list. +587 gz : bool +588 If True, assumes that data is gzipped. If False, assumes XML file. +589 separatior_insertion: str, int or bool +590 str: replace all occurences of "separator_insertion" within the replica names +591 by "|%s" % (separator_insertion) when constructing the names of the replica. +592 int: Insert the separator "|" at the position given by separator_insertion. +593 True (default): separator "|" is inserted after len(ensname), assuming that the +594 ensemble name is a prefix to the replica name. +595 None or False: No separator is inserted. +596 +597 Returns +598 ------- +599 res : list[Obs] +600 Imported data +601 or +602 res : dict +603 Imported data and meta-data +604 """ +605 +606 if not fname.endswith('.xml') and not fname.endswith('.gz'): +607 fname += '.xml' +608 if gz: +609 if not fname.endswith('.gz'): +610 fname += '.gz' +611 with gzip.open(fname, 'r') as fin: +612 content = fin.read() +613 else: +614 if fname.endswith('.gz'): +615 warnings.warn("Trying to read from %s without unzipping!" % fname, UserWarning) +616 with open(fname, 'r') as fin: +617 content = fin.read() +618 +619 return import_dobs_string(content, full_output, separator_insertion=separator_insertion) 620 -621def _dobsdict_to_xmlstring(d): -622 if isinstance(d, dict): -623 iters = '' -624 for k in d: -625 if k.startswith('#value'): -626 for li in d[k]: -627 iters += li -628 return iters + '\n' -629 elif k.startswith('#'): -630 for li in d[k]: -631 iters += li -632 iters = '<array>\n' + iters + '<%sarray>\n' % ('/') -633 return iters -634 if isinstance(d[k], dict): -635 iters += '<%s>\n' % (k) + _dobsdict_to_xmlstring(d[k]) + '<%s%s>\n' % ('/', k) -636 elif isinstance(d[k], str): -637 if len(d[k]) > 100: -638 iters += '<%s>\n ' % (k) + d[k] + ' \n<%s%s>\n' % ('/', k) -639 else: -640 iters += '<%s> ' % (k) + d[k] + ' <%s%s>\n' % ('/', k) -641 elif isinstance(d[k], list): -642 tmps = '' -643 if k in ['edata', 'cdata']: -644 for i in range(len(d[k])): -645 tmps += '<%s>\n' % (k) + _dobsdict_to_xmlstring(d[k][i]) + '</%s>\n' % (k) -646 else: -647 for i in range(len(d[k])): -648 tmps += _dobsdict_to_xmlstring(d[k][i]) -649 iters += tmps -650 elif isinstance(d[k], (int, float)): -651 iters += '<%s> ' % (k) + str(d[k]) + ' <%s%s>\n' % ('/', k) -652 elif not d[k]: -653 return '\n' -654 else: -655 raise Exception('Type', type(d[k]), 'not supported in export!') -656 else: -657 raise Exception('Type', type(d), 'not supported in export!') -658 return iters -659 +621 +622def _dobsdict_to_xmlstring(d): +623 if isinstance(d, dict): +624 iters = '' +625 for k in d: +626 if k.startswith('#value'): +627 for li in d[k]: +628 iters += li +629 return iters + '\n' +630 elif k.startswith('#'): +631 for li in d[k]: +632 iters += li +633 iters = '<array>\n' + iters + '<%sarray>\n' % ('/') +634 return iters +635 if isinstance(d[k], dict): +636 iters += '<%s>\n' % (k) + _dobsdict_to_xmlstring(d[k]) + '<%s%s>\n' % ('/', k) +637 elif isinstance(d[k], str): +638 if len(d[k]) > 100: +639 iters += '<%s>\n ' % (k) + d[k] + ' \n<%s%s>\n' % ('/', k) +640 else: +641 iters += '<%s> ' % (k) + d[k] + ' <%s%s>\n' % ('/', k) +642 elif isinstance(d[k], list): +643 tmps = '' +644 if k in ['edata', 'cdata']: +645 for i in range(len(d[k])): +646 tmps += '<%s>\n' % (k) + _dobsdict_to_xmlstring(d[k][i]) + '</%s>\n' % (k) +647 else: +648 for i in range(len(d[k])): +649 tmps += _dobsdict_to_xmlstring(d[k][i]) +650 iters += tmps +651 elif isinstance(d[k], (int, float)): +652 iters += '<%s> ' % (k) + str(d[k]) + ' <%s%s>\n' % ('/', k) +653 elif not d[k]: +654 return '\n' +655 else: +656 raise Exception('Type', type(d[k]), 'not supported in export!') +657 else: +658 raise Exception('Type', type(d), 'not supported in export!') +659 return iters 660 -661def _dobsdict_to_xmlstring_spaces(d, space=' '): -662 s = _dobsdict_to_xmlstring(d) -663 o = '' -664 c = 0 -665 cm = False -666 for li in s.split('\n'): -667 if li.startswith('<%s' % ('/')): -668 c -= 1 -669 cm = True -670 for i in range(c): -671 o += space -672 o += li + '\n' -673 if li.startswith('<') and not cm: -674 if '<%s' % ('/') not in li: -675 c += 1 -676 cm = False -677 return o -678 +661 +662def _dobsdict_to_xmlstring_spaces(d, space=' '): +663 s = _dobsdict_to_xmlstring(d) +664 o = '' +665 c = 0 +666 cm = False +667 for li in s.split('\n'): +668 if li.startswith('<%s' % ('/')): +669 c -= 1 +670 cm = True +671 for i in range(c): +672 o += space +673 o += li + '\n' +674 if li.startswith('<') and not cm: +675 if '<%s' % ('/') not in li: +676 c += 1 +677 cm = False +678 return o 679 -680def create_dobs_string(obsl, name, spec='dobs v1.0', origin='', symbol=[], who=None, enstags=None): -681 """Generate the string for the export of a list of Obs or structures containing Obs -682 to a .xml.gz file according to the Zeuthen dobs format. -683 -684 Tags are not written or recovered automatically. The separator |is removed from the replica names. -685 -686 Parameters -687 ---------- -688 obsl : list -689 List of Obs that will be exported. -690 The Obs inside a structure do not have to be defined on the same set of configurations, -691 but the storage requirement is increased, if this is not the case. -692 name : str -693 The name of the observable. -694 spec : str -695 Optional string that describes the contents of the file. -696 origin : str -697 Specify where the data has its origin. -698 symbol : list -699 A list of symbols that describe the observables to be written. May be empty. -700 who : str -701 Provide the name of the person that exports the data. -702 enstags : dict -703 Provide alternative enstag for ensembles in the form enstags = {ename: enstag} -704 Otherwise, the ensemble name is used. -705 -706 Returns -707 ------- -708 xml_str : str -709 XML string generated from the data -710 """ -711 if enstags is None: -712 enstags = {} -713 od = {} -714 r_names = [] -715 for o in obsl: -716 r_names += [name for name in o.names if name.split('|')[0] in o.mc_names] -717 r_names = sorted(set(r_names)) -718 mc_names = sorted(set([n.split('|')[0] for n in r_names])) -719 for tmpname in mc_names: -720 if tmpname not in enstags: -721 enstags[tmpname] = tmpname -722 ne = len(set(mc_names)) -723 cov_names = [] -724 for o in obsl: -725 cov_names += list(o.cov_names) -726 cov_names = sorted(set(cov_names)) -727 nc = len(set(cov_names)) -728 od['OBSERVABLES'] = {} -729 od['OBSERVABLES']['SCHEMA'] = {'NAME': 'lattobs', 'VERSION': '1.0'} -730 if who is None: -731 who = getpass.getuser() -732 od['OBSERVABLES']['origin'] = { -733 'who': who, -734 'date': str(datetime.datetime.now())[:-7], -735 'host': socket.gethostname(), -736 'tool': {'name': 'pyerrors', 'version': pyerrorsversion.__version__}} -737 od['OBSERVABLES']['dobs'] = {} -738 pd = od['OBSERVABLES']['dobs'] -739 pd['spec'] = spec -740 pd['origin'] = origin -741 pd['name'] = name -742 pd['array'] = {} -743 pd['array']['id'] = 'val' -744 pd['array']['layout'] = '1 f%d' % (len(obsl)) -745 osymbol = '' -746 if symbol: -747 if not isinstance(symbol, list): -748 raise Exception('Symbol has to be a list!') -749 if not (len(symbol) == 0 or len(symbol) == len(obsl)): -750 raise Exception('Symbol has to be a list of lenght 0 or %d!' % (len(obsl))) -751 osymbol = symbol[0] -752 for s in symbol[1:]: -753 osymbol += ' %s' % s -754 pd['array']['symbol'] = osymbol -755 -756 pd['array']['#values'] = [' '.join(['%1.16e' % o.value for o in obsl])] -757 pd['ne'] = '%d' % (ne) -758 pd['nc'] = '%d' % (nc) -759 pd['edata'] = [] -760 for name in mc_names: -761 ed = {} -762 ed['enstag'] = enstags[name] -763 onames = sorted([n for n in r_names if (n.startswith(name + '|') or n == name)]) -764 nr = len(onames) -765 ed['nr'] = nr -766 ed[''] = [] -767 -768 for r in range(nr): -769 ad = {} -770 repname = onames[r] -771 ad['id'] = repname.replace('|', '') -772 idx = _merge_idx([o.idl.get(repname, []) for o in obsl]) -773 Nconf = len(idx) -774 layout = '%d i f%d' % (Nconf, len(obsl)) -775 ad['layout'] = layout -776 data = '' -777 counters = [0 for o in obsl] -778 offsets = [o.r_values[repname] - o.value if repname in o.r_values else 0 for o in obsl] -779 for ci in idx: -780 data += '%d ' % ci -781 for oi in range(len(obsl)): -782 o = obsl[oi] -783 if repname in o.idl: -784 if counters[oi] < 0: -785 num = 0 -786 if num == 0: -787 data += '0 ' -788 else: -789 data += '%1.16e ' % (num) -790 continue -791 if o.idl[repname][counters[oi]] == ci: -792 num = o.deltas[repname][counters[oi]] + offsets[oi] -793 if num == 0: -794 data += '0 ' -795 else: -796 data += '%1.16e ' % (num) -797 counters[oi] += 1 -798 if counters[oi] >= len(o.idl[repname]): -799 counters[oi] = -1 -800 else: -801 num = 0 -802 if num == 0: -803 data += '0 ' -804 else: -805 data += '%1.16e ' % (num) -806 else: -807 data += '0 ' -808 data += '\n' -809 ad['#data'] = data -810 ed[''].append(ad) -811 pd['edata'].append(ed) -812 -813 allcov = {} -814 for o in obsl: -815 for cname in o.cov_names: -816 if cname in allcov: -817 if not np.array_equal(allcov[cname], o.covobs[cname].cov): -818 raise Exception('Inconsistent covariance matrices for %s!' % (cname)) -819 else: -820 allcov[cname] = o.covobs[cname].cov -821 pd['cdata'] = [] -822 for cname in cov_names: -823 cd = {} -824 cd['id'] = cname -825 -826 covd = {'id': 'cov'} -827 if allcov[cname].shape == (): -828 ncov = 1 -829 covd['layout'] = '1 1 f' -830 covd['#data'] = '%1.14e' % (allcov[cname]) -831 else: -832 shape = allcov[cname].shape -833 assert (shape[0] == shape[1]) -834 ncov = shape[0] -835 covd['layout'] = '%d %d f' % (ncov, ncov) -836 ds = '' -837 for i in range(ncov): -838 for j in range(ncov): -839 val = allcov[cname][i][j] -840 if val == 0: -841 ds += '0 ' -842 else: -843 ds += '%1.14e ' % (val) -844 ds += '\n' -845 covd['#data'] = ds -846 -847 gradd = {'id': 'grad'} -848 gradd['layout'] = '%d f%d' % (ncov, len(obsl)) -849 ds = '' -850 for i in range(ncov): -851 for o in obsl: -852 if cname in o.covobs: -853 val = o.covobs[cname].grad[i].item() -854 if val != 0: -855 ds += '%1.14e ' % (val) -856 else: -857 ds += '0 ' -858 else: -859 ds += '0 ' -860 gradd['#data'] = ds -861 cd['array'] = [covd, gradd] -862 pd['cdata'].append(cd) -863 -864 rs = '<?xml version="1.0" encoding="utf-8"?>\n' + _dobsdict_to_xmlstring_spaces(od) -865 -866 return rs -867 +680 +681def create_dobs_string(obsl, name, spec='dobs v1.0', origin='', symbol=[], who=None, enstags=None): +682 """Generate the string for the export of a list of Obs or structures containing Obs +683 to a .xml.gz file according to the Zeuthen dobs format. +684 +685 Tags are not written or recovered automatically. The separator |is removed from the replica names. +686 +687 Parameters +688 ---------- +689 obsl : list +690 List of Obs that will be exported. +691 The Obs inside a structure do not have to be defined on the same set of configurations, +692 but the storage requirement is increased, if this is not the case. +693 name : str +694 The name of the observable. +695 spec : str +696 Optional string that describes the contents of the file. +697 origin : str +698 Specify where the data has its origin. +699 symbol : list +700 A list of symbols that describe the observables to be written. May be empty. +701 who : str +702 Provide the name of the person that exports the data. +703 enstags : dict +704 Provide alternative enstag for ensembles in the form enstags = {ename: enstag} +705 Otherwise, the ensemble name is used. +706 +707 Returns +708 ------- +709 xml_str : str +710 XML string generated from the data +711 """ +712 if enstags is None: +713 enstags = {} +714 od = {} +715 r_names = [] +716 for o in obsl: +717 r_names += [name for name in o.names if name.split('|')[0] in o.mc_names] +718 r_names = sorted(set(r_names)) +719 mc_names = sorted(set([n.split('|')[0] for n in r_names])) +720 for tmpname in mc_names: +721 if tmpname not in enstags: +722 enstags[tmpname] = tmpname +723 ne = len(set(mc_names)) +724 cov_names = [] +725 for o in obsl: +726 cov_names += list(o.cov_names) +727 cov_names = sorted(set(cov_names)) +728 nc = len(set(cov_names)) +729 od['OBSERVABLES'] = {} +730 od['OBSERVABLES']['SCHEMA'] = {'NAME': 'lattobs', 'VERSION': '1.0'} +731 if who is None: +732 who = getpass.getuser() +733 od['OBSERVABLES']['origin'] = { +734 'who': who, +735 'date': str(datetime.datetime.now())[:-7], +736 'host': socket.gethostname(), +737 'tool': {'name': 'pyerrors', 'version': pyerrorsversion.__version__}} +738 od['OBSERVABLES']['dobs'] = {} +739 pd = od['OBSERVABLES']['dobs'] +740 pd['spec'] = spec +741 pd['origin'] = origin +742 pd['name'] = name +743 pd['array'] = {} +744 pd['array']['id'] = 'val' +745 pd['array']['layout'] = '1 f%d' % (len(obsl)) +746 osymbol = '' +747 if symbol: +748 if not isinstance(symbol, list): +749 raise Exception('Symbol has to be a list!') +750 if not (len(symbol) == 0 or len(symbol) == len(obsl)): +751 raise Exception('Symbol has to be a list of lenght 0 or %d!' % (len(obsl))) +752 osymbol = symbol[0] +753 for s in symbol[1:]: +754 osymbol += ' %s' % s +755 pd['array']['symbol'] = osymbol +756 +757 pd['array']['#values'] = [' '.join(['%1.16e' % o.value for o in obsl])] +758 pd['ne'] = '%d' % (ne) +759 pd['nc'] = '%d' % (nc) +760 pd['edata'] = [] +761 for name in mc_names: +762 ed = {} +763 ed['enstag'] = enstags[name] +764 onames = sorted([n for n in r_names if (n.startswith(name + '|') or n == name)]) +765 nr = len(onames) +766 ed['nr'] = nr +767 ed[''] = [] +768 +769 for r in range(nr): +770 ad = {} +771 repname = onames[r] +772 ad['id'] = repname.replace('|', '') +773 idx = _merge_idx([o.idl.get(repname, []) for o in obsl]) +774 Nconf = len(idx) +775 layout = '%d i f%d' % (Nconf, len(obsl)) +776 ad['layout'] = layout +777 data = '' +778 counters = [0 for o in obsl] +779 offsets = [o.r_values[repname] - o.value if repname in o.r_values else 0 for o in obsl] +780 for ci in idx: +781 data += '%d ' % ci +782 for oi in range(len(obsl)): +783 o = obsl[oi] +784 if repname in o.idl: +785 if counters[oi] < 0: +786 num = 0 +787 if num == 0: +788 data += '0 ' +789 else: +790 data += '%1.16e ' % (num) +791 continue +792 if o.idl[repname][counters[oi]] == ci: +793 num = o.deltas[repname][counters[oi]] + offsets[oi] +794 if num == 0: +795 data += '0 ' +796 else: +797 data += '%1.16e ' % (num) +798 counters[oi] += 1 +799 if counters[oi] >= len(o.idl[repname]): +800 counters[oi] = -1 +801 else: +802 num = 0 +803 if num == 0: +804 data += '0 ' +805 else: +806 data += '%1.16e ' % (num) +807 else: +808 data += '0 ' +809 data += '\n' +810 ad['#data'] = data +811 ed[''].append(ad) +812 pd['edata'].append(ed) +813 +814 allcov = {} +815 for o in obsl: +816 for cname in o.cov_names: +817 if cname in allcov: +818 if not np.array_equal(allcov[cname], o.covobs[cname].cov): +819 raise Exception('Inconsistent covariance matrices for %s!' % (cname)) +820 else: +821 allcov[cname] = o.covobs[cname].cov +822 pd['cdata'] = [] +823 for cname in cov_names: +824 cd = {} +825 cd['id'] = cname +826 +827 covd = {'id': 'cov'} +828 if allcov[cname].shape == (): +829 ncov = 1 +830 covd['layout'] = '1 1 f' +831 covd['#data'] = '%1.14e' % (allcov[cname]) +832 else: +833 shape = allcov[cname].shape +834 assert (shape[0] == shape[1]) +835 ncov = shape[0] +836 covd['layout'] = '%d %d f' % (ncov, ncov) +837 ds = '' +838 for i in range(ncov): +839 for j in range(ncov): +840 val = allcov[cname][i][j] +841 if val == 0: +842 ds += '0 ' +843 else: +844 ds += '%1.14e ' % (val) +845 ds += '\n' +846 covd['#data'] = ds +847 +848 gradd = {'id': 'grad'} +849 gradd['layout'] = '%d f%d' % (ncov, len(obsl)) +850 ds = '' +851 for i in range(ncov): +852 for o in obsl: +853 if cname in o.covobs: +854 val = o.covobs[cname].grad[i].item() +855 if val != 0: +856 ds += '%1.14e ' % (val) +857 else: +858 ds += '0 ' +859 else: +860 ds += '0 ' +861 gradd['#data'] = ds +862 cd['array'] = [covd, gradd] +863 pd['cdata'].append(cd) +864 +865 rs = '<?xml version="1.0" encoding="utf-8"?>\n' + _dobsdict_to_xmlstring_spaces(od) +866 +867 return rs 868 -869def write_dobs(obsl, fname, name, spec='dobs v1.0', origin='', symbol=[], who=None, enstags=None, gz=True): -870 """Export a list of Obs or structures containing Obs to a .xml.gz file -871 according to the Zeuthen dobs format. -872 -873 Tags are not written or recovered automatically. The separator | is removed from the replica names. -874 -875 Parameters -876 ---------- -877 obsl : list -878 List of Obs that will be exported. -879 The Obs inside a structure do not have to be defined on the same set of configurations, -880 but the storage requirement is increased, if this is not the case. -881 fname : str -882 Filename of the output file. -883 name : str -884 The name of the observable. -885 spec : str -886 Optional string that describes the contents of the file. -887 origin : str -888 Specify where the data has its origin. -889 symbol : list -890 A list of symbols that describe the observables to be written. May be empty. -891 who : str -892 Provide the name of the person that exports the data. -893 enstags : dict -894 Provide alternative enstag for ensembles in the form enstags = {ename: enstag} -895 Otherwise, the ensemble name is used. -896 gz : bool -897 If True, the output is a gzipped XML. If False, the output is a XML file. -898 -899 Returns -900 ------- -901 None -902 """ -903 if enstags is None: -904 enstags = {} -905 -906 dobsstring = create_dobs_string(obsl, name, spec, origin, symbol, who, enstags=enstags) -907 -908 if not fname.endswith('.xml') and not fname.endswith('.gz'): -909 fname += '.xml' -910 -911 if gz: -912 if not fname.endswith('.gz'): -913 fname += '.gz' -914 -915 fp = gzip.open(fname, 'wb') -916 fp.write(dobsstring.encode('utf-8')) -917 else: -918 fp = open(fname, 'w', encoding='utf-8') -919 fp.write(dobsstring) -920 fp.close() +869 +870def write_dobs(obsl, fname, name, spec='dobs v1.0', origin='', symbol=[], who=None, enstags=None, gz=True): +871 """Export a list of Obs or structures containing Obs to a .xml.gz file +872 according to the Zeuthen dobs format. +873 +874 Tags are not written or recovered automatically. The separator | is removed from the replica names. +875 +876 Parameters +877 ---------- +878 obsl : list +879 List of Obs that will be exported. +880 The Obs inside a structure do not have to be defined on the same set of configurations, +881 but the storage requirement is increased, if this is not the case. +882 fname : str +883 Filename of the output file. +884 name : str +885 The name of the observable. +886 spec : str +887 Optional string that describes the contents of the file. +888 origin : str +889 Specify where the data has its origin. +890 symbol : list +891 A list of symbols that describe the observables to be written. May be empty. +892 who : str +893 Provide the name of the person that exports the data. +894 enstags : dict +895 Provide alternative enstag for ensembles in the form enstags = {ename: enstag} +896 Otherwise, the ensemble name is used. +897 gz : bool +898 If True, the output is a gzipped XML. If False, the output is a XML file. +899 +900 Returns +901 ------- +902 None +903 """ +904 if enstags is None: +905 enstags = {} +906 +907 dobsstring = create_dobs_string(obsl, name, spec, origin, symbol, who, enstags=enstags) +908 +909 if not fname.endswith('.xml') and not fname.endswith('.gz'): +910 fname += '.xml' +911 +912 if gz: +913 if not fname.endswith('.gz'): +914 fname += '.gz' +915 +916 fp = gzip.open(fname, 'wb') +917 fp.write(dobsstring.encode('utf-8')) +918 else: +919 fp = open(fname, 'w', encoding='utf-8') +920 fp.write(dobsstring) +921 fp.close() @@ -1535,46 +1536,47 @@ Imported data and meta-data 530 deltas.append(repdeltas) 531 idl.append(repidl) 532 -533 res.append(Obs(deltas, obs_names, idl=idl)) -534 res[-1]._value = mean[i] -535 _check(len(e_names) == ne) -536 -537 cnames = list(covd.keys()) -538 for i in range(len(res)): -539 new_covobs = {name: Covobs(0, covd[name], name, grad=gradd[name][i]) for name in cnames} -540 for name in cnames: -541 if np.all(new_covobs[name].grad == 0): -542 del new_covobs[name] -543 cnames_loc = list(new_covobs.keys()) -544 for name in cnames_loc: -545 res[i].names.append(name) -546 res[i].shape[name] = 1 -547 res[i].idl[name] = [] -548 res[i]._covobs = new_covobs -549 -550 if symbol: -551 for i in range(len(res)): -552 res[i].tag = symbol[i] -553 if res[i].tag == 'None': -554 res[i].tag = None -555 if full_output: -556 retd = {} -557 tool = file_origin.get('tool', None) -558 if tool: -559 program = tool['name'] + ' ' + tool['version'] -560 else: -561 program = '' -562 retd['program'] = program -563 retd['version'] = version -564 retd['who'] = file_origin['who'] -565 retd['date'] = file_origin['date'] -566 retd['host'] = file_origin['host'] -567 retd['description'] = descriptiond -568 retd['enstags'] = enstags -569 retd['obsdata'] = res -570 return retd -571 else: -572 return res +533 obsmeans = [np.average(deltas[j]) for j in range(len(deltas))] +534 res.append(Obs([np.array(deltas[j]) - obsmeans[j] for j in range(len(obsmeans))], obs_names, idl=idl, means=obsmeans)) +535 res[-1]._value = mean[i] +536 _check(len(e_names) == ne) +537 +538 cnames = list(covd.keys()) +539 for i in range(len(res)): +540 new_covobs = {name: Covobs(0, covd[name], name, grad=gradd[name][i]) for name in cnames} +541 for name in cnames: +542 if np.all(new_covobs[name].grad == 0): +543 del new_covobs[name] +544 cnames_loc = list(new_covobs.keys()) +545 for name in cnames_loc: +546 res[i].names.append(name) +547 res[i].shape[name] = 1 +548 res[i].idl[name] = [] +549 res[i]._covobs = new_covobs +550 +551 if symbol: +552 for i in range(len(res)): +553 res[i].tag = symbol[i] +554 if res[i].tag == 'None': +555 res[i].tag = None +556 if full_output: +557 retd = {} +558 tool = file_origin.get('tool', None) +559 if tool: +560 program = tool['name'] + ' ' + tool['version'] +561 else: +562 program = '' +563 retd['program'] = program +564 retd['version'] = version +565 retd['who'] = file_origin['who'] +566 retd['date'] = file_origin['date'] +567 retd['host'] = file_origin['host'] +568 retd['description'] = descriptiond +569 retd['enstags'] = enstags +570 retd['obsdata'] = res +571 return retd +572 else: +573 return res @@ -1623,51 +1625,51 @@ Imported data and meta-data -
575def read_dobs(fname, full_output=False, gz=True, separator_insertion=True): -576 """Import a list of Obs from an xml.gz file in the Zeuthen dobs format. -577 -578 Tags are not written or recovered automatically. -579 -580 Parameters -581 ---------- -582 fname : str -583 Filename of the input file. -584 full_output : bool -585 If True, a dict containing auxiliary information and the data is returned. -586 If False, only the data is returned as list. -587 gz : bool -588 If True, assumes that data is gzipped. If False, assumes XML file. -589 separatior_insertion: str, int or bool -590 str: replace all occurences of "separator_insertion" within the replica names -591 by "|%s" % (separator_insertion) when constructing the names of the replica. -592 int: Insert the separator "|" at the position given by separator_insertion. -593 True (default): separator "|" is inserted after len(ensname), assuming that the -594 ensemble name is a prefix to the replica name. -595 None or False: No separator is inserted. -596 -597 Returns -598 ------- -599 res : list[Obs] -600 Imported data -601 or -602 res : dict -603 Imported data and meta-data -604 """ -605 -606 if not fname.endswith('.xml') and not fname.endswith('.gz'): -607 fname += '.xml' -608 if gz: -609 if not fname.endswith('.gz'): -610 fname += '.gz' -611 with gzip.open(fname, 'r') as fin: -612 content = fin.read() -613 else: -614 if fname.endswith('.gz'): -615 warnings.warn("Trying to read from %s without unzipping!" % fname, UserWarning) -616 with open(fname, 'r') as fin: -617 content = fin.read() -618 -619 return import_dobs_string(content, full_output, separator_insertion=separator_insertion) +@@ -1718,193 +1720,193 @@ Imported data and meta-data576def read_dobs(fname, full_output=False, gz=True, separator_insertion=True): +577 """Import a list of Obs from an xml.gz file in the Zeuthen dobs format. +578 +579 Tags are not written or recovered automatically. +580 +581 Parameters +582 ---------- +583 fname : str +584 Filename of the input file. +585 full_output : bool +586 If True, a dict containing auxiliary information and the data is returned. +587 If False, only the data is returned as list. +588 gz : bool +589 If True, assumes that data is gzipped. If False, assumes XML file. +590 separatior_insertion: str, int or bool +591 str: replace all occurences of "separator_insertion" within the replica names +592 by "|%s" % (separator_insertion) when constructing the names of the replica. +593 int: Insert the separator "|" at the position given by separator_insertion. +594 True (default): separator "|" is inserted after len(ensname), assuming that the +595 ensemble name is a prefix to the replica name. +596 None or False: No separator is inserted. +597 +598 Returns +599 ------- +600 res : list[Obs] +601 Imported data +602 or +603 res : dict +604 Imported data and meta-data +605 """ +606 +607 if not fname.endswith('.xml') and not fname.endswith('.gz'): +608 fname += '.xml' +609 if gz: +610 if not fname.endswith('.gz'): +611 fname += '.gz' +612 with gzip.open(fname, 'r') as fin: +613 content = fin.read() +614 else: +615 if fname.endswith('.gz'): +616 warnings.warn("Trying to read from %s without unzipping!" % fname, UserWarning) +617 with open(fname, 'r') as fin: +618 content = fin.read() +619 +620 return import_dobs_string(content, full_output, separator_insertion=separator_insertion)
681def create_dobs_string(obsl, name, spec='dobs v1.0', origin='', symbol=[], who=None, enstags=None): -682 """Generate the string for the export of a list of Obs or structures containing Obs -683 to a .xml.gz file according to the Zeuthen dobs format. -684 -685 Tags are not written or recovered automatically. The separator |is removed from the replica names. -686 -687 Parameters -688 ---------- -689 obsl : list -690 List of Obs that will be exported. -691 The Obs inside a structure do not have to be defined on the same set of configurations, -692 but the storage requirement is increased, if this is not the case. -693 name : str -694 The name of the observable. -695 spec : str -696 Optional string that describes the contents of the file. -697 origin : str -698 Specify where the data has its origin. -699 symbol : list -700 A list of symbols that describe the observables to be written. May be empty. -701 who : str -702 Provide the name of the person that exports the data. -703 enstags : dict -704 Provide alternative enstag for ensembles in the form enstags = {ename: enstag} -705 Otherwise, the ensemble name is used. -706 -707 Returns -708 ------- -709 xml_str : str -710 XML string generated from the data -711 """ -712 if enstags is None: -713 enstags = {} -714 od = {} -715 r_names = [] -716 for o in obsl: -717 r_names += [name for name in o.names if name.split('|')[0] in o.mc_names] -718 r_names = sorted(set(r_names)) -719 mc_names = sorted(set([n.split('|')[0] for n in r_names])) -720 for tmpname in mc_names: -721 if tmpname not in enstags: -722 enstags[tmpname] = tmpname -723 ne = len(set(mc_names)) -724 cov_names = [] -725 for o in obsl: -726 cov_names += list(o.cov_names) -727 cov_names = sorted(set(cov_names)) -728 nc = len(set(cov_names)) -729 od['OBSERVABLES'] = {} -730 od['OBSERVABLES']['SCHEMA'] = {'NAME': 'lattobs', 'VERSION': '1.0'} -731 if who is None: -732 who = getpass.getuser() -733 od['OBSERVABLES']['origin'] = { -734 'who': who, -735 'date': str(datetime.datetime.now())[:-7], -736 'host': socket.gethostname(), -737 'tool': {'name': 'pyerrors', 'version': pyerrorsversion.__version__}} -738 od['OBSERVABLES']['dobs'] = {} -739 pd = od['OBSERVABLES']['dobs'] -740 pd['spec'] = spec -741 pd['origin'] = origin -742 pd['name'] = name -743 pd['array'] = {} -744 pd['array']['id'] = 'val' -745 pd['array']['layout'] = '1 f%d' % (len(obsl)) -746 osymbol = '' -747 if symbol: -748 if not isinstance(symbol, list): -749 raise Exception('Symbol has to be a list!') -750 if not (len(symbol) == 0 or len(symbol) == len(obsl)): -751 raise Exception('Symbol has to be a list of lenght 0 or %d!' % (len(obsl))) -752 osymbol = symbol[0] -753 for s in symbol[1:]: -754 osymbol += ' %s' % s -755 pd['array']['symbol'] = osymbol -756 -757 pd['array']['#values'] = [' '.join(['%1.16e' % o.value for o in obsl])] -758 pd['ne'] = '%d' % (ne) -759 pd['nc'] = '%d' % (nc) -760 pd['edata'] = [] -761 for name in mc_names: -762 ed = {} -763 ed['enstag'] = enstags[name] -764 onames = sorted([n for n in r_names if (n.startswith(name + '|') or n == name)]) -765 nr = len(onames) -766 ed['nr'] = nr -767 ed[''] = [] -768 -769 for r in range(nr): -770 ad = {} -771 repname = onames[r] -772 ad['id'] = repname.replace('|', '') -773 idx = _merge_idx([o.idl.get(repname, []) for o in obsl]) -774 Nconf = len(idx) -775 layout = '%d i f%d' % (Nconf, len(obsl)) -776 ad['layout'] = layout -777 data = '' -778 counters = [0 for o in obsl] -779 offsets = [o.r_values[repname] - o.value if repname in o.r_values else 0 for o in obsl] -780 for ci in idx: -781 data += '%d ' % ci -782 for oi in range(len(obsl)): -783 o = obsl[oi] -784 if repname in o.idl: -785 if counters[oi] < 0: -786 num = 0 -787 if num == 0: -788 data += '0 ' -789 else: -790 data += '%1.16e ' % (num) -791 continue -792 if o.idl[repname][counters[oi]] == ci: -793 num = o.deltas[repname][counters[oi]] + offsets[oi] -794 if num == 0: -795 data += '0 ' -796 else: -797 data += '%1.16e ' % (num) -798 counters[oi] += 1 -799 if counters[oi] >= len(o.idl[repname]): -800 counters[oi] = -1 -801 else: -802 num = 0 -803 if num == 0: -804 data += '0 ' -805 else: -806 data += '%1.16e ' % (num) -807 else: -808 data += '0 ' -809 data += '\n' -810 ad['#data'] = data -811 ed[''].append(ad) -812 pd['edata'].append(ed) -813 -814 allcov = {} -815 for o in obsl: -816 for cname in o.cov_names: -817 if cname in allcov: -818 if not np.array_equal(allcov[cname], o.covobs[cname].cov): -819 raise Exception('Inconsistent covariance matrices for %s!' % (cname)) -820 else: -821 allcov[cname] = o.covobs[cname].cov -822 pd['cdata'] = [] -823 for cname in cov_names: -824 cd = {} -825 cd['id'] = cname -826 -827 covd = {'id': 'cov'} -828 if allcov[cname].shape == (): -829 ncov = 1 -830 covd['layout'] = '1 1 f' -831 covd['#data'] = '%1.14e' % (allcov[cname]) -832 else: -833 shape = allcov[cname].shape -834 assert (shape[0] == shape[1]) -835 ncov = shape[0] -836 covd['layout'] = '%d %d f' % (ncov, ncov) -837 ds = '' -838 for i in range(ncov): -839 for j in range(ncov): -840 val = allcov[cname][i][j] -841 if val == 0: -842 ds += '0 ' -843 else: -844 ds += '%1.14e ' % (val) -845 ds += '\n' -846 covd['#data'] = ds -847 -848 gradd = {'id': 'grad'} -849 gradd['layout'] = '%d f%d' % (ncov, len(obsl)) -850 ds = '' -851 for i in range(ncov): -852 for o in obsl: -853 if cname in o.covobs: -854 val = o.covobs[cname].grad[i].item() -855 if val != 0: -856 ds += '%1.14e ' % (val) -857 else: -858 ds += '0 ' -859 else: -860 ds += '0 ' -861 gradd['#data'] = ds -862 cd['array'] = [covd, gradd] -863 pd['cdata'].append(cd) -864 -865 rs = '<?xml version="1.0" encoding="utf-8"?>\n' + _dobsdict_to_xmlstring_spaces(od) -866 -867 return rs +@@ -1956,58 +1958,58 @@ XML string generated from the data682def create_dobs_string(obsl, name, spec='dobs v1.0', origin='', symbol=[], who=None, enstags=None): +683 """Generate the string for the export of a list of Obs or structures containing Obs +684 to a .xml.gz file according to the Zeuthen dobs format. +685 +686 Tags are not written or recovered automatically. The separator |is removed from the replica names. +687 +688 Parameters +689 ---------- +690 obsl : list +691 List of Obs that will be exported. +692 The Obs inside a structure do not have to be defined on the same set of configurations, +693 but the storage requirement is increased, if this is not the case. +694 name : str +695 The name of the observable. +696 spec : str +697 Optional string that describes the contents of the file. +698 origin : str +699 Specify where the data has its origin. +700 symbol : list +701 A list of symbols that describe the observables to be written. May be empty. +702 who : str +703 Provide the name of the person that exports the data. +704 enstags : dict +705 Provide alternative enstag for ensembles in the form enstags = {ename: enstag} +706 Otherwise, the ensemble name is used. +707 +708 Returns +709 ------- +710 xml_str : str +711 XML string generated from the data +712 """ +713 if enstags is None: +714 enstags = {} +715 od = {} +716 r_names = [] +717 for o in obsl: +718 r_names += [name for name in o.names if name.split('|')[0] in o.mc_names] +719 r_names = sorted(set(r_names)) +720 mc_names = sorted(set([n.split('|')[0] for n in r_names])) +721 for tmpname in mc_names: +722 if tmpname not in enstags: +723 enstags[tmpname] = tmpname +724 ne = len(set(mc_names)) +725 cov_names = [] +726 for o in obsl: +727 cov_names += list(o.cov_names) +728 cov_names = sorted(set(cov_names)) +729 nc = len(set(cov_names)) +730 od['OBSERVABLES'] = {} +731 od['OBSERVABLES']['SCHEMA'] = {'NAME': 'lattobs', 'VERSION': '1.0'} +732 if who is None: +733 who = getpass.getuser() +734 od['OBSERVABLES']['origin'] = { +735 'who': who, +736 'date': str(datetime.datetime.now())[:-7], +737 'host': socket.gethostname(), +738 'tool': {'name': 'pyerrors', 'version': pyerrorsversion.__version__}} +739 od['OBSERVABLES']['dobs'] = {} +740 pd = od['OBSERVABLES']['dobs'] +741 pd['spec'] = spec +742 pd['origin'] = origin +743 pd['name'] = name +744 pd['array'] = {} +745 pd['array']['id'] = 'val' +746 pd['array']['layout'] = '1 f%d' % (len(obsl)) +747 osymbol = '' +748 if symbol: +749 if not isinstance(symbol, list): +750 raise Exception('Symbol has to be a list!') +751 if not (len(symbol) == 0 or len(symbol) == len(obsl)): +752 raise Exception('Symbol has to be a list of lenght 0 or %d!' % (len(obsl))) +753 osymbol = symbol[0] +754 for s in symbol[1:]: +755 osymbol += ' %s' % s +756 pd['array']['symbol'] = osymbol +757 +758 pd['array']['#values'] = [' '.join(['%1.16e' % o.value for o in obsl])] +759 pd['ne'] = '%d' % (ne) +760 pd['nc'] = '%d' % (nc) +761 pd['edata'] = [] +762 for name in mc_names: +763 ed = {} +764 ed['enstag'] = enstags[name] +765 onames = sorted([n for n in r_names if (n.startswith(name + '|') or n == name)]) +766 nr = len(onames) +767 ed['nr'] = nr +768 ed[''] = [] +769 +770 for r in range(nr): +771 ad = {} +772 repname = onames[r] +773 ad['id'] = repname.replace('|', '') +774 idx = _merge_idx([o.idl.get(repname, []) for o in obsl]) +775 Nconf = len(idx) +776 layout = '%d i f%d' % (Nconf, len(obsl)) +777 ad['layout'] = layout +778 data = '' +779 counters = [0 for o in obsl] +780 offsets = [o.r_values[repname] - o.value if repname in o.r_values else 0 for o in obsl] +781 for ci in idx: +782 data += '%d ' % ci +783 for oi in range(len(obsl)): +784 o = obsl[oi] +785 if repname in o.idl: +786 if counters[oi] < 0: +787 num = 0 +788 if num == 0: +789 data += '0 ' +790 else: +791 data += '%1.16e ' % (num) +792 continue +793 if o.idl[repname][counters[oi]] == ci: +794 num = o.deltas[repname][counters[oi]] + offsets[oi] +795 if num == 0: +796 data += '0 ' +797 else: +798 data += '%1.16e ' % (num) +799 counters[oi] += 1 +800 if counters[oi] >= len(o.idl[repname]): +801 counters[oi] = -1 +802 else: +803 num = 0 +804 if num == 0: +805 data += '0 ' +806 else: +807 data += '%1.16e ' % (num) +808 else: +809 data += '0 ' +810 data += '\n' +811 ad['#data'] = data +812 ed[''].append(ad) +813 pd['edata'].append(ed) +814 +815 allcov = {} +816 for o in obsl: +817 for cname in o.cov_names: +818 if cname in allcov: +819 if not np.array_equal(allcov[cname], o.covobs[cname].cov): +820 raise Exception('Inconsistent covariance matrices for %s!' % (cname)) +821 else: +822 allcov[cname] = o.covobs[cname].cov +823 pd['cdata'] = [] +824 for cname in cov_names: +825 cd = {} +826 cd['id'] = cname +827 +828 covd = {'id': 'cov'} +829 if allcov[cname].shape == (): +830 ncov = 1 +831 covd['layout'] = '1 1 f' +832 covd['#data'] = '%1.14e' % (allcov[cname]) +833 else: +834 shape = allcov[cname].shape +835 assert (shape[0] == shape[1]) +836 ncov = shape[0] +837 covd['layout'] = '%d %d f' % (ncov, ncov) +838 ds = '' +839 for i in range(ncov): +840 for j in range(ncov): +841 val = allcov[cname][i][j] +842 if val == 0: +843 ds += '0 ' +844 else: +845 ds += '%1.14e ' % (val) +846 ds += '\n' +847 covd['#data'] = ds +848 +849 gradd = {'id': 'grad'} +850 gradd['layout'] = '%d f%d' % (ncov, len(obsl)) +851 ds = '' +852 for i in range(ncov): +853 for o in obsl: +854 if cname in o.covobs: +855 val = o.covobs[cname].grad[i].item() +856 if val != 0: +857 ds += '%1.14e ' % (val) +858 else: +859 ds += '0 ' +860 else: +861 ds += '0 ' +862 gradd['#data'] = ds +863 cd['array'] = [covd, gradd] +864 pd['cdata'].append(cd) +865 +866 rs = '<?xml version="1.0" encoding="utf-8"?>\n' + _dobsdict_to_xmlstring_spaces(od) +867 +868 return rs
870def write_dobs(obsl, fname, name, spec='dobs v1.0', origin='', symbol=[], who=None, enstags=None, gz=True): -871 """Export a list of Obs or structures containing Obs to a .xml.gz file -872 according to the Zeuthen dobs format. -873 -874 Tags are not written or recovered automatically. The separator | is removed from the replica names. -875 -876 Parameters -877 ---------- -878 obsl : list -879 List of Obs that will be exported. -880 The Obs inside a structure do not have to be defined on the same set of configurations, -881 but the storage requirement is increased, if this is not the case. -882 fname : str -883 Filename of the output file. -884 name : str -885 The name of the observable. -886 spec : str -887 Optional string that describes the contents of the file. -888 origin : str -889 Specify where the data has its origin. -890 symbol : list -891 A list of symbols that describe the observables to be written. May be empty. -892 who : str -893 Provide the name of the person that exports the data. -894 enstags : dict -895 Provide alternative enstag for ensembles in the form enstags = {ename: enstag} -896 Otherwise, the ensemble name is used. -897 gz : bool -898 If True, the output is a gzipped XML. If False, the output is a XML file. -899 -900 Returns -901 ------- -902 None -903 """ -904 if enstags is None: -905 enstags = {} -906 -907 dobsstring = create_dobs_string(obsl, name, spec, origin, symbol, who, enstags=enstags) -908 -909 if not fname.endswith('.xml') and not fname.endswith('.gz'): -910 fname += '.xml' -911 -912 if gz: -913 if not fname.endswith('.gz'): -914 fname += '.gz' -915 -916 fp = gzip.open(fname, 'wb') -917 fp.write(dobsstring.encode('utf-8')) -918 else: -919 fp = open(fname, 'w', encoding='utf-8') -920 fp.write(dobsstring) -921 fp.close() +diff --git a/docs/pyerrors/input/json.html b/docs/pyerrors/input/json.html index c6ad22a8..b7217b7f 100644 --- a/docs/pyerrors/input/json.html +++ b/docs/pyerrors/input/json.html @@ -226,640 +226,644 @@ 133 names = [] 134 idl = [] 135 for key, value in obs.idl.items(): -136 samples.append([np.nan] * len(value)) +136 samples.append(np.array([np.nan] * len(value))) 137 names.append(key) 138 idl.append(value) -139 my_obs = Obs(samples, names, idl) -140 my_obs._covobs = obs._covobs -141 for name in obs._covobs: -142 my_obs.names.append(name) -143 my_obs.reweighted = obs.reweighted -144 return my_obs -145 -146 def write_Corr_to_dict(my_corr): -147 first_not_none = next(i for i, j in enumerate(my_corr.content) if np.all(j)) -148 dummy_array = np.empty((my_corr.N, my_corr.N), dtype=object) -149 dummy_array[:] = _nan_Obs_like(my_corr.content[first_not_none].ravel()[0]) -150 content = [o if o is not None else dummy_array for o in my_corr.content] -151 dat = write_Array_to_dict(np.array(content, dtype=object)) -152 dat['type'] = 'Corr' -153 corr_meta_data = str(my_corr.tag) -154 if 'tag' in dat.keys(): -155 dat['tag'].append(corr_meta_data) -156 else: -157 dat['tag'] = [corr_meta_data] -158 taglist = dat['tag'] -159 dat['tag'] = {} # tag is now a dictionary, that contains the previous taglist in the key "tag" -160 dat['tag']['tag'] = taglist -161 if my_corr.prange is not None: -162 dat['tag']['prange'] = my_corr.prange -163 return dat -164 -165 if not isinstance(ol, list): -166 ol = [ol] -167 -168 d = {} -169 d['program'] = 'pyerrors %s' % (pyerrorsversion.__version__) -170 d['version'] = '1.1' -171 d['who'] = getpass.getuser() -172 d['date'] = datetime.datetime.now().astimezone().strftime('%Y-%m-%d %H:%M:%S %z') -173 d['host'] = socket.gethostname() + ', ' + platform.platform() -174 -175 if description: -176 d['description'] = description -177 -178 d['obsdata'] = [] -179 for io in ol: -180 if isinstance(io, Obs): -181 d['obsdata'].append(write_Obs_to_dict(io)) -182 elif isinstance(io, list): -183 d['obsdata'].append(write_List_to_dict(io)) -184 elif isinstance(io, np.ndarray): -185 d['obsdata'].append(write_Array_to_dict(io)) -186 elif isinstance(io, Corr): -187 d['obsdata'].append(write_Corr_to_dict(io)) -188 else: -189 raise Exception("Unkown datatype.") -190 -191 def _jsonifier(obj): -192 if isinstance(obj, dict): -193 result = {} -194 for key in obj: -195 if key is True: -196 result['true'] = obj[key] -197 elif key is False: -198 result['false'] = obj[key] -199 elif key is None: -200 result['null'] = obj[key] -201 elif isinstance(key, (int, float, np.floating, np.integer)): -202 result[str(key)] = obj[key] -203 else: -204 raise TypeError('keys must be str, int, float, bool or None') -205 return result -206 elif isinstance(obj, np.integer): -207 return int(obj) -208 elif isinstance(obj, np.floating): -209 return float(obj) -210 else: -211 raise ValueError('%r is not JSON serializable' % (obj,)) -212 -213 if indent: -214 return json.dumps(d, indent=indent, ensure_ascii=False, default=_jsonifier, write_mode=json.WM_SINGLE_LINE_ARRAY) -215 else: -216 return json.dumps(d, indent=indent, ensure_ascii=False, default=_jsonifier, write_mode=json.WM_COMPACT) -217 +139 my_obs = Obs(samples, names, idl, means=[np.nan for n in names]) +140 my_obs._value = np.nan +141 my_obs._covobs = obs._covobs +142 for name in obs._covobs: +143 my_obs.names.append(name) +144 my_obs.reweighted = obs.reweighted +145 return my_obs +146 +147 def write_Corr_to_dict(my_corr): +148 first_not_none = next(i for i, j in enumerate(my_corr.content) if np.all(j)) +149 dummy_array = np.empty((my_corr.N, my_corr.N), dtype=object) +150 dummy_array[:] = _nan_Obs_like(my_corr.content[first_not_none].ravel()[0]) +151 content = [o if o is not None else dummy_array for o in my_corr.content] +152 dat = write_Array_to_dict(np.array(content, dtype=object)) +153 dat['type'] = 'Corr' +154 corr_meta_data = str(my_corr.tag) +155 if 'tag' in dat.keys(): +156 dat['tag'].append(corr_meta_data) +157 else: +158 dat['tag'] = [corr_meta_data] +159 taglist = dat['tag'] +160 dat['tag'] = {} # tag is now a dictionary, that contains the previous taglist in the key "tag" +161 dat['tag']['tag'] = taglist +162 if my_corr.prange is not None: +163 dat['tag']['prange'] = my_corr.prange +164 return dat +165 +166 if not isinstance(ol, list): +167 ol = [ol] +168 +169 d = {} +170 d['program'] = 'pyerrors %s' % (pyerrorsversion.__version__) +171 d['version'] = '1.1' +172 d['who'] = getpass.getuser() +173 d['date'] = datetime.datetime.now().astimezone().strftime('%Y-%m-%d %H:%M:%S %z') +174 d['host'] = socket.gethostname() + ', ' + platform.platform() +175 +176 if description: +177 d['description'] = description +178 +179 d['obsdata'] = [] +180 for io in ol: +181 if isinstance(io, Obs): +182 d['obsdata'].append(write_Obs_to_dict(io)) +183 elif isinstance(io, list): +184 d['obsdata'].append(write_List_to_dict(io)) +185 elif isinstance(io, np.ndarray): +186 d['obsdata'].append(write_Array_to_dict(io)) +187 elif isinstance(io, Corr): +188 d['obsdata'].append(write_Corr_to_dict(io)) +189 else: +190 raise Exception("Unkown datatype.") +191 +192 def _jsonifier(obj): +193 if isinstance(obj, dict): +194 result = {} +195 for key in obj: +196 if key is True: +197 result['true'] = obj[key] +198 elif key is False: +199 result['false'] = obj[key] +200 elif key is None: +201 result['null'] = obj[key] +202 elif isinstance(key, (int, float, np.floating, np.integer)): +203 result[str(key)] = obj[key] +204 else: +205 raise TypeError('keys must be str, int, float, bool or None') +206 return result +207 elif isinstance(obj, np.integer): +208 return int(obj) +209 elif isinstance(obj, np.floating): +210 return float(obj) +211 else: +212 raise ValueError('%r is not JSON serializable' % (obj,)) +213 +214 if indent: +215 return json.dumps(d, indent=indent, ensure_ascii=False, default=_jsonifier, write_mode=json.WM_SINGLE_LINE_ARRAY) +216 else: +217 return json.dumps(d, indent=indent, ensure_ascii=False, default=_jsonifier, write_mode=json.WM_COMPACT) 218 -219def dump_to_json(ol, fname, description='', indent=1, gz=True): -220 """Export a list of Obs or structures containing Obs to a .json(.gz) file. -221 Dict keys that are not JSON-serializable such as floats are converted to strings. -222 -223 Parameters -224 ---------- -225 ol : list -226 List of objects that will be exported. At the moment, these objects can be -227 either of: Obs, list, numpy.ndarray, Corr. -228 All Obs inside a structure have to be defined on the same set of configurations. -229 fname : str -230 Filename of the output file. -231 description : str -232 Optional string that describes the contents of the json file. -233 indent : int -234 Specify the indentation level of the json file. None or 0 is permissible and -235 saves disk space. -236 gz : bool -237 If True, the output is a gzipped json. If False, the output is a json file. -238 -239 Returns -240 ------- -241 Null -242 """ -243 -244 jsonstring = create_json_string(ol, description, indent) -245 -246 if not fname.endswith('.json') and not fname.endswith('.gz'): -247 fname += '.json' -248 -249 if gz: -250 if not fname.endswith('.gz'): -251 fname += '.gz' -252 -253 fp = gzip.open(fname, 'wb') -254 fp.write(jsonstring.encode('utf-8')) -255 else: -256 fp = open(fname, 'w', encoding='utf-8') -257 fp.write(jsonstring) -258 fp.close() -259 +219 +220def dump_to_json(ol, fname, description='', indent=1, gz=True): +221 """Export a list of Obs or structures containing Obs to a .json(.gz) file. +222 Dict keys that are not JSON-serializable such as floats are converted to strings. +223 +224 Parameters +225 ---------- +226 ol : list +227 List of objects that will be exported. At the moment, these objects can be +228 either of: Obs, list, numpy.ndarray, Corr. +229 All Obs inside a structure have to be defined on the same set of configurations. +230 fname : str +231 Filename of the output file. +232 description : str +233 Optional string that describes the contents of the json file. +234 indent : int +235 Specify the indentation level of the json file. None or 0 is permissible and +236 saves disk space. +237 gz : bool +238 If True, the output is a gzipped json. If False, the output is a json file. +239 +240 Returns +241 ------- +242 Null +243 """ +244 +245 jsonstring = create_json_string(ol, description, indent) +246 +247 if not fname.endswith('.json') and not fname.endswith('.gz'): +248 fname += '.json' +249 +250 if gz: +251 if not fname.endswith('.gz'): +252 fname += '.gz' +253 +254 fp = gzip.open(fname, 'wb') +255 fp.write(jsonstring.encode('utf-8')) +256 else: +257 fp = open(fname, 'w', encoding='utf-8') +258 fp.write(jsonstring) +259 fp.close() 260 -261def _parse_json_dict(json_dict, verbose=True, full_output=False): -262 """Reconstruct a list of Obs or structures containing Obs from a dict that -263 was built out of a json string. -264 -265 The following structures are supported: Obs, list, numpy.ndarray, Corr -266 If the list contains only one element, it is unpacked from the list. -267 -268 Parameters -269 ---------- -270 json_string : str -271 json string containing the data. -272 verbose : bool -273 Print additional information that was written to the file. -274 full_output : bool -275 If True, a dict containing auxiliary information and the data is returned. -276 If False, only the data is returned. -277 -278 Returns -279 ------- -280 result : list[Obs] -281 reconstructed list of observables from the json string -282 or -283 result : Obs -284 only one observable if the list only has one entry -285 or -286 result : dict -287 if full_output=True -288 """ -289 -290 def _gen_obsd_from_datad(d): -291 retd = {} -292 if d: -293 retd['names'] = [] -294 retd['idl'] = [] -295 retd['deltas'] = [] -296 for ens in d: -297 for rep in ens['replica']: -298 rep_name = rep['name'] -299 if len(rep_name) > len(ens["id"]): -300 if rep_name[len(ens["id"])] != "|": -301 tmp_list = list(rep_name) -302 tmp_list = tmp_list[:len(ens["id"])] + ["|"] + tmp_list[len(ens["id"]):] -303 rep_name = ''.join(tmp_list) -304 retd['names'].append(rep_name) -305 retd['idl'].append([di[0] for di in rep['deltas']]) -306 retd['deltas'].append(np.array([di[1:] for di in rep['deltas']])) -307 return retd -308 -309 def _gen_covobsd_from_cdatad(d): -310 retd = {} -311 for ens in d: -312 retl = [] -313 name = ens['id'] -314 layouts = ens.get('layout', '1').strip() -315 layout = [int(ls.strip()) for ls in layouts.split(',') if len(ls) > 0] -316 cov = np.reshape(ens['cov'], layout) -317 grad = ens['grad'] -318 nobs = len(grad[0]) -319 for i in range(nobs): -320 retl.append({'name': name, 'cov': cov, 'grad': [g[i] for g in grad]}) -321 retd[name] = retl -322 return retd -323 -324 def get_Obs_from_dict(o): -325 layouts = o.get('layout', '1').strip() -326 if layouts != '1': -327 raise Exception("layout is %s has to be 1 for type Obs." % (layouts), RuntimeWarning) -328 -329 values = o['value'] -330 od = _gen_obsd_from_datad(o.get('data', {})) -331 cd = _gen_covobsd_from_cdatad(o.get('cdata', {})) -332 -333 if od: -334 ret = Obs([[ddi[0] + values[0] for ddi in di] for di in od['deltas']], od['names'], idl=od['idl']) -335 ret._value = values[0] -336 else: -337 ret = Obs([], [], means=[]) -338 ret._value = values[0] -339 for name in cd: -340 co = cd[name][0] -341 ret._covobs[name] = Covobs(None, co['cov'], co['name'], grad=co['grad']) -342 ret.names.append(co['name']) -343 -344 ret.reweighted = o.get('reweighted', False) -345 ret.tag = o.get('tag', [None])[0] -346 return ret -347 -348 def get_List_from_dict(o): -349 layouts = o.get('layout', '1').strip() -350 layout = int(layouts) -351 values = o['value'] -352 od = _gen_obsd_from_datad(o.get('data', {})) -353 cd = _gen_covobsd_from_cdatad(o.get('cdata', {})) -354 -355 ret = [] -356 taglist = o.get('tag', layout * [None]) -357 for i in range(layout): -358 if od: -359 ret.append(Obs([list(di[:, i] + values[i]) for di in od['deltas']], od['names'], idl=od['idl'])) -360 ret[-1]._value = values[i] -361 else: -362 ret.append(Obs([], [], means=[])) +261 +262def _parse_json_dict(json_dict, verbose=True, full_output=False): +263 """Reconstruct a list of Obs or structures containing Obs from a dict that +264 was built out of a json string. +265 +266 The following structures are supported: Obs, list, numpy.ndarray, Corr +267 If the list contains only one element, it is unpacked from the list. +268 +269 Parameters +270 ---------- +271 json_string : str +272 json string containing the data. +273 verbose : bool +274 Print additional information that was written to the file. +275 full_output : bool +276 If True, a dict containing auxiliary information and the data is returned. +277 If False, only the data is returned. +278 +279 Returns +280 ------- +281 result : list[Obs] +282 reconstructed list of observables from the json string +283 or +284 result : Obs +285 only one observable if the list only has one entry +286 or +287 result : dict +288 if full_output=True +289 """ +290 +291 def _gen_obsd_from_datad(d): +292 retd = {} +293 if d: +294 retd['names'] = [] +295 retd['idl'] = [] +296 retd['deltas'] = [] +297 for ens in d: +298 for rep in ens['replica']: +299 rep_name = rep['name'] +300 if len(rep_name) > len(ens["id"]): +301 if rep_name[len(ens["id"])] != "|": +302 tmp_list = list(rep_name) +303 tmp_list = tmp_list[:len(ens["id"])] + ["|"] + tmp_list[len(ens["id"]):] +304 rep_name = ''.join(tmp_list) +305 retd['names'].append(rep_name) +306 retd['idl'].append([di[0] for di in rep['deltas']]) +307 retd['deltas'].append(np.array([di[1:] for di in rep['deltas']])) +308 return retd +309 +310 def _gen_covobsd_from_cdatad(d): +311 retd = {} +312 for ens in d: +313 retl = [] +314 name = ens['id'] +315 layouts = ens.get('layout', '1').strip() +316 layout = [int(ls.strip()) for ls in layouts.split(',') if len(ls) > 0] +317 cov = np.reshape(ens['cov'], layout) +318 grad = ens['grad'] +319 nobs = len(grad[0]) +320 for i in range(nobs): +321 retl.append({'name': name, 'cov': cov, 'grad': [g[i] for g in grad]}) +322 retd[name] = retl +323 return retd +324 +325 def get_Obs_from_dict(o): +326 layouts = o.get('layout', '1').strip() +327 if layouts != '1': +328 raise Exception("layout is %s has to be 1 for type Obs." % (layouts), RuntimeWarning) +329 +330 values = o['value'] +331 od = _gen_obsd_from_datad(o.get('data', {})) +332 cd = _gen_covobsd_from_cdatad(o.get('cdata', {})) +333 +334 if od: +335 r_offsets = [np.average([ddi[0] for ddi in di]) for di in od['deltas']] +336 ret = Obs([np.array([ddi[0] for ddi in od['deltas'][i]]) - r_offsets[i] for i in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[0] for ro in r_offsets]) +337 ret._value = values[0] +338 else: +339 ret = Obs([], [], means=[]) +340 ret._value = values[0] +341 for name in cd: +342 co = cd[name][0] +343 ret._covobs[name] = Covobs(None, co['cov'], co['name'], grad=co['grad']) +344 ret.names.append(co['name']) +345 +346 ret.reweighted = o.get('reweighted', False) +347 ret.tag = o.get('tag', [None])[0] +348 return ret +349 +350 def get_List_from_dict(o): +351 layouts = o.get('layout', '1').strip() +352 layout = int(layouts) +353 values = o['value'] +354 od = _gen_obsd_from_datad(o.get('data', {})) +355 cd = _gen_covobsd_from_cdatad(o.get('cdata', {})) +356 +357 ret = [] +358 taglist = o.get('tag', layout * [None]) +359 for i in range(layout): +360 if od: +361 r_offsets = np.array([np.average(di[:, i]) for di in od['deltas']]) +362 ret.append(Obs([od['deltas'][j][:, i] - r_offsets[j] for j in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[i] for ro in r_offsets])) 363 ret[-1]._value = values[i] -364 print('Created Obs with means= ', values[i]) -365 for name in cd: -366 co = cd[name][i] -367 ret[-1]._covobs[name] = Covobs(None, co['cov'], co['name'], grad=co['grad']) -368 ret[-1].names.append(co['name']) -369 -370 ret[-1].reweighted = o.get('reweighted', False) -371 ret[-1].tag = taglist[i] -372 return ret -373 -374 def get_Array_from_dict(o): -375 layouts = o.get('layout', '1').strip() -376 layout = [int(ls.strip()) for ls in layouts.split(',') if len(ls) > 0] -377 N = np.prod(layout) -378 values = o['value'] -379 od = _gen_obsd_from_datad(o.get('data', {})) -380 cd = _gen_covobsd_from_cdatad(o.get('cdata', {})) -381 -382 ret = [] -383 taglist = o.get('tag', N * [None]) -384 for i in range(N): -385 if od: -386 ret.append(Obs([di[:, i] + values[i] for di in od['deltas']], od['names'], idl=od['idl'])) -387 ret[-1]._value = values[i] -388 else: -389 ret.append(Obs([], [], means=[])) -390 ret[-1]._value = values[i] -391 for name in cd: -392 co = cd[name][i] -393 ret[-1]._covobs[name] = Covobs(None, co['cov'], co['name'], grad=co['grad']) -394 ret[-1].names.append(co['name']) -395 ret[-1].reweighted = o.get('reweighted', False) -396 ret[-1].tag = taglist[i] -397 return np.reshape(ret, layout) -398 -399 def get_Corr_from_dict(o): -400 if isinstance(o.get('tag'), list): # supports the old way -401 taglist = o.get('tag') # This had to be modified to get the taglist from the dictionary -402 temp_prange = None -403 elif isinstance(o.get('tag'), dict): -404 tagdic = o.get('tag') -405 taglist = tagdic['tag'] -406 if 'prange' in tagdic: -407 temp_prange = tagdic['prange'] -408 else: -409 temp_prange = None -410 else: -411 raise Exception("The tag is not a list or dict") -412 -413 corr_tag = taglist[-1] -414 tmp_o = o -415 tmp_o['tag'] = taglist[:-1] -416 if len(tmp_o['tag']) == 0: -417 del tmp_o['tag'] -418 dat = get_Array_from_dict(tmp_o) -419 my_corr = Corr([None if np.isnan(o.ravel()[0].value) else o for o in list(dat)]) -420 if corr_tag != 'None': -421 my_corr.tag = corr_tag -422 -423 my_corr.prange = temp_prange -424 return my_corr -425 -426 prog = json_dict.get('program', '') -427 version = json_dict.get('version', '') -428 who = json_dict.get('who', '') -429 date = json_dict.get('date', '') -430 host = json_dict.get('host', '') -431 if prog and verbose: -432 print('Data has been written using %s.' % (prog)) -433 if version and verbose: -434 print('Format version %s' % (version)) -435 if np.any([who, date, host] and verbose): -436 print('Written by %s on %s on host %s' % (who, date, host)) -437 description = json_dict.get('description', '') -438 if description and verbose: -439 print() -440 print('Description: ', description) -441 obsdata = json_dict['obsdata'] -442 ol = [] -443 for io in obsdata: -444 if io['type'] == 'Obs': -445 ol.append(get_Obs_from_dict(io)) -446 elif io['type'] == 'List': -447 ol.append(get_List_from_dict(io)) -448 elif io['type'] == 'Array': -449 ol.append(get_Array_from_dict(io)) -450 elif io['type'] == 'Corr': -451 ol.append(get_Corr_from_dict(io)) -452 else: -453 raise Exception("Unknown datatype.") -454 -455 if full_output: -456 retd = {} -457 retd['program'] = prog -458 retd['version'] = version -459 retd['who'] = who -460 retd['date'] = date -461 retd['host'] = host -462 retd['description'] = description -463 retd['obsdata'] = ol -464 -465 return retd -466 else: -467 if len(obsdata) == 1: -468 ol = ol[0] -469 -470 return ol -471 -472 -473def import_json_string(json_string, verbose=True, full_output=False): -474 """Reconstruct a list of Obs or structures containing Obs from a json string. +364 else: +365 ret.append(Obs([], [], means=[])) +366 ret[-1]._value = values[i] +367 print('Created Obs with means= ', values[i]) +368 for name in cd: +369 co = cd[name][i] +370 ret[-1]._covobs[name] = Covobs(None, co['cov'], co['name'], grad=co['grad']) +371 ret[-1].names.append(co['name']) +372 +373 ret[-1].reweighted = o.get('reweighted', False) +374 ret[-1].tag = taglist[i] +375 return ret +376 +377 def get_Array_from_dict(o): +378 layouts = o.get('layout', '1').strip() +379 layout = [int(ls.strip()) for ls in layouts.split(',') if len(ls) > 0] +380 N = np.prod(layout) +381 values = o['value'] +382 od = _gen_obsd_from_datad(o.get('data', {})) +383 cd = _gen_covobsd_from_cdatad(o.get('cdata', {})) +384 +385 ret = [] +386 taglist = o.get('tag', N * [None]) +387 for i in range(N): +388 if od: +389 r_offsets = np.array([np.average(di[:, i]) for di in od['deltas']]) +390 ret.append(Obs([od['deltas'][j][:, i] - r_offsets[j] for j in range(len(od['deltas']))], od['names'], idl=od['idl'], means=[ro + values[i] for ro in r_offsets])) +391 ret[-1]._value = values[i] +392 else: +393 ret.append(Obs([], [], means=[])) +394 ret[-1]._value = values[i] +395 for name in cd: +396 co = cd[name][i] +397 ret[-1]._covobs[name] = Covobs(None, co['cov'], co['name'], grad=co['grad']) +398 ret[-1].names.append(co['name']) +399 ret[-1].reweighted = o.get('reweighted', False) +400 ret[-1].tag = taglist[i] +401 return np.reshape(ret, layout) +402 +403 def get_Corr_from_dict(o): +404 if isinstance(o.get('tag'), list): # supports the old way +405 taglist = o.get('tag') # This had to be modified to get the taglist from the dictionary +406 temp_prange = None +407 elif isinstance(o.get('tag'), dict): +408 tagdic = o.get('tag') +409 taglist = tagdic['tag'] +410 if 'prange' in tagdic: +411 temp_prange = tagdic['prange'] +412 else: +413 temp_prange = None +414 else: +415 raise Exception("The tag is not a list or dict") +416 +417 corr_tag = taglist[-1] +418 tmp_o = o +419 tmp_o['tag'] = taglist[:-1] +420 if len(tmp_o['tag']) == 0: +421 del tmp_o['tag'] +422 dat = get_Array_from_dict(tmp_o) +423 my_corr = Corr([None if np.isnan(o.ravel()[0].value) else o for o in list(dat)]) +424 if corr_tag != 'None': +425 my_corr.tag = corr_tag +426 +427 my_corr.prange = temp_prange +428 return my_corr +429 +430 prog = json_dict.get('program', '') +431 version = json_dict.get('version', '') +432 who = json_dict.get('who', '') +433 date = json_dict.get('date', '') +434 host = json_dict.get('host', '') +435 if prog and verbose: +436 print('Data has been written using %s.' % (prog)) +437 if version and verbose: +438 print('Format version %s' % (version)) +439 if np.any([who, date, host] and verbose): +440 print('Written by %s on %s on host %s' % (who, date, host)) +441 description = json_dict.get('description', '') +442 if description and verbose: +443 print() +444 print('Description: ', description) +445 obsdata = json_dict['obsdata'] +446 ol = [] +447 for io in obsdata: +448 if io['type'] == 'Obs': +449 ol.append(get_Obs_from_dict(io)) +450 elif io['type'] == 'List': +451 ol.append(get_List_from_dict(io)) +452 elif io['type'] == 'Array': +453 ol.append(get_Array_from_dict(io)) +454 elif io['type'] == 'Corr': +455 ol.append(get_Corr_from_dict(io)) +456 else: +457 raise Exception("Unknown datatype.") +458 +459 if full_output: +460 retd = {} +461 retd['program'] = prog +462 retd['version'] = version +463 retd['who'] = who +464 retd['date'] = date +465 retd['host'] = host +466 retd['description'] = description +467 retd['obsdata'] = ol +468 +469 return retd +470 else: +471 if len(obsdata) == 1: +472 ol = ol[0] +473 +474 return ol 475 -476 The following structures are supported: Obs, list, numpy.ndarray, Corr -477 If the list contains only one element, it is unpacked from the list. -478 -479 Parameters -480 ---------- -481 json_string : str -482 json string containing the data. -483 verbose : bool -484 Print additional information that was written to the file. -485 full_output : bool -486 If True, a dict containing auxiliary information and the data is returned. -487 If False, only the data is returned. -488 -489 Returns -490 ------- -491 result : list[Obs] -492 reconstructed list of observables from the json string -493 or -494 result : Obs -495 only one observable if the list only has one entry -496 or -497 result : dict -498 if full_output=True -499 """ -500 return _parse_json_dict(json.loads(json_string), verbose, full_output) -501 -502 -503def load_json(fname, verbose=True, gz=True, full_output=False): -504 """Import a list of Obs or structures containing Obs from a .json(.gz) file. +476 +477def import_json_string(json_string, verbose=True, full_output=False): +478 """Reconstruct a list of Obs or structures containing Obs from a json string. +479 +480 The following structures are supported: Obs, list, numpy.ndarray, Corr +481 If the list contains only one element, it is unpacked from the list. +482 +483 Parameters +484 ---------- +485 json_string : str +486 json string containing the data. +487 verbose : bool +488 Print additional information that was written to the file. +489 full_output : bool +490 If True, a dict containing auxiliary information and the data is returned. +491 If False, only the data is returned. +492 +493 Returns +494 ------- +495 result : list[Obs] +496 reconstructed list of observables from the json string +497 or +498 result : Obs +499 only one observable if the list only has one entry +500 or +501 result : dict +502 if full_output=True +503 """ +504 return _parse_json_dict(json.loads(json_string), verbose, full_output) 505 -506 The following structures are supported: Obs, list, numpy.ndarray, Corr -507 If the list contains only one element, it is unpacked from the list. -508 -509 Parameters -510 ---------- -511 fname : str -512 Filename of the input file. -513 verbose : bool -514 Print additional information that was written to the file. -515 gz : bool -516 If True, assumes that data is gzipped. If False, assumes JSON file. -517 full_output : bool -518 If True, a dict containing auxiliary information and the data is returned. -519 If False, only the data is returned. -520 -521 Returns -522 ------- -523 result : list[Obs] -524 reconstructed list of observables from the json string -525 or -526 result : Obs -527 only one observable if the list only has one entry -528 or -529 result : dict -530 if full_output=True -531 """ -532 if not fname.endswith('.json') and not fname.endswith('.gz'): -533 fname += '.json' -534 if gz: -535 if not fname.endswith('.gz'): -536 fname += '.gz' -537 with gzip.open(fname, 'r') as fin: -538 d = json.load(fin) -539 else: -540 if fname.endswith('.gz'): -541 warnings.warn("Trying to read from %s without unzipping!" % fname, UserWarning) -542 with open(fname, 'r', encoding='utf-8') as fin: -543 d = json.loads(fin.read()) -544 -545 return _parse_json_dict(d, verbose, full_output) -546 -547 -548def _ol_from_dict(ind, reps='DICTOBS'): -549 """Convert a dictionary of Obs objects to a list and a dictionary that contains -550 placeholders instead of the Obs objects. +506 +507def load_json(fname, verbose=True, gz=True, full_output=False): +508 """Import a list of Obs or structures containing Obs from a .json(.gz) file. +509 +510 The following structures are supported: Obs, list, numpy.ndarray, Corr +511 If the list contains only one element, it is unpacked from the list. +512 +513 Parameters +514 ---------- +515 fname : str +516 Filename of the input file. +517 verbose : bool +518 Print additional information that was written to the file. +519 gz : bool +520 If True, assumes that data is gzipped. If False, assumes JSON file. +521 full_output : bool +522 If True, a dict containing auxiliary information and the data is returned. +523 If False, only the data is returned. +524 +525 Returns +526 ------- +527 result : list[Obs] +528 reconstructed list of observables from the json string +529 or +530 result : Obs +531 only one observable if the list only has one entry +532 or +533 result : dict +534 if full_output=True +535 """ +536 if not fname.endswith('.json') and not fname.endswith('.gz'): +537 fname += '.json' +538 if gz: +539 if not fname.endswith('.gz'): +540 fname += '.gz' +541 with gzip.open(fname, 'r') as fin: +542 d = json.load(fin) +543 else: +544 if fname.endswith('.gz'): +545 warnings.warn("Trying to read from %s without unzipping!" % fname, UserWarning) +546 with open(fname, 'r', encoding='utf-8') as fin: +547 d = json.loads(fin.read()) +548 +549 return _parse_json_dict(d, verbose, full_output) +550 551 -552 Parameters -553 ---------- -554 ind : dict -555 Dict of JSON valid structures and objects that will be exported. -556 At the moment, these object can be either of: Obs, list, numpy.ndarray, Corr. -557 All Obs inside a structure have to be defined on the same set of configurations. -558 reps : str -559 Specify the structure of the placeholder in exported dict to be reps[0-9]+. -560 """ -561 -562 obstypes = (Obs, Corr, np.ndarray) -563 -564 if not reps.isalnum(): -565 raise Exception('Placeholder string has to be alphanumeric!') -566 ol = [] -567 counter = 0 -568 -569 def dict_replace_obs(d): -570 nonlocal ol -571 nonlocal counter -572 x = {} -573 for k, v in d.items(): -574 if isinstance(v, dict): -575 v = dict_replace_obs(v) -576 elif isinstance(v, list) and all([isinstance(o, Obs) for o in v]): -577 v = obslist_replace_obs(v) -578 elif isinstance(v, list): -579 v = list_replace_obs(v) -580 elif isinstance(v, obstypes): -581 ol.append(v) -582 v = reps + '%d' % (counter) -583 counter += 1 -584 elif isinstance(v, str): -585 if bool(re.match(r'%s[0-9]+' % (reps), v)): -586 raise Exception('Dict contains string %s that matches the placeholder! %s Cannot be safely exported.' % (v, reps)) -587 x[k] = v -588 return x -589 -590 def list_replace_obs(li): -591 nonlocal ol -592 nonlocal counter -593 x = [] -594 for e in li: -595 if isinstance(e, list): -596 e = list_replace_obs(e) -597 elif isinstance(e, list) and all([isinstance(o, Obs) for o in e]): -598 e = obslist_replace_obs(e) -599 elif isinstance(e, dict): -600 e = dict_replace_obs(e) -601 elif isinstance(e, obstypes): -602 ol.append(e) -603 e = reps + '%d' % (counter) -604 counter += 1 -605 elif isinstance(e, str): -606 if bool(re.match(r'%s[0-9]+' % (reps), e)): -607 raise Exception('Dict contains string %s that matches the placeholder! %s Cannot be safely exported.' % (e, reps)) -608 x.append(e) -609 return x -610 -611 def obslist_replace_obs(li): -612 nonlocal ol -613 nonlocal counter -614 il = [] -615 for e in li: -616 il.append(e) -617 -618 ol.append(il) -619 x = reps + '%d' % (counter) -620 counter += 1 -621 return x -622 -623 nd = dict_replace_obs(ind) -624 -625 return ol, nd +552def _ol_from_dict(ind, reps='DICTOBS'): +553 """Convert a dictionary of Obs objects to a list and a dictionary that contains +554 placeholders instead of the Obs objects. +555 +556 Parameters +557 ---------- +558 ind : dict +559 Dict of JSON valid structures and objects that will be exported. +560 At the moment, these object can be either of: Obs, list, numpy.ndarray, Corr. +561 All Obs inside a structure have to be defined on the same set of configurations. +562 reps : str +563 Specify the structure of the placeholder in exported dict to be reps[0-9]+. +564 """ +565 +566 obstypes = (Obs, Corr, np.ndarray) +567 +568 if not reps.isalnum(): +569 raise Exception('Placeholder string has to be alphanumeric!') +570 ol = [] +571 counter = 0 +572 +573 def dict_replace_obs(d): +574 nonlocal ol +575 nonlocal counter +576 x = {} +577 for k, v in d.items(): +578 if isinstance(v, dict): +579 v = dict_replace_obs(v) +580 elif isinstance(v, list) and all([isinstance(o, Obs) for o in v]): +581 v = obslist_replace_obs(v) +582 elif isinstance(v, list): +583 v = list_replace_obs(v) +584 elif isinstance(v, obstypes): +585 ol.append(v) +586 v = reps + '%d' % (counter) +587 counter += 1 +588 elif isinstance(v, str): +589 if bool(re.match(r'%s[0-9]+' % (reps), v)): +590 raise Exception('Dict contains string %s that matches the placeholder! %s Cannot be safely exported.' % (v, reps)) +591 x[k] = v +592 return x +593 +594 def list_replace_obs(li): +595 nonlocal ol +596 nonlocal counter +597 x = [] +598 for e in li: +599 if isinstance(e, list): +600 e = list_replace_obs(e) +601 elif isinstance(e, list) and all([isinstance(o, Obs) for o in e]): +602 e = obslist_replace_obs(e) +603 elif isinstance(e, dict): +604 e = dict_replace_obs(e) +605 elif isinstance(e, obstypes): +606 ol.append(e) +607 e = reps + '%d' % (counter) +608 counter += 1 +609 elif isinstance(e, str): +610 if bool(re.match(r'%s[0-9]+' % (reps), e)): +611 raise Exception('Dict contains string %s that matches the placeholder! %s Cannot be safely exported.' % (e, reps)) +612 x.append(e) +613 return x +614 +615 def obslist_replace_obs(li): +616 nonlocal ol +617 nonlocal counter +618 il = [] +619 for e in li: +620 il.append(e) +621 +622 ol.append(il) +623 x = reps + '%d' % (counter) +624 counter += 1 +625 return x 626 -627 -628def dump_dict_to_json(od, fname, description='', indent=1, reps='DICTOBS', gz=True): -629 """Export a dict of Obs or structures containing Obs to a .json(.gz) file +627 nd = dict_replace_obs(ind) +628 +629 return ol, nd 630 -631 Parameters -632 ---------- -633 od : dict -634 Dict of JSON valid structures and objects that will be exported. -635 At the moment, these objects can be either of: Obs, list, numpy.ndarray, Corr. -636 All Obs inside a structure have to be defined on the same set of configurations. -637 fname : str -638 Filename of the output file. -639 description : str -640 Optional string that describes the contents of the json file. -641 indent : int -642 Specify the indentation level of the json file. None or 0 is permissible and -643 saves disk space. -644 reps : str -645 Specify the structure of the placeholder in exported dict to be reps[0-9]+. -646 gz : bool -647 If True, the output is a gzipped json. If False, the output is a json file. -648 -649 Returns -650 ------- -651 None -652 """ -653 -654 if not isinstance(od, dict): -655 raise Exception('od has to be a dictionary. Did you want to use dump_to_json?') -656 -657 infostring = ('This JSON file contains a python dictionary that has been parsed to a list of structures. ' -658 'OBSDICT contains the dictionary, where Obs or other structures have been replaced by ' -659 '' + reps + '[0-9]+. The field description contains the additional description of this JSON file. ' -660 'This file may be parsed to a dict with the pyerrors routine load_json_dict.') -661 -662 desc_dict = {'INFO': infostring, 'OBSDICT': {}, 'description': description} -663 ol, desc_dict['OBSDICT'] = _ol_from_dict(od, reps=reps) -664 -665 dump_to_json(ol, fname, description=desc_dict, indent=indent, gz=gz) -666 -667 -668def _od_from_list_and_dict(ol, ind, reps='DICTOBS'): -669 """Parse a list of Obs or structures containing Obs and an accompanying -670 dict, where the structures have been replaced by placeholders to a -671 dict that contains the structures. -672 -673 The following structures are supported: Obs, list, numpy.ndarray, Corr -674 -675 Parameters -676 ---------- -677 ol : list -678 List of objects - -679 At the moment, these objects can be either of: Obs, list, numpy.ndarray, Corr. -680 All Obs inside a structure have to be defined on the same set of configurations. -681 ind : dict -682 Dict that defines the structure of the resulting dict and contains placeholders -683 reps : str -684 Specify the structure of the placeholder in imported dict to be reps[0-9]+. -685 """ -686 if not reps.isalnum(): -687 raise Exception('Placeholder string has to be alphanumeric!') -688 -689 counter = 0 -690 -691 def dict_replace_string(d): -692 nonlocal counter -693 nonlocal ol -694 x = {} -695 for k, v in d.items(): -696 if isinstance(v, dict): -697 v = dict_replace_string(v) -698 elif isinstance(v, list): -699 v = list_replace_string(v) -700 elif isinstance(v, str) and bool(re.match(r'%s[0-9]+' % (reps), v)): -701 index = int(v[len(reps):]) -702 v = ol[index] -703 counter += 1 -704 x[k] = v -705 return x -706 -707 def list_replace_string(li): -708 nonlocal counter -709 nonlocal ol -710 x = [] -711 for e in li: -712 if isinstance(e, list): -713 e = list_replace_string(e) -714 elif isinstance(e, dict): -715 e = dict_replace_string(e) -716 elif isinstance(e, str) and bool(re.match(r'%s[0-9]+' % (reps), e)): -717 index = int(e[len(reps):]) -718 e = ol[index] -719 counter += 1 -720 x.append(e) -721 return x -722 -723 nd = dict_replace_string(ind) -724 -725 if counter == 0: -726 raise Exception('No placeholder has been replaced! Check if reps is set correctly.') -727 -728 return nd -729 -730 -731def load_json_dict(fname, verbose=True, gz=True, full_output=False, reps='DICTOBS'): -732 """Import a dict of Obs or structures containing Obs from a .json(.gz) file. +631 +632def dump_dict_to_json(od, fname, description='', indent=1, reps='DICTOBS', gz=True): +633 """Export a dict of Obs or structures containing Obs to a .json(.gz) file +634 +635 Parameters +636 ---------- +637 od : dict +638 Dict of JSON valid structures and objects that will be exported. +639 At the moment, these objects can be either of: Obs, list, numpy.ndarray, Corr. +640 All Obs inside a structure have to be defined on the same set of configurations. +641 fname : str +642 Filename of the output file. +643 description : str +644 Optional string that describes the contents of the json file. +645 indent : int +646 Specify the indentation level of the json file. None or 0 is permissible and +647 saves disk space. +648 reps : str +649 Specify the structure of the placeholder in exported dict to be reps[0-9]+. +650 gz : bool +651 If True, the output is a gzipped json. If False, the output is a json file. +652 +653 Returns +654 ------- +655 None +656 """ +657 +658 if not isinstance(od, dict): +659 raise Exception('od has to be a dictionary. Did you want to use dump_to_json?') +660 +661 infostring = ('This JSON file contains a python dictionary that has been parsed to a list of structures. ' +662 'OBSDICT contains the dictionary, where Obs or other structures have been replaced by ' +663 '' + reps + '[0-9]+. The field description contains the additional description of this JSON file. ' +664 'This file may be parsed to a dict with the pyerrors routine load_json_dict.') +665 +666 desc_dict = {'INFO': infostring, 'OBSDICT': {}, 'description': description} +667 ol, desc_dict['OBSDICT'] = _ol_from_dict(od, reps=reps) +668 +669 dump_to_json(ol, fname, description=desc_dict, indent=indent, gz=gz) +670 +671 +672def _od_from_list_and_dict(ol, ind, reps='DICTOBS'): +673 """Parse a list of Obs or structures containing Obs and an accompanying +674 dict, where the structures have been replaced by placeholders to a +675 dict that contains the structures. +676 +677 The following structures are supported: Obs, list, numpy.ndarray, Corr +678 +679 Parameters +680 ---------- +681 ol : list +682 List of objects - +683 At the moment, these objects can be either of: Obs, list, numpy.ndarray, Corr. +684 All Obs inside a structure have to be defined on the same set of configurations. +685 ind : dict +686 Dict that defines the structure of the resulting dict and contains placeholders +687 reps : str +688 Specify the structure of the placeholder in imported dict to be reps[0-9]+. +689 """ +690 if not reps.isalnum(): +691 raise Exception('Placeholder string has to be alphanumeric!') +692 +693 counter = 0 +694 +695 def dict_replace_string(d): +696 nonlocal counter +697 nonlocal ol +698 x = {} +699 for k, v in d.items(): +700 if isinstance(v, dict): +701 v = dict_replace_string(v) +702 elif isinstance(v, list): +703 v = list_replace_string(v) +704 elif isinstance(v, str) and bool(re.match(r'%s[0-9]+' % (reps), v)): +705 index = int(v[len(reps):]) +706 v = ol[index] +707 counter += 1 +708 x[k] = v +709 return x +710 +711 def list_replace_string(li): +712 nonlocal counter +713 nonlocal ol +714 x = [] +715 for e in li: +716 if isinstance(e, list): +717 e = list_replace_string(e) +718 elif isinstance(e, dict): +719 e = dict_replace_string(e) +720 elif isinstance(e, str) and bool(re.match(r'%s[0-9]+' % (reps), e)): +721 index = int(e[len(reps):]) +722 e = ol[index] +723 counter += 1 +724 x.append(e) +725 return x +726 +727 nd = dict_replace_string(ind) +728 +729 if counter == 0: +730 raise Exception('No placeholder has been replaced! Check if reps is set correctly.') +731 +732 return nd 733 -734 The following structures are supported: Obs, list, numpy.ndarray, Corr -735 -736 Parameters -737 ---------- -738 fname : str -739 Filename of the input file. -740 verbose : bool -741 Print additional information that was written to the file. -742 gz : bool -743 If True, assumes that data is gzipped. If False, assumes JSON file. -744 full_output : bool -745 If True, a dict containing auxiliary information and the data is returned. -746 If False, only the data is returned. -747 reps : str -748 Specify the structure of the placeholder in imported dict to be reps[0-9]+. -749 -750 Returns -751 ------- -752 data : Obs / list / Corr -753 Read data -754 or -755 data : dict -756 Read data and meta-data -757 """ -758 indata = load_json(fname, verbose=verbose, gz=gz, full_output=True) -759 description = indata['description']['description'] -760 indict = indata['description']['OBSDICT'] -761 ol = indata['obsdata'] -762 od = _od_from_list_and_dict(ol, indict, reps=reps) -763 -764 if full_output: -765 indata['description'] = description -766 indata['obsdata'] = od -767 return indata -768 else: -769 return od +734 +735def load_json_dict(fname, verbose=True, gz=True, full_output=False, reps='DICTOBS'): +736 """Import a dict of Obs or structures containing Obs from a .json(.gz) file. +737 +738 The following structures are supported: Obs, list, numpy.ndarray, Corr +739 +740 Parameters +741 ---------- +742 fname : str +743 Filename of the input file. +744 verbose : bool +745 Print additional information that was written to the file. +746 gz : bool +747 If True, assumes that data is gzipped. If False, assumes JSON file. +748 full_output : bool +749 If True, a dict containing auxiliary information and the data is returned. +750 If False, only the data is returned. +751 reps : str +752 Specify the structure of the placeholder in imported dict to be reps[0-9]+. +753 +754 Returns +755 ------- +756 data : Obs / list / Corr +757 Read data +758 or +759 data : dict +760 Read data and meta-data +761 """ +762 indata = load_json(fname, verbose=verbose, gz=gz, full_output=True) +763 description = indata['description']['description'] +764 indict = indata['description']['OBSDICT'] +765 ol = indata['obsdata'] +766 od = _od_from_list_and_dict(ol, indict, reps=reps) +767 +768 if full_output: +769 indata['description'] = description +770 indata['obsdata'] = od +771 return indata +772 else: +773 return od871def write_dobs(obsl, fname, name, spec='dobs v1.0', origin='', symbol=[], who=None, enstags=None, gz=True): +872 """Export a list of Obs or structures containing Obs to a .xml.gz file +873 according to the Zeuthen dobs format. +874 +875 Tags are not written or recovered automatically. The separator | is removed from the replica names. +876 +877 Parameters +878 ---------- +879 obsl : list +880 List of Obs that will be exported. +881 The Obs inside a structure do not have to be defined on the same set of configurations, +882 but the storage requirement is increased, if this is not the case. +883 fname : str +884 Filename of the output file. +885 name : str +886 The name of the observable. +887 spec : str +888 Optional string that describes the contents of the file. +889 origin : str +890 Specify where the data has its origin. +891 symbol : list +892 A list of symbols that describe the observables to be written. May be empty. +893 who : str +894 Provide the name of the person that exports the data. +895 enstags : dict +896 Provide alternative enstag for ensembles in the form enstags = {ename: enstag} +897 Otherwise, the ensemble name is used. +898 gz : bool +899 If True, the output is a gzipped XML. If False, the output is a XML file. +900 +901 Returns +902 ------- +903 None +904 """ +905 if enstags is None: +906 enstags = {} +907 +908 dobsstring = create_dobs_string(obsl, name, spec, origin, symbol, who, enstags=enstags) +909 +910 if not fname.endswith('.xml') and not fname.endswith('.gz'): +911 fname += '.xml' +912 +913 if gz: +914 if not fname.endswith('.gz'): +915 fname += '.gz' +916 +917 fp = gzip.open(fname, 'wb') +918 fp.write(dobsstring.encode('utf-8')) +919 else: +920 fp = open(fname, 'w', encoding='utf-8') +921 fp.write(dobsstring) +922 fp.close()
220def dump_to_json(ol, fname, description='', indent=1, gz=True): -221 """Export a list of Obs or structures containing Obs to a .json(.gz) file. -222 Dict keys that are not JSON-serializable such as floats are converted to strings. -223 -224 Parameters -225 ---------- -226 ol : list -227 List of objects that will be exported. At the moment, these objects can be -228 either of: Obs, list, numpy.ndarray, Corr. -229 All Obs inside a structure have to be defined on the same set of configurations. -230 fname : str -231 Filename of the output file. -232 description : str -233 Optional string that describes the contents of the json file. -234 indent : int -235 Specify the indentation level of the json file. None or 0 is permissible and -236 saves disk space. -237 gz : bool -238 If True, the output is a gzipped json. If False, the output is a json file. -239 -240 Returns -241 ------- -242 Null -243 """ -244 -245 jsonstring = create_json_string(ol, description, indent) -246 -247 if not fname.endswith('.json') and not fname.endswith('.gz'): -248 fname += '.json' -249 -250 if gz: -251 if not fname.endswith('.gz'): -252 fname += '.gz' -253 -254 fp = gzip.open(fname, 'wb') -255 fp.write(jsonstring.encode('utf-8')) -256 else: -257 fp = open(fname, 'w', encoding='utf-8') -258 fp.write(jsonstring) -259 fp.close() +@@ -1200,34 +1205,34 @@ If True, the output is a gzipped json. If False, the output is a json file.221def dump_to_json(ol, fname, description='', indent=1, gz=True): +222 """Export a list of Obs or structures containing Obs to a .json(.gz) file. +223 Dict keys that are not JSON-serializable such as floats are converted to strings. +224 +225 Parameters +226 ---------- +227 ol : list +228 List of objects that will be exported. At the moment, these objects can be +229 either of: Obs, list, numpy.ndarray, Corr. +230 All Obs inside a structure have to be defined on the same set of configurations. +231 fname : str +232 Filename of the output file. +233 description : str +234 Optional string that describes the contents of the json file. +235 indent : int +236 Specify the indentation level of the json file. None or 0 is permissible and +237 saves disk space. +238 gz : bool +239 If True, the output is a gzipped json. If False, the output is a json file. +240 +241 Returns +242 ------- +243 Null +244 """ +245 +246 jsonstring = create_json_string(ol, description, indent) +247 +248 if not fname.endswith('.json') and not fname.endswith('.gz'): +249 fname += '.json' +250 +251 if gz: +252 if not fname.endswith('.gz'): +253 fname += '.gz' +254 +255 fp = gzip.open(fname, 'wb') +256 fp.write(jsonstring.encode('utf-8')) +257 else: +258 fp = open(fname, 'w', encoding='utf-8') +259 fp.write(jsonstring) +260 fp.close()
474def import_json_string(json_string, verbose=True, full_output=False): -475 """Reconstruct a list of Obs or structures containing Obs from a json string. -476 -477 The following structures are supported: Obs, list, numpy.ndarray, Corr -478 If the list contains only one element, it is unpacked from the list. -479 -480 Parameters -481 ---------- -482 json_string : str -483 json string containing the data. -484 verbose : bool -485 Print additional information that was written to the file. -486 full_output : bool -487 If True, a dict containing auxiliary information and the data is returned. -488 If False, only the data is returned. -489 -490 Returns -491 ------- -492 result : list[Obs] -493 reconstructed list of observables from the json string -494 or -495 result : Obs -496 only one observable if the list only has one entry -497 or -498 result : dict -499 if full_output=True -500 """ -501 return _parse_json_dict(json.loads(json_string), verbose, full_output) +@@ -1275,49 +1280,49 @@ if full_output=True478def import_json_string(json_string, verbose=True, full_output=False): +479 """Reconstruct a list of Obs or structures containing Obs from a json string. +480 +481 The following structures are supported: Obs, list, numpy.ndarray, Corr +482 If the list contains only one element, it is unpacked from the list. +483 +484 Parameters +485 ---------- +486 json_string : str +487 json string containing the data. +488 verbose : bool +489 Print additional information that was written to the file. +490 full_output : bool +491 If True, a dict containing auxiliary information and the data is returned. +492 If False, only the data is returned. +493 +494 Returns +495 ------- +496 result : list[Obs] +497 reconstructed list of observables from the json string +498 or +499 result : Obs +500 only one observable if the list only has one entry +501 or +502 result : dict +503 if full_output=True +504 """ +505 return _parse_json_dict(json.loads(json_string), verbose, full_output)
504def load_json(fname, verbose=True, gz=True, full_output=False): -505 """Import a list of Obs or structures containing Obs from a .json(.gz) file. -506 -507 The following structures are supported: Obs, list, numpy.ndarray, Corr -508 If the list contains only one element, it is unpacked from the list. -509 -510 Parameters -511 ---------- -512 fname : str -513 Filename of the input file. -514 verbose : bool -515 Print additional information that was written to the file. -516 gz : bool -517 If True, assumes that data is gzipped. If False, assumes JSON file. -518 full_output : bool -519 If True, a dict containing auxiliary information and the data is returned. -520 If False, only the data is returned. -521 -522 Returns -523 ------- -524 result : list[Obs] -525 reconstructed list of observables from the json string -526 or -527 result : Obs -528 only one observable if the list only has one entry -529 or -530 result : dict -531 if full_output=True -532 """ -533 if not fname.endswith('.json') and not fname.endswith('.gz'): -534 fname += '.json' -535 if gz: -536 if not fname.endswith('.gz'): -537 fname += '.gz' -538 with gzip.open(fname, 'r') as fin: -539 d = json.load(fin) -540 else: -541 if fname.endswith('.gz'): -542 warnings.warn("Trying to read from %s without unzipping!" % fname, UserWarning) -543 with open(fname, 'r', encoding='utf-8') as fin: -544 d = json.loads(fin.read()) -545 -546 return _parse_json_dict(d, verbose, full_output) +@@ -1367,44 +1372,44 @@ if full_output=True508def load_json(fname, verbose=True, gz=True, full_output=False): +509 """Import a list of Obs or structures containing Obs from a .json(.gz) file. +510 +511 The following structures are supported: Obs, list, numpy.ndarray, Corr +512 If the list contains only one element, it is unpacked from the list. +513 +514 Parameters +515 ---------- +516 fname : str +517 Filename of the input file. +518 verbose : bool +519 Print additional information that was written to the file. +520 gz : bool +521 If True, assumes that data is gzipped. If False, assumes JSON file. +522 full_output : bool +523 If True, a dict containing auxiliary information and the data is returned. +524 If False, only the data is returned. +525 +526 Returns +527 ------- +528 result : list[Obs] +529 reconstructed list of observables from the json string +530 or +531 result : Obs +532 only one observable if the list only has one entry +533 or +534 result : dict +535 if full_output=True +536 """ +537 if not fname.endswith('.json') and not fname.endswith('.gz'): +538 fname += '.json' +539 if gz: +540 if not fname.endswith('.gz'): +541 fname += '.gz' +542 with gzip.open(fname, 'r') as fin: +543 d = json.load(fin) +544 else: +545 if fname.endswith('.gz'): +546 warnings.warn("Trying to read from %s without unzipping!" % fname, UserWarning) +547 with open(fname, 'r', encoding='utf-8') as fin: +548 d = json.loads(fin.read()) +549 +550 return _parse_json_dict(d, verbose, full_output)
629def dump_dict_to_json(od, fname, description='', indent=1, reps='DICTOBS', gz=True): -630 """Export a dict of Obs or structures containing Obs to a .json(.gz) file -631 -632 Parameters -633 ---------- -634 od : dict -635 Dict of JSON valid structures and objects that will be exported. -636 At the moment, these objects can be either of: Obs, list, numpy.ndarray, Corr. -637 All Obs inside a structure have to be defined on the same set of configurations. -638 fname : str -639 Filename of the output file. -640 description : str -641 Optional string that describes the contents of the json file. -642 indent : int -643 Specify the indentation level of the json file. None or 0 is permissible and -644 saves disk space. -645 reps : str -646 Specify the structure of the placeholder in exported dict to be reps[0-9]+. -647 gz : bool -648 If True, the output is a gzipped json. If False, the output is a json file. -649 -650 Returns -651 ------- -652 None -653 """ -654 -655 if not isinstance(od, dict): -656 raise Exception('od has to be a dictionary. Did you want to use dump_to_json?') -657 -658 infostring = ('This JSON file contains a python dictionary that has been parsed to a list of structures. ' -659 'OBSDICT contains the dictionary, where Obs or other structures have been replaced by ' -660 '' + reps + '[0-9]+. The field description contains the additional description of this JSON file. ' -661 'This file may be parsed to a dict with the pyerrors routine load_json_dict.') -662 -663 desc_dict = {'INFO': infostring, 'OBSDICT': {}, 'description': description} -664 ol, desc_dict['OBSDICT'] = _ol_from_dict(od, reps=reps) -665 -666 dump_to_json(ol, fname, description=desc_dict, indent=indent, gz=gz) +@@ -1450,45 +1455,45 @@ If True, the output is a gzipped json. If False, the output is a json file.633def dump_dict_to_json(od, fname, description='', indent=1, reps='DICTOBS', gz=True): +634 """Export a dict of Obs or structures containing Obs to a .json(.gz) file +635 +636 Parameters +637 ---------- +638 od : dict +639 Dict of JSON valid structures and objects that will be exported. +640 At the moment, these objects can be either of: Obs, list, numpy.ndarray, Corr. +641 All Obs inside a structure have to be defined on the same set of configurations. +642 fname : str +643 Filename of the output file. +644 description : str +645 Optional string that describes the contents of the json file. +646 indent : int +647 Specify the indentation level of the json file. None or 0 is permissible and +648 saves disk space. +649 reps : str +650 Specify the structure of the placeholder in exported dict to be reps[0-9]+. +651 gz : bool +652 If True, the output is a gzipped json. If False, the output is a json file. +653 +654 Returns +655 ------- +656 None +657 """ +658 +659 if not isinstance(od, dict): +660 raise Exception('od has to be a dictionary. Did you want to use dump_to_json?') +661 +662 infostring = ('This JSON file contains a python dictionary that has been parsed to a list of structures. ' +663 'OBSDICT contains the dictionary, where Obs or other structures have been replaced by ' +664 '' + reps + '[0-9]+. The field description contains the additional description of this JSON file. ' +665 'This file may be parsed to a dict with the pyerrors routine load_json_dict.') +666 +667 desc_dict = {'INFO': infostring, 'OBSDICT': {}, 'description': description} +668 ol, desc_dict['OBSDICT'] = _ol_from_dict(od, reps=reps) +669 +670 dump_to_json(ol, fname, description=desc_dict, indent=indent, gz=gz)
732def load_json_dict(fname, verbose=True, gz=True, full_output=False, reps='DICTOBS'): -733 """Import a dict of Obs or structures containing Obs from a .json(.gz) file. -734 -735 The following structures are supported: Obs, list, numpy.ndarray, Corr -736 -737 Parameters -738 ---------- -739 fname : str -740 Filename of the input file. -741 verbose : bool -742 Print additional information that was written to the file. -743 gz : bool -744 If True, assumes that data is gzipped. If False, assumes JSON file. -745 full_output : bool -746 If True, a dict containing auxiliary information and the data is returned. -747 If False, only the data is returned. -748 reps : str -749 Specify the structure of the placeholder in imported dict to be reps[0-9]+. -750 -751 Returns -752 ------- -753 data : Obs / list / Corr -754 Read data -755 or -756 data : dict -757 Read data and meta-data -758 """ -759 indata = load_json(fname, verbose=verbose, gz=gz, full_output=True) -760 description = indata['description']['description'] -761 indict = indata['description']['OBSDICT'] -762 ol = indata['obsdata'] -763 od = _od_from_list_and_dict(ol, indict, reps=reps) -764 -765 if full_output: -766 indata['description'] = description -767 indata['obsdata'] = od -768 return indata -769 else: -770 return od +diff --git a/docs/pyerrors/obs.html b/docs/pyerrors/obs.html index 5bfeabaf..39569843 100644 --- a/docs/pyerrors/obs.html +++ b/docs/pyerrors/obs.html @@ -418,1779 +418,1790 @@ 82 raise ValueError('Names are not unique.') 83 if not all(isinstance(x, str) for x in names): 84 raise TypeError('All names have to be strings.') - 85 else: - 86 if not isinstance(names[0], str): - 87 raise TypeError('All names have to be strings.') - 88 if min(len(x) for x in samples) <= 4: - 89 raise ValueError('Samples have to have at least 5 entries.') - 90 - 91 self.names = sorted(names) - 92 self.shape = {} - 93 self.r_values = {} - 94 self.deltas = {} - 95 self._covobs = {} - 96 - 97 self._value = 0 - 98 self.N = 0 - 99 self.idl = {} - 100 if idl is not None: - 101 for name, idx in sorted(zip(names, idl)): - 102 if isinstance(idx, range): - 103 self.idl[name] = idx - 104 elif isinstance(idx, (list, np.ndarray)): - 105 dc = np.unique(np.diff(idx)) - 106 if np.any(dc < 0): - 107 raise ValueError("Unsorted idx for idl[%s] at position %s" % (name, ' '.join(['%s' % (pos + 1) for pos in np.where(np.diff(idx) < 0)[0]]))) - 108 elif np.any(dc == 0): - 109 raise ValueError("Duplicate entries in idx for idl[%s] at position %s" % (name, ' '.join(['%s' % (pos + 1) for pos in np.where(np.diff(idx) == 0)[0]]))) - 110 if len(dc) == 1: - 111 self.idl[name] = range(idx[0], idx[-1] + dc[0], dc[0]) - 112 else: - 113 self.idl[name] = list(idx) - 114 else: - 115 raise TypeError('incompatible type for idl[%s].' % (name)) - 116 else: - 117 for name, sample in sorted(zip(names, samples)): - 118 self.idl[name] = range(1, len(sample) + 1) - 119 - 120 if kwargs.get("means") is not None: - 121 for name, sample, mean in sorted(zip(names, samples, kwargs.get("means"))): - 122 self.shape[name] = len(self.idl[name]) - 123 self.N += self.shape[name] - 124 self.r_values[name] = mean - 125 self.deltas[name] = sample - 126 else: - 127 for name, sample in sorted(zip(names, samples)): - 128 self.shape[name] = len(self.idl[name]) - 129 self.N += self.shape[name] - 130 if len(sample) != self.shape[name]: - 131 raise ValueError('Incompatible samples and idx for %s: %d vs. %d' % (name, len(sample), self.shape[name])) - 132 self.r_values[name] = np.mean(sample) - 133 self.deltas[name] = sample - self.r_values[name] - 134 self._value += self.shape[name] * self.r_values[name] - 135 self._value /= self.N - 136 - 137 self._dvalue = 0.0 - 138 self.ddvalue = 0.0 - 139 self.reweighted = False - 140 - 141 self.tag = None + 85 if len(set([o.split('|')[0] for o in names])) > 1: + 86 raise ValueError('Cannot initialize Obs based on multiple ensembles. Please average separate Obs from each ensemble.') + 87 else: + 88 if not isinstance(names[0], str): + 89 raise TypeError('All names have to be strings.') + 90 if min(len(x) for x in samples) <= 4: + 91 raise ValueError('Samples have to have at least 5 entries.') + 92 + 93 self.names = sorted(names) + 94 self.shape = {} + 95 self.r_values = {} + 96 self.deltas = {} + 97 self._covobs = {} + 98 + 99 self._value = 0 + 100 self.N = 0 + 101 self.idl = {} + 102 if idl is not None: + 103 for name, idx in sorted(zip(names, idl)): + 104 if isinstance(idx, range): + 105 self.idl[name] = idx + 106 elif isinstance(idx, (list, np.ndarray)): + 107 dc = np.unique(np.diff(idx)) + 108 if np.any(dc < 0): + 109 raise ValueError("Unsorted idx for idl[%s] at position %s" % (name, ' '.join(['%s' % (pos + 1) for pos in np.where(np.diff(idx) < 0)[0]]))) + 110 elif np.any(dc == 0): + 111 raise ValueError("Duplicate entries in idx for idl[%s] at position %s" % (name, ' '.join(['%s' % (pos + 1) for pos in np.where(np.diff(idx) == 0)[0]]))) + 112 if len(dc) == 1: + 113 self.idl[name] = range(idx[0], idx[-1] + dc[0], dc[0]) + 114 else: + 115 self.idl[name] = list(idx) + 116 else: + 117 raise TypeError('incompatible type for idl[%s].' % (name)) + 118 else: + 119 for name, sample in sorted(zip(names, samples)): + 120 self.idl[name] = range(1, len(sample) + 1) + 121 + 122 if kwargs.get("means") is not None: + 123 for name, sample, mean in sorted(zip(names, samples, kwargs.get("means"))): + 124 self.shape[name] = len(self.idl[name]) + 125 self.N += self.shape[name] + 126 self.r_values[name] = mean + 127 self.deltas[name] = sample + 128 else: + 129 for name, sample in sorted(zip(names, samples)): + 130 self.shape[name] = len(self.idl[name]) + 131 self.N += self.shape[name] + 132 if len(sample) != self.shape[name]: + 133 raise ValueError('Incompatible samples and idx for %s: %d vs. %d' % (name, len(sample), self.shape[name])) + 134 self.r_values[name] = np.mean(sample) + 135 self.deltas[name] = sample - self.r_values[name] + 136 self._value += self.shape[name] * self.r_values[name] + 137 self._value /= self.N + 138 + 139 self._dvalue = 0.0 + 140 self.ddvalue = 0.0 + 141 self.reweighted = False 142 - 143 @property - 144 def value(self): - 145 return self._value - 146 - 147 @property - 148 def dvalue(self): - 149 return self._dvalue - 150 - 151 @property - 152 def e_names(self): - 153 return sorted(set([o.split('|')[0] for o in self.names])) - 154 - 155 @property - 156 def cov_names(self): - 157 return sorted(set([o for o in self.covobs.keys()])) - 158 - 159 @property - 160 def mc_names(self): - 161 return sorted(set([o.split('|')[0] for o in self.names if o not in self.cov_names])) - 162 - 163 @property - 164 def e_content(self): - 165 res = {} - 166 for e, e_name in enumerate(self.e_names): - 167 res[e_name] = sorted(filter(lambda x: x.startswith(e_name + '|'), self.names)) - 168 if e_name in self.names: - 169 res[e_name].append(e_name) - 170 return res - 171 - 172 @property - 173 def covobs(self): - 174 return self._covobs - 175 - 176 def gamma_method(self, **kwargs): - 177 """Estimate the error and related properties of the Obs. - 178 - 179 Parameters - 180 ---------- - 181 S : float - 182 specifies a custom value for the parameter S (default 2.0). - 183 If set to 0 it is assumed that the data exhibits no - 184 autocorrelation. In this case the error estimates coincides - 185 with the sample standard error. - 186 tau_exp : float - 187 positive value triggers the critical slowing down analysis - 188 (default 0.0). - 189 N_sigma : float - 190 number of standard deviations from zero until the tail is - 191 attached to the autocorrelation function (default 1). - 192 fft : bool - 193 determines whether the fft algorithm is used for the computation - 194 of the autocorrelation function (default True) - 195 """ - 196 - 197 e_content = self.e_content - 198 self.e_dvalue = {} - 199 self.e_ddvalue = {} - 200 self.e_tauint = {} - 201 self.e_dtauint = {} - 202 self.e_windowsize = {} - 203 self.e_n_tauint = {} - 204 self.e_n_dtauint = {} - 205 e_gamma = {} - 206 self.e_rho = {} - 207 self.e_drho = {} - 208 self._dvalue = 0 - 209 self.ddvalue = 0 - 210 - 211 self.S = {} - 212 self.tau_exp = {} - 213 self.N_sigma = {} - 214 - 215 if kwargs.get('fft') is False: - 216 fft = False - 217 else: - 218 fft = True - 219 - 220 def _parse_kwarg(kwarg_name): - 221 if kwarg_name in kwargs: - 222 tmp = kwargs.get(kwarg_name) - 223 if isinstance(tmp, (int, float)): - 224 if tmp < 0: - 225 raise ValueError(kwarg_name + ' has to be larger or equal to 0.') - 226 for e, e_name in enumerate(self.e_names): - 227 getattr(self, kwarg_name)[e_name] = tmp - 228 else: - 229 raise TypeError(kwarg_name + ' is not in proper format.') - 230 else: - 231 for e, e_name in enumerate(self.e_names): - 232 if e_name in getattr(Obs, kwarg_name + '_dict'): - 233 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_dict')[e_name] - 234 else: - 235 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_global') - 236 - 237 _parse_kwarg('S') - 238 _parse_kwarg('tau_exp') - 239 _parse_kwarg('N_sigma') - 240 - 241 for e, e_name in enumerate(self.mc_names): - 242 gapsize = _determine_gap(self, e_content, e_name) - 243 - 244 r_length = [] - 245 for r_name in e_content[e_name]: - 246 if isinstance(self.idl[r_name], range): - 247 r_length.append(len(self.idl[r_name]) * self.idl[r_name].step // gapsize) - 248 else: - 249 r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1) // gapsize) - 250 - 251 e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]]) - 252 w_max = max(r_length) // 2 - 253 e_gamma[e_name] = np.zeros(w_max) - 254 self.e_rho[e_name] = np.zeros(w_max) - 255 self.e_drho[e_name] = np.zeros(w_max) - 256 - 257 for r_name in e_content[e_name]: - 258 e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) - 259 - 260 gamma_div = np.zeros(w_max) - 261 for r_name in e_content[e_name]: - 262 gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) - 263 gamma_div[gamma_div < 1] = 1.0 - 264 e_gamma[e_name] /= gamma_div[:w_max] - 265 - 266 if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero - 267 self.e_tauint[e_name] = 0.5 - 268 self.e_dtauint[e_name] = 0.0 - 269 self.e_dvalue[e_name] = 0.0 - 270 self.e_ddvalue[e_name] = 0.0 - 271 self.e_windowsize[e_name] = 0 - 272 continue - 273 - 274 self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0] - 275 self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:]))) - 276 # Make sure no entry of tauint is smaller than 0.5 - 277 self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps - 278 # hep-lat/0306017 eq. (42) - 279 self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) + 0.5 - self.e_n_tauint[e_name]) / e_N) - 280 self.e_n_dtauint[e_name][0] = 0.0 - 281 - 282 def _compute_drho(i): - 283 tmp = (self.e_rho[e_name][i + 1:w_max] - 284 + np.concatenate([self.e_rho[e_name][i - 1:None if i - (w_max - 1) // 2 <= 0 else (2 * i - (2 * w_max) // 2):-1], - 285 self.e_rho[e_name][1:max(1, w_max - 2 * i)]]) - 286 - 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i]) - 287 self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N) - 288 - 289 if self.tau_exp[e_name] > 0: - 290 _compute_drho(1) - 291 texp = self.tau_exp[e_name] - 292 # Critical slowing down analysis - 293 if w_max // 2 <= 1: - 294 raise ValueError("Need at least 8 samples for tau_exp error analysis") - 295 for n in range(1, w_max // 2): - 296 _compute_drho(n + 1) - 297 if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2: - 298 # Bias correction hep-lat/0306017 eq. (49) included - 299 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive - 300 self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2) - 301 # Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2 - 302 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) - 303 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) - 304 self.e_windowsize[e_name] = n - 305 break - 306 else: - 307 if self.S[e_name] == 0.0: - 308 self.e_tauint[e_name] = 0.5 - 309 self.e_dtauint[e_name] = 0.0 - 310 self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1)) - 311 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N) - 312 self.e_windowsize[e_name] = 0 - 313 else: - 314 # Standard automatic windowing procedure - 315 tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][1:] + 1) / (2 * self.e_n_tauint[e_name][1:] - 1)) - 316 g_w = np.exp(- np.arange(1, len(tau) + 1) / tau) - tau / np.sqrt(np.arange(1, len(tau) + 1) * e_N) - 317 for n in range(1, w_max): - 318 if g_w[n - 1] < 0 or n >= w_max - 1: - 319 _compute_drho(n) - 320 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49) - 321 self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n] - 322 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) - 323 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) - 324 self.e_windowsize[e_name] = n - 325 break - 326 - 327 self._dvalue += self.e_dvalue[e_name] ** 2 - 328 self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2 - 329 - 330 for e_name in self.cov_names: - 331 self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq()) - 332 self.e_ddvalue[e_name] = 0 - 333 self._dvalue += self.e_dvalue[e_name]**2 - 334 - 335 self._dvalue = np.sqrt(self._dvalue) - 336 if self._dvalue == 0.0: - 337 self.ddvalue = 0.0 - 338 else: - 339 self.ddvalue = np.sqrt(self.ddvalue) / self._dvalue - 340 return - 341 - 342 gm = gamma_method + 143 self.tag = None + 144 + 145 @property + 146 def value(self): + 147 return self._value + 148 + 149 @property + 150 def dvalue(self): + 151 return self._dvalue + 152 + 153 @property + 154 def e_names(self): + 155 return sorted(set([o.split('|')[0] for o in self.names])) + 156 + 157 @property + 158 def cov_names(self): + 159 return sorted(set([o for o in self.covobs.keys()])) + 160 + 161 @property + 162 def mc_names(self): + 163 return sorted(set([o.split('|')[0] for o in self.names if o not in self.cov_names])) + 164 + 165 @property + 166 def e_content(self): + 167 res = {} + 168 for e, e_name in enumerate(self.e_names): + 169 res[e_name] = sorted(filter(lambda x: x.startswith(e_name + '|'), self.names)) + 170 if e_name in self.names: + 171 res[e_name].append(e_name) + 172 return res + 173 + 174 @property + 175 def covobs(self): + 176 return self._covobs + 177 + 178 def gamma_method(self, **kwargs): + 179 """Estimate the error and related properties of the Obs. + 180 + 181 Parameters + 182 ---------- + 183 S : float + 184 specifies a custom value for the parameter S (default 2.0). + 185 If set to 0 it is assumed that the data exhibits no + 186 autocorrelation. In this case the error estimates coincides + 187 with the sample standard error. + 188 tau_exp : float + 189 positive value triggers the critical slowing down analysis + 190 (default 0.0). + 191 N_sigma : float + 192 number of standard deviations from zero until the tail is + 193 attached to the autocorrelation function (default 1). + 194 fft : bool + 195 determines whether the fft algorithm is used for the computation + 196 of the autocorrelation function (default True) + 197 """ + 198 + 199 e_content = self.e_content + 200 self.e_dvalue = {} + 201 self.e_ddvalue = {} + 202 self.e_tauint = {} + 203 self.e_dtauint = {} + 204 self.e_windowsize = {} + 205 self.e_n_tauint = {} + 206 self.e_n_dtauint = {} + 207 e_gamma = {} + 208 self.e_rho = {} + 209 self.e_drho = {} + 210 self._dvalue = 0 + 211 self.ddvalue = 0 + 212 + 213 self.S = {} + 214 self.tau_exp = {} + 215 self.N_sigma = {} + 216 + 217 if kwargs.get('fft') is False: + 218 fft = False + 219 else: + 220 fft = True + 221 + 222 def _parse_kwarg(kwarg_name): + 223 if kwarg_name in kwargs: + 224 tmp = kwargs.get(kwarg_name) + 225 if isinstance(tmp, (int, float)): + 226 if tmp < 0: + 227 raise ValueError(kwarg_name + ' has to be larger or equal to 0.') + 228 for e, e_name in enumerate(self.e_names): + 229 getattr(self, kwarg_name)[e_name] = tmp + 230 else: + 231 raise TypeError(kwarg_name + ' is not in proper format.') + 232 else: + 233 for e, e_name in enumerate(self.e_names): + 234 if e_name in getattr(Obs, kwarg_name + '_dict'): + 235 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_dict')[e_name] + 236 else: + 237 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_global') + 238 + 239 _parse_kwarg('S') + 240 _parse_kwarg('tau_exp') + 241 _parse_kwarg('N_sigma') + 242 + 243 for e, e_name in enumerate(self.mc_names): + 244 gapsize = _determine_gap(self, e_content, e_name) + 245 + 246 r_length = [] + 247 for r_name in e_content[e_name]: + 248 if isinstance(self.idl[r_name], range): + 249 r_length.append(len(self.idl[r_name]) * self.idl[r_name].step // gapsize) + 250 else: + 251 r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1) // gapsize) + 252 + 253 e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]]) + 254 w_max = max(r_length) // 2 + 255 e_gamma[e_name] = np.zeros(w_max) + 256 self.e_rho[e_name] = np.zeros(w_max) + 257 self.e_drho[e_name] = np.zeros(w_max) + 258 + 259 for r_name in e_content[e_name]: + 260 e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) + 261 + 262 gamma_div = np.zeros(w_max) + 263 for r_name in e_content[e_name]: + 264 gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) + 265 gamma_div[gamma_div < 1] = 1.0 + 266 e_gamma[e_name] /= gamma_div[:w_max] + 267 + 268 if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero + 269 self.e_tauint[e_name] = 0.5 + 270 self.e_dtauint[e_name] = 0.0 + 271 self.e_dvalue[e_name] = 0.0 + 272 self.e_ddvalue[e_name] = 0.0 + 273 self.e_windowsize[e_name] = 0 + 274 continue + 275 + 276 self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0] + 277 self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:]))) + 278 # Make sure no entry of tauint is smaller than 0.5 + 279 self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps + 280 # hep-lat/0306017 eq. (42) + 281 self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) + 0.5 - self.e_n_tauint[e_name]) / e_N) + 282 self.e_n_dtauint[e_name][0] = 0.0 + 283 + 284 def _compute_drho(i): + 285 tmp = (self.e_rho[e_name][i + 1:w_max] + 286 + np.concatenate([self.e_rho[e_name][i - 1:None if i - (w_max - 1) // 2 <= 0 else (2 * i - (2 * w_max) // 2):-1], + 287 self.e_rho[e_name][1:max(1, w_max - 2 * i)]]) + 288 - 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i]) + 289 self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N) + 290 + 291 if self.tau_exp[e_name] > 0: + 292 _compute_drho(1) + 293 texp = self.tau_exp[e_name] + 294 # Critical slowing down analysis + 295 if w_max // 2 <= 1: + 296 raise ValueError("Need at least 8 samples for tau_exp error analysis") + 297 for n in range(1, w_max // 2): + 298 _compute_drho(n + 1) + 299 if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2: + 300 # Bias correction hep-lat/0306017 eq. (49) included + 301 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive + 302 self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2) + 303 # Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2 + 304 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) + 305 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) + 306 self.e_windowsize[e_name] = n + 307 break + 308 else: + 309 if self.S[e_name] == 0.0: + 310 self.e_tauint[e_name] = 0.5 + 311 self.e_dtauint[e_name] = 0.0 + 312 self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1)) + 313 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N) + 314 self.e_windowsize[e_name] = 0 + 315 else: + 316 # Standard automatic windowing procedure + 317 tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][1:] + 1) / (2 * self.e_n_tauint[e_name][1:] - 1)) + 318 g_w = np.exp(- np.arange(1, len(tau) + 1) / tau) - tau / np.sqrt(np.arange(1, len(tau) + 1) * e_N) + 319 for n in range(1, w_max): + 320 if g_w[n - 1] < 0 or n >= w_max - 1: + 321 _compute_drho(n) + 322 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49) + 323 self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n] + 324 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) + 325 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) + 326 self.e_windowsize[e_name] = n + 327 break + 328 + 329 self._dvalue += self.e_dvalue[e_name] ** 2 + 330 self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2 + 331 + 332 for e_name in self.cov_names: + 333 self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq()) + 334 self.e_ddvalue[e_name] = 0 + 335 self._dvalue += self.e_dvalue[e_name]**2 + 336 + 337 self._dvalue = np.sqrt(self._dvalue) + 338 if self._dvalue == 0.0: + 339 self.ddvalue = 0.0 + 340 else: + 341 self.ddvalue = np.sqrt(self.ddvalue) / self._dvalue + 342 return 343 - 344 def _calc_gamma(self, deltas, idx, shape, w_max, fft, gapsize): - 345 """Calculate Gamma_{AA} from the deltas, which are defined on idx. - 346 idx is assumed to be a contiguous range (possibly with a stepsize != 1) - 347 - 348 Parameters - 349 ---------- - 350 deltas : list - 351 List of fluctuations - 352 idx : list - 353 List or range of configurations on which the deltas are defined. - 354 shape : int - 355 Number of configurations in idx. - 356 w_max : int - 357 Upper bound for the summation window. - 358 fft : bool - 359 determines whether the fft algorithm is used for the computation - 360 of the autocorrelation function. - 361 gapsize : int - 362 The target distance between two configurations. If longer distances - 363 are found in idx, the data is expanded. - 364 """ - 365 gamma = np.zeros(w_max) - 366 deltas = _expand_deltas(deltas, idx, shape, gapsize) - 367 new_shape = len(deltas) - 368 if fft: - 369 max_gamma = min(new_shape, w_max) - 370 # The padding for the fft has to be even - 371 padding = new_shape + max_gamma + (new_shape + max_gamma) % 2 - 372 gamma[:max_gamma] += np.fft.irfft(np.abs(np.fft.rfft(deltas, padding)) ** 2)[:max_gamma] - 373 else: - 374 for n in range(w_max): - 375 if new_shape - n >= 0: - 376 gamma[n] += deltas[0:new_shape - n].dot(deltas[n:new_shape]) - 377 - 378 return gamma + 344 gm = gamma_method + 345 + 346 def _calc_gamma(self, deltas, idx, shape, w_max, fft, gapsize): + 347 """Calculate Gamma_{AA} from the deltas, which are defined on idx. + 348 idx is assumed to be a contiguous range (possibly with a stepsize != 1) + 349 + 350 Parameters + 351 ---------- + 352 deltas : list + 353 List of fluctuations + 354 idx : list + 355 List or range of configurations on which the deltas are defined. + 356 shape : int + 357 Number of configurations in idx. + 358 w_max : int + 359 Upper bound for the summation window. + 360 fft : bool + 361 determines whether the fft algorithm is used for the computation + 362 of the autocorrelation function. + 363 gapsize : int + 364 The target distance between two configurations. If longer distances + 365 are found in idx, the data is expanded. + 366 """ + 367 gamma = np.zeros(w_max) + 368 deltas = _expand_deltas(deltas, idx, shape, gapsize) + 369 new_shape = len(deltas) + 370 if fft: + 371 max_gamma = min(new_shape, w_max) + 372 # The padding for the fft has to be even + 373 padding = new_shape + max_gamma + (new_shape + max_gamma) % 2 + 374 gamma[:max_gamma] += np.fft.irfft(np.abs(np.fft.rfft(deltas, padding)) ** 2)[:max_gamma] + 375 else: + 376 for n in range(w_max): + 377 if new_shape - n >= 0: + 378 gamma[n] += deltas[0:new_shape - n].dot(deltas[n:new_shape]) 379 - 380 def details(self, ens_content=True): - 381 """Output detailed properties of the Obs. - 382 - 383 Parameters - 384 ---------- - 385 ens_content : bool - 386 print details about the ensembles and replica if true. - 387 """ - 388 if self.tag is not None: - 389 print("Description:", self.tag) - 390 if not hasattr(self, 'e_dvalue'): - 391 print('Result\t %3.8e' % (self.value)) - 392 else: - 393 if self.value == 0.0: - 394 percentage = np.nan - 395 else: - 396 percentage = np.abs(self._dvalue / self.value) * 100 - 397 print('Result\t %3.8e +/- %3.8e +/- %3.8e (%3.3f%%)' % (self.value, self._dvalue, self.ddvalue, percentage)) - 398 if len(self.e_names) > 1: - 399 print(' Ensemble errors:') - 400 e_content = self.e_content - 401 for e_name in self.mc_names: - 402 gap = _determine_gap(self, e_content, e_name) - 403 - 404 if len(self.e_names) > 1: - 405 print('', e_name, '\t %3.6e +/- %3.6e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name])) - 406 tau_string = " \N{GREEK SMALL LETTER TAU}_int\t " + _format_uncertainty(self.e_tauint[e_name], self.e_dtauint[e_name]) - 407 tau_string += f" in units of {gap} config" - 408 if gap > 1: - 409 tau_string += "s" - 410 if self.tau_exp[e_name] > 0: - 411 tau_string = f"{tau_string: <45}" + '\t(\N{GREEK SMALL LETTER TAU}_exp=%3.2f, N_\N{GREEK SMALL LETTER SIGMA}=%1.0i)' % (self.tau_exp[e_name], self.N_sigma[e_name]) - 412 else: - 413 tau_string = f"{tau_string: <45}" + '\t(S=%3.2f)' % (self.S[e_name]) - 414 print(tau_string) - 415 for e_name in self.cov_names: - 416 print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name])) - 417 if ens_content is True: - 418 if len(self.e_names) == 1: - 419 print(self.N, 'samples in', len(self.e_names), 'ensemble:') - 420 else: - 421 print(self.N, 'samples in', len(self.e_names), 'ensembles:') - 422 my_string_list = [] - 423 for key, value in sorted(self.e_content.items()): - 424 if key not in self.covobs: - 425 my_string = ' ' + "\u00B7 Ensemble '" + key + "' " - 426 if len(value) == 1: - 427 my_string += f': {self.shape[value[0]]} configurations' - 428 if isinstance(self.idl[value[0]], range): - 429 my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')' - 430 else: - 431 my_string += f' (irregular range from {self.idl[value[0]][0]} to {self.idl[value[0]][-1]})' - 432 else: - 433 sublist = [] - 434 for v in value: - 435 my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' " - 436 my_substring += f': {self.shape[v]} configurations' - 437 if isinstance(self.idl[v], range): - 438 my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')' - 439 else: - 440 my_substring += f' (irregular range from {self.idl[v][0]} to {self.idl[v][-1]})' - 441 sublist.append(my_substring) - 442 - 443 my_string += '\n' + '\n'.join(sublist) - 444 else: - 445 my_string = ' ' + "\u00B7 Covobs '" + key + "' " - 446 my_string_list.append(my_string) - 447 print('\n'.join(my_string_list)) - 448 - 449 def reweight(self, weight): - 450 """Reweight the obs with given rewighting factors. - 451 - 452 Parameters - 453 ---------- - 454 weight : Obs - 455 Reweighting factor. An Observable that has to be defined on a superset of the - 456 configurations in obs[i].idl for all i. - 457 all_configs : bool - 458 if True, the reweighted observables are normalized by the average of - 459 the reweighting factor on all configurations in weight.idl and not - 460 on the configurations in obs[i].idl. Default False. - 461 """ - 462 return reweight(weight, [self])[0] - 463 - 464 def is_zero_within_error(self, sigma=1): - 465 """Checks whether the observable is zero within 'sigma' standard errors. - 466 - 467 Parameters - 468 ---------- - 469 sigma : int - 470 Number of standard errors used for the check. - 471 - 472 Works only properly when the gamma method was run. - 473 """ - 474 return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue - 475 - 476 def is_zero(self, atol=1e-10): - 477 """Checks whether the observable is zero within a given tolerance. - 478 - 479 Parameters - 480 ---------- - 481 atol : float - 482 Absolute tolerance (for details see numpy documentation). - 483 """ - 484 return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values()) - 485 - 486 def plot_tauint(self, save=None): - 487 """Plot integrated autocorrelation time for each ensemble. - 488 - 489 Parameters - 490 ---------- - 491 save : str - 492 saves the figure to a file named 'save' if. - 493 """ - 494 if not hasattr(self, 'e_dvalue'): - 495 raise Exception('Run the gamma method first.') - 496 - 497 for e, e_name in enumerate(self.mc_names): - 498 fig = plt.figure() - 499 plt.xlabel(r'$W$') - 500 plt.ylabel(r'$\tau_\mathrm{int}$') - 501 length = int(len(self.e_n_tauint[e_name])) - 502 if self.tau_exp[e_name] > 0: - 503 base = self.e_n_tauint[e_name][self.e_windowsize[e_name]] - 504 x_help = np.arange(2 * self.tau_exp[e_name]) - 505 y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base - 506 x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]) - 507 plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',') - 508 plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]], - 509 yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor']) - 510 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 - 511 label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2)) - 512 else: - 513 label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)) - 514 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) - 515 - 516 plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label) - 517 plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--') - 518 plt.legend() - 519 plt.xlim(-0.5, xmax) - 520 ylim = plt.ylim() - 521 plt.ylim(bottom=0.0, top=max(1.0, ylim[1])) - 522 plt.draw() - 523 if save: - 524 fig.savefig(save + "_" + str(e)) - 525 - 526 def plot_rho(self, save=None): - 527 """Plot normalized autocorrelation function time for each ensemble. - 528 - 529 Parameters - 530 ---------- - 531 save : str - 532 saves the figure to a file named 'save' if. - 533 """ - 534 if not hasattr(self, 'e_dvalue'): - 535 raise Exception('Run the gamma method first.') - 536 for e, e_name in enumerate(self.mc_names): - 537 fig = plt.figure() - 538 plt.xlabel('W') - 539 plt.ylabel('rho') - 540 length = int(len(self.e_drho[e_name])) - 541 plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2) - 542 plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',') - 543 if self.tau_exp[e_name] > 0: - 544 plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]], - 545 [self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1) - 546 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 - 547 plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2))) - 548 else: - 549 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) - 550 plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))) - 551 plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1) - 552 plt.xlim(-0.5, xmax) - 553 plt.draw() - 554 if save: - 555 fig.savefig(save + "_" + str(e)) - 556 - 557 def plot_rep_dist(self): - 558 """Plot replica distribution for each ensemble with more than one replicum.""" - 559 if not hasattr(self, 'e_dvalue'): - 560 raise Exception('Run the gamma method first.') - 561 for e, e_name in enumerate(self.mc_names): - 562 if len(self.e_content[e_name]) == 1: - 563 print('No replica distribution for a single replicum (', e_name, ')') - 564 continue - 565 r_length = [] - 566 sub_r_mean = 0 - 567 for r, r_name in enumerate(self.e_content[e_name]): - 568 r_length.append(len(self.deltas[r_name])) - 569 sub_r_mean += self.shape[r_name] * self.r_values[r_name] - 570 e_N = np.sum(r_length) - 571 sub_r_mean /= e_N - 572 arr = np.zeros(len(self.e_content[e_name])) - 573 for r, r_name in enumerate(self.e_content[e_name]): - 574 arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1)) - 575 plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name])) - 576 plt.title('Replica distribution' + e_name + ' (mean=0, var=1)') - 577 plt.draw() - 578 - 579 def plot_history(self, expand=True): - 580 """Plot derived Monte Carlo history for each ensemble - 581 - 582 Parameters - 583 ---------- - 584 expand : bool - 585 show expanded history for irregular Monte Carlo chains (default: True). - 586 """ - 587 for e, e_name in enumerate(self.mc_names): - 588 plt.figure() - 589 r_length = [] - 590 tmp = [] - 591 tmp_expanded = [] - 592 for r, r_name in enumerate(self.e_content[e_name]): - 593 tmp.append(self.deltas[r_name] + self.r_values[r_name]) - 594 if expand: - 595 tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name], 1) + self.r_values[r_name]) - 596 r_length.append(len(tmp_expanded[-1])) - 597 else: - 598 r_length.append(len(tmp[-1])) - 599 e_N = np.sum(r_length) - 600 x = np.arange(e_N) - 601 y_test = np.concatenate(tmp, axis=0) - 602 if expand: - 603 y = np.concatenate(tmp_expanded, axis=0) - 604 else: - 605 y = y_test - 606 plt.errorbar(x, y, fmt='.', markersize=3) - 607 plt.xlim(-0.5, e_N - 0.5) - 608 plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})') - 609 plt.draw() - 610 - 611 def plot_piechart(self, save=None): - 612 """Plot piechart which shows the fractional contribution of each - 613 ensemble to the error and returns a dictionary containing the fractions. - 614 - 615 Parameters - 616 ---------- - 617 save : str - 618 saves the figure to a file named 'save' if. - 619 """ - 620 if not hasattr(self, 'e_dvalue'): - 621 raise Exception('Run the gamma method first.') - 622 if np.isclose(0.0, self._dvalue, atol=1e-15): - 623 raise ValueError('Error is 0.0') - 624 labels = self.e_names - 625 sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 - 626 fig1, ax1 = plt.subplots() - 627 ax1.pie(sizes, labels=labels, startangle=90, normalize=True) - 628 ax1.axis('equal') - 629 plt.draw() - 630 if save: - 631 fig1.savefig(save) - 632 - 633 return dict(zip(labels, sizes)) + 380 return gamma + 381 + 382 def details(self, ens_content=True): + 383 """Output detailed properties of the Obs. + 384 + 385 Parameters + 386 ---------- + 387 ens_content : bool + 388 print details about the ensembles and replica if true. + 389 """ + 390 if self.tag is not None: + 391 print("Description:", self.tag) + 392 if not hasattr(self, 'e_dvalue'): + 393 print('Result\t %3.8e' % (self.value)) + 394 else: + 395 if self.value == 0.0: + 396 percentage = np.nan + 397 else: + 398 percentage = np.abs(self._dvalue / self.value) * 100 + 399 print('Result\t %3.8e +/- %3.8e +/- %3.8e (%3.3f%%)' % (self.value, self._dvalue, self.ddvalue, percentage)) + 400 if len(self.e_names) > 1: + 401 print(' Ensemble errors:') + 402 e_content = self.e_content + 403 for e_name in self.mc_names: + 404 gap = _determine_gap(self, e_content, e_name) + 405 + 406 if len(self.e_names) > 1: + 407 print('', e_name, '\t %3.6e +/- %3.6e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name])) + 408 tau_string = " \N{GREEK SMALL LETTER TAU}_int\t " + _format_uncertainty(self.e_tauint[e_name], self.e_dtauint[e_name]) + 409 tau_string += f" in units of {gap} config" + 410 if gap > 1: + 411 tau_string += "s" + 412 if self.tau_exp[e_name] > 0: + 413 tau_string = f"{tau_string: <45}" + '\t(\N{GREEK SMALL LETTER TAU}_exp=%3.2f, N_\N{GREEK SMALL LETTER SIGMA}=%1.0i)' % (self.tau_exp[e_name], self.N_sigma[e_name]) + 414 else: + 415 tau_string = f"{tau_string: <45}" + '\t(S=%3.2f)' % (self.S[e_name]) + 416 print(tau_string) + 417 for e_name in self.cov_names: + 418 print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name])) + 419 if ens_content is True: + 420 if len(self.e_names) == 1: + 421 print(self.N, 'samples in', len(self.e_names), 'ensemble:') + 422 else: + 423 print(self.N, 'samples in', len(self.e_names), 'ensembles:') + 424 my_string_list = [] + 425 for key, value in sorted(self.e_content.items()): + 426 if key not in self.covobs: + 427 my_string = ' ' + "\u00B7 Ensemble '" + key + "' " + 428 if len(value) == 1: + 429 my_string += f': {self.shape[value[0]]} configurations' + 430 if isinstance(self.idl[value[0]], range): + 431 my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')' + 432 else: + 433 my_string += f' (irregular range from {self.idl[value[0]][0]} to {self.idl[value[0]][-1]})' + 434 else: + 435 sublist = [] + 436 for v in value: + 437 my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' " + 438 my_substring += f': {self.shape[v]} configurations' + 439 if isinstance(self.idl[v], range): + 440 my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')' + 441 else: + 442 my_substring += f' (irregular range from {self.idl[v][0]} to {self.idl[v][-1]})' + 443 sublist.append(my_substring) + 444 + 445 my_string += '\n' + '\n'.join(sublist) + 446 else: + 447 my_string = ' ' + "\u00B7 Covobs '" + key + "' " + 448 my_string_list.append(my_string) + 449 print('\n'.join(my_string_list)) + 450 + 451 def reweight(self, weight): + 452 """Reweight the obs with given rewighting factors. + 453 + 454 Parameters + 455 ---------- + 456 weight : Obs + 457 Reweighting factor. An Observable that has to be defined on a superset of the + 458 configurations in obs[i].idl for all i. + 459 all_configs : bool + 460 if True, the reweighted observables are normalized by the average of + 461 the reweighting factor on all configurations in weight.idl and not + 462 on the configurations in obs[i].idl. Default False. + 463 """ + 464 return reweight(weight, [self])[0] + 465 + 466 def is_zero_within_error(self, sigma=1): + 467 """Checks whether the observable is zero within 'sigma' standard errors. + 468 + 469 Parameters + 470 ---------- + 471 sigma : int + 472 Number of standard errors used for the check. + 473 + 474 Works only properly when the gamma method was run. + 475 """ + 476 return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue + 477 + 478 def is_zero(self, atol=1e-10): + 479 """Checks whether the observable is zero within a given tolerance. + 480 + 481 Parameters + 482 ---------- + 483 atol : float + 484 Absolute tolerance (for details see numpy documentation). + 485 """ + 486 return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values()) + 487 + 488 def plot_tauint(self, save=None): + 489 """Plot integrated autocorrelation time for each ensemble. + 490 + 491 Parameters + 492 ---------- + 493 save : str + 494 saves the figure to a file named 'save' if. + 495 """ + 496 if not hasattr(self, 'e_dvalue'): + 497 raise Exception('Run the gamma method first.') + 498 + 499 for e, e_name in enumerate(self.mc_names): + 500 fig = plt.figure() + 501 plt.xlabel(r'$W$') + 502 plt.ylabel(r'$\tau_\mathrm{int}$') + 503 length = int(len(self.e_n_tauint[e_name])) + 504 if self.tau_exp[e_name] > 0: + 505 base = self.e_n_tauint[e_name][self.e_windowsize[e_name]] + 506 x_help = np.arange(2 * self.tau_exp[e_name]) + 507 y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base + 508 x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]) + 509 plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',') + 510 plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]], + 511 yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor']) + 512 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 + 513 label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2)) + 514 else: + 515 label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)) + 516 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) + 517 + 518 plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label) + 519 plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--') + 520 plt.legend() + 521 plt.xlim(-0.5, xmax) + 522 ylim = plt.ylim() + 523 plt.ylim(bottom=0.0, top=max(1.0, ylim[1])) + 524 plt.draw() + 525 if save: + 526 fig.savefig(save + "_" + str(e)) + 527 + 528 def plot_rho(self, save=None): + 529 """Plot normalized autocorrelation function time for each ensemble. + 530 + 531 Parameters + 532 ---------- + 533 save : str + 534 saves the figure to a file named 'save' if. + 535 """ + 536 if not hasattr(self, 'e_dvalue'): + 537 raise Exception('Run the gamma method first.') + 538 for e, e_name in enumerate(self.mc_names): + 539 fig = plt.figure() + 540 plt.xlabel('W') + 541 plt.ylabel('rho') + 542 length = int(len(self.e_drho[e_name])) + 543 plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2) + 544 plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',') + 545 if self.tau_exp[e_name] > 0: + 546 plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]], + 547 [self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1) + 548 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 + 549 plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2))) + 550 else: + 551 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) + 552 plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))) + 553 plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1) + 554 plt.xlim(-0.5, xmax) + 555 plt.draw() + 556 if save: + 557 fig.savefig(save + "_" + str(e)) + 558 + 559 def plot_rep_dist(self): + 560 """Plot replica distribution for each ensemble with more than one replicum.""" + 561 if not hasattr(self, 'e_dvalue'): + 562 raise Exception('Run the gamma method first.') + 563 for e, e_name in enumerate(self.mc_names): + 564 if len(self.e_content[e_name]) == 1: + 565 print('No replica distribution for a single replicum (', e_name, ')') + 566 continue + 567 r_length = [] + 568 sub_r_mean = 0 + 569 for r, r_name in enumerate(self.e_content[e_name]): + 570 r_length.append(len(self.deltas[r_name])) + 571 sub_r_mean += self.shape[r_name] * self.r_values[r_name] + 572 e_N = np.sum(r_length) + 573 sub_r_mean /= e_N + 574 arr = np.zeros(len(self.e_content[e_name])) + 575 for r, r_name in enumerate(self.e_content[e_name]): + 576 arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1)) + 577 plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name])) + 578 plt.title('Replica distribution' + e_name + ' (mean=0, var=1)') + 579 plt.draw() + 580 + 581 def plot_history(self, expand=True): + 582 """Plot derived Monte Carlo history for each ensemble + 583 + 584 Parameters + 585 ---------- + 586 expand : bool + 587 show expanded history for irregular Monte Carlo chains (default: True). + 588 """ + 589 for e, e_name in enumerate(self.mc_names): + 590 plt.figure() + 591 r_length = [] + 592 tmp = [] + 593 tmp_expanded = [] + 594 for r, r_name in enumerate(self.e_content[e_name]): + 595 tmp.append(self.deltas[r_name] + self.r_values[r_name]) + 596 if expand: + 597 tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name], 1) + self.r_values[r_name]) + 598 r_length.append(len(tmp_expanded[-1])) + 599 else: + 600 r_length.append(len(tmp[-1])) + 601 e_N = np.sum(r_length) + 602 x = np.arange(e_N) + 603 y_test = np.concatenate(tmp, axis=0) + 604 if expand: + 605 y = np.concatenate(tmp_expanded, axis=0) + 606 else: + 607 y = y_test + 608 plt.errorbar(x, y, fmt='.', markersize=3) + 609 plt.xlim(-0.5, e_N - 0.5) + 610 plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})') + 611 plt.draw() + 612 + 613 def plot_piechart(self, save=None): + 614 """Plot piechart which shows the fractional contribution of each + 615 ensemble to the error and returns a dictionary containing the fractions. + 616 + 617 Parameters + 618 ---------- + 619 save : str + 620 saves the figure to a file named 'save' if. + 621 """ + 622 if not hasattr(self, 'e_dvalue'): + 623 raise Exception('Run the gamma method first.') + 624 if np.isclose(0.0, self._dvalue, atol=1e-15): + 625 raise ValueError('Error is 0.0') + 626 labels = self.e_names + 627 sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 + 628 fig1, ax1 = plt.subplots() + 629 ax1.pie(sizes, labels=labels, startangle=90, normalize=True) + 630 ax1.axis('equal') + 631 plt.draw() + 632 if save: + 633 fig1.savefig(save) 634 - 635 def dump(self, filename, datatype="json.gz", description="", **kwargs): - 636 """Dump the Obs to a file 'name' of chosen format. - 637 - 638 Parameters - 639 ---------- - 640 filename : str - 641 name of the file to be saved. - 642 datatype : str - 643 Format of the exported file. Supported formats include - 644 "json.gz" and "pickle" - 645 description : str - 646 Description for output file, only relevant for json.gz format. - 647 path : str - 648 specifies a custom path for the file (default '.') - 649 """ - 650 if 'path' in kwargs: - 651 file_name = kwargs.get('path') + '/' + filename - 652 else: - 653 file_name = filename - 654 - 655 if datatype == "json.gz": - 656 from .input.json import dump_to_json - 657 dump_to_json([self], file_name, description=description) - 658 elif datatype == "pickle": - 659 with open(file_name + '.p', 'wb') as fb: - 660 pickle.dump(self, fb) - 661 else: - 662 raise TypeError("Unknown datatype " + str(datatype)) - 663 - 664 def export_jackknife(self): - 665 """Export jackknife samples from the Obs - 666 - 667 Returns - 668 ------- - 669 numpy.ndarray - 670 Returns a numpy array of length N + 1 where N is the number of samples - 671 for the given ensemble and replicum. The zeroth entry of the array contains - 672 the mean value of the Obs, entries 1 to N contain the N jackknife samples - 673 derived from the Obs. The current implementation only works for observables - 674 defined on exactly one ensemble and replicum. The derived jackknife samples - 675 should agree with samples from a full jackknife analysis up to O(1/N). - 676 """ - 677 - 678 if len(self.names) != 1: - 679 raise ValueError("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") - 680 - 681 name = self.names[0] - 682 full_data = self.deltas[name] + self.r_values[name] - 683 n = full_data.size - 684 mean = self.value - 685 tmp_jacks = np.zeros(n + 1) - 686 tmp_jacks[0] = mean - 687 tmp_jacks[1:] = (n * mean - full_data) / (n - 1) - 688 return tmp_jacks - 689 - 690 def export_bootstrap(self, samples=500, random_numbers=None, save_rng=None): - 691 """Export bootstrap samples from the Obs - 692 - 693 Parameters - 694 ---------- - 695 samples : int - 696 Number of bootstrap samples to generate. - 697 random_numbers : np.ndarray - 698 Array of shape (samples, length) containing the random numbers to generate the bootstrap samples. - 699 If not provided the bootstrap samples are generated bashed on the md5 hash of the enesmble name. - 700 save_rng : str - 701 Save the random numbers to a file if a path is specified. - 702 - 703 Returns - 704 ------- - 705 numpy.ndarray - 706 Returns a numpy array of length N + 1 where N is the number of samples - 707 for the given ensemble and replicum. The zeroth entry of the array contains - 708 the mean value of the Obs, entries 1 to N contain the N import_bootstrap samples - 709 derived from the Obs. The current implementation only works for observables - 710 defined on exactly one ensemble and replicum. The derived bootstrap samples - 711 should agree with samples from a full bootstrap analysis up to O(1/N). - 712 """ - 713 if len(self.names) != 1: - 714 raise ValueError("'export_boostrap' is only implemented for Obs defined on one ensemble and replicum.") - 715 - 716 name = self.names[0] - 717 length = self.N - 718 - 719 if random_numbers is None: - 720 seed = int(hashlib.md5(name.encode()).hexdigest(), 16) & 0xFFFFFFFF - 721 rng = np.random.default_rng(seed) - 722 random_numbers = rng.integers(0, length, size=(samples, length)) - 723 - 724 if save_rng is not None: - 725 np.savetxt(save_rng, random_numbers, fmt='%i') - 726 - 727 proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]) / length - 728 ret = np.zeros(samples + 1) - 729 ret[0] = self.value - 730 ret[1:] = proj @ (self.deltas[name] + self.r_values[name]) - 731 return ret - 732 - 733 def __float__(self): - 734 return float(self.value) - 735 - 736 def __repr__(self): - 737 return 'Obs[' + str(self) + ']' - 738 - 739 def __str__(self): - 740 return _format_uncertainty(self.value, self._dvalue) - 741 - 742 def __format__(self, format_type): - 743 if format_type == "": - 744 significance = 2 - 745 else: - 746 significance = int(float(format_type.replace("+", "").replace("-", ""))) - 747 my_str = _format_uncertainty(self.value, self._dvalue, - 748 significance=significance) - 749 for char in ["+", " "]: - 750 if format_type.startswith(char): - 751 if my_str[0] != "-": - 752 my_str = char + my_str - 753 return my_str - 754 - 755 def __hash__(self): - 756 hash_tuple = (np.array([self.value]).astype(np.float32).data.tobytes(),) - 757 hash_tuple += tuple([o.astype(np.float32).data.tobytes() for o in self.deltas.values()]) - 758 hash_tuple += tuple([np.array([o.errsq()]).astype(np.float32).data.tobytes() for o in self.covobs.values()]) - 759 hash_tuple += tuple([o.encode() for o in self.names]) - 760 m = hashlib.md5() - 761 [m.update(o) for o in hash_tuple] - 762 return int(m.hexdigest(), 16) & 0xFFFFFFFF - 763 - 764 # Overload comparisons - 765 def __lt__(self, other): - 766 return self.value < other - 767 - 768 def __le__(self, other): - 769 return self.value <= other - 770 - 771 def __gt__(self, other): - 772 return self.value > other - 773 - 774 def __ge__(self, other): - 775 return self.value >= other - 776 - 777 def __eq__(self, other): - 778 if other is None: - 779 return False - 780 return (self - other).is_zero() - 781 - 782 # Overload math operations - 783 def __add__(self, y): - 784 if isinstance(y, Obs): - 785 return derived_observable(lambda x, **kwargs: x[0] + x[1], [self, y], man_grad=[1, 1]) - 786 else: - 787 if isinstance(y, np.ndarray): - 788 return np.array([self + o for o in y]) - 789 elif isinstance(y, complex): - 790 return CObs(self, 0) + y - 791 elif y.__class__.__name__ in ['Corr', 'CObs']: - 792 return NotImplemented - 793 else: - 794 return derived_observable(lambda x, **kwargs: x[0] + y, [self], man_grad=[1]) - 795 - 796 def __radd__(self, y): - 797 return self + y - 798 - 799 def __mul__(self, y): - 800 if isinstance(y, Obs): - 801 return derived_observable(lambda x, **kwargs: x[0] * x[1], [self, y], man_grad=[y.value, self.value]) - 802 else: - 803 if isinstance(y, np.ndarray): - 804 return np.array([self * o for o in y]) - 805 elif isinstance(y, complex): - 806 return CObs(self * y.real, self * y.imag) - 807 elif y.__class__.__name__ in ['Corr', 'CObs']: - 808 return NotImplemented - 809 else: - 810 return derived_observable(lambda x, **kwargs: x[0] * y, [self], man_grad=[y]) - 811 - 812 def __rmul__(self, y): - 813 return self * y - 814 - 815 def __sub__(self, y): - 816 if isinstance(y, Obs): - 817 return derived_observable(lambda x, **kwargs: x[0] - x[1], [self, y], man_grad=[1, -1]) - 818 else: - 819 if isinstance(y, np.ndarray): - 820 return np.array([self - o for o in y]) - 821 elif y.__class__.__name__ in ['Corr', 'CObs']: - 822 return NotImplemented - 823 else: - 824 return derived_observable(lambda x, **kwargs: x[0] - y, [self], man_grad=[1]) - 825 - 826 def __rsub__(self, y): - 827 return -1 * (self - y) - 828 - 829 def __pos__(self): - 830 return self - 831 - 832 def __neg__(self): - 833 return -1 * self - 834 - 835 def __truediv__(self, y): - 836 if isinstance(y, Obs): - 837 return derived_observable(lambda x, **kwargs: x[0] / x[1], [self, y], man_grad=[1 / y.value, - self.value / y.value ** 2]) - 838 else: - 839 if isinstance(y, np.ndarray): - 840 return np.array([self / o for o in y]) - 841 elif y.__class__.__name__ in ['Corr', 'CObs']: - 842 return NotImplemented - 843 else: - 844 return derived_observable(lambda x, **kwargs: x[0] / y, [self], man_grad=[1 / y]) - 845 - 846 def __rtruediv__(self, y): - 847 if isinstance(y, Obs): - 848 return derived_observable(lambda x, **kwargs: x[0] / x[1], [y, self], man_grad=[1 / self.value, - y.value / self.value ** 2]) - 849 else: - 850 if isinstance(y, np.ndarray): - 851 return np.array([o / self for o in y]) - 852 elif y.__class__.__name__ in ['Corr', 'CObs']: - 853 return NotImplemented - 854 else: - 855 return derived_observable(lambda x, **kwargs: y / x[0], [self], man_grad=[-y / self.value ** 2]) - 856 - 857 def __pow__(self, y): - 858 if isinstance(y, Obs): - 859 return derived_observable(lambda x, **kwargs: x[0] ** x[1], [self, y], man_grad=[y.value * self.value ** (y.value - 1), self.value ** y.value * np.log(self.value)]) - 860 else: - 861 return derived_observable(lambda x, **kwargs: x[0] ** y, [self], man_grad=[y * self.value ** (y - 1)]) - 862 - 863 def __rpow__(self, y): - 864 return derived_observable(lambda x, **kwargs: y ** x[0], [self], man_grad=[y ** self.value * np.log(y)]) - 865 - 866 def __abs__(self): - 867 return derived_observable(lambda x: anp.abs(x[0]), [self]) - 868 - 869 # Overload numpy functions - 870 def sqrt(self): - 871 return derived_observable(lambda x, **kwargs: np.sqrt(x[0]), [self], man_grad=[1 / 2 / np.sqrt(self.value)]) - 872 - 873 def log(self): - 874 return derived_observable(lambda x, **kwargs: np.log(x[0]), [self], man_grad=[1 / self.value]) - 875 - 876 def exp(self): - 877 return derived_observable(lambda x, **kwargs: np.exp(x[0]), [self], man_grad=[np.exp(self.value)]) - 878 - 879 def sin(self): - 880 return derived_observable(lambda x, **kwargs: np.sin(x[0]), [self], man_grad=[np.cos(self.value)]) - 881 - 882 def cos(self): - 883 return derived_observable(lambda x, **kwargs: np.cos(x[0]), [self], man_grad=[-np.sin(self.value)]) - 884 - 885 def tan(self): - 886 return derived_observable(lambda x, **kwargs: np.tan(x[0]), [self], man_grad=[1 / np.cos(self.value) ** 2]) - 887 - 888 def arcsin(self): - 889 return derived_observable(lambda x: anp.arcsin(x[0]), [self]) - 890 - 891 def arccos(self): - 892 return derived_observable(lambda x: anp.arccos(x[0]), [self]) - 893 - 894 def arctan(self): - 895 return derived_observable(lambda x: anp.arctan(x[0]), [self]) - 896 - 897 def sinh(self): - 898 return derived_observable(lambda x, **kwargs: np.sinh(x[0]), [self], man_grad=[np.cosh(self.value)]) - 899 - 900 def cosh(self): - 901 return derived_observable(lambda x, **kwargs: np.cosh(x[0]), [self], man_grad=[np.sinh(self.value)]) - 902 - 903 def tanh(self): - 904 return derived_observable(lambda x, **kwargs: np.tanh(x[0]), [self], man_grad=[1 / np.cosh(self.value) ** 2]) - 905 - 906 def arcsinh(self): - 907 return derived_observable(lambda x: anp.arcsinh(x[0]), [self]) - 908 - 909 def arccosh(self): - 910 return derived_observable(lambda x: anp.arccosh(x[0]), [self]) - 911 - 912 def arctanh(self): - 913 return derived_observable(lambda x: anp.arctanh(x[0]), [self]) - 914 - 915 - 916class CObs: - 917 """Class for a complex valued observable.""" - 918 __slots__ = ['_real', '_imag', 'tag'] - 919 - 920 def __init__(self, real, imag=0.0): - 921 self._real = real - 922 self._imag = imag - 923 self.tag = None - 924 - 925 @property - 926 def real(self): - 927 return self._real - 928 - 929 @property - 930 def imag(self): - 931 return self._imag - 932 - 933 def gamma_method(self, **kwargs): - 934 """Executes the gamma_method for the real and the imaginary part.""" - 935 if isinstance(self.real, Obs): - 936 self.real.gamma_method(**kwargs) - 937 if isinstance(self.imag, Obs): - 938 self.imag.gamma_method(**kwargs) - 939 - 940 def is_zero(self): - 941 """Checks whether both real and imaginary part are zero within machine precision.""" - 942 return self.real == 0.0 and self.imag == 0.0 - 943 - 944 def conjugate(self): - 945 return CObs(self.real, -self.imag) - 946 - 947 def __add__(self, other): - 948 if isinstance(other, np.ndarray): - 949 return other + self - 950 elif hasattr(other, 'real') and hasattr(other, 'imag'): - 951 return CObs(self.real + other.real, - 952 self.imag + other.imag) - 953 else: - 954 return CObs(self.real + other, self.imag) - 955 - 956 def __radd__(self, y): - 957 return self + y - 958 - 959 def __sub__(self, other): - 960 if isinstance(other, np.ndarray): - 961 return -1 * (other - self) - 962 elif hasattr(other, 'real') and hasattr(other, 'imag'): - 963 return CObs(self.real - other.real, self.imag - other.imag) - 964 else: - 965 return CObs(self.real - other, self.imag) - 966 - 967 def __rsub__(self, other): - 968 return -1 * (self - other) - 969 - 970 def __mul__(self, other): - 971 if isinstance(other, np.ndarray): - 972 return other * self - 973 elif hasattr(other, 'real') and hasattr(other, 'imag'): - 974 if all(isinstance(i, Obs) for i in [self.real, self.imag, other.real, other.imag]): - 975 return CObs(derived_observable(lambda x, **kwargs: x[0] * x[1] - x[2] * x[3], - 976 [self.real, other.real, self.imag, other.imag], - 977 man_grad=[other.real.value, self.real.value, -other.imag.value, -self.imag.value]), - 978 derived_observable(lambda x, **kwargs: x[2] * x[1] + x[0] * x[3], - 979 [self.real, other.real, self.imag, other.imag], - 980 man_grad=[other.imag.value, self.imag.value, other.real.value, self.real.value])) - 981 elif getattr(other, 'imag', 0) != 0: - 982 return CObs(self.real * other.real - self.imag * other.imag, - 983 self.imag * other.real + self.real * other.imag) - 984 else: - 985 return CObs(self.real * other.real, self.imag * other.real) - 986 else: - 987 return CObs(self.real * other, self.imag * other) - 988 - 989 def __rmul__(self, other): - 990 return self * other - 991 - 992 def __truediv__(self, other): - 993 if isinstance(other, np.ndarray): - 994 return 1 / (other / self) - 995 elif hasattr(other, 'real') and hasattr(other, 'imag'): - 996 r = other.real ** 2 + other.imag ** 2 - 997 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.imag * other.real - self.real * other.imag) / r) - 998 else: - 999 return CObs(self.real / other, self.imag / other) -1000 -1001 def __rtruediv__(self, other): -1002 r = self.real ** 2 + self.imag ** 2 -1003 if hasattr(other, 'real') and hasattr(other, 'imag'): -1004 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.real * other.imag - self.imag * other.real) / r) -1005 else: -1006 return CObs(self.real * other / r, -self.imag * other / r) -1007 -1008 def __abs__(self): -1009 return np.sqrt(self.real**2 + self.imag**2) -1010 -1011 def __pos__(self): -1012 return self -1013 -1014 def __neg__(self): -1015 return -1 * self -1016 -1017 def __eq__(self, other): -1018 return self.real == other.real and self.imag == other.imag -1019 -1020 def __str__(self): -1021 return '(' + str(self.real) + int(self.imag >= 0.0) * '+' + str(self.imag) + 'j)' -1022 -1023 def __repr__(self): -1024 return 'CObs[' + str(self) + ']' -1025 -1026 def __format__(self, format_type): -1027 if format_type == "": -1028 significance = 2 -1029 format_type = "2" -1030 else: -1031 significance = int(float(format_type.replace("+", "").replace("-", ""))) -1032 return f"({self.real:{format_type}}{self.imag:+{significance}}j)" -1033 -1034 -1035def gamma_method(x, **kwargs): -1036 """Vectorized version of the gamma_method applicable to lists or arrays of Obs. -1037 -1038 See docstring of pe.Obs.gamma_method for details. -1039 """ -1040 return np.vectorize(lambda o: o.gm(**kwargs))(x) -1041 -1042 -1043gm = gamma_method + 635 return dict(zip(labels, sizes)) + 636 + 637 def dump(self, filename, datatype="json.gz", description="", **kwargs): + 638 """Dump the Obs to a file 'name' of chosen format. + 639 + 640 Parameters + 641 ---------- + 642 filename : str + 643 name of the file to be saved. + 644 datatype : str + 645 Format of the exported file. Supported formats include + 646 "json.gz" and "pickle" + 647 description : str + 648 Description for output file, only relevant for json.gz format. + 649 path : str + 650 specifies a custom path for the file (default '.') + 651 """ + 652 if 'path' in kwargs: + 653 file_name = kwargs.get('path') + '/' + filename + 654 else: + 655 file_name = filename + 656 + 657 if datatype == "json.gz": + 658 from .input.json import dump_to_json + 659 dump_to_json([self], file_name, description=description) + 660 elif datatype == "pickle": + 661 with open(file_name + '.p', 'wb') as fb: + 662 pickle.dump(self, fb) + 663 else: + 664 raise TypeError("Unknown datatype " + str(datatype)) + 665 + 666 def export_jackknife(self): + 667 """Export jackknife samples from the Obs + 668 + 669 Returns + 670 ------- + 671 numpy.ndarray + 672 Returns a numpy array of length N + 1 where N is the number of samples + 673 for the given ensemble and replicum. The zeroth entry of the array contains + 674 the mean value of the Obs, entries 1 to N contain the N jackknife samples + 675 derived from the Obs. The current implementation only works for observables + 676 defined on exactly one ensemble and replicum. The derived jackknife samples + 677 should agree with samples from a full jackknife analysis up to O(1/N). + 678 """ + 679 + 680 if len(self.names) != 1: + 681 raise ValueError("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") + 682 + 683 name = self.names[0] + 684 full_data = self.deltas[name] + self.r_values[name] + 685 n = full_data.size + 686 mean = self.value + 687 tmp_jacks = np.zeros(n + 1) + 688 tmp_jacks[0] = mean + 689 tmp_jacks[1:] = (n * mean - full_data) / (n - 1) + 690 return tmp_jacks + 691 + 692 def export_bootstrap(self, samples=500, random_numbers=None, save_rng=None): + 693 """Export bootstrap samples from the Obs + 694 + 695 Parameters + 696 ---------- + 697 samples : int + 698 Number of bootstrap samples to generate. + 699 random_numbers : np.ndarray + 700 Array of shape (samples, length) containing the random numbers to generate the bootstrap samples. + 701 If not provided the bootstrap samples are generated bashed on the md5 hash of the enesmble name. + 702 save_rng : str + 703 Save the random numbers to a file if a path is specified. + 704 + 705 Returns + 706 ------- + 707 numpy.ndarray + 708 Returns a numpy array of length N + 1 where N is the number of samples + 709 for the given ensemble and replicum. The zeroth entry of the array contains + 710 the mean value of the Obs, entries 1 to N contain the N import_bootstrap samples + 711 derived from the Obs. The current implementation only works for observables + 712 defined on exactly one ensemble and replicum. The derived bootstrap samples + 713 should agree with samples from a full bootstrap analysis up to O(1/N). + 714 """ + 715 if len(self.names) != 1: + 716 raise ValueError("'export_boostrap' is only implemented for Obs defined on one ensemble and replicum.") + 717 + 718 name = self.names[0] + 719 length = self.N + 720 + 721 if random_numbers is None: + 722 seed = int(hashlib.md5(name.encode()).hexdigest(), 16) & 0xFFFFFFFF + 723 rng = np.random.default_rng(seed) + 724 random_numbers = rng.integers(0, length, size=(samples, length)) + 725 + 726 if save_rng is not None: + 727 np.savetxt(save_rng, random_numbers, fmt='%i') + 728 + 729 proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]) / length + 730 ret = np.zeros(samples + 1) + 731 ret[0] = self.value + 732 ret[1:] = proj @ (self.deltas[name] + self.r_values[name]) + 733 return ret + 734 + 735 def __float__(self): + 736 return float(self.value) + 737 + 738 def __repr__(self): + 739 return 'Obs[' + str(self) + ']' + 740 + 741 def __str__(self): + 742 return _format_uncertainty(self.value, self._dvalue) + 743 + 744 def __format__(self, format_type): + 745 if format_type == "": + 746 significance = 2 + 747 else: + 748 significance = int(float(format_type.replace("+", "").replace("-", ""))) + 749 my_str = _format_uncertainty(self.value, self._dvalue, + 750 significance=significance) + 751 for char in ["+", " "]: + 752 if format_type.startswith(char): + 753 if my_str[0] != "-": + 754 my_str = char + my_str + 755 return my_str + 756 + 757 def __hash__(self): + 758 hash_tuple = (np.array([self.value]).astype(np.float32).data.tobytes(),) + 759 hash_tuple += tuple([o.astype(np.float32).data.tobytes() for o in self.deltas.values()]) + 760 hash_tuple += tuple([np.array([o.errsq()]).astype(np.float32).data.tobytes() for o in self.covobs.values()]) + 761 hash_tuple += tuple([o.encode() for o in self.names]) + 762 m = hashlib.md5() + 763 [m.update(o) for o in hash_tuple] + 764 return int(m.hexdigest(), 16) & 0xFFFFFFFF + 765 + 766 # Overload comparisons + 767 def __lt__(self, other): + 768 return self.value < other + 769 + 770 def __le__(self, other): + 771 return self.value <= other + 772 + 773 def __gt__(self, other): + 774 return self.value > other + 775 + 776 def __ge__(self, other): + 777 return self.value >= other + 778 + 779 def __eq__(self, other): + 780 if other is None: + 781 return False + 782 return (self - other).is_zero() + 783 + 784 # Overload math operations + 785 def __add__(self, y): + 786 if isinstance(y, Obs): + 787 return derived_observable(lambda x, **kwargs: x[0] + x[1], [self, y], man_grad=[1, 1]) + 788 else: + 789 if isinstance(y, np.ndarray): + 790 return np.array([self + o for o in y]) + 791 elif isinstance(y, complex): + 792 return CObs(self, 0) + y + 793 elif y.__class__.__name__ in ['Corr', 'CObs']: + 794 return NotImplemented + 795 else: + 796 return derived_observable(lambda x, **kwargs: x[0] + y, [self], man_grad=[1]) + 797 + 798 def __radd__(self, y): + 799 return self + y + 800 + 801 def __mul__(self, y): + 802 if isinstance(y, Obs): + 803 return derived_observable(lambda x, **kwargs: x[0] * x[1], [self, y], man_grad=[y.value, self.value]) + 804 else: + 805 if isinstance(y, np.ndarray): + 806 return np.array([self * o for o in y]) + 807 elif isinstance(y, complex): + 808 return CObs(self * y.real, self * y.imag) + 809 elif y.__class__.__name__ in ['Corr', 'CObs']: + 810 return NotImplemented + 811 else: + 812 return derived_observable(lambda x, **kwargs: x[0] * y, [self], man_grad=[y]) + 813 + 814 def __rmul__(self, y): + 815 return self * y + 816 + 817 def __sub__(self, y): + 818 if isinstance(y, Obs): + 819 return derived_observable(lambda x, **kwargs: x[0] - x[1], [self, y], man_grad=[1, -1]) + 820 else: + 821 if isinstance(y, np.ndarray): + 822 return np.array([self - o for o in y]) + 823 elif y.__class__.__name__ in ['Corr', 'CObs']: + 824 return NotImplemented + 825 else: + 826 return derived_observable(lambda x, **kwargs: x[0] - y, [self], man_grad=[1]) + 827 + 828 def __rsub__(self, y): + 829 return -1 * (self - y) + 830 + 831 def __pos__(self): + 832 return self + 833 + 834 def __neg__(self): + 835 return -1 * self + 836 + 837 def __truediv__(self, y): + 838 if isinstance(y, Obs): + 839 return derived_observable(lambda x, **kwargs: x[0] / x[1], [self, y], man_grad=[1 / y.value, - self.value / y.value ** 2]) + 840 else: + 841 if isinstance(y, np.ndarray): + 842 return np.array([self / o for o in y]) + 843 elif y.__class__.__name__ in ['Corr', 'CObs']: + 844 return NotImplemented + 845 else: + 846 return derived_observable(lambda x, **kwargs: x[0] / y, [self], man_grad=[1 / y]) + 847 + 848 def __rtruediv__(self, y): + 849 if isinstance(y, Obs): + 850 return derived_observable(lambda x, **kwargs: x[0] / x[1], [y, self], man_grad=[1 / self.value, - y.value / self.value ** 2]) + 851 else: + 852 if isinstance(y, np.ndarray): + 853 return np.array([o / self for o in y]) + 854 elif y.__class__.__name__ in ['Corr', 'CObs']: + 855 return NotImplemented + 856 else: + 857 return derived_observable(lambda x, **kwargs: y / x[0], [self], man_grad=[-y / self.value ** 2]) + 858 + 859 def __pow__(self, y): + 860 if isinstance(y, Obs): + 861 return derived_observable(lambda x, **kwargs: x[0] ** x[1], [self, y], man_grad=[y.value * self.value ** (y.value - 1), self.value ** y.value * np.log(self.value)]) + 862 else: + 863 return derived_observable(lambda x, **kwargs: x[0] ** y, [self], man_grad=[y * self.value ** (y - 1)]) + 864 + 865 def __rpow__(self, y): + 866 return derived_observable(lambda x, **kwargs: y ** x[0], [self], man_grad=[y ** self.value * np.log(y)]) + 867 + 868 def __abs__(self): + 869 return derived_observable(lambda x: anp.abs(x[0]), [self]) + 870 + 871 # Overload numpy functions + 872 def sqrt(self): + 873 return derived_observable(lambda x, **kwargs: np.sqrt(x[0]), [self], man_grad=[1 / 2 / np.sqrt(self.value)]) + 874 + 875 def log(self): + 876 return derived_observable(lambda x, **kwargs: np.log(x[0]), [self], man_grad=[1 / self.value]) + 877 + 878 def exp(self): + 879 return derived_observable(lambda x, **kwargs: np.exp(x[0]), [self], man_grad=[np.exp(self.value)]) + 880 + 881 def sin(self): + 882 return derived_observable(lambda x, **kwargs: np.sin(x[0]), [self], man_grad=[np.cos(self.value)]) + 883 + 884 def cos(self): + 885 return derived_observable(lambda x, **kwargs: np.cos(x[0]), [self], man_grad=[-np.sin(self.value)]) + 886 + 887 def tan(self): + 888 return derived_observable(lambda x, **kwargs: np.tan(x[0]), [self], man_grad=[1 / np.cos(self.value) ** 2]) + 889 + 890 def arcsin(self): + 891 return derived_observable(lambda x: anp.arcsin(x[0]), [self]) + 892 + 893 def arccos(self): + 894 return derived_observable(lambda x: anp.arccos(x[0]), [self]) + 895 + 896 def arctan(self): + 897 return derived_observable(lambda x: anp.arctan(x[0]), [self]) + 898 + 899 def sinh(self): + 900 return derived_observable(lambda x, **kwargs: np.sinh(x[0]), [self], man_grad=[np.cosh(self.value)]) + 901 + 902 def cosh(self): + 903 return derived_observable(lambda x, **kwargs: np.cosh(x[0]), [self], man_grad=[np.sinh(self.value)]) + 904 + 905 def tanh(self): + 906 return derived_observable(lambda x, **kwargs: np.tanh(x[0]), [self], man_grad=[1 / np.cosh(self.value) ** 2]) + 907 + 908 def arcsinh(self): + 909 return derived_observable(lambda x: anp.arcsinh(x[0]), [self]) + 910 + 911 def arccosh(self): + 912 return derived_observable(lambda x: anp.arccosh(x[0]), [self]) + 913 + 914 def arctanh(self): + 915 return derived_observable(lambda x: anp.arctanh(x[0]), [self]) + 916 + 917 + 918class CObs: + 919 """Class for a complex valued observable.""" + 920 __slots__ = ['_real', '_imag', 'tag'] + 921 + 922 def __init__(self, real, imag=0.0): + 923 self._real = real + 924 self._imag = imag + 925 self.tag = None + 926 + 927 @property + 928 def real(self): + 929 return self._real + 930 + 931 @property + 932 def imag(self): + 933 return self._imag + 934 + 935 def gamma_method(self, **kwargs): + 936 """Executes the gamma_method for the real and the imaginary part.""" + 937 if isinstance(self.real, Obs): + 938 self.real.gamma_method(**kwargs) + 939 if isinstance(self.imag, Obs): + 940 self.imag.gamma_method(**kwargs) + 941 + 942 def is_zero(self): + 943 """Checks whether both real and imaginary part are zero within machine precision.""" + 944 return self.real == 0.0 and self.imag == 0.0 + 945 + 946 def conjugate(self): + 947 return CObs(self.real, -self.imag) + 948 + 949 def __add__(self, other): + 950 if isinstance(other, np.ndarray): + 951 return other + self + 952 elif hasattr(other, 'real') and hasattr(other, 'imag'): + 953 return CObs(self.real + other.real, + 954 self.imag + other.imag) + 955 else: + 956 return CObs(self.real + other, self.imag) + 957 + 958 def __radd__(self, y): + 959 return self + y + 960 + 961 def __sub__(self, other): + 962 if isinstance(other, np.ndarray): + 963 return -1 * (other - self) + 964 elif hasattr(other, 'real') and hasattr(other, 'imag'): + 965 return CObs(self.real - other.real, self.imag - other.imag) + 966 else: + 967 return CObs(self.real - other, self.imag) + 968 + 969 def __rsub__(self, other): + 970 return -1 * (self - other) + 971 + 972 def __mul__(self, other): + 973 if isinstance(other, np.ndarray): + 974 return other * self + 975 elif hasattr(other, 'real') and hasattr(other, 'imag'): + 976 if all(isinstance(i, Obs) for i in [self.real, self.imag, other.real, other.imag]): + 977 return CObs(derived_observable(lambda x, **kwargs: x[0] * x[1] - x[2] * x[3], + 978 [self.real, other.real, self.imag, other.imag], + 979 man_grad=[other.real.value, self.real.value, -other.imag.value, -self.imag.value]), + 980 derived_observable(lambda x, **kwargs: x[2] * x[1] + x[0] * x[3], + 981 [self.real, other.real, self.imag, other.imag], + 982 man_grad=[other.imag.value, self.imag.value, other.real.value, self.real.value])) + 983 elif getattr(other, 'imag', 0) != 0: + 984 return CObs(self.real * other.real - self.imag * other.imag, + 985 self.imag * other.real + self.real * other.imag) + 986 else: + 987 return CObs(self.real * other.real, self.imag * other.real) + 988 else: + 989 return CObs(self.real * other, self.imag * other) + 990 + 991 def __rmul__(self, other): + 992 return self * other + 993 + 994 def __truediv__(self, other): + 995 if isinstance(other, np.ndarray): + 996 return 1 / (other / self) + 997 elif hasattr(other, 'real') and hasattr(other, 'imag'): + 998 r = other.real ** 2 + other.imag ** 2 + 999 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.imag * other.real - self.real * other.imag) / r) +1000 else: +1001 return CObs(self.real / other, self.imag / other) +1002 +1003 def __rtruediv__(self, other): +1004 r = self.real ** 2 + self.imag ** 2 +1005 if hasattr(other, 'real') and hasattr(other, 'imag'): +1006 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.real * other.imag - self.imag * other.real) / r) +1007 else: +1008 return CObs(self.real * other / r, -self.imag * other / r) +1009 +1010 def __abs__(self): +1011 return np.sqrt(self.real**2 + self.imag**2) +1012 +1013 def __pos__(self): +1014 return self +1015 +1016 def __neg__(self): +1017 return -1 * self +1018 +1019 def __eq__(self, other): +1020 return self.real == other.real and self.imag == other.imag +1021 +1022 def __str__(self): +1023 return '(' + str(self.real) + int(self.imag >= 0.0) * '+' + str(self.imag) + 'j)' +1024 +1025 def __repr__(self): +1026 return 'CObs[' + str(self) + ']' +1027 +1028 def __format__(self, format_type): +1029 if format_type == "": +1030 significance = 2 +1031 format_type = "2" +1032 else: +1033 significance = int(float(format_type.replace("+", "").replace("-", ""))) +1034 return f"({self.real:{format_type}}{self.imag:+{significance}}j)" +1035 +1036 +1037def gamma_method(x, **kwargs): +1038 """Vectorized version of the gamma_method applicable to lists or arrays of Obs. +1039 +1040 See docstring of pe.Obs.gamma_method for details. +1041 """ +1042 return np.vectorize(lambda o: o.gm(**kwargs))(x) +1043 1044 -1045 -1046def _format_uncertainty(value, dvalue, significance=2): -1047 """Creates a string of a value and its error in paranthesis notation, e.g., 13.02(45)""" -1048 if dvalue == 0.0 or (not np.isfinite(dvalue)): -1049 return str(value) -1050 if not isinstance(significance, int): -1051 raise TypeError("significance needs to be an integer.") -1052 if significance < 1: -1053 raise ValueError("significance needs to be larger than zero.") -1054 fexp = np.floor(np.log10(dvalue)) -1055 if fexp < 0.0: -1056 return '{:{form}}({:1.0f})'.format(value, dvalue * 10 ** (-fexp + significance - 1), form='.' + str(-int(fexp) + significance - 1) + 'f') -1057 elif fexp == 0.0: -1058 return f"{value:.{significance - 1}f}({dvalue:1.{significance - 1}f})" -1059 else: -1060 return f"{value:.{max(0, int(significance - fexp - 1))}f}({dvalue:2.{max(0, int(significance - fexp - 1))}f})" -1061 -1062 -1063def _expand_deltas(deltas, idx, shape, gapsize): -1064 """Expand deltas defined on idx to a regular range with spacing gapsize between two -1065 configurations and where holes are filled by 0. -1066 If idx is of type range, the deltas are not changed if the idx.step == gapsize. -1067 -1068 Parameters -1069 ---------- -1070 deltas : list -1071 List of fluctuations -1072 idx : list -1073 List or range of configs on which the deltas are defined, has to be sorted in ascending order. -1074 shape : int -1075 Number of configs in idx. -1076 gapsize : int -1077 The target distance between two configurations. If longer distances -1078 are found in idx, the data is expanded. -1079 """ -1080 if isinstance(idx, range): -1081 if (idx.step == gapsize): -1082 return deltas -1083 ret = np.zeros((idx[-1] - idx[0] + gapsize) // gapsize) -1084 for i in range(shape): -1085 ret[(idx[i] - idx[0]) // gapsize] = deltas[i] -1086 return ret -1087 -1088 -1089def _merge_idx(idl): -1090 """Returns the union of all lists in idl as range or sorted list -1091 -1092 Parameters -1093 ---------- -1094 idl : list -1095 List of lists or ranges. -1096 """ -1097 -1098 if _check_lists_equal(idl): -1099 return idl[0] -1100 -1101 idunion = sorted(set().union(*idl)) +1045gm = gamma_method +1046 +1047 +1048def _format_uncertainty(value, dvalue, significance=2): +1049 """Creates a string of a value and its error in paranthesis notation, e.g., 13.02(45)""" +1050 if dvalue == 0.0 or (not np.isfinite(dvalue)): +1051 return str(value) +1052 if not isinstance(significance, int): +1053 raise TypeError("significance needs to be an integer.") +1054 if significance < 1: +1055 raise ValueError("significance needs to be larger than zero.") +1056 fexp = np.floor(np.log10(dvalue)) +1057 if fexp < 0.0: +1058 return '{:{form}}({:1.0f})'.format(value, dvalue * 10 ** (-fexp + significance - 1), form='.' + str(-int(fexp) + significance - 1) + 'f') +1059 elif fexp == 0.0: +1060 return f"{value:.{significance - 1}f}({dvalue:1.{significance - 1}f})" +1061 else: +1062 return f"{value:.{max(0, int(significance - fexp - 1))}f}({dvalue:2.{max(0, int(significance - fexp - 1))}f})" +1063 +1064 +1065def _expand_deltas(deltas, idx, shape, gapsize): +1066 """Expand deltas defined on idx to a regular range with spacing gapsize between two +1067 configurations and where holes are filled by 0. +1068 If idx is of type range, the deltas are not changed if the idx.step == gapsize. +1069 +1070 Parameters +1071 ---------- +1072 deltas : list +1073 List of fluctuations +1074 idx : list +1075 List or range of configs on which the deltas are defined, has to be sorted in ascending order. +1076 shape : int +1077 Number of configs in idx. +1078 gapsize : int +1079 The target distance between two configurations. If longer distances +1080 are found in idx, the data is expanded. +1081 """ +1082 if isinstance(idx, range): +1083 if (idx.step == gapsize): +1084 return deltas +1085 ret = np.zeros((idx[-1] - idx[0] + gapsize) // gapsize) +1086 for i in range(shape): +1087 ret[(idx[i] - idx[0]) // gapsize] = deltas[i] +1088 return ret +1089 +1090 +1091def _merge_idx(idl): +1092 """Returns the union of all lists in idl as range or sorted list +1093 +1094 Parameters +1095 ---------- +1096 idl : list +1097 List of lists or ranges. +1098 """ +1099 +1100 if _check_lists_equal(idl): +1101 return idl[0] 1102 -1103 # Check whether idunion can be expressed as range -1104 idrange = range(idunion[0], idunion[-1] + 1, idunion[1] - idunion[0]) -1105 idtest = [list(idrange), idunion] -1106 if _check_lists_equal(idtest): -1107 return idrange -1108 -1109 return idunion +1103 idunion = sorted(set().union(*idl)) +1104 +1105 # Check whether idunion can be expressed as range +1106 idrange = range(idunion[0], idunion[-1] + 1, idunion[1] - idunion[0]) +1107 idtest = [list(idrange), idunion] +1108 if _check_lists_equal(idtest): +1109 return idrange 1110 -1111 -1112def _intersection_idx(idl): -1113 """Returns the intersection of all lists in idl as range or sorted list -1114 -1115 Parameters -1116 ---------- -1117 idl : list -1118 List of lists or ranges. -1119 """ -1120 -1121 if _check_lists_equal(idl): -1122 return idl[0] -1123 -1124 idinter = sorted(set.intersection(*[set(o) for o in idl])) +1111 return idunion +1112 +1113 +1114def _intersection_idx(idl): +1115 """Returns the intersection of all lists in idl as range or sorted list +1116 +1117 Parameters +1118 ---------- +1119 idl : list +1120 List of lists or ranges. +1121 """ +1122 +1123 if _check_lists_equal(idl): +1124 return idl[0] 1125 -1126 # Check whether idinter can be expressed as range -1127 try: -1128 idrange = range(idinter[0], idinter[-1] + 1, idinter[1] - idinter[0]) -1129 idtest = [list(idrange), idinter] -1130 if _check_lists_equal(idtest): -1131 return idrange -1132 except IndexError: -1133 pass -1134 -1135 return idinter +1126 idinter = sorted(set.intersection(*[set(o) for o in idl])) +1127 +1128 # Check whether idinter can be expressed as range +1129 try: +1130 idrange = range(idinter[0], idinter[-1] + 1, idinter[1] - idinter[0]) +1131 idtest = [list(idrange), idinter] +1132 if _check_lists_equal(idtest): +1133 return idrange +1134 except IndexError: +1135 pass 1136 -1137 -1138def _expand_deltas_for_merge(deltas, idx, shape, new_idx, scalefactor): -1139 """Expand deltas defined on idx to the list of configs that is defined by new_idx. -1140 New, empty entries are filled by 0. If idx and new_idx are of type range, the smallest -1141 common divisor of the step sizes is used as new step size. -1142 -1143 Parameters -1144 ---------- -1145 deltas : list -1146 List of fluctuations -1147 idx : list -1148 List or range of configs on which the deltas are defined. -1149 Has to be a subset of new_idx and has to be sorted in ascending order. -1150 shape : list -1151 Number of configs in idx. -1152 new_idx : list -1153 List of configs that defines the new range, has to be sorted in ascending order. -1154 scalefactor : float -1155 An additional scaling factor that can be applied to scale the fluctuations, -1156 e.g., when Obs with differing numbers of replica are merged. -1157 """ -1158 if type(idx) is range and type(new_idx) is range: -1159 if idx == new_idx: -1160 if scalefactor == 1: -1161 return deltas -1162 else: -1163 return deltas * scalefactor -1164 ret = np.zeros(new_idx[-1] - new_idx[0] + 1) -1165 for i in range(shape): -1166 ret[idx[i] - new_idx[0]] = deltas[i] -1167 return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))]) * len(new_idx) / len(idx) * scalefactor -1168 -1169 -1170def derived_observable(func, data, array_mode=False, **kwargs): -1171 """Construct a derived Obs according to func(data, **kwargs) using automatic differentiation. -1172 -1173 Parameters -1174 ---------- -1175 func : object -1176 arbitrary function of the form func(data, **kwargs). For the -1177 automatic differentiation to work, all numpy functions have to have -1178 the autograd wrapper (use 'import autograd.numpy as anp'). -1179 data : list -1180 list of Obs, e.g. [obs1, obs2, obs3]. -1181 num_grad : bool -1182 if True, numerical derivatives are used instead of autograd -1183 (default False). To control the numerical differentiation the -1184 kwargs of numdifftools.step_generators.MaxStepGenerator -1185 can be used. -1186 man_grad : list -1187 manually supply a list or an array which contains the jacobian -1188 of func. Use cautiously, supplying the wrong derivative will -1189 not be intercepted. -1190 -1191 Notes -1192 ----- -1193 For simple mathematical operations it can be practical to use anonymous -1194 functions. For the ratio of two observables one can e.g. use -1195 -1196 new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2]) -1197 """ -1198 -1199 data = np.asarray(data) -1200 raveled_data = data.ravel() -1201 -1202 # Workaround for matrix operations containing non Obs data -1203 if not all(isinstance(x, Obs) for x in raveled_data): -1204 for i in range(len(raveled_data)): -1205 if isinstance(raveled_data[i], (int, float)): -1206 raveled_data[i] = cov_Obs(raveled_data[i], 0.0, "###dummy_covobs###") -1207 -1208 allcov = {} -1209 for o in raveled_data: -1210 for name in o.cov_names: -1211 if name in allcov: -1212 if not np.allclose(allcov[name], o.covobs[name].cov): -1213 raise Exception('Inconsistent covariance matrices for %s!' % (name)) -1214 else: -1215 allcov[name] = o.covobs[name].cov -1216 -1217 n_obs = len(raveled_data) -1218 new_names = sorted(set([y for x in [o.names for o in raveled_data] for y in x])) -1219 new_cov_names = sorted(set([y for x in [o.cov_names for o in raveled_data] for y in x])) -1220 new_sample_names = sorted(set(new_names) - set(new_cov_names)) -1221 -1222 reweighted = len(list(filter(lambda o: o.reweighted is True, raveled_data))) > 0 +1137 return idinter +1138 +1139 +1140def _expand_deltas_for_merge(deltas, idx, shape, new_idx, scalefactor): +1141 """Expand deltas defined on idx to the list of configs that is defined by new_idx. +1142 New, empty entries are filled by 0. If idx and new_idx are of type range, the smallest +1143 common divisor of the step sizes is used as new step size. +1144 +1145 Parameters +1146 ---------- +1147 deltas : list +1148 List of fluctuations +1149 idx : list +1150 List or range of configs on which the deltas are defined. +1151 Has to be a subset of new_idx and has to be sorted in ascending order. +1152 shape : list +1153 Number of configs in idx. +1154 new_idx : list +1155 List of configs that defines the new range, has to be sorted in ascending order. +1156 scalefactor : float +1157 An additional scaling factor that can be applied to scale the fluctuations, +1158 e.g., when Obs with differing numbers of replica are merged. +1159 """ +1160 if type(idx) is range and type(new_idx) is range: +1161 if idx == new_idx: +1162 if scalefactor == 1: +1163 return deltas +1164 else: +1165 return deltas * scalefactor +1166 ret = np.zeros(new_idx[-1] - new_idx[0] + 1) +1167 for i in range(shape): +1168 ret[idx[i] - new_idx[0]] = deltas[i] +1169 return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))]) * len(new_idx) / len(idx) * scalefactor +1170 +1171 +1172def derived_observable(func, data, array_mode=False, **kwargs): +1173 """Construct a derived Obs according to func(data, **kwargs) using automatic differentiation. +1174 +1175 Parameters +1176 ---------- +1177 func : object +1178 arbitrary function of the form func(data, **kwargs). For the +1179 automatic differentiation to work, all numpy functions have to have +1180 the autograd wrapper (use 'import autograd.numpy as anp'). +1181 data : list +1182 list of Obs, e.g. [obs1, obs2, obs3]. +1183 num_grad : bool +1184 if True, numerical derivatives are used instead of autograd +1185 (default False). To control the numerical differentiation the +1186 kwargs of numdifftools.step_generators.MaxStepGenerator +1187 can be used. +1188 man_grad : list +1189 manually supply a list or an array which contains the jacobian +1190 of func. Use cautiously, supplying the wrong derivative will +1191 not be intercepted. +1192 +1193 Notes +1194 ----- +1195 For simple mathematical operations it can be practical to use anonymous +1196 functions. For the ratio of two observables one can e.g. use +1197 +1198 new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2]) +1199 """ +1200 +1201 data = np.asarray(data) +1202 raveled_data = data.ravel() +1203 +1204 # Workaround for matrix operations containing non Obs data +1205 if not all(isinstance(x, Obs) for x in raveled_data): +1206 for i in range(len(raveled_data)): +1207 if isinstance(raveled_data[i], (int, float)): +1208 raveled_data[i] = cov_Obs(raveled_data[i], 0.0, "###dummy_covobs###") +1209 +1210 allcov = {} +1211 for o in raveled_data: +1212 for name in o.cov_names: +1213 if name in allcov: +1214 if not np.allclose(allcov[name], o.covobs[name].cov): +1215 raise Exception('Inconsistent covariance matrices for %s!' % (name)) +1216 else: +1217 allcov[name] = o.covobs[name].cov +1218 +1219 n_obs = len(raveled_data) +1220 new_names = sorted(set([y for x in [o.names for o in raveled_data] for y in x])) +1221 new_cov_names = sorted(set([y for x in [o.cov_names for o in raveled_data] for y in x])) +1222 new_sample_names = sorted(set(new_names) - set(new_cov_names)) 1223 -1224 if data.ndim == 1: -1225 values = np.array([o.value for o in data]) -1226 else: -1227 values = np.vectorize(lambda x: x.value)(data) -1228 -1229 new_values = func(values, **kwargs) +1224 reweighted = len(list(filter(lambda o: o.reweighted is True, raveled_data))) > 0 +1225 +1226 if data.ndim == 1: +1227 values = np.array([o.value for o in data]) +1228 else: +1229 values = np.vectorize(lambda x: x.value)(data) 1230 -1231 multi = int(isinstance(new_values, np.ndarray)) +1231 new_values = func(values, **kwargs) 1232 -1233 new_r_values = {} -1234 new_idl_d = {} -1235 for name in new_sample_names: -1236 idl = [] -1237 tmp_values = np.zeros(n_obs) -1238 for i, item in enumerate(raveled_data): -1239 tmp_values[i] = item.r_values.get(name, item.value) -1240 tmp_idl = item.idl.get(name) -1241 if tmp_idl is not None: -1242 idl.append(tmp_idl) -1243 if multi > 0: -1244 tmp_values = np.array(tmp_values).reshape(data.shape) -1245 new_r_values[name] = func(tmp_values, **kwargs) -1246 new_idl_d[name] = _merge_idx(idl) -1247 -1248 def _compute_scalefactor_missing_rep(obs): -1249 """ -1250 Computes the scale factor that is to be multiplied with the deltas -1251 in the case where Obs with different subsets of replica are merged. -1252 Returns a dictionary with the scale factor for each Monte Carlo name. -1253 -1254 Parameters -1255 ---------- -1256 obs : Obs -1257 The observable corresponding to the deltas that are to be scaled -1258 """ -1259 scalef_d = {} -1260 for mc_name in obs.mc_names: -1261 mc_idl_d = [name for name in obs.idl if name.startswith(mc_name + '|')] -1262 new_mc_idl_d = [name for name in new_idl_d if name.startswith(mc_name + '|')] -1263 if len(mc_idl_d) > 0 and len(mc_idl_d) < len(new_mc_idl_d): -1264 scalef_d[mc_name] = sum([len(new_idl_d[name]) for name in new_mc_idl_d]) / sum([len(new_idl_d[name]) for name in mc_idl_d]) -1265 return scalef_d -1266 -1267 if 'man_grad' in kwargs: -1268 deriv = np.asarray(kwargs.get('man_grad')) -1269 if new_values.shape + data.shape != deriv.shape: -1270 raise ValueError('Manual derivative does not have correct shape.') -1271 elif kwargs.get('num_grad') is True: -1272 if multi > 0: -1273 raise Exception('Multi mode currently not supported for numerical derivative') -1274 options = { -1275 'base_step': 0.1, -1276 'step_ratio': 2.5} -1277 for key in options.keys(): -1278 kwarg = kwargs.get(key) -1279 if kwarg is not None: -1280 options[key] = kwarg -1281 tmp_df = nd.Gradient(func, order=4, **{k: v for k, v in options.items() if v is not None})(values, **kwargs) -1282 if tmp_df.size == 1: -1283 deriv = np.array([tmp_df.real]) -1284 else: -1285 deriv = tmp_df.real -1286 else: -1287 deriv = jacobian(func)(values, **kwargs) -1288 -1289 final_result = np.zeros(new_values.shape, dtype=object) +1233 multi = int(isinstance(new_values, np.ndarray)) +1234 +1235 new_r_values = {} +1236 new_idl_d = {} +1237 for name in new_sample_names: +1238 idl = [] +1239 tmp_values = np.zeros(n_obs) +1240 for i, item in enumerate(raveled_data): +1241 tmp_values[i] = item.r_values.get(name, item.value) +1242 tmp_idl = item.idl.get(name) +1243 if tmp_idl is not None: +1244 idl.append(tmp_idl) +1245 if multi > 0: +1246 tmp_values = np.array(tmp_values).reshape(data.shape) +1247 new_r_values[name] = func(tmp_values, **kwargs) +1248 new_idl_d[name] = _merge_idx(idl) +1249 +1250 def _compute_scalefactor_missing_rep(obs): +1251 """ +1252 Computes the scale factor that is to be multiplied with the deltas +1253 in the case where Obs with different subsets of replica are merged. +1254 Returns a dictionary with the scale factor for each Monte Carlo name. +1255 +1256 Parameters +1257 ---------- +1258 obs : Obs +1259 The observable corresponding to the deltas that are to be scaled +1260 """ +1261 scalef_d = {} +1262 for mc_name in obs.mc_names: +1263 mc_idl_d = [name for name in obs.idl if name.startswith(mc_name + '|')] +1264 new_mc_idl_d = [name for name in new_idl_d if name.startswith(mc_name + '|')] +1265 if len(mc_idl_d) > 0 and len(mc_idl_d) < len(new_mc_idl_d): +1266 scalef_d[mc_name] = sum([len(new_idl_d[name]) for name in new_mc_idl_d]) / sum([len(new_idl_d[name]) for name in mc_idl_d]) +1267 return scalef_d +1268 +1269 if 'man_grad' in kwargs: +1270 deriv = np.asarray(kwargs.get('man_grad')) +1271 if new_values.shape + data.shape != deriv.shape: +1272 raise ValueError('Manual derivative does not have correct shape.') +1273 elif kwargs.get('num_grad') is True: +1274 if multi > 0: +1275 raise Exception('Multi mode currently not supported for numerical derivative') +1276 options = { +1277 'base_step': 0.1, +1278 'step_ratio': 2.5} +1279 for key in options.keys(): +1280 kwarg = kwargs.get(key) +1281 if kwarg is not None: +1282 options[key] = kwarg +1283 tmp_df = nd.Gradient(func, order=4, **{k: v for k, v in options.items() if v is not None})(values, **kwargs) +1284 if tmp_df.size == 1: +1285 deriv = np.array([tmp_df.real]) +1286 else: +1287 deriv = tmp_df.real +1288 else: +1289 deriv = jacobian(func)(values, **kwargs) 1290 -1291 if array_mode is True: +1291 final_result = np.zeros(new_values.shape, dtype=object) 1292 -1293 class _Zero_grad(): -1294 def __init__(self, N): -1295 self.grad = np.zeros((N, 1)) -1296 -1297 new_covobs_lengths = dict(set([y for x in [[(n, o.covobs[n].N) for n in o.cov_names] for o in raveled_data] for y in x])) -1298 d_extracted = {} -1299 g_extracted = {} -1300 for name in new_sample_names: -1301 d_extracted[name] = [] -1302 ens_length = len(new_idl_d[name]) -1303 for i_dat, dat in enumerate(data): -1304 d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas.get(name, np.zeros(ens_length)), o.idl.get(name, new_idl_d[name]), o.shape.get(name, ens_length), new_idl_d[name], _compute_scalefactor_missing_rep(o).get(name.split('|')[0], 1)) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, ))) -1305 for name in new_cov_names: -1306 g_extracted[name] = [] -1307 zero_grad = _Zero_grad(new_covobs_lengths[name]) -1308 for i_dat, dat in enumerate(data): -1309 g_extracted[name].append(np.array([o.covobs.get(name, zero_grad).grad for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (new_covobs_lengths[name], 1))) -1310 -1311 for i_val, new_val in np.ndenumerate(new_values): -1312 new_deltas = {} -1313 new_grad = {} -1314 if array_mode is True: -1315 for name in new_sample_names: -1316 ens_length = d_extracted[name][0].shape[-1] -1317 new_deltas[name] = np.zeros(ens_length) -1318 for i_dat, dat in enumerate(d_extracted[name]): -1319 new_deltas[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) -1320 for name in new_cov_names: -1321 new_grad[name] = 0 -1322 for i_dat, dat in enumerate(g_extracted[name]): -1323 new_grad[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) -1324 else: -1325 for j_obs, obs in np.ndenumerate(data): -1326 scalef_d = _compute_scalefactor_missing_rep(obs) -1327 for name in obs.names: -1328 if name in obs.cov_names: -1329 new_grad[name] = new_grad.get(name, 0) + deriv[i_val + j_obs] * obs.covobs[name].grad -1330 else: -1331 new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name], scalef_d.get(name.split('|')[0], 1)) -1332 -1333 new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad} +1293 if array_mode is True: +1294 +1295 class _Zero_grad(): +1296 def __init__(self, N): +1297 self.grad = np.zeros((N, 1)) +1298 +1299 new_covobs_lengths = dict(set([y for x in [[(n, o.covobs[n].N) for n in o.cov_names] for o in raveled_data] for y in x])) +1300 d_extracted = {} +1301 g_extracted = {} +1302 for name in new_sample_names: +1303 d_extracted[name] = [] +1304 ens_length = len(new_idl_d[name]) +1305 for i_dat, dat in enumerate(data): +1306 d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas.get(name, np.zeros(ens_length)), o.idl.get(name, new_idl_d[name]), o.shape.get(name, ens_length), new_idl_d[name], _compute_scalefactor_missing_rep(o).get(name.split('|')[0], 1)) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, ))) +1307 for name in new_cov_names: +1308 g_extracted[name] = [] +1309 zero_grad = _Zero_grad(new_covobs_lengths[name]) +1310 for i_dat, dat in enumerate(data): +1311 g_extracted[name].append(np.array([o.covobs.get(name, zero_grad).grad for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (new_covobs_lengths[name], 1))) +1312 +1313 for i_val, new_val in np.ndenumerate(new_values): +1314 new_deltas = {} +1315 new_grad = {} +1316 if array_mode is True: +1317 for name in new_sample_names: +1318 ens_length = d_extracted[name][0].shape[-1] +1319 new_deltas[name] = np.zeros(ens_length) +1320 for i_dat, dat in enumerate(d_extracted[name]): +1321 new_deltas[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) +1322 for name in new_cov_names: +1323 new_grad[name] = 0 +1324 for i_dat, dat in enumerate(g_extracted[name]): +1325 new_grad[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) +1326 else: +1327 for j_obs, obs in np.ndenumerate(data): +1328 scalef_d = _compute_scalefactor_missing_rep(obs) +1329 for name in obs.names: +1330 if name in obs.cov_names: +1331 new_grad[name] = new_grad.get(name, 0) + deriv[i_val + j_obs] * obs.covobs[name].grad +1332 else: +1333 new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name], scalef_d.get(name.split('|')[0], 1)) 1334 -1335 if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()): -1336 raise ValueError('The same name has been used for deltas and covobs!') -1337 new_samples = [] -1338 new_means = [] -1339 new_idl = [] -1340 new_names_obs = [] -1341 for name in new_names: -1342 if name not in new_covobs: -1343 new_samples.append(new_deltas[name]) -1344 new_idl.append(new_idl_d[name]) -1345 new_means.append(new_r_values[name][i_val]) -1346 new_names_obs.append(name) -1347 final_result[i_val] = Obs(new_samples, new_names_obs, means=new_means, idl=new_idl) -1348 for name in new_covobs: -1349 final_result[i_val].names.append(name) -1350 final_result[i_val]._covobs = new_covobs -1351 final_result[i_val]._value = new_val -1352 final_result[i_val].reweighted = reweighted -1353 -1354 if multi == 0: -1355 final_result = final_result.item() -1356 -1357 return final_result +1335 new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad} +1336 +1337 if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()): +1338 raise ValueError('The same name has been used for deltas and covobs!') +1339 new_samples = [] +1340 new_means = [] +1341 new_idl = [] +1342 new_names_obs = [] +1343 for name in new_names: +1344 if name not in new_covobs: +1345 new_samples.append(new_deltas[name]) +1346 new_idl.append(new_idl_d[name]) +1347 new_means.append(new_r_values[name][i_val]) +1348 new_names_obs.append(name) +1349 final_result[i_val] = Obs(new_samples, new_names_obs, means=new_means, idl=new_idl) +1350 for name in new_covobs: +1351 final_result[i_val].names.append(name) +1352 final_result[i_val]._covobs = new_covobs +1353 final_result[i_val]._value = new_val +1354 final_result[i_val].reweighted = reweighted +1355 +1356 if multi == 0: +1357 final_result = final_result.item() 1358 -1359 -1360def _reduce_deltas(deltas, idx_old, idx_new): -1361 """Extract deltas defined on idx_old on all configs of idx_new. -1362 -1363 Assumes, that idx_old and idx_new are correctly defined idl, i.e., they -1364 are ordered in an ascending order. -1365 -1366 Parameters -1367 ---------- -1368 deltas : list -1369 List of fluctuations -1370 idx_old : list -1371 List or range of configs on which the deltas are defined -1372 idx_new : list -1373 List of configs for which we want to extract the deltas. -1374 Has to be a subset of idx_old. -1375 """ -1376 if not len(deltas) == len(idx_old): -1377 raise ValueError('Length of deltas and idx_old have to be the same: %d != %d' % (len(deltas), len(idx_old))) -1378 if type(idx_old) is range and type(idx_new) is range: -1379 if idx_old == idx_new: -1380 return deltas -1381 if _check_lists_equal([idx_old, idx_new]): -1382 return deltas -1383 indices = np.intersect1d(idx_old, idx_new, assume_unique=True, return_indices=True)[1] -1384 if len(indices) < len(idx_new): -1385 raise ValueError('Error in _reduce_deltas: Config of idx_new not in idx_old') -1386 return np.array(deltas)[indices] -1387 -1388 -1389def reweight(weight, obs, **kwargs): -1390 """Reweight a list of observables. -1391 -1392 Parameters -1393 ---------- -1394 weight : Obs -1395 Reweighting factor. An Observable that has to be defined on a superset of the -1396 configurations in obs[i].idl for all i. -1397 obs : list -1398 list of Obs, e.g. [obs1, obs2, obs3]. -1399 all_configs : bool -1400 if True, the reweighted observables are normalized by the average of -1401 the reweighting factor on all configurations in weight.idl and not -1402 on the configurations in obs[i].idl. Default False. -1403 """ -1404 result = [] -1405 for i in range(len(obs)): -1406 if len(obs[i].cov_names): -1407 raise ValueError('Error: Not possible to reweight an Obs that contains covobs!') -1408 if not set(obs[i].names).issubset(weight.names): -1409 raise ValueError('Error: Ensembles do not fit') -1410 for name in obs[i].names: -1411 if not set(obs[i].idl[name]).issubset(weight.idl[name]): -1412 raise ValueError('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name)) -1413 new_samples = [] -1414 w_deltas = {} -1415 for name in sorted(obs[i].names): -1416 w_deltas[name] = _reduce_deltas(weight.deltas[name], weight.idl[name], obs[i].idl[name]) -1417 new_samples.append((w_deltas[name] + weight.r_values[name]) * (obs[i].deltas[name] + obs[i].r_values[name])) -1418 tmp_obs = Obs(new_samples, sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) -1419 -1420 if kwargs.get('all_configs'): -1421 new_weight = weight -1422 else: -1423 new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(obs[i].names)], sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) -1424 -1425 result.append(tmp_obs / new_weight) -1426 result[-1].reweighted = True -1427 -1428 return result -1429 -1430 -1431def correlate(obs_a, obs_b): -1432 """Correlate two observables. +1359 return final_result +1360 +1361 +1362def _reduce_deltas(deltas, idx_old, idx_new): +1363 """Extract deltas defined on idx_old on all configs of idx_new. +1364 +1365 Assumes, that idx_old and idx_new are correctly defined idl, i.e., they +1366 are ordered in an ascending order. +1367 +1368 Parameters +1369 ---------- +1370 deltas : list +1371 List of fluctuations +1372 idx_old : list +1373 List or range of configs on which the deltas are defined +1374 idx_new : list +1375 List of configs for which we want to extract the deltas. +1376 Has to be a subset of idx_old. +1377 """ +1378 if not len(deltas) == len(idx_old): +1379 raise ValueError('Length of deltas and idx_old have to be the same: %d != %d' % (len(deltas), len(idx_old))) +1380 if type(idx_old) is range and type(idx_new) is range: +1381 if idx_old == idx_new: +1382 return deltas +1383 if _check_lists_equal([idx_old, idx_new]): +1384 return deltas +1385 indices = np.intersect1d(idx_old, idx_new, assume_unique=True, return_indices=True)[1] +1386 if len(indices) < len(idx_new): +1387 raise ValueError('Error in _reduce_deltas: Config of idx_new not in idx_old') +1388 return np.array(deltas)[indices] +1389 +1390 +1391def reweight(weight, obs, **kwargs): +1392 """Reweight a list of observables. +1393 +1394 Parameters +1395 ---------- +1396 weight : Obs +1397 Reweighting factor. An Observable that has to be defined on a superset of the +1398 configurations in obs[i].idl for all i. +1399 obs : list +1400 list of Obs, e.g. [obs1, obs2, obs3]. +1401 all_configs : bool +1402 if True, the reweighted observables are normalized by the average of +1403 the reweighting factor on all configurations in weight.idl and not +1404 on the configurations in obs[i].idl. Default False. +1405 """ +1406 result = [] +1407 for i in range(len(obs)): +1408 if len(obs[i].cov_names): +1409 raise ValueError('Error: Not possible to reweight an Obs that contains covobs!') +1410 if not set(obs[i].names).issubset(weight.names): +1411 raise ValueError('Error: Ensembles do not fit') +1412 if len(obs[i].mc_names) > 1 or len(weight.mc_names) > 1: +1413 raise ValueError('Error: Cannot reweight an Obs that contains multiple ensembles.') +1414 for name in obs[i].names: +1415 if not set(obs[i].idl[name]).issubset(weight.idl[name]): +1416 raise ValueError('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name)) +1417 new_samples = [] +1418 w_deltas = {} +1419 for name in sorted(obs[i].names): +1420 w_deltas[name] = _reduce_deltas(weight.deltas[name], weight.idl[name], obs[i].idl[name]) +1421 new_samples.append((w_deltas[name] + weight.r_values[name]) * (obs[i].deltas[name] + obs[i].r_values[name])) +1422 tmp_obs = Obs(new_samples, sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) +1423 +1424 if kwargs.get('all_configs'): +1425 new_weight = weight +1426 else: +1427 new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(obs[i].names)], sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) +1428 +1429 result.append(tmp_obs / new_weight) +1430 result[-1].reweighted = True +1431 +1432 return result 1433 -1434 Parameters -1435 ---------- -1436 obs_a : Obs -1437 First observable -1438 obs_b : Obs -1439 Second observable -1440 -1441 Notes -1442 ----- -1443 Keep in mind to only correlate primary observables which have not been reweighted -1444 yet. The reweighting has to be applied after correlating the observables. -1445 Currently only works if ensembles are identical (this is not strictly necessary). -1446 """ -1447 -1448 if sorted(obs_a.names) != sorted(obs_b.names): -1449 raise ValueError(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}") -1450 if len(obs_a.cov_names) or len(obs_b.cov_names): -1451 raise ValueError('Error: Not possible to correlate Obs that contain covobs!') -1452 for name in obs_a.names: -1453 if obs_a.shape[name] != obs_b.shape[name]: -1454 raise ValueError('Shapes of ensemble', name, 'do not fit') -1455 if obs_a.idl[name] != obs_b.idl[name]: -1456 raise ValueError('idl of ensemble', name, 'do not fit') -1457 -1458 if obs_a.reweighted is True: -1459 warnings.warn("The first observable is already reweighted.", RuntimeWarning) -1460 if obs_b.reweighted is True: -1461 warnings.warn("The second observable is already reweighted.", RuntimeWarning) -1462 -1463 new_samples = [] -1464 new_idl = [] -1465 for name in sorted(obs_a.names): -1466 new_samples.append((obs_a.deltas[name] + obs_a.r_values[name]) * (obs_b.deltas[name] + obs_b.r_values[name])) -1467 new_idl.append(obs_a.idl[name]) -1468 -1469 o = Obs(new_samples, sorted(obs_a.names), idl=new_idl) -1470 o.reweighted = obs_a.reweighted or obs_b.reweighted -1471 return o -1472 -1473 -1474def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs): -1475 r'''Calculates the error covariance matrix of a set of observables. -1476 -1477 WARNING: This function should be used with care, especially for observables with support on multiple -1478 ensembles with differing autocorrelations. See the notes below for details. +1434 +1435def correlate(obs_a, obs_b): +1436 """Correlate two observables. +1437 +1438 Parameters +1439 ---------- +1440 obs_a : Obs +1441 First observable +1442 obs_b : Obs +1443 Second observable +1444 +1445 Notes +1446 ----- +1447 Keep in mind to only correlate primary observables which have not been reweighted +1448 yet. The reweighting has to be applied after correlating the observables. +1449 Only works if a single ensemble is present in the Obs. +1450 Currently only works if ensemble content is identical (this is not strictly necessary). +1451 """ +1452 +1453 if len(obs_a.mc_names) > 1 or len(obs_b.mc_names) > 1: +1454 raise ValueError('Error: Cannot correlate Obs that contain multiple ensembles.') +1455 if sorted(obs_a.names) != sorted(obs_b.names): +1456 raise ValueError(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}") +1457 if len(obs_a.cov_names) or len(obs_b.cov_names): +1458 raise ValueError('Error: Not possible to correlate Obs that contain covobs!') +1459 for name in obs_a.names: +1460 if obs_a.shape[name] != obs_b.shape[name]: +1461 raise ValueError('Shapes of ensemble', name, 'do not fit') +1462 if obs_a.idl[name] != obs_b.idl[name]: +1463 raise ValueError('idl of ensemble', name, 'do not fit') +1464 +1465 if obs_a.reweighted is True: +1466 warnings.warn("The first observable is already reweighted.", RuntimeWarning) +1467 if obs_b.reweighted is True: +1468 warnings.warn("The second observable is already reweighted.", RuntimeWarning) +1469 +1470 new_samples = [] +1471 new_idl = [] +1472 for name in sorted(obs_a.names): +1473 new_samples.append((obs_a.deltas[name] + obs_a.r_values[name]) * (obs_b.deltas[name] + obs_b.r_values[name])) +1474 new_idl.append(obs_a.idl[name]) +1475 +1476 o = Obs(new_samples, sorted(obs_a.names), idl=new_idl) +1477 o.reweighted = obs_a.reweighted or obs_b.reweighted +1478 return o 1479 -1480 The gamma method has to be applied first to all observables. -1481 -1482 Parameters -1483 ---------- -1484 obs : list or numpy.ndarray -1485 List or one dimensional array of Obs -1486 visualize : bool -1487 If True plots the corresponding normalized correlation matrix (default False). -1488 correlation : bool -1489 If True the correlation matrix instead of the error covariance matrix is returned (default False). -1490 smooth : None or int -1491 If smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue -1492 smoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the -1493 largest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely -1494 small ones. -1495 -1496 Notes -1497 ----- -1498 The error covariance is defined such that it agrees with the squared standard error for two identical observables -1499 $$\operatorname{cov}(a,a)=\sum_{s=1}^N\delta_a^s\delta_a^s/N^2=\Gamma_{aa}(0)/N=\operatorname{var}(a)/N=\sigma_a^2$$ -1500 in the absence of autocorrelation. -1501 The error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite -1502 $$\sum_{i,j}v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v\in\mathbb{R}^M$, while such an identity does not hold for larger windows/lags. -1503 For observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements. -1504 $$\tau_{\mathrm{int}, ij}=\sqrt{\tau_{\mathrm{int}, i}\times \tau_{\mathrm{int}, j}}$$ -1505 This construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors). -1506 ''' -1507 -1508 length = len(obs) -1509 -1510 max_samples = np.max([o.N for o in obs]) -1511 if max_samples <= length and not [item for sublist in [o.cov_names for o in obs] for item in sublist]: -1512 warnings.warn(f"The dimension of the covariance matrix ({length}) is larger or equal to the number of samples ({max_samples}). This will result in a rank deficient matrix.", RuntimeWarning) -1513 -1514 cov = np.zeros((length, length)) -1515 for i in range(length): -1516 for j in range(i, length): -1517 cov[i, j] = _covariance_element(obs[i], obs[j]) -1518 cov = cov + cov.T - np.diag(np.diag(cov)) -1519 -1520 corr = np.diag(1 / np.sqrt(np.diag(cov))) @ cov @ np.diag(1 / np.sqrt(np.diag(cov))) -1521 -1522 if isinstance(smooth, int): -1523 corr = _smooth_eigenvalues(corr, smooth) -1524 -1525 if visualize: -1526 plt.matshow(corr, vmin=-1, vmax=1) -1527 plt.set_cmap('RdBu') -1528 plt.colorbar() -1529 plt.draw() -1530 -1531 if correlation is True: -1532 return corr -1533 -1534 errors = [o.dvalue for o in obs] -1535 cov = np.diag(errors) @ corr @ np.diag(errors) -1536 -1537 eigenvalues = np.linalg.eigh(cov)[0] -1538 if not np.all(eigenvalues >= 0): -1539 warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning) +1480 +1481def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs): +1482 r'''Calculates the error covariance matrix of a set of observables. +1483 +1484 WARNING: This function should be used with care, especially for observables with support on multiple +1485 ensembles with differing autocorrelations. See the notes below for details. +1486 +1487 The gamma method has to be applied first to all observables. +1488 +1489 Parameters +1490 ---------- +1491 obs : list or numpy.ndarray +1492 List or one dimensional array of Obs +1493 visualize : bool +1494 If True plots the corresponding normalized correlation matrix (default False). +1495 correlation : bool +1496 If True the correlation matrix instead of the error covariance matrix is returned (default False). +1497 smooth : None or int +1498 If smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue +1499 smoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the +1500 largest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely +1501 small ones. +1502 +1503 Notes +1504 ----- +1505 The error covariance is defined such that it agrees with the squared standard error for two identical observables +1506 $$\operatorname{cov}(a,a)=\sum_{s=1}^N\delta_a^s\delta_a^s/N^2=\Gamma_{aa}(0)/N=\operatorname{var}(a)/N=\sigma_a^2$$ +1507 in the absence of autocorrelation. +1508 The error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite +1509 $$\sum_{i,j}v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v\in\mathbb{R}^M$, while such an identity does not hold for larger windows/lags. +1510 For observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements. +1511 $$\tau_{\mathrm{int}, ij}=\sqrt{\tau_{\mathrm{int}, i}\times \tau_{\mathrm{int}, j}}$$ +1512 This construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors). +1513 ''' +1514 +1515 length = len(obs) +1516 +1517 max_samples = np.max([o.N for o in obs]) +1518 if max_samples <= length and not [item for sublist in [o.cov_names for o in obs] for item in sublist]: +1519 warnings.warn(f"The dimension of the covariance matrix ({length}) is larger or equal to the number of samples ({max_samples}). This will result in a rank deficient matrix.", RuntimeWarning) +1520 +1521 cov = np.zeros((length, length)) +1522 for i in range(length): +1523 for j in range(i, length): +1524 cov[i, j] = _covariance_element(obs[i], obs[j]) +1525 cov = cov + cov.T - np.diag(np.diag(cov)) +1526 +1527 corr = np.diag(1 / np.sqrt(np.diag(cov))) @ cov @ np.diag(1 / np.sqrt(np.diag(cov))) +1528 +1529 if isinstance(smooth, int): +1530 corr = _smooth_eigenvalues(corr, smooth) +1531 +1532 if visualize: +1533 plt.matshow(corr, vmin=-1, vmax=1) +1534 plt.set_cmap('RdBu') +1535 plt.colorbar() +1536 plt.draw() +1537 +1538 if correlation is True: +1539 return corr 1540 -1541 return cov -1542 +1541 errors = [o.dvalue for o in obs] +1542 cov = np.diag(errors) @ corr @ np.diag(errors) 1543 -1544def invert_corr_cov_cholesky(corr, inverrdiag): -1545 """Constructs a lower triangular matrix `chol` via the Cholesky decomposition of the correlation matrix `corr` -1546 and then returns the inverse covariance matrix `chol_inv` as a lower triangular matrix by solving `chol * x = inverrdiag`. +1544 eigenvalues = np.linalg.eigh(cov)[0] +1545 if not np.all(eigenvalues >= 0): +1546 warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning) 1547 -1548 Parameters -1549 ---------- -1550 corr : np.ndarray -1551 correlation matrix -1552 inverrdiag : np.ndarray -1553 diagonal matrix, the entries are the inverse errors of the data points considered -1554 """ -1555 -1556 condn = np.linalg.cond(corr) -1557 if condn > 0.1 / np.finfo(float).eps: -1558 raise ValueError(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})") -1559 if condn > 1e13: -1560 warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning) -1561 chol = np.linalg.cholesky(corr) -1562 chol_inv = scipy.linalg.solve_triangular(chol, inverrdiag, lower=True) -1563 -1564 return chol_inv -1565 -1566 -1567def sort_corr(corr, kl, yd): -1568 """ Reorders a correlation matrix to match the alphabetical order of its underlying y data. -1569 -1570 The ordering of the input correlation matrix `corr` is given by the list of keys `kl`. -1571 The input dictionary `yd` (with the same keys `kl`) must contain the corresponding y data -1572 that the correlation matrix is based on. -1573 This function sorts the list of keys `kl` alphabetically and sorts the matrix `corr` -1574 according to this alphabetical order such that the sorted matrix `corr_sorted` corresponds -1575 to the y data `yd` when arranged in an alphabetical order by its keys. +1548 return cov +1549 +1550 +1551def invert_corr_cov_cholesky(corr, inverrdiag): +1552 """Constructs a lower triangular matrix `chol` via the Cholesky decomposition of the correlation matrix `corr` +1553 and then returns the inverse covariance matrix `chol_inv` as a lower triangular matrix by solving `chol * x = inverrdiag`. +1554 +1555 Parameters +1556 ---------- +1557 corr : np.ndarray +1558 correlation matrix +1559 inverrdiag : np.ndarray +1560 diagonal matrix, the entries are the inverse errors of the data points considered +1561 """ +1562 +1563 condn = np.linalg.cond(corr) +1564 if condn > 0.1 / np.finfo(float).eps: +1565 raise ValueError(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})") +1566 if condn > 1e13: +1567 warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning) +1568 chol = np.linalg.cholesky(corr) +1569 chol_inv = scipy.linalg.solve_triangular(chol, inverrdiag, lower=True) +1570 +1571 return chol_inv +1572 +1573 +1574def sort_corr(corr, kl, yd): +1575 """ Reorders a correlation matrix to match the alphabetical order of its underlying y data. 1576 -1577 Parameters -1578 ---------- -1579 corr : np.ndarray -1580 A square correlation matrix constructed using the order of the y data specified by `kl`. -1581 The dimensions of `corr` should match the total number of y data points in `yd` combined. -1582 kl : list of str -1583 A list of keys that denotes the order in which the y data from `yd` was used to build the -1584 input correlation matrix `corr`. -1585 yd : dict of list -1586 A dictionary where each key corresponds to a unique identifier, and its value is a list of -1587 y data points. The total number of y data points across all keys must match the dimensions -1588 of `corr`. The lists in the dictionary can be lists of Obs. -1589 -1590 Returns -1591 ------- -1592 np.ndarray -1593 A new, sorted correlation matrix that corresponds to the y data from `yd` when arranged alphabetically by its keys. -1594 -1595 Example -1596 ------- -1597 >>> import numpy as np -1598 >>> import pyerrors as pe -1599 >>> corr = np.array([[1, 0.2, 0.3], [0.2, 1, 0.4], [0.3, 0.4, 1]]) -1600 >>> kl = ['b', 'a'] -1601 >>> yd = {'a': [1, 2], 'b': [3]} -1602 >>> sorted_corr = pe.obs.sort_corr(corr, kl, yd) -1603 >>> print(sorted_corr) -1604 array([[1. , 0.3, 0.4], -1605 [0.3, 1. , 0.2], -1606 [0.4, 0.2, 1. ]]) -1607 -1608 """ -1609 kl_sorted = sorted(kl) -1610 -1611 posd = {} -1612 ofs = 0 -1613 for ki, k in enumerate(kl): -1614 posd[k] = [i + ofs for i in range(len(yd[k]))] -1615 ofs += len(posd[k]) -1616 -1617 mapping = [] -1618 for k in kl_sorted: -1619 for i in range(len(yd[k])): -1620 mapping.append(posd[k][i]) -1621 -1622 corr_sorted = np.zeros_like(corr) -1623 for i in range(corr.shape[0]): -1624 for j in range(corr.shape[0]): -1625 corr_sorted[i][j] = corr[mapping[i]][mapping[j]] -1626 -1627 return corr_sorted +1577 The ordering of the input correlation matrix `corr` is given by the list of keys `kl`. +1578 The input dictionary `yd` (with the same keys `kl`) must contain the corresponding y data +1579 that the correlation matrix is based on. +1580 This function sorts the list of keys `kl` alphabetically and sorts the matrix `corr` +1581 according to this alphabetical order such that the sorted matrix `corr_sorted` corresponds +1582 to the y data `yd` when arranged in an alphabetical order by its keys. +1583 +1584 Parameters +1585 ---------- +1586 corr : np.ndarray +1587 A square correlation matrix constructed using the order of the y data specified by `kl`. +1588 The dimensions of `corr` should match the total number of y data points in `yd` combined. +1589 kl : list of str +1590 A list of keys that denotes the order in which the y data from `yd` was used to build the +1591 input correlation matrix `corr`. +1592 yd : dict of list +1593 A dictionary where each key corresponds to a unique identifier, and its value is a list of +1594 y data points. The total number of y data points across all keys must match the dimensions +1595 of `corr`. The lists in the dictionary can be lists of Obs. +1596 +1597 Returns +1598 ------- +1599 np.ndarray +1600 A new, sorted correlation matrix that corresponds to the y data from `yd` when arranged alphabetically by its keys. +1601 +1602 Example +1603 ------- +1604 >>> import numpy as np +1605 >>> import pyerrors as pe +1606 >>> corr = np.array([[1, 0.2, 0.3], [0.2, 1, 0.4], [0.3, 0.4, 1]]) +1607 >>> kl = ['b', 'a'] +1608 >>> yd = {'a': [1, 2], 'b': [3]} +1609 >>> sorted_corr = pe.obs.sort_corr(corr, kl, yd) +1610 >>> print(sorted_corr) +1611 array([[1. , 0.3, 0.4], +1612 [0.3, 1. , 0.2], +1613 [0.4, 0.2, 1. ]]) +1614 +1615 """ +1616 kl_sorted = sorted(kl) +1617 +1618 posd = {} +1619 ofs = 0 +1620 for ki, k in enumerate(kl): +1621 posd[k] = [i + ofs for i in range(len(yd[k]))] +1622 ofs += len(posd[k]) +1623 +1624 mapping = [] +1625 for k in kl_sorted: +1626 for i in range(len(yd[k])): +1627 mapping.append(posd[k][i]) 1628 -1629 -1630def _smooth_eigenvalues(corr, E): -1631 """Eigenvalue smoothing as described in hep-lat/9412087 -1632 -1633 corr : np.ndarray -1634 correlation matrix -1635 E : integer -1636 Number of eigenvalues to be left substantially unchanged -1637 """ -1638 if not (2 < E < corr.shape[0] - 1): -1639 raise ValueError(f"'E' has to be between 2 and the dimension of the correlation matrix minus 1 ({corr.shape[0] - 1}).") -1640 vals, vec = np.linalg.eigh(corr) -1641 lambda_min = np.mean(vals[:-E]) -1642 vals[vals < lambda_min] = lambda_min -1643 vals /= np.mean(vals) -1644 return vec @ np.diag(vals) @ vec.T -1645 -1646 -1647def _covariance_element(obs1, obs2): -1648 """Estimates the covariance of two Obs objects, neglecting autocorrelations.""" -1649 -1650 def calc_gamma(deltas1, deltas2, idx1, idx2, new_idx): -1651 deltas1 = _reduce_deltas(deltas1, idx1, new_idx) -1652 deltas2 = _reduce_deltas(deltas2, idx2, new_idx) -1653 return np.sum(deltas1 * deltas2) -1654 -1655 if set(obs1.names).isdisjoint(set(obs2.names)): -1656 return 0.0 -1657 -1658 if not hasattr(obs1, 'e_dvalue') or not hasattr(obs2, 'e_dvalue'): -1659 raise Exception('The gamma method has to be applied to both Obs first.') -1660 -1661 dvalue = 0.0 -1662 -1663 for e_name in obs1.mc_names: +1629 corr_sorted = np.zeros_like(corr) +1630 for i in range(corr.shape[0]): +1631 for j in range(corr.shape[0]): +1632 corr_sorted[i][j] = corr[mapping[i]][mapping[j]] +1633 +1634 return corr_sorted +1635 +1636 +1637def _smooth_eigenvalues(corr, E): +1638 """Eigenvalue smoothing as described in hep-lat/9412087 +1639 +1640 corr : np.ndarray +1641 correlation matrix +1642 E : integer +1643 Number of eigenvalues to be left substantially unchanged +1644 """ +1645 if not (2 < E < corr.shape[0] - 1): +1646 raise ValueError(f"'E' has to be between 2 and the dimension of the correlation matrix minus 1 ({corr.shape[0] - 1}).") +1647 vals, vec = np.linalg.eigh(corr) +1648 lambda_min = np.mean(vals[:-E]) +1649 vals[vals < lambda_min] = lambda_min +1650 vals /= np.mean(vals) +1651 return vec @ np.diag(vals) @ vec.T +1652 +1653 +1654def _covariance_element(obs1, obs2): +1655 """Estimates the covariance of two Obs objects, neglecting autocorrelations.""" +1656 +1657 def calc_gamma(deltas1, deltas2, idx1, idx2, new_idx): +1658 deltas1 = _reduce_deltas(deltas1, idx1, new_idx) +1659 deltas2 = _reduce_deltas(deltas2, idx2, new_idx) +1660 return np.sum(deltas1 * deltas2) +1661 +1662 if set(obs1.names).isdisjoint(set(obs2.names)): +1663 return 0.0 1664 -1665 if e_name not in obs2.mc_names: -1666 continue +1665 if not hasattr(obs1, 'e_dvalue') or not hasattr(obs2, 'e_dvalue'): +1666 raise Exception('The gamma method has to be applied to both Obs first.') 1667 -1668 idl_d = {} -1669 for r_name in obs1.e_content[e_name]: -1670 if r_name not in obs2.e_content[e_name]: -1671 continue -1672 idl_d[r_name] = _intersection_idx([obs1.idl[r_name], obs2.idl[r_name]]) -1673 -1674 gamma = 0.0 -1675 +1668 dvalue = 0.0 +1669 +1670 for e_name in obs1.mc_names: +1671 +1672 if e_name not in obs2.mc_names: +1673 continue +1674 +1675 idl_d = {} 1676 for r_name in obs1.e_content[e_name]: 1677 if r_name not in obs2.e_content[e_name]: 1678 continue -1679 if len(idl_d[r_name]) == 0: -1680 continue -1681 gamma += calc_gamma(obs1.deltas[r_name], obs2.deltas[r_name], obs1.idl[r_name], obs2.idl[r_name], idl_d[r_name]) +1679 idl_d[r_name] = _intersection_idx([obs1.idl[r_name], obs2.idl[r_name]]) +1680 +1681 gamma = 0.0 1682 -1683 if gamma == 0.0: -1684 continue -1685 -1686 gamma_div = 0.0 -1687 for r_name in obs1.e_content[e_name]: -1688 if r_name not in obs2.e_content[e_name]: -1689 continue -1690 if len(idl_d[r_name]) == 0: -1691 continue -1692 gamma_div += np.sqrt(calc_gamma(obs1.deltas[r_name], obs1.deltas[r_name], obs1.idl[r_name], obs1.idl[r_name], idl_d[r_name]) * calc_gamma(obs2.deltas[r_name], obs2.deltas[r_name], obs2.idl[r_name], obs2.idl[r_name], idl_d[r_name])) -1693 gamma /= gamma_div -1694 -1695 dvalue += gamma -1696 -1697 for e_name in obs1.cov_names: -1698 -1699 if e_name not in obs2.cov_names: -1700 continue +1683 for r_name in obs1.e_content[e_name]: +1684 if r_name not in obs2.e_content[e_name]: +1685 continue +1686 if len(idl_d[r_name]) == 0: +1687 continue +1688 gamma += calc_gamma(obs1.deltas[r_name], obs2.deltas[r_name], obs1.idl[r_name], obs2.idl[r_name], idl_d[r_name]) +1689 +1690 if gamma == 0.0: +1691 continue +1692 +1693 gamma_div = 0.0 +1694 for r_name in obs1.e_content[e_name]: +1695 if r_name not in obs2.e_content[e_name]: +1696 continue +1697 if len(idl_d[r_name]) == 0: +1698 continue +1699 gamma_div += np.sqrt(calc_gamma(obs1.deltas[r_name], obs1.deltas[r_name], obs1.idl[r_name], obs1.idl[r_name], idl_d[r_name]) * calc_gamma(obs2.deltas[r_name], obs2.deltas[r_name], obs2.idl[r_name], obs2.idl[r_name], idl_d[r_name])) +1700 gamma /= gamma_div 1701 -1702 dvalue += np.dot(np.transpose(obs1.covobs[e_name].grad), np.dot(obs1.covobs[e_name].cov, obs2.covobs[e_name].grad)).item() +1702 dvalue += gamma 1703 -1704 return dvalue +1704 for e_name in obs1.cov_names: 1705 -1706 -1707def import_jackknife(jacks, name, idl=None): -1708 """Imports jackknife samples and returns an Obs -1709 -1710 Parameters -1711 ---------- -1712 jacks : numpy.ndarray -1713 numpy array containing the mean value as zeroth entry and -1714 the N jackknife samples as first to Nth entry. -1715 name : str -1716 name of the ensemble the samples are defined on. -1717 """ -1718 length = len(jacks) - 1 -1719 prj = (np.ones((length, length)) - (length - 1) * np.identity(length)) -1720 samples = jacks[1:] @ prj -1721 mean = np.mean(samples) -1722 new_obs = Obs([samples - mean], [name], idl=idl, means=[mean]) -1723 new_obs._value = jacks[0] -1724 return new_obs -1725 -1726 -1727def import_bootstrap(boots, name, random_numbers): -1728 """Imports bootstrap samples and returns an Obs -1729 -1730 Parameters -1731 ---------- -1732 boots : numpy.ndarray -1733 numpy array containing the mean value as zeroth entry and -1734 the N bootstrap samples as first to Nth entry. -1735 name : str -1736 name of the ensemble the samples are defined on. -1737 random_numbers : np.ndarray -1738 Array of shape (samples, length) containing the random numbers to generate the bootstrap samples, -1739 where samples is the number of bootstrap samples and length is the length of the original Monte Carlo -1740 chain to be reconstructed. -1741 """ -1742 samples, length = random_numbers.shape -1743 if samples != len(boots) - 1: -1744 raise ValueError("Random numbers do not have the correct shape.") -1745 -1746 if samples < length: -1747 raise ValueError("Obs can't be reconstructed if there are fewer bootstrap samples than Monte Carlo data points.") -1748 -1749 proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]) / length -1750 -1751 samples = scipy.linalg.lstsq(proj, boots[1:])[0] -1752 ret = Obs([samples], [name]) -1753 ret._value = boots[0] -1754 return ret +1706 if e_name not in obs2.cov_names: +1707 continue +1708 +1709 dvalue += np.dot(np.transpose(obs1.covobs[e_name].grad), np.dot(obs1.covobs[e_name].cov, obs2.covobs[e_name].grad)).item() +1710 +1711 return dvalue +1712 +1713 +1714def import_jackknife(jacks, name, idl=None): +1715 """Imports jackknife samples and returns an Obs +1716 +1717 Parameters +1718 ---------- +1719 jacks : numpy.ndarray +1720 numpy array containing the mean value as zeroth entry and +1721 the N jackknife samples as first to Nth entry. +1722 name : str +1723 name of the ensemble the samples are defined on. +1724 """ +1725 length = len(jacks) - 1 +1726 prj = (np.ones((length, length)) - (length - 1) * np.identity(length)) +1727 samples = jacks[1:] @ prj +1728 mean = np.mean(samples) +1729 new_obs = Obs([samples - mean], [name], idl=idl, means=[mean]) +1730 new_obs._value = jacks[0] +1731 return new_obs +1732 +1733 +1734def import_bootstrap(boots, name, random_numbers): +1735 """Imports bootstrap samples and returns an Obs +1736 +1737 Parameters +1738 ---------- +1739 boots : numpy.ndarray +1740 numpy array containing the mean value as zeroth entry and +1741 the N bootstrap samples as first to Nth entry. +1742 name : str +1743 name of the ensemble the samples are defined on. +1744 random_numbers : np.ndarray +1745 Array of shape (samples, length) containing the random numbers to generate the bootstrap samples, +1746 where samples is the number of bootstrap samples and length is the length of the original Monte Carlo +1747 chain to be reconstructed. +1748 """ +1749 samples, length = random_numbers.shape +1750 if samples != len(boots) - 1: +1751 raise ValueError("Random numbers do not have the correct shape.") +1752 +1753 if samples < length: +1754 raise ValueError("Obs can't be reconstructed if there are fewer bootstrap samples than Monte Carlo data points.") 1755 -1756 -1757def merge_obs(list_of_obs): -1758 """Combine all observables in list_of_obs into one new observable -1759 -1760 Parameters -1761 ---------- -1762 list_of_obs : list -1763 list of the Obs object to be combined -1764 -1765 Notes -1766 ----- -1767 It is not possible to combine obs which are based on the same replicum -1768 """ -1769 replist = [item for obs in list_of_obs for item in obs.names] -1770 if (len(replist) == len(set(replist))) is False: -1771 raise ValueError('list_of_obs contains duplicate replica: %s' % (str(replist))) -1772 if any([len(o.cov_names) for o in list_of_obs]): -1773 raise ValueError('Not possible to merge data that contains covobs!') -1774 new_dict = {} -1775 idl_dict = {} -1776 for o in list_of_obs: -1777 new_dict.update({key: o.deltas.get(key, 0) + o.r_values.get(key, 0) -1778 for key in set(o.deltas) | set(o.r_values)}) -1779 idl_dict.update({key: o.idl.get(key, 0) for key in set(o.deltas)}) -1780 -1781 names = sorted(new_dict.keys()) -1782 o = Obs([new_dict[name] for name in names], names, idl=[idl_dict[name] for name in names]) -1783 o.reweighted = np.max([oi.reweighted for oi in list_of_obs]) -1784 return o -1785 -1786 -1787def cov_Obs(means, cov, name, grad=None): -1788 """Create an Obs based on mean(s) and a covariance matrix -1789 -1790 Parameters -1791 ---------- -1792 mean : list of floats or float -1793 N mean value(s) of the new Obs -1794 cov : list or array -1795 2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance -1796 name : str -1797 identifier for the covariance matrix -1798 grad : list or array -1799 Gradient of the Covobs wrt. the means belonging to cov. -1800 """ -1801 -1802 def covobs_to_obs(co): -1803 """Make an Obs out of a Covobs -1804 -1805 Parameters -1806 ---------- -1807 co : Covobs -1808 Covobs to be embedded into the Obs -1809 """ -1810 o = Obs([], [], means=[]) -1811 o._value = co.value -1812 o.names.append(co.name) -1813 o._covobs[co.name] = co -1814 o._dvalue = np.sqrt(co.errsq()) -1815 return o -1816 -1817 ol = [] -1818 if isinstance(means, (float, int)): -1819 means = [means] -1820 -1821 for i in range(len(means)): -1822 ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad))) -1823 if ol[0].covobs[name].N != len(means): -1824 raise ValueError('You have to provide %d mean values!' % (ol[0].N)) -1825 if len(ol) == 1: -1826 return ol[0] -1827 return ol -1828 -1829 -1830def _determine_gap(o, e_content, e_name): -1831 gaps = [] -1832 for r_name in e_content[e_name]: -1833 if isinstance(o.idl[r_name], range): -1834 gaps.append(o.idl[r_name].step) -1835 else: -1836 gaps.append(np.min(np.diff(o.idl[r_name]))) -1837 -1838 gap = min(gaps) -1839 if not np.all([gi % gap == 0 for gi in gaps]): -1840 raise ValueError(f"Replica for ensemble {e_name} do not have a common spacing.", gaps) -1841 -1842 return gap -1843 -1844 -1845def _check_lists_equal(idl): -1846 ''' -1847 Use groupby to efficiently check whether all elements of idl are identical. -1848 Returns True if all elements are equal, otherwise False. -1849 -1850 Parameters -1851 ---------- -1852 idl : list of lists, ranges or np.ndarrays -1853 ''' -1854 g = groupby([np.nditer(el) if isinstance(el, np.ndarray) else el for el in idl]) -1855 if next(g, True) and not next(g, False): -1856 return True -1857 return False +1756 proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]) / length +1757 +1758 samples = scipy.linalg.lstsq(proj, boots[1:])[0] +1759 ret = Obs([samples], [name]) +1760 ret._value = boots[0] +1761 return ret +1762 +1763 +1764def merge_obs(list_of_obs): +1765 """Combine all observables in list_of_obs into one new observable. +1766 This allows to merge Obs that have been computed on multiple replica +1767 of the same ensemble. +1768 If you like to merge Obs that are based on several ensembles, please +1769 average them yourself. +1770 +1771 Parameters +1772 ---------- +1773 list_of_obs : list +1774 list of the Obs object to be combined +1775 +1776 Notes +1777 ----- +1778 It is not possible to combine obs which are based on the same replicum +1779 """ +1780 replist = [item for obs in list_of_obs for item in obs.names] +1781 if (len(replist) == len(set(replist))) is False: +1782 raise ValueError('list_of_obs contains duplicate replica: %s' % (str(replist))) +1783 if any([len(o.cov_names) for o in list_of_obs]): +1784 raise ValueError('Not possible to merge data that contains covobs!') +1785 new_dict = {} +1786 idl_dict = {} +1787 for o in list_of_obs: +1788 new_dict.update({key: o.deltas.get(key, 0) + o.r_values.get(key, 0) +1789 for key in set(o.deltas) | set(o.r_values)}) +1790 idl_dict.update({key: o.idl.get(key, 0) for key in set(o.deltas)}) +1791 +1792 names = sorted(new_dict.keys()) +1793 o = Obs([new_dict[name] for name in names], names, idl=[idl_dict[name] for name in names]) +1794 o.reweighted = np.max([oi.reweighted for oi in list_of_obs]) +1795 return o +1796 +1797 +1798def cov_Obs(means, cov, name, grad=None): +1799 """Create an Obs based on mean(s) and a covariance matrix +1800 +1801 Parameters +1802 ---------- +1803 mean : list of floats or float +1804 N mean value(s) of the new Obs +1805 cov : list or array +1806 2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance +1807 name : str +1808 identifier for the covariance matrix +1809 grad : list or array +1810 Gradient of the Covobs wrt. the means belonging to cov. +1811 """ +1812 +1813 def covobs_to_obs(co): +1814 """Make an Obs out of a Covobs +1815 +1816 Parameters +1817 ---------- +1818 co : Covobs +1819 Covobs to be embedded into the Obs +1820 """ +1821 o = Obs([], [], means=[]) +1822 o._value = co.value +1823 o.names.append(co.name) +1824 o._covobs[co.name] = co +1825 o._dvalue = np.sqrt(co.errsq()) +1826 return o +1827 +1828 ol = [] +1829 if isinstance(means, (float, int)): +1830 means = [means] +1831 +1832 for i in range(len(means)): +1833 ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad))) +1834 if ol[0].covobs[name].N != len(means): +1835 raise ValueError('You have to provide %d mean values!' % (ol[0].N)) +1836 if len(ol) == 1: +1837 return ol[0] +1838 return ol +1839 +1840 +1841def _determine_gap(o, e_content, e_name): +1842 gaps = [] +1843 for r_name in e_content[e_name]: +1844 if isinstance(o.idl[r_name], range): +1845 gaps.append(o.idl[r_name].step) +1846 else: +1847 gaps.append(np.min(np.diff(o.idl[r_name]))) +1848 +1849 gap = min(gaps) +1850 if not np.all([gi % gap == 0 for gi in gaps]): +1851 raise ValueError(f"Replica for ensemble {e_name} do not have a common spacing.", gaps) +1852 +1853 return gap +1854 +1855 +1856def _check_lists_equal(idl): +1857 ''' +1858 Use groupby to efficiently check whether all elements of idl are identical. +1859 Returns True if all elements are equal, otherwise False. +1860 +1861 Parameters +1862 ---------- +1863 idl : list of lists, ranges or np.ndarrays +1864 ''' +1865 g = groupby([np.nditer(el) if isinstance(el, np.ndarray) else el for el in idl]) +1866 if next(g, True) and not next(g, False): +1867 return True +1868 return False736def load_json_dict(fname, verbose=True, gz=True, full_output=False, reps='DICTOBS'): +737 """Import a dict of Obs or structures containing Obs from a .json(.gz) file. +738 +739 The following structures are supported: Obs, list, numpy.ndarray, Corr +740 +741 Parameters +742 ---------- +743 fname : str +744 Filename of the input file. +745 verbose : bool +746 Print additional information that was written to the file. +747 gz : bool +748 If True, assumes that data is gzipped. If False, assumes JSON file. +749 full_output : bool +750 If True, a dict containing auxiliary information and the data is returned. +751 If False, only the data is returned. +752 reps : str +753 Specify the structure of the placeholder in imported dict to be reps[0-9]+. +754 +755 Returns +756 ------- +757 data : Obs / list / Corr +758 Read data +759 or +760 data : dict +761 Read data and meta-data +762 """ +763 indata = load_json(fname, verbose=verbose, gz=gz, full_output=True) +764 description = indata['description']['description'] +765 indict = indata['description']['OBSDICT'] +766 ol = indata['obsdata'] +767 od = _od_from_list_and_dict(ol, indict, reps=reps) +768 +769 if full_output: +770 indata['description'] = description +771 indata['obsdata'] = od +772 return indata +773 else: +774 return od
144 @property -145 def value(self): -146 return self._value + @@ -3446,9 +3461,9 @@ list of ranges or lists on which the samples are defined
148 @property -149 def dvalue(self): -150 return self._dvalue + @@ -3464,9 +3479,9 @@ list of ranges or lists on which the samples are defined
152 @property -153 def e_names(self): -154 return sorted(set([o.split('|')[0] for o in self.names])) + @@ -3482,9 +3497,9 @@ list of ranges or lists on which the samples are defined
156 @property -157 def cov_names(self): -158 return sorted(set([o for o in self.covobs.keys()])) + @@ -3500,9 +3515,9 @@ list of ranges or lists on which the samples are defined
160 @property -161 def mc_names(self): -162 return sorted(set([o.split('|')[0] for o in self.names if o not in self.cov_names])) + @@ -3518,14 +3533,14 @@ list of ranges or lists on which the samples are defined
164 @property -165 def e_content(self): -166 res = {} -167 for e, e_name in enumerate(self.e_names): -168 res[e_name] = sorted(filter(lambda x: x.startswith(e_name + '|'), self.names)) -169 if e_name in self.names: -170 res[e_name].append(e_name) -171 return res + @@ -3541,9 +3556,9 @@ list of ranges or lists on which the samples are defined
173 @property -174 def covobs(self): -175 return self._covobs + @@ -3561,171 +3576,171 @@ list of ranges or lists on which the samples are defined
177 def gamma_method(self, **kwargs): -178 """Estimate the error and related properties of the Obs. -179 -180 Parameters -181 ---------- -182 S : float -183 specifies a custom value for the parameter S (default 2.0). -184 If set to 0 it is assumed that the data exhibits no -185 autocorrelation. In this case the error estimates coincides -186 with the sample standard error. -187 tau_exp : float -188 positive value triggers the critical slowing down analysis -189 (default 0.0). -190 N_sigma : float -191 number of standard deviations from zero until the tail is -192 attached to the autocorrelation function (default 1). -193 fft : bool -194 determines whether the fft algorithm is used for the computation -195 of the autocorrelation function (default True) -196 """ -197 -198 e_content = self.e_content -199 self.e_dvalue = {} -200 self.e_ddvalue = {} -201 self.e_tauint = {} -202 self.e_dtauint = {} -203 self.e_windowsize = {} -204 self.e_n_tauint = {} -205 self.e_n_dtauint = {} -206 e_gamma = {} -207 self.e_rho = {} -208 self.e_drho = {} -209 self._dvalue = 0 -210 self.ddvalue = 0 -211 -212 self.S = {} -213 self.tau_exp = {} -214 self.N_sigma = {} -215 -216 if kwargs.get('fft') is False: -217 fft = False -218 else: -219 fft = True -220 -221 def _parse_kwarg(kwarg_name): -222 if kwarg_name in kwargs: -223 tmp = kwargs.get(kwarg_name) -224 if isinstance(tmp, (int, float)): -225 if tmp < 0: -226 raise ValueError(kwarg_name + ' has to be larger or equal to 0.') -227 for e, e_name in enumerate(self.e_names): -228 getattr(self, kwarg_name)[e_name] = tmp -229 else: -230 raise TypeError(kwarg_name + ' is not in proper format.') -231 else: -232 for e, e_name in enumerate(self.e_names): -233 if e_name in getattr(Obs, kwarg_name + '_dict'): -234 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_dict')[e_name] -235 else: -236 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_global') -237 -238 _parse_kwarg('S') -239 _parse_kwarg('tau_exp') -240 _parse_kwarg('N_sigma') -241 -242 for e, e_name in enumerate(self.mc_names): -243 gapsize = _determine_gap(self, e_content, e_name) -244 -245 r_length = [] -246 for r_name in e_content[e_name]: -247 if isinstance(self.idl[r_name], range): -248 r_length.append(len(self.idl[r_name]) * self.idl[r_name].step // gapsize) -249 else: -250 r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1) // gapsize) -251 -252 e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]]) -253 w_max = max(r_length) // 2 -254 e_gamma[e_name] = np.zeros(w_max) -255 self.e_rho[e_name] = np.zeros(w_max) -256 self.e_drho[e_name] = np.zeros(w_max) -257 -258 for r_name in e_content[e_name]: -259 e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) -260 -261 gamma_div = np.zeros(w_max) -262 for r_name in e_content[e_name]: -263 gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) -264 gamma_div[gamma_div < 1] = 1.0 -265 e_gamma[e_name] /= gamma_div[:w_max] -266 -267 if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero -268 self.e_tauint[e_name] = 0.5 -269 self.e_dtauint[e_name] = 0.0 -270 self.e_dvalue[e_name] = 0.0 -271 self.e_ddvalue[e_name] = 0.0 -272 self.e_windowsize[e_name] = 0 -273 continue -274 -275 self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0] -276 self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:]))) -277 # Make sure no entry of tauint is smaller than 0.5 -278 self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps -279 # hep-lat/0306017 eq. (42) -280 self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) + 0.5 - self.e_n_tauint[e_name]) / e_N) -281 self.e_n_dtauint[e_name][0] = 0.0 -282 -283 def _compute_drho(i): -284 tmp = (self.e_rho[e_name][i + 1:w_max] -285 + np.concatenate([self.e_rho[e_name][i - 1:None if i - (w_max - 1) // 2 <= 0 else (2 * i - (2 * w_max) // 2):-1], -286 self.e_rho[e_name][1:max(1, w_max - 2 * i)]]) -287 - 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i]) -288 self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N) -289 -290 if self.tau_exp[e_name] > 0: -291 _compute_drho(1) -292 texp = self.tau_exp[e_name] -293 # Critical slowing down analysis -294 if w_max // 2 <= 1: -295 raise ValueError("Need at least 8 samples for tau_exp error analysis") -296 for n in range(1, w_max // 2): -297 _compute_drho(n + 1) -298 if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2: -299 # Bias correction hep-lat/0306017 eq. (49) included -300 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive -301 self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2) -302 # Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2 -303 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) -304 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) -305 self.e_windowsize[e_name] = n -306 break -307 else: -308 if self.S[e_name] == 0.0: -309 self.e_tauint[e_name] = 0.5 -310 self.e_dtauint[e_name] = 0.0 -311 self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1)) -312 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N) -313 self.e_windowsize[e_name] = 0 -314 else: -315 # Standard automatic windowing procedure -316 tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][1:] + 1) / (2 * self.e_n_tauint[e_name][1:] - 1)) -317 g_w = np.exp(- np.arange(1, len(tau) + 1) / tau) - tau / np.sqrt(np.arange(1, len(tau) + 1) * e_N) -318 for n in range(1, w_max): -319 if g_w[n - 1] < 0 or n >= w_max - 1: -320 _compute_drho(n) -321 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49) -322 self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n] -323 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) -324 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) -325 self.e_windowsize[e_name] = n -326 break -327 -328 self._dvalue += self.e_dvalue[e_name] ** 2 -329 self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2 -330 -331 for e_name in self.cov_names: -332 self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq()) -333 self.e_ddvalue[e_name] = 0 -334 self._dvalue += self.e_dvalue[e_name]**2 -335 -336 self._dvalue = np.sqrt(self._dvalue) -337 if self._dvalue == 0.0: -338 self.ddvalue = 0.0 -339 else: -340 self.ddvalue = np.sqrt(self.ddvalue) / self._dvalue -341 return +@@ -3764,171 +3779,171 @@ of the autocorrelation function (default True)179 def gamma_method(self, **kwargs): +180 """Estimate the error and related properties of the Obs. +181 +182 Parameters +183 ---------- +184 S : float +185 specifies a custom value for the parameter S (default 2.0). +186 If set to 0 it is assumed that the data exhibits no +187 autocorrelation. In this case the error estimates coincides +188 with the sample standard error. +189 tau_exp : float +190 positive value triggers the critical slowing down analysis +191 (default 0.0). +192 N_sigma : float +193 number of standard deviations from zero until the tail is +194 attached to the autocorrelation function (default 1). +195 fft : bool +196 determines whether the fft algorithm is used for the computation +197 of the autocorrelation function (default True) +198 """ +199 +200 e_content = self.e_content +201 self.e_dvalue = {} +202 self.e_ddvalue = {} +203 self.e_tauint = {} +204 self.e_dtauint = {} +205 self.e_windowsize = {} +206 self.e_n_tauint = {} +207 self.e_n_dtauint = {} +208 e_gamma = {} +209 self.e_rho = {} +210 self.e_drho = {} +211 self._dvalue = 0 +212 self.ddvalue = 0 +213 +214 self.S = {} +215 self.tau_exp = {} +216 self.N_sigma = {} +217 +218 if kwargs.get('fft') is False: +219 fft = False +220 else: +221 fft = True +222 +223 def _parse_kwarg(kwarg_name): +224 if kwarg_name in kwargs: +225 tmp = kwargs.get(kwarg_name) +226 if isinstance(tmp, (int, float)): +227 if tmp < 0: +228 raise ValueError(kwarg_name + ' has to be larger or equal to 0.') +229 for e, e_name in enumerate(self.e_names): +230 getattr(self, kwarg_name)[e_name] = tmp +231 else: +232 raise TypeError(kwarg_name + ' is not in proper format.') +233 else: +234 for e, e_name in enumerate(self.e_names): +235 if e_name in getattr(Obs, kwarg_name + '_dict'): +236 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_dict')[e_name] +237 else: +238 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_global') +239 +240 _parse_kwarg('S') +241 _parse_kwarg('tau_exp') +242 _parse_kwarg('N_sigma') +243 +244 for e, e_name in enumerate(self.mc_names): +245 gapsize = _determine_gap(self, e_content, e_name) +246 +247 r_length = [] +248 for r_name in e_content[e_name]: +249 if isinstance(self.idl[r_name], range): +250 r_length.append(len(self.idl[r_name]) * self.idl[r_name].step // gapsize) +251 else: +252 r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1) // gapsize) +253 +254 e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]]) +255 w_max = max(r_length) // 2 +256 e_gamma[e_name] = np.zeros(w_max) +257 self.e_rho[e_name] = np.zeros(w_max) +258 self.e_drho[e_name] = np.zeros(w_max) +259 +260 for r_name in e_content[e_name]: +261 e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) +262 +263 gamma_div = np.zeros(w_max) +264 for r_name in e_content[e_name]: +265 gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) +266 gamma_div[gamma_div < 1] = 1.0 +267 e_gamma[e_name] /= gamma_div[:w_max] +268 +269 if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero +270 self.e_tauint[e_name] = 0.5 +271 self.e_dtauint[e_name] = 0.0 +272 self.e_dvalue[e_name] = 0.0 +273 self.e_ddvalue[e_name] = 0.0 +274 self.e_windowsize[e_name] = 0 +275 continue +276 +277 self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0] +278 self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:]))) +279 # Make sure no entry of tauint is smaller than 0.5 +280 self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps +281 # hep-lat/0306017 eq. (42) +282 self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) + 0.5 - self.e_n_tauint[e_name]) / e_N) +283 self.e_n_dtauint[e_name][0] = 0.0 +284 +285 def _compute_drho(i): +286 tmp = (self.e_rho[e_name][i + 1:w_max] +287 + np.concatenate([self.e_rho[e_name][i - 1:None if i - (w_max - 1) // 2 <= 0 else (2 * i - (2 * w_max) // 2):-1], +288 self.e_rho[e_name][1:max(1, w_max - 2 * i)]]) +289 - 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i]) +290 self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N) +291 +292 if self.tau_exp[e_name] > 0: +293 _compute_drho(1) +294 texp = self.tau_exp[e_name] +295 # Critical slowing down analysis +296 if w_max // 2 <= 1: +297 raise ValueError("Need at least 8 samples for tau_exp error analysis") +298 for n in range(1, w_max // 2): +299 _compute_drho(n + 1) +300 if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2: +301 # Bias correction hep-lat/0306017 eq. (49) included +302 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive +303 self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2) +304 # Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2 +305 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) +306 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) +307 self.e_windowsize[e_name] = n +308 break +309 else: +310 if self.S[e_name] == 0.0: +311 self.e_tauint[e_name] = 0.5 +312 self.e_dtauint[e_name] = 0.0 +313 self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1)) +314 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N) +315 self.e_windowsize[e_name] = 0 +316 else: +317 # Standard automatic windowing procedure +318 tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][1:] + 1) / (2 * self.e_n_tauint[e_name][1:] - 1)) +319 g_w = np.exp(- np.arange(1, len(tau) + 1) / tau) - tau / np.sqrt(np.arange(1, len(tau) + 1) * e_N) +320 for n in range(1, w_max): +321 if g_w[n - 1] < 0 or n >= w_max - 1: +322 _compute_drho(n) +323 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49) +324 self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n] +325 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) +326 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) +327 self.e_windowsize[e_name] = n +328 break +329 +330 self._dvalue += self.e_dvalue[e_name] ** 2 +331 self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2 +332 +333 for e_name in self.cov_names: +334 self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq()) +335 self.e_ddvalue[e_name] = 0 +336 self._dvalue += self.e_dvalue[e_name]**2 +337 +338 self._dvalue = np.sqrt(self._dvalue) +339 if self._dvalue == 0.0: +340 self.ddvalue = 0.0 +341 else: +342 self.ddvalue = np.sqrt(self.ddvalue) / self._dvalue +343 return
177 def gamma_method(self, **kwargs): -178 """Estimate the error and related properties of the Obs. -179 -180 Parameters -181 ---------- -182 S : float -183 specifies a custom value for the parameter S (default 2.0). -184 If set to 0 it is assumed that the data exhibits no -185 autocorrelation. In this case the error estimates coincides -186 with the sample standard error. -187 tau_exp : float -188 positive value triggers the critical slowing down analysis -189 (default 0.0). -190 N_sigma : float -191 number of standard deviations from zero until the tail is -192 attached to the autocorrelation function (default 1). -193 fft : bool -194 determines whether the fft algorithm is used for the computation -195 of the autocorrelation function (default True) -196 """ -197 -198 e_content = self.e_content -199 self.e_dvalue = {} -200 self.e_ddvalue = {} -201 self.e_tauint = {} -202 self.e_dtauint = {} -203 self.e_windowsize = {} -204 self.e_n_tauint = {} -205 self.e_n_dtauint = {} -206 e_gamma = {} -207 self.e_rho = {} -208 self.e_drho = {} -209 self._dvalue = 0 -210 self.ddvalue = 0 -211 -212 self.S = {} -213 self.tau_exp = {} -214 self.N_sigma = {} -215 -216 if kwargs.get('fft') is False: -217 fft = False -218 else: -219 fft = True -220 -221 def _parse_kwarg(kwarg_name): -222 if kwarg_name in kwargs: -223 tmp = kwargs.get(kwarg_name) -224 if isinstance(tmp, (int, float)): -225 if tmp < 0: -226 raise ValueError(kwarg_name + ' has to be larger or equal to 0.') -227 for e, e_name in enumerate(self.e_names): -228 getattr(self, kwarg_name)[e_name] = tmp -229 else: -230 raise TypeError(kwarg_name + ' is not in proper format.') -231 else: -232 for e, e_name in enumerate(self.e_names): -233 if e_name in getattr(Obs, kwarg_name + '_dict'): -234 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_dict')[e_name] -235 else: -236 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_global') -237 -238 _parse_kwarg('S') -239 _parse_kwarg('tau_exp') -240 _parse_kwarg('N_sigma') -241 -242 for e, e_name in enumerate(self.mc_names): -243 gapsize = _determine_gap(self, e_content, e_name) -244 -245 r_length = [] -246 for r_name in e_content[e_name]: -247 if isinstance(self.idl[r_name], range): -248 r_length.append(len(self.idl[r_name]) * self.idl[r_name].step // gapsize) -249 else: -250 r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1) // gapsize) -251 -252 e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]]) -253 w_max = max(r_length) // 2 -254 e_gamma[e_name] = np.zeros(w_max) -255 self.e_rho[e_name] = np.zeros(w_max) -256 self.e_drho[e_name] = np.zeros(w_max) -257 -258 for r_name in e_content[e_name]: -259 e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) -260 -261 gamma_div = np.zeros(w_max) -262 for r_name in e_content[e_name]: -263 gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) -264 gamma_div[gamma_div < 1] = 1.0 -265 e_gamma[e_name] /= gamma_div[:w_max] -266 -267 if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero -268 self.e_tauint[e_name] = 0.5 -269 self.e_dtauint[e_name] = 0.0 -270 self.e_dvalue[e_name] = 0.0 -271 self.e_ddvalue[e_name] = 0.0 -272 self.e_windowsize[e_name] = 0 -273 continue -274 -275 self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0] -276 self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:]))) -277 # Make sure no entry of tauint is smaller than 0.5 -278 self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps -279 # hep-lat/0306017 eq. (42) -280 self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) + 0.5 - self.e_n_tauint[e_name]) / e_N) -281 self.e_n_dtauint[e_name][0] = 0.0 -282 -283 def _compute_drho(i): -284 tmp = (self.e_rho[e_name][i + 1:w_max] -285 + np.concatenate([self.e_rho[e_name][i - 1:None if i - (w_max - 1) // 2 <= 0 else (2 * i - (2 * w_max) // 2):-1], -286 self.e_rho[e_name][1:max(1, w_max - 2 * i)]]) -287 - 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i]) -288 self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N) -289 -290 if self.tau_exp[e_name] > 0: -291 _compute_drho(1) -292 texp = self.tau_exp[e_name] -293 # Critical slowing down analysis -294 if w_max // 2 <= 1: -295 raise ValueError("Need at least 8 samples for tau_exp error analysis") -296 for n in range(1, w_max // 2): -297 _compute_drho(n + 1) -298 if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2: -299 # Bias correction hep-lat/0306017 eq. (49) included -300 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive -301 self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2) -302 # Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2 -303 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) -304 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) -305 self.e_windowsize[e_name] = n -306 break -307 else: -308 if self.S[e_name] == 0.0: -309 self.e_tauint[e_name] = 0.5 -310 self.e_dtauint[e_name] = 0.0 -311 self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1)) -312 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N) -313 self.e_windowsize[e_name] = 0 -314 else: -315 # Standard automatic windowing procedure -316 tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][1:] + 1) / (2 * self.e_n_tauint[e_name][1:] - 1)) -317 g_w = np.exp(- np.arange(1, len(tau) + 1) / tau) - tau / np.sqrt(np.arange(1, len(tau) + 1) * e_N) -318 for n in range(1, w_max): -319 if g_w[n - 1] < 0 or n >= w_max - 1: -320 _compute_drho(n) -321 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49) -322 self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n] -323 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) -324 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) -325 self.e_windowsize[e_name] = n -326 break -327 -328 self._dvalue += self.e_dvalue[e_name] ** 2 -329 self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2 -330 -331 for e_name in self.cov_names: -332 self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq()) -333 self.e_ddvalue[e_name] = 0 -334 self._dvalue += self.e_dvalue[e_name]**2 -335 -336 self._dvalue = np.sqrt(self._dvalue) -337 if self._dvalue == 0.0: -338 self.ddvalue = 0.0 -339 else: -340 self.ddvalue = np.sqrt(self.ddvalue) / self._dvalue -341 return +@@ -3967,74 +3982,74 @@ of the autocorrelation function (default True)179 def gamma_method(self, **kwargs): +180 """Estimate the error and related properties of the Obs. +181 +182 Parameters +183 ---------- +184 S : float +185 specifies a custom value for the parameter S (default 2.0). +186 If set to 0 it is assumed that the data exhibits no +187 autocorrelation. In this case the error estimates coincides +188 with the sample standard error. +189 tau_exp : float +190 positive value triggers the critical slowing down analysis +191 (default 0.0). +192 N_sigma : float +193 number of standard deviations from zero until the tail is +194 attached to the autocorrelation function (default 1). +195 fft : bool +196 determines whether the fft algorithm is used for the computation +197 of the autocorrelation function (default True) +198 """ +199 +200 e_content = self.e_content +201 self.e_dvalue = {} +202 self.e_ddvalue = {} +203 self.e_tauint = {} +204 self.e_dtauint = {} +205 self.e_windowsize = {} +206 self.e_n_tauint = {} +207 self.e_n_dtauint = {} +208 e_gamma = {} +209 self.e_rho = {} +210 self.e_drho = {} +211 self._dvalue = 0 +212 self.ddvalue = 0 +213 +214 self.S = {} +215 self.tau_exp = {} +216 self.N_sigma = {} +217 +218 if kwargs.get('fft') is False: +219 fft = False +220 else: +221 fft = True +222 +223 def _parse_kwarg(kwarg_name): +224 if kwarg_name in kwargs: +225 tmp = kwargs.get(kwarg_name) +226 if isinstance(tmp, (int, float)): +227 if tmp < 0: +228 raise ValueError(kwarg_name + ' has to be larger or equal to 0.') +229 for e, e_name in enumerate(self.e_names): +230 getattr(self, kwarg_name)[e_name] = tmp +231 else: +232 raise TypeError(kwarg_name + ' is not in proper format.') +233 else: +234 for e, e_name in enumerate(self.e_names): +235 if e_name in getattr(Obs, kwarg_name + '_dict'): +236 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_dict')[e_name] +237 else: +238 getattr(self, kwarg_name)[e_name] = getattr(Obs, kwarg_name + '_global') +239 +240 _parse_kwarg('S') +241 _parse_kwarg('tau_exp') +242 _parse_kwarg('N_sigma') +243 +244 for e, e_name in enumerate(self.mc_names): +245 gapsize = _determine_gap(self, e_content, e_name) +246 +247 r_length = [] +248 for r_name in e_content[e_name]: +249 if isinstance(self.idl[r_name], range): +250 r_length.append(len(self.idl[r_name]) * self.idl[r_name].step // gapsize) +251 else: +252 r_length.append((self.idl[r_name][-1] - self.idl[r_name][0] + 1) // gapsize) +253 +254 e_N = np.sum([self.shape[r_name] for r_name in e_content[e_name]]) +255 w_max = max(r_length) // 2 +256 e_gamma[e_name] = np.zeros(w_max) +257 self.e_rho[e_name] = np.zeros(w_max) +258 self.e_drho[e_name] = np.zeros(w_max) +259 +260 for r_name in e_content[e_name]: +261 e_gamma[e_name] += self._calc_gamma(self.deltas[r_name], self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) +262 +263 gamma_div = np.zeros(w_max) +264 for r_name in e_content[e_name]: +265 gamma_div += self._calc_gamma(np.ones((self.shape[r_name])), self.idl[r_name], self.shape[r_name], w_max, fft, gapsize) +266 gamma_div[gamma_div < 1] = 1.0 +267 e_gamma[e_name] /= gamma_div[:w_max] +268 +269 if np.abs(e_gamma[e_name][0]) < 10 * np.finfo(float).tiny: # Prevent division by zero +270 self.e_tauint[e_name] = 0.5 +271 self.e_dtauint[e_name] = 0.0 +272 self.e_dvalue[e_name] = 0.0 +273 self.e_ddvalue[e_name] = 0.0 +274 self.e_windowsize[e_name] = 0 +275 continue +276 +277 self.e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0] +278 self.e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], self.e_rho[e_name][1:]))) +279 # Make sure no entry of tauint is smaller than 0.5 +280 self.e_n_tauint[e_name][self.e_n_tauint[e_name] <= 0.5] = 0.5 + np.finfo(np.float64).eps +281 # hep-lat/0306017 eq. (42) +282 self.e_n_dtauint[e_name] = self.e_n_tauint[e_name] * 2 * np.sqrt(np.abs(np.arange(w_max) + 0.5 - self.e_n_tauint[e_name]) / e_N) +283 self.e_n_dtauint[e_name][0] = 0.0 +284 +285 def _compute_drho(i): +286 tmp = (self.e_rho[e_name][i + 1:w_max] +287 + np.concatenate([self.e_rho[e_name][i - 1:None if i - (w_max - 1) // 2 <= 0 else (2 * i - (2 * w_max) // 2):-1], +288 self.e_rho[e_name][1:max(1, w_max - 2 * i)]]) +289 - 2 * self.e_rho[e_name][i] * self.e_rho[e_name][1:w_max - i]) +290 self.e_drho[e_name][i] = np.sqrt(np.sum(tmp ** 2) / e_N) +291 +292 if self.tau_exp[e_name] > 0: +293 _compute_drho(1) +294 texp = self.tau_exp[e_name] +295 # Critical slowing down analysis +296 if w_max // 2 <= 1: +297 raise ValueError("Need at least 8 samples for tau_exp error analysis") +298 for n in range(1, w_max // 2): +299 _compute_drho(n + 1) +300 if (self.e_rho[e_name][n] - self.N_sigma[e_name] * self.e_drho[e_name][n]) < 0 or n >= w_max // 2 - 2: +301 # Bias correction hep-lat/0306017 eq. (49) included +302 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) + texp * np.abs(self.e_rho[e_name][n + 1]) # The absolute makes sure, that the tail contribution is always positive +303 self.e_dtauint[e_name] = np.sqrt(self.e_n_dtauint[e_name][n] ** 2 + texp ** 2 * self.e_drho[e_name][n + 1] ** 2) +304 # Error of tau_exp neglected so far, missing term: self.e_rho[e_name][n + 1] ** 2 * d_tau_exp ** 2 +305 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) +306 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) +307 self.e_windowsize[e_name] = n +308 break +309 else: +310 if self.S[e_name] == 0.0: +311 self.e_tauint[e_name] = 0.5 +312 self.e_dtauint[e_name] = 0.0 +313 self.e_dvalue[e_name] = np.sqrt(e_gamma[e_name][0] / (e_N - 1)) +314 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt(0.5 / e_N) +315 self.e_windowsize[e_name] = 0 +316 else: +317 # Standard automatic windowing procedure +318 tau = self.S[e_name] / np.log((2 * self.e_n_tauint[e_name][1:] + 1) / (2 * self.e_n_tauint[e_name][1:] - 1)) +319 g_w = np.exp(- np.arange(1, len(tau) + 1) / tau) - tau / np.sqrt(np.arange(1, len(tau) + 1) * e_N) +320 for n in range(1, w_max): +321 if g_w[n - 1] < 0 or n >= w_max - 1: +322 _compute_drho(n) +323 self.e_tauint[e_name] = self.e_n_tauint[e_name][n] * (1 + (2 * n + 1) / e_N) / (1 + 1 / e_N) # Bias correction hep-lat/0306017 eq. (49) +324 self.e_dtauint[e_name] = self.e_n_dtauint[e_name][n] +325 self.e_dvalue[e_name] = np.sqrt(2 * self.e_tauint[e_name] * e_gamma[e_name][0] * (1 + 1 / e_N) / e_N) +326 self.e_ddvalue[e_name] = self.e_dvalue[e_name] * np.sqrt((n + 0.5) / e_N) +327 self.e_windowsize[e_name] = n +328 break +329 +330 self._dvalue += self.e_dvalue[e_name] ** 2 +331 self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2 +332 +333 for e_name in self.cov_names: +334 self.e_dvalue[e_name] = np.sqrt(self.covobs[e_name].errsq()) +335 self.e_ddvalue[e_name] = 0 +336 self._dvalue += self.e_dvalue[e_name]**2 +337 +338 self._dvalue = np.sqrt(self._dvalue) +339 if self._dvalue == 0.0: +340 self.ddvalue = 0.0 +341 else: +342 self.ddvalue = np.sqrt(self.ddvalue) / self._dvalue +343 return
381 def details(self, ens_content=True): -382 """Output detailed properties of the Obs. -383 -384 Parameters -385 ---------- -386 ens_content : bool -387 print details about the ensembles and replica if true. -388 """ -389 if self.tag is not None: -390 print("Description:", self.tag) -391 if not hasattr(self, 'e_dvalue'): -392 print('Result\t %3.8e' % (self.value)) -393 else: -394 if self.value == 0.0: -395 percentage = np.nan -396 else: -397 percentage = np.abs(self._dvalue / self.value) * 100 -398 print('Result\t %3.8e +/- %3.8e +/- %3.8e (%3.3f%%)' % (self.value, self._dvalue, self.ddvalue, percentage)) -399 if len(self.e_names) > 1: -400 print(' Ensemble errors:') -401 e_content = self.e_content -402 for e_name in self.mc_names: -403 gap = _determine_gap(self, e_content, e_name) -404 -405 if len(self.e_names) > 1: -406 print('', e_name, '\t %3.6e +/- %3.6e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name])) -407 tau_string = " \N{GREEK SMALL LETTER TAU}_int\t " + _format_uncertainty(self.e_tauint[e_name], self.e_dtauint[e_name]) -408 tau_string += f" in units of {gap} config" -409 if gap > 1: -410 tau_string += "s" -411 if self.tau_exp[e_name] > 0: -412 tau_string = f"{tau_string: <45}" + '\t(\N{GREEK SMALL LETTER TAU}_exp=%3.2f, N_\N{GREEK SMALL LETTER SIGMA}=%1.0i)' % (self.tau_exp[e_name], self.N_sigma[e_name]) -413 else: -414 tau_string = f"{tau_string: <45}" + '\t(S=%3.2f)' % (self.S[e_name]) -415 print(tau_string) -416 for e_name in self.cov_names: -417 print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name])) -418 if ens_content is True: -419 if len(self.e_names) == 1: -420 print(self.N, 'samples in', len(self.e_names), 'ensemble:') -421 else: -422 print(self.N, 'samples in', len(self.e_names), 'ensembles:') -423 my_string_list = [] -424 for key, value in sorted(self.e_content.items()): -425 if key not in self.covobs: -426 my_string = ' ' + "\u00B7 Ensemble '" + key + "' " -427 if len(value) == 1: -428 my_string += f': {self.shape[value[0]]} configurations' -429 if isinstance(self.idl[value[0]], range): -430 my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')' -431 else: -432 my_string += f' (irregular range from {self.idl[value[0]][0]} to {self.idl[value[0]][-1]})' -433 else: -434 sublist = [] -435 for v in value: -436 my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' " -437 my_substring += f': {self.shape[v]} configurations' -438 if isinstance(self.idl[v], range): -439 my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')' -440 else: -441 my_substring += f' (irregular range from {self.idl[v][0]} to {self.idl[v][-1]})' -442 sublist.append(my_substring) -443 -444 my_string += '\n' + '\n'.join(sublist) -445 else: -446 my_string = ' ' + "\u00B7 Covobs '" + key + "' " -447 my_string_list.append(my_string) -448 print('\n'.join(my_string_list)) +@@ -4061,20 +4076,20 @@ print details about the ensembles and replica if true.383 def details(self, ens_content=True): +384 """Output detailed properties of the Obs. +385 +386 Parameters +387 ---------- +388 ens_content : bool +389 print details about the ensembles and replica if true. +390 """ +391 if self.tag is not None: +392 print("Description:", self.tag) +393 if not hasattr(self, 'e_dvalue'): +394 print('Result\t %3.8e' % (self.value)) +395 else: +396 if self.value == 0.0: +397 percentage = np.nan +398 else: +399 percentage = np.abs(self._dvalue / self.value) * 100 +400 print('Result\t %3.8e +/- %3.8e +/- %3.8e (%3.3f%%)' % (self.value, self._dvalue, self.ddvalue, percentage)) +401 if len(self.e_names) > 1: +402 print(' Ensemble errors:') +403 e_content = self.e_content +404 for e_name in self.mc_names: +405 gap = _determine_gap(self, e_content, e_name) +406 +407 if len(self.e_names) > 1: +408 print('', e_name, '\t %3.6e +/- %3.6e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name])) +409 tau_string = " \N{GREEK SMALL LETTER TAU}_int\t " + _format_uncertainty(self.e_tauint[e_name], self.e_dtauint[e_name]) +410 tau_string += f" in units of {gap} config" +411 if gap > 1: +412 tau_string += "s" +413 if self.tau_exp[e_name] > 0: +414 tau_string = f"{tau_string: <45}" + '\t(\N{GREEK SMALL LETTER TAU}_exp=%3.2f, N_\N{GREEK SMALL LETTER SIGMA}=%1.0i)' % (self.tau_exp[e_name], self.N_sigma[e_name]) +415 else: +416 tau_string = f"{tau_string: <45}" + '\t(S=%3.2f)' % (self.S[e_name]) +417 print(tau_string) +418 for e_name in self.cov_names: +419 print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name])) +420 if ens_content is True: +421 if len(self.e_names) == 1: +422 print(self.N, 'samples in', len(self.e_names), 'ensemble:') +423 else: +424 print(self.N, 'samples in', len(self.e_names), 'ensembles:') +425 my_string_list = [] +426 for key, value in sorted(self.e_content.items()): +427 if key not in self.covobs: +428 my_string = ' ' + "\u00B7 Ensemble '" + key + "' " +429 if len(value) == 1: +430 my_string += f': {self.shape[value[0]]} configurations' +431 if isinstance(self.idl[value[0]], range): +432 my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')' +433 else: +434 my_string += f' (irregular range from {self.idl[value[0]][0]} to {self.idl[value[0]][-1]})' +435 else: +436 sublist = [] +437 for v in value: +438 my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' " +439 my_substring += f': {self.shape[v]} configurations' +440 if isinstance(self.idl[v], range): +441 my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')' +442 else: +443 my_substring += f' (irregular range from {self.idl[v][0]} to {self.idl[v][-1]})' +444 sublist.append(my_substring) +445 +446 my_string += '\n' + '\n'.join(sublist) +447 else: +448 my_string = ' ' + "\u00B7 Covobs '" + key + "' " +449 my_string_list.append(my_string) +450 print('\n'.join(my_string_list))
450 def reweight(self, weight): -451 """Reweight the obs with given rewighting factors. -452 -453 Parameters -454 ---------- -455 weight : Obs -456 Reweighting factor. An Observable that has to be defined on a superset of the -457 configurations in obs[i].idl for all i. -458 all_configs : bool -459 if True, the reweighted observables are normalized by the average of -460 the reweighting factor on all configurations in weight.idl and not -461 on the configurations in obs[i].idl. Default False. -462 """ -463 return reweight(weight, [self])[0] +@@ -4106,17 +4121,17 @@ on the configurations in obs[i].idl. Default False.452 def reweight(self, weight): +453 """Reweight the obs with given rewighting factors. +454 +455 Parameters +456 ---------- +457 weight : Obs +458 Reweighting factor. An Observable that has to be defined on a superset of the +459 configurations in obs[i].idl for all i. +460 all_configs : bool +461 if True, the reweighted observables are normalized by the average of +462 the reweighting factor on all configurations in weight.idl and not +463 on the configurations in obs[i].idl. Default False. +464 """ +465 return reweight(weight, [self])[0]
465 def is_zero_within_error(self, sigma=1): -466 """Checks whether the observable is zero within 'sigma' standard errors. -467 -468 Parameters -469 ---------- -470 sigma : int -471 Number of standard errors used for the check. -472 -473 Works only properly when the gamma method was run. -474 """ -475 return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue +@@ -4144,15 +4159,15 @@ Number of standard errors used for the check.467 def is_zero_within_error(self, sigma=1): +468 """Checks whether the observable is zero within 'sigma' standard errors. +469 +470 Parameters +471 ---------- +472 sigma : int +473 Number of standard errors used for the check. +474 +475 Works only properly when the gamma method was run. +476 """ +477 return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue
477 def is_zero(self, atol=1e-10): -478 """Checks whether the observable is zero within a given tolerance. -479 -480 Parameters -481 ---------- -482 atol : float -483 Absolute tolerance (for details see numpy documentation). -484 """ -485 return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values()) +@@ -4179,45 +4194,45 @@ Absolute tolerance (for details see numpy documentation).479 def is_zero(self, atol=1e-10): +480 """Checks whether the observable is zero within a given tolerance. +481 +482 Parameters +483 ---------- +484 atol : float +485 Absolute tolerance (for details see numpy documentation). +486 """ +487 return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values())
487 def plot_tauint(self, save=None): -488 """Plot integrated autocorrelation time for each ensemble. -489 -490 Parameters -491 ---------- -492 save : str -493 saves the figure to a file named 'save' if. -494 """ -495 if not hasattr(self, 'e_dvalue'): -496 raise Exception('Run the gamma method first.') -497 -498 for e, e_name in enumerate(self.mc_names): -499 fig = plt.figure() -500 plt.xlabel(r'$W$') -501 plt.ylabel(r'$\tau_\mathrm{int}$') -502 length = int(len(self.e_n_tauint[e_name])) -503 if self.tau_exp[e_name] > 0: -504 base = self.e_n_tauint[e_name][self.e_windowsize[e_name]] -505 x_help = np.arange(2 * self.tau_exp[e_name]) -506 y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base -507 x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]) -508 plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',') -509 plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]], -510 yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor']) -511 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 -512 label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2)) -513 else: -514 label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)) -515 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) -516 -517 plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label) -518 plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--') -519 plt.legend() -520 plt.xlim(-0.5, xmax) -521 ylim = plt.ylim() -522 plt.ylim(bottom=0.0, top=max(1.0, ylim[1])) -523 plt.draw() -524 if save: -525 fig.savefig(save + "_" + str(e)) +@@ -4244,36 +4259,36 @@ saves the figure to a file named 'save' if.489 def plot_tauint(self, save=None): +490 """Plot integrated autocorrelation time for each ensemble. +491 +492 Parameters +493 ---------- +494 save : str +495 saves the figure to a file named 'save' if. +496 """ +497 if not hasattr(self, 'e_dvalue'): +498 raise Exception('Run the gamma method first.') +499 +500 for e, e_name in enumerate(self.mc_names): +501 fig = plt.figure() +502 plt.xlabel(r'$W$') +503 plt.ylabel(r'$\tau_\mathrm{int}$') +504 length = int(len(self.e_n_tauint[e_name])) +505 if self.tau_exp[e_name] > 0: +506 base = self.e_n_tauint[e_name][self.e_windowsize[e_name]] +507 x_help = np.arange(2 * self.tau_exp[e_name]) +508 y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base +509 x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]) +510 plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',') +511 plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]], +512 yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor']) +513 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 +514 label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2)) +515 else: +516 label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)) +517 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) +518 +519 plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label) +520 plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--') +521 plt.legend() +522 plt.xlim(-0.5, xmax) +523 ylim = plt.ylim() +524 plt.ylim(bottom=0.0, top=max(1.0, ylim[1])) +525 plt.draw() +526 if save: +527 fig.savefig(save + "_" + str(e))
527 def plot_rho(self, save=None): -528 """Plot normalized autocorrelation function time for each ensemble. -529 -530 Parameters -531 ---------- -532 save : str -533 saves the figure to a file named 'save' if. -534 """ -535 if not hasattr(self, 'e_dvalue'): -536 raise Exception('Run the gamma method first.') -537 for e, e_name in enumerate(self.mc_names): -538 fig = plt.figure() -539 plt.xlabel('W') -540 plt.ylabel('rho') -541 length = int(len(self.e_drho[e_name])) -542 plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2) -543 plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',') -544 if self.tau_exp[e_name] > 0: -545 plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]], -546 [self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1) -547 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 -548 plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2))) -549 else: -550 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) -551 plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))) -552 plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1) -553 plt.xlim(-0.5, xmax) -554 plt.draw() -555 if save: -556 fig.savefig(save + "_" + str(e)) +@@ -4300,27 +4315,27 @@ saves the figure to a file named 'save' if.529 def plot_rho(self, save=None): +530 """Plot normalized autocorrelation function time for each ensemble. +531 +532 Parameters +533 ---------- +534 save : str +535 saves the figure to a file named 'save' if. +536 """ +537 if not hasattr(self, 'e_dvalue'): +538 raise Exception('Run the gamma method first.') +539 for e, e_name in enumerate(self.mc_names): +540 fig = plt.figure() +541 plt.xlabel('W') +542 plt.ylabel('rho') +543 length = int(len(self.e_drho[e_name])) +544 plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2) +545 plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',') +546 if self.tau_exp[e_name] > 0: +547 plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]], +548 [self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1) +549 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 +550 plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2))) +551 else: +552 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) +553 plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))) +554 plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1) +555 plt.xlim(-0.5, xmax) +556 plt.draw() +557 if save: +558 fig.savefig(save + "_" + str(e))
558 def plot_rep_dist(self): -559 """Plot replica distribution for each ensemble with more than one replicum.""" -560 if not hasattr(self, 'e_dvalue'): -561 raise Exception('Run the gamma method first.') -562 for e, e_name in enumerate(self.mc_names): -563 if len(self.e_content[e_name]) == 1: -564 print('No replica distribution for a single replicum (', e_name, ')') -565 continue -566 r_length = [] -567 sub_r_mean = 0 -568 for r, r_name in enumerate(self.e_content[e_name]): -569 r_length.append(len(self.deltas[r_name])) -570 sub_r_mean += self.shape[r_name] * self.r_values[r_name] -571 e_N = np.sum(r_length) -572 sub_r_mean /= e_N -573 arr = np.zeros(len(self.e_content[e_name])) -574 for r, r_name in enumerate(self.e_content[e_name]): -575 arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1)) -576 plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name])) -577 plt.title('Replica distribution' + e_name + ' (mean=0, var=1)') -578 plt.draw() +@@ -4340,37 +4355,37 @@ saves the figure to a file named 'save' if.560 def plot_rep_dist(self): +561 """Plot replica distribution for each ensemble with more than one replicum.""" +562 if not hasattr(self, 'e_dvalue'): +563 raise Exception('Run the gamma method first.') +564 for e, e_name in enumerate(self.mc_names): +565 if len(self.e_content[e_name]) == 1: +566 print('No replica distribution for a single replicum (', e_name, ')') +567 continue +568 r_length = [] +569 sub_r_mean = 0 +570 for r, r_name in enumerate(self.e_content[e_name]): +571 r_length.append(len(self.deltas[r_name])) +572 sub_r_mean += self.shape[r_name] * self.r_values[r_name] +573 e_N = np.sum(r_length) +574 sub_r_mean /= e_N +575 arr = np.zeros(len(self.e_content[e_name])) +576 for r, r_name in enumerate(self.e_content[e_name]): +577 arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1)) +578 plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name])) +579 plt.title('Replica distribution' + e_name + ' (mean=0, var=1)') +580 plt.draw()
580 def plot_history(self, expand=True): -581 """Plot derived Monte Carlo history for each ensemble -582 -583 Parameters -584 ---------- -585 expand : bool -586 show expanded history for irregular Monte Carlo chains (default: True). -587 """ -588 for e, e_name in enumerate(self.mc_names): -589 plt.figure() -590 r_length = [] -591 tmp = [] -592 tmp_expanded = [] -593 for r, r_name in enumerate(self.e_content[e_name]): -594 tmp.append(self.deltas[r_name] + self.r_values[r_name]) -595 if expand: -596 tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name], 1) + self.r_values[r_name]) -597 r_length.append(len(tmp_expanded[-1])) -598 else: -599 r_length.append(len(tmp[-1])) -600 e_N = np.sum(r_length) -601 x = np.arange(e_N) -602 y_test = np.concatenate(tmp, axis=0) -603 if expand: -604 y = np.concatenate(tmp_expanded, axis=0) -605 else: -606 y = y_test -607 plt.errorbar(x, y, fmt='.', markersize=3) -608 plt.xlim(-0.5, e_N - 0.5) -609 plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})') -610 plt.draw() +@@ -4397,29 +4412,29 @@ show expanded history for irregular Monte Carlo chains (default: True).582 def plot_history(self, expand=True): +583 """Plot derived Monte Carlo history for each ensemble +584 +585 Parameters +586 ---------- +587 expand : bool +588 show expanded history for irregular Monte Carlo chains (default: True). +589 """ +590 for e, e_name in enumerate(self.mc_names): +591 plt.figure() +592 r_length = [] +593 tmp = [] +594 tmp_expanded = [] +595 for r, r_name in enumerate(self.e_content[e_name]): +596 tmp.append(self.deltas[r_name] + self.r_values[r_name]) +597 if expand: +598 tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name], 1) + self.r_values[r_name]) +599 r_length.append(len(tmp_expanded[-1])) +600 else: +601 r_length.append(len(tmp[-1])) +602 e_N = np.sum(r_length) +603 x = np.arange(e_N) +604 y_test = np.concatenate(tmp, axis=0) +605 if expand: +606 y = np.concatenate(tmp_expanded, axis=0) +607 else: +608 y = y_test +609 plt.errorbar(x, y, fmt='.', markersize=3) +610 plt.xlim(-0.5, e_N - 0.5) +611 plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})') +612 plt.draw()
612 def plot_piechart(self, save=None): -613 """Plot piechart which shows the fractional contribution of each -614 ensemble to the error and returns a dictionary containing the fractions. -615 -616 Parameters -617 ---------- -618 save : str -619 saves the figure to a file named 'save' if. -620 """ -621 if not hasattr(self, 'e_dvalue'): -622 raise Exception('Run the gamma method first.') -623 if np.isclose(0.0, self._dvalue, atol=1e-15): -624 raise ValueError('Error is 0.0') -625 labels = self.e_names -626 sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 -627 fig1, ax1 = plt.subplots() -628 ax1.pie(sizes, labels=labels, startangle=90, normalize=True) -629 ax1.axis('equal') -630 plt.draw() -631 if save: -632 fig1.savefig(save) -633 -634 return dict(zip(labels, sizes)) +@@ -4447,34 +4462,34 @@ saves the figure to a file named 'save' if.614 def plot_piechart(self, save=None): +615 """Plot piechart which shows the fractional contribution of each +616 ensemble to the error and returns a dictionary containing the fractions. +617 +618 Parameters +619 ---------- +620 save : str +621 saves the figure to a file named 'save' if. +622 """ +623 if not hasattr(self, 'e_dvalue'): +624 raise Exception('Run the gamma method first.') +625 if np.isclose(0.0, self._dvalue, atol=1e-15): +626 raise ValueError('Error is 0.0') +627 labels = self.e_names +628 sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 +629 fig1, ax1 = plt.subplots() +630 ax1.pie(sizes, labels=labels, startangle=90, normalize=True) +631 ax1.axis('equal') +632 plt.draw() +633 if save: +634 fig1.savefig(save) +635 +636 return dict(zip(labels, sizes))
636 def dump(self, filename, datatype="json.gz", description="", **kwargs): -637 """Dump the Obs to a file 'name' of chosen format. -638 -639 Parameters -640 ---------- -641 filename : str -642 name of the file to be saved. -643 datatype : str -644 Format of the exported file. Supported formats include -645 "json.gz" and "pickle" -646 description : str -647 Description for output file, only relevant for json.gz format. -648 path : str -649 specifies a custom path for the file (default '.') -650 """ -651 if 'path' in kwargs: -652 file_name = kwargs.get('path') + '/' + filename -653 else: -654 file_name = filename -655 -656 if datatype == "json.gz": -657 from .input.json import dump_to_json -658 dump_to_json([self], file_name, description=description) -659 elif datatype == "pickle": -660 with open(file_name + '.p', 'wb') as fb: -661 pickle.dump(self, fb) -662 else: -663 raise TypeError("Unknown datatype " + str(datatype)) +@@ -4508,31 +4523,31 @@ specifies a custom path for the file (default '.')638 def dump(self, filename, datatype="json.gz", description="", **kwargs): +639 """Dump the Obs to a file 'name' of chosen format. +640 +641 Parameters +642 ---------- +643 filename : str +644 name of the file to be saved. +645 datatype : str +646 Format of the exported file. Supported formats include +647 "json.gz" and "pickle" +648 description : str +649 Description for output file, only relevant for json.gz format. +650 path : str +651 specifies a custom path for the file (default '.') +652 """ +653 if 'path' in kwargs: +654 file_name = kwargs.get('path') + '/' + filename +655 else: +656 file_name = filename +657 +658 if datatype == "json.gz": +659 from .input.json import dump_to_json +660 dump_to_json([self], file_name, description=description) +661 elif datatype == "pickle": +662 with open(file_name + '.p', 'wb') as fb: +663 pickle.dump(self, fb) +664 else: +665 raise TypeError("Unknown datatype " + str(datatype))
665 def export_jackknife(self): -666 """Export jackknife samples from the Obs -667 -668 Returns -669 ------- -670 numpy.ndarray -671 Returns a numpy array of length N + 1 where N is the number of samples -672 for the given ensemble and replicum. The zeroth entry of the array contains -673 the mean value of the Obs, entries 1 to N contain the N jackknife samples -674 derived from the Obs. The current implementation only works for observables -675 defined on exactly one ensemble and replicum. The derived jackknife samples -676 should agree with samples from a full jackknife analysis up to O(1/N). -677 """ -678 -679 if len(self.names) != 1: -680 raise ValueError("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") -681 -682 name = self.names[0] -683 full_data = self.deltas[name] + self.r_values[name] -684 n = full_data.size -685 mean = self.value -686 tmp_jacks = np.zeros(n + 1) -687 tmp_jacks[0] = mean -688 tmp_jacks[1:] = (n * mean - full_data) / (n - 1) -689 return tmp_jacks +@@ -4563,48 +4578,48 @@ should agree with samples from a full jackknife analysis up to O(1/N).667 def export_jackknife(self): +668 """Export jackknife samples from the Obs +669 +670 Returns +671 ------- +672 numpy.ndarray +673 Returns a numpy array of length N + 1 where N is the number of samples +674 for the given ensemble and replicum. The zeroth entry of the array contains +675 the mean value of the Obs, entries 1 to N contain the N jackknife samples +676 derived from the Obs. The current implementation only works for observables +677 defined on exactly one ensemble and replicum. The derived jackknife samples +678 should agree with samples from a full jackknife analysis up to O(1/N). +679 """ +680 +681 if len(self.names) != 1: +682 raise ValueError("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") +683 +684 name = self.names[0] +685 full_data = self.deltas[name] + self.r_values[name] +686 n = full_data.size +687 mean = self.value +688 tmp_jacks = np.zeros(n + 1) +689 tmp_jacks[0] = mean +690 tmp_jacks[1:] = (n * mean - full_data) / (n - 1) +691 return tmp_jacks
691 def export_bootstrap(self, samples=500, random_numbers=None, save_rng=None): -692 """Export bootstrap samples from the Obs -693 -694 Parameters -695 ---------- -696 samples : int -697 Number of bootstrap samples to generate. -698 random_numbers : np.ndarray -699 Array of shape (samples, length) containing the random numbers to generate the bootstrap samples. -700 If not provided the bootstrap samples are generated bashed on the md5 hash of the enesmble name. -701 save_rng : str -702 Save the random numbers to a file if a path is specified. -703 -704 Returns -705 ------- -706 numpy.ndarray -707 Returns a numpy array of length N + 1 where N is the number of samples -708 for the given ensemble and replicum. The zeroth entry of the array contains -709 the mean value of the Obs, entries 1 to N contain the N import_bootstrap samples -710 derived from the Obs. The current implementation only works for observables -711 defined on exactly one ensemble and replicum. The derived bootstrap samples -712 should agree with samples from a full bootstrap analysis up to O(1/N). -713 """ -714 if len(self.names) != 1: -715 raise ValueError("'export_boostrap' is only implemented for Obs defined on one ensemble and replicum.") -716 -717 name = self.names[0] -718 length = self.N -719 -720 if random_numbers is None: -721 seed = int(hashlib.md5(name.encode()).hexdigest(), 16) & 0xFFFFFFFF -722 rng = np.random.default_rng(seed) -723 random_numbers = rng.integers(0, length, size=(samples, length)) -724 -725 if save_rng is not None: -726 np.savetxt(save_rng, random_numbers, fmt='%i') -727 -728 proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]) / length -729 ret = np.zeros(samples + 1) -730 ret[0] = self.value -731 ret[1:] = proj @ (self.deltas[name] + self.r_values[name]) -732 return ret +@@ -4647,8 +4662,8 @@ should agree with samples from a full bootstrap analysis up to O(1/N).693 def export_bootstrap(self, samples=500, random_numbers=None, save_rng=None): +694 """Export bootstrap samples from the Obs +695 +696 Parameters +697 ---------- +698 samples : int +699 Number of bootstrap samples to generate. +700 random_numbers : np.ndarray +701 Array of shape (samples, length) containing the random numbers to generate the bootstrap samples. +702 If not provided the bootstrap samples are generated bashed on the md5 hash of the enesmble name. +703 save_rng : str +704 Save the random numbers to a file if a path is specified. +705 +706 Returns +707 ------- +708 numpy.ndarray +709 Returns a numpy array of length N + 1 where N is the number of samples +710 for the given ensemble and replicum. The zeroth entry of the array contains +711 the mean value of the Obs, entries 1 to N contain the N import_bootstrap samples +712 derived from the Obs. The current implementation only works for observables +713 defined on exactly one ensemble and replicum. The derived bootstrap samples +714 should agree with samples from a full bootstrap analysis up to O(1/N). +715 """ +716 if len(self.names) != 1: +717 raise ValueError("'export_boostrap' is only implemented for Obs defined on one ensemble and replicum.") +718 +719 name = self.names[0] +720 length = self.N +721 +722 if random_numbers is None: +723 seed = int(hashlib.md5(name.encode()).hexdigest(), 16) & 0xFFFFFFFF +724 rng = np.random.default_rng(seed) +725 random_numbers = rng.integers(0, length, size=(samples, length)) +726 +727 if save_rng is not None: +728 np.savetxt(save_rng, random_numbers, fmt='%i') +729 +730 proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]) / length +731 ret = np.zeros(samples + 1) +732 ret[0] = self.value +733 ret[1:] = proj @ (self.deltas[name] + self.r_values[name]) +734 return ret
871 def sqrt(self): -872 return derived_observable(lambda x, **kwargs: np.sqrt(x[0]), [self], man_grad=[1 / 2 / np.sqrt(self.value)]) + @@ -4666,8 +4681,8 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
874 def log(self): -875 return derived_observable(lambda x, **kwargs: np.log(x[0]), [self], man_grad=[1 / self.value]) + @@ -4685,8 +4700,8 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
877 def exp(self): -878 return derived_observable(lambda x, **kwargs: np.exp(x[0]), [self], man_grad=[np.exp(self.value)]) + @@ -4704,8 +4719,8 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
880 def sin(self): -881 return derived_observable(lambda x, **kwargs: np.sin(x[0]), [self], man_grad=[np.cos(self.value)]) + @@ -4723,8 +4738,8 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
883 def cos(self): -884 return derived_observable(lambda x, **kwargs: np.cos(x[0]), [self], man_grad=[-np.sin(self.value)]) + @@ -4742,8 +4757,8 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
886 def tan(self): -887 return derived_observable(lambda x, **kwargs: np.tan(x[0]), [self], man_grad=[1 / np.cos(self.value) ** 2]) + @@ -4761,8 +4776,8 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
889 def arcsin(self): -890 return derived_observable(lambda x: anp.arcsin(x[0]), [self]) + @@ -4780,8 +4795,8 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
892 def arccos(self): -893 return derived_observable(lambda x: anp.arccos(x[0]), [self]) + @@ -4799,8 +4814,8 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
895 def arctan(self): -896 return derived_observable(lambda x: anp.arctan(x[0]), [self]) + @@ -4818,8 +4833,8 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
898 def sinh(self): -899 return derived_observable(lambda x, **kwargs: np.sinh(x[0]), [self], man_grad=[np.cosh(self.value)]) + @@ -4837,8 +4852,8 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
901 def cosh(self): -902 return derived_observable(lambda x, **kwargs: np.cosh(x[0]), [self], man_grad=[np.sinh(self.value)]) + @@ -4856,8 +4871,8 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
904 def tanh(self): -905 return derived_observable(lambda x, **kwargs: np.tanh(x[0]), [self], man_grad=[1 / np.cosh(self.value) ** 2]) + @@ -4875,8 +4890,8 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
907 def arcsinh(self): -908 return derived_observable(lambda x: anp.arcsinh(x[0]), [self]) + @@ -4894,8 +4909,8 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
910 def arccosh(self): -911 return derived_observable(lambda x: anp.arccosh(x[0]), [self]) + @@ -4913,8 +4928,8 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
913 def arctanh(self): -914 return derived_observable(lambda x: anp.arctanh(x[0]), [self]) + @@ -5065,123 +5080,123 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
917class CObs: - 918 """Class for a complex valued observable.""" - 919 __slots__ = ['_real', '_imag', 'tag'] - 920 - 921 def __init__(self, real, imag=0.0): - 922 self._real = real - 923 self._imag = imag - 924 self.tag = None - 925 - 926 @property - 927 def real(self): - 928 return self._real - 929 - 930 @property - 931 def imag(self): - 932 return self._imag - 933 - 934 def gamma_method(self, **kwargs): - 935 """Executes the gamma_method for the real and the imaginary part.""" - 936 if isinstance(self.real, Obs): - 937 self.real.gamma_method(**kwargs) - 938 if isinstance(self.imag, Obs): - 939 self.imag.gamma_method(**kwargs) - 940 - 941 def is_zero(self): - 942 """Checks whether both real and imaginary part are zero within machine precision.""" - 943 return self.real == 0.0 and self.imag == 0.0 - 944 - 945 def conjugate(self): - 946 return CObs(self.real, -self.imag) - 947 - 948 def __add__(self, other): - 949 if isinstance(other, np.ndarray): - 950 return other + self - 951 elif hasattr(other, 'real') and hasattr(other, 'imag'): - 952 return CObs(self.real + other.real, - 953 self.imag + other.imag) - 954 else: - 955 return CObs(self.real + other, self.imag) - 956 - 957 def __radd__(self, y): - 958 return self + y - 959 - 960 def __sub__(self, other): - 961 if isinstance(other, np.ndarray): - 962 return -1 * (other - self) - 963 elif hasattr(other, 'real') and hasattr(other, 'imag'): - 964 return CObs(self.real - other.real, self.imag - other.imag) - 965 else: - 966 return CObs(self.real - other, self.imag) - 967 - 968 def __rsub__(self, other): - 969 return -1 * (self - other) - 970 - 971 def __mul__(self, other): - 972 if isinstance(other, np.ndarray): - 973 return other * self - 974 elif hasattr(other, 'real') and hasattr(other, 'imag'): - 975 if all(isinstance(i, Obs) for i in [self.real, self.imag, other.real, other.imag]): - 976 return CObs(derived_observable(lambda x, **kwargs: x[0] * x[1] - x[2] * x[3], - 977 [self.real, other.real, self.imag, other.imag], - 978 man_grad=[other.real.value, self.real.value, -other.imag.value, -self.imag.value]), - 979 derived_observable(lambda x, **kwargs: x[2] * x[1] + x[0] * x[3], - 980 [self.real, other.real, self.imag, other.imag], - 981 man_grad=[other.imag.value, self.imag.value, other.real.value, self.real.value])) - 982 elif getattr(other, 'imag', 0) != 0: - 983 return CObs(self.real * other.real - self.imag * other.imag, - 984 self.imag * other.real + self.real * other.imag) - 985 else: - 986 return CObs(self.real * other.real, self.imag * other.real) - 987 else: - 988 return CObs(self.real * other, self.imag * other) - 989 - 990 def __rmul__(self, other): - 991 return self * other - 992 - 993 def __truediv__(self, other): - 994 if isinstance(other, np.ndarray): - 995 return 1 / (other / self) - 996 elif hasattr(other, 'real') and hasattr(other, 'imag'): - 997 r = other.real ** 2 + other.imag ** 2 - 998 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.imag * other.real - self.real * other.imag) / r) - 999 else: -1000 return CObs(self.real / other, self.imag / other) -1001 -1002 def __rtruediv__(self, other): -1003 r = self.real ** 2 + self.imag ** 2 -1004 if hasattr(other, 'real') and hasattr(other, 'imag'): -1005 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.real * other.imag - self.imag * other.real) / r) -1006 else: -1007 return CObs(self.real * other / r, -self.imag * other / r) -1008 -1009 def __abs__(self): -1010 return np.sqrt(self.real**2 + self.imag**2) -1011 -1012 def __pos__(self): -1013 return self -1014 -1015 def __neg__(self): -1016 return -1 * self -1017 -1018 def __eq__(self, other): -1019 return self.real == other.real and self.imag == other.imag -1020 -1021 def __str__(self): -1022 return '(' + str(self.real) + int(self.imag >= 0.0) * '+' + str(self.imag) + 'j)' -1023 -1024 def __repr__(self): -1025 return 'CObs[' + str(self) + ']' -1026 -1027 def __format__(self, format_type): -1028 if format_type == "": -1029 significance = 2 -1030 format_type = "2" -1031 else: -1032 significance = int(float(format_type.replace("+", "").replace("-", ""))) -1033 return f"({self.real:{format_type}}{self.imag:+{significance}}j)" +@@ -5199,10 +5214,10 @@ should agree with samples from a full bootstrap analysis up to O(1/N).919class CObs: + 920 """Class for a complex valued observable.""" + 921 __slots__ = ['_real', '_imag', 'tag'] + 922 + 923 def __init__(self, real, imag=0.0): + 924 self._real = real + 925 self._imag = imag + 926 self.tag = None + 927 + 928 @property + 929 def real(self): + 930 return self._real + 931 + 932 @property + 933 def imag(self): + 934 return self._imag + 935 + 936 def gamma_method(self, **kwargs): + 937 """Executes the gamma_method for the real and the imaginary part.""" + 938 if isinstance(self.real, Obs): + 939 self.real.gamma_method(**kwargs) + 940 if isinstance(self.imag, Obs): + 941 self.imag.gamma_method(**kwargs) + 942 + 943 def is_zero(self): + 944 """Checks whether both real and imaginary part are zero within machine precision.""" + 945 return self.real == 0.0 and self.imag == 0.0 + 946 + 947 def conjugate(self): + 948 return CObs(self.real, -self.imag) + 949 + 950 def __add__(self, other): + 951 if isinstance(other, np.ndarray): + 952 return other + self + 953 elif hasattr(other, 'real') and hasattr(other, 'imag'): + 954 return CObs(self.real + other.real, + 955 self.imag + other.imag) + 956 else: + 957 return CObs(self.real + other, self.imag) + 958 + 959 def __radd__(self, y): + 960 return self + y + 961 + 962 def __sub__(self, other): + 963 if isinstance(other, np.ndarray): + 964 return -1 * (other - self) + 965 elif hasattr(other, 'real') and hasattr(other, 'imag'): + 966 return CObs(self.real - other.real, self.imag - other.imag) + 967 else: + 968 return CObs(self.real - other, self.imag) + 969 + 970 def __rsub__(self, other): + 971 return -1 * (self - other) + 972 + 973 def __mul__(self, other): + 974 if isinstance(other, np.ndarray): + 975 return other * self + 976 elif hasattr(other, 'real') and hasattr(other, 'imag'): + 977 if all(isinstance(i, Obs) for i in [self.real, self.imag, other.real, other.imag]): + 978 return CObs(derived_observable(lambda x, **kwargs: x[0] * x[1] - x[2] * x[3], + 979 [self.real, other.real, self.imag, other.imag], + 980 man_grad=[other.real.value, self.real.value, -other.imag.value, -self.imag.value]), + 981 derived_observable(lambda x, **kwargs: x[2] * x[1] + x[0] * x[3], + 982 [self.real, other.real, self.imag, other.imag], + 983 man_grad=[other.imag.value, self.imag.value, other.real.value, self.real.value])) + 984 elif getattr(other, 'imag', 0) != 0: + 985 return CObs(self.real * other.real - self.imag * other.imag, + 986 self.imag * other.real + self.real * other.imag) + 987 else: + 988 return CObs(self.real * other.real, self.imag * other.real) + 989 else: + 990 return CObs(self.real * other, self.imag * other) + 991 + 992 def __rmul__(self, other): + 993 return self * other + 994 + 995 def __truediv__(self, other): + 996 if isinstance(other, np.ndarray): + 997 return 1 / (other / self) + 998 elif hasattr(other, 'real') and hasattr(other, 'imag'): + 999 r = other.real ** 2 + other.imag ** 2 +1000 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.imag * other.real - self.real * other.imag) / r) +1001 else: +1002 return CObs(self.real / other, self.imag / other) +1003 +1004 def __rtruediv__(self, other): +1005 r = self.real ** 2 + self.imag ** 2 +1006 if hasattr(other, 'real') and hasattr(other, 'imag'): +1007 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.real * other.imag - self.imag * other.real) / r) +1008 else: +1009 return CObs(self.real * other / r, -self.imag * other / r) +1010 +1011 def __abs__(self): +1012 return np.sqrt(self.real**2 + self.imag**2) +1013 +1014 def __pos__(self): +1015 return self +1016 +1017 def __neg__(self): +1018 return -1 * self +1019 +1020 def __eq__(self, other): +1021 return self.real == other.real and self.imag == other.imag +1022 +1023 def __str__(self): +1024 return '(' + str(self.real) + int(self.imag >= 0.0) * '+' + str(self.imag) + 'j)' +1025 +1026 def __repr__(self): +1027 return 'CObs[' + str(self) + ']' +1028 +1029 def __format__(self, format_type): +1030 if format_type == "": +1031 significance = 2 +1032 format_type = "2" +1033 else: +1034 significance = int(float(format_type.replace("+", "").replace("-", ""))) +1035 return f"({self.real:{format_type}}{self.imag:+{significance}}j)"
921 def __init__(self, real, imag=0.0): -922 self._real = real -923 self._imag = imag -924 self.tag = None + @@ -5229,9 +5244,9 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
926 @property -927 def real(self): -928 return self._real + @@ -5247,9 +5262,9 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
930 @property -931 def imag(self): -932 return self._imag + @@ -5267,12 +5282,12 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
934 def gamma_method(self, **kwargs): -935 """Executes the gamma_method for the real and the imaginary part.""" -936 if isinstance(self.real, Obs): -937 self.real.gamma_method(**kwargs) -938 if isinstance(self.imag, Obs): -939 self.imag.gamma_method(**kwargs) + @@ -5292,9 +5307,9 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
941 def is_zero(self): -942 """Checks whether both real and imaginary part are zero within machine precision.""" -943 return self.real == 0.0 and self.imag == 0.0 + @@ -5314,8 +5329,8 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
945 def conjugate(self): -946 return CObs(self.real, -self.imag) + @@ -5334,12 +5349,12 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
1036def gamma_method(x, **kwargs): -1037 """Vectorized version of the gamma_method applicable to lists or arrays of Obs. -1038 -1039 See docstring of pe.Obs.gamma_method for details. -1040 """ -1041 return np.vectorize(lambda o: o.gm(**kwargs))(x) + @@ -5361,12 +5376,12 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
1036def gamma_method(x, **kwargs): -1037 """Vectorized version of the gamma_method applicable to lists or arrays of Obs. -1038 -1039 See docstring of pe.Obs.gamma_method for details. -1040 """ -1041 return np.vectorize(lambda o: o.gm(**kwargs))(x) + @@ -5388,194 +5403,194 @@ should agree with samples from a full bootstrap analysis up to O(1/N).
1171def derived_observable(func, data, array_mode=False, **kwargs): -1172 """Construct a derived Obs according to func(data, **kwargs) using automatic differentiation. -1173 -1174 Parameters -1175 ---------- -1176 func : object -1177 arbitrary function of the form func(data, **kwargs). For the -1178 automatic differentiation to work, all numpy functions have to have -1179 the autograd wrapper (use 'import autograd.numpy as anp'). -1180 data : list -1181 list of Obs, e.g. [obs1, obs2, obs3]. -1182 num_grad : bool -1183 if True, numerical derivatives are used instead of autograd -1184 (default False). To control the numerical differentiation the -1185 kwargs of numdifftools.step_generators.MaxStepGenerator -1186 can be used. -1187 man_grad : list -1188 manually supply a list or an array which contains the jacobian -1189 of func. Use cautiously, supplying the wrong derivative will -1190 not be intercepted. -1191 -1192 Notes -1193 ----- -1194 For simple mathematical operations it can be practical to use anonymous -1195 functions. For the ratio of two observables one can e.g. use -1196 -1197 new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2]) -1198 """ -1199 -1200 data = np.asarray(data) -1201 raveled_data = data.ravel() -1202 -1203 # Workaround for matrix operations containing non Obs data -1204 if not all(isinstance(x, Obs) for x in raveled_data): -1205 for i in range(len(raveled_data)): -1206 if isinstance(raveled_data[i], (int, float)): -1207 raveled_data[i] = cov_Obs(raveled_data[i], 0.0, "###dummy_covobs###") -1208 -1209 allcov = {} -1210 for o in raveled_data: -1211 for name in o.cov_names: -1212 if name in allcov: -1213 if not np.allclose(allcov[name], o.covobs[name].cov): -1214 raise Exception('Inconsistent covariance matrices for %s!' % (name)) -1215 else: -1216 allcov[name] = o.covobs[name].cov -1217 -1218 n_obs = len(raveled_data) -1219 new_names = sorted(set([y for x in [o.names for o in raveled_data] for y in x])) -1220 new_cov_names = sorted(set([y for x in [o.cov_names for o in raveled_data] for y in x])) -1221 new_sample_names = sorted(set(new_names) - set(new_cov_names)) -1222 -1223 reweighted = len(list(filter(lambda o: o.reweighted is True, raveled_data))) > 0 +@@ -5622,46 +5637,48 @@ functions. For the ratio of two observables one can e.g. use1173def derived_observable(func, data, array_mode=False, **kwargs): +1174 """Construct a derived Obs according to func(data, **kwargs) using automatic differentiation. +1175 +1176 Parameters +1177 ---------- +1178 func : object +1179 arbitrary function of the form func(data, **kwargs). For the +1180 automatic differentiation to work, all numpy functions have to have +1181 the autograd wrapper (use 'import autograd.numpy as anp'). +1182 data : list +1183 list of Obs, e.g. [obs1, obs2, obs3]. +1184 num_grad : bool +1185 if True, numerical derivatives are used instead of autograd +1186 (default False). To control the numerical differentiation the +1187 kwargs of numdifftools.step_generators.MaxStepGenerator +1188 can be used. +1189 man_grad : list +1190 manually supply a list or an array which contains the jacobian +1191 of func. Use cautiously, supplying the wrong derivative will +1192 not be intercepted. +1193 +1194 Notes +1195 ----- +1196 For simple mathematical operations it can be practical to use anonymous +1197 functions. For the ratio of two observables one can e.g. use +1198 +1199 new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2]) +1200 """ +1201 +1202 data = np.asarray(data) +1203 raveled_data = data.ravel() +1204 +1205 # Workaround for matrix operations containing non Obs data +1206 if not all(isinstance(x, Obs) for x in raveled_data): +1207 for i in range(len(raveled_data)): +1208 if isinstance(raveled_data[i], (int, float)): +1209 raveled_data[i] = cov_Obs(raveled_data[i], 0.0, "###dummy_covobs###") +1210 +1211 allcov = {} +1212 for o in raveled_data: +1213 for name in o.cov_names: +1214 if name in allcov: +1215 if not np.allclose(allcov[name], o.covobs[name].cov): +1216 raise Exception('Inconsistent covariance matrices for %s!' % (name)) +1217 else: +1218 allcov[name] = o.covobs[name].cov +1219 +1220 n_obs = len(raveled_data) +1221 new_names = sorted(set([y for x in [o.names for o in raveled_data] for y in x])) +1222 new_cov_names = sorted(set([y for x in [o.cov_names for o in raveled_data] for y in x])) +1223 new_sample_names = sorted(set(new_names) - set(new_cov_names)) 1224 -1225 if data.ndim == 1: -1226 values = np.array([o.value for o in data]) -1227 else: -1228 values = np.vectorize(lambda x: x.value)(data) -1229 -1230 new_values = func(values, **kwargs) +1225 reweighted = len(list(filter(lambda o: o.reweighted is True, raveled_data))) > 0 +1226 +1227 if data.ndim == 1: +1228 values = np.array([o.value for o in data]) +1229 else: +1230 values = np.vectorize(lambda x: x.value)(data) 1231 -1232 multi = int(isinstance(new_values, np.ndarray)) +1232 new_values = func(values, **kwargs) 1233 -1234 new_r_values = {} -1235 new_idl_d = {} -1236 for name in new_sample_names: -1237 idl = [] -1238 tmp_values = np.zeros(n_obs) -1239 for i, item in enumerate(raveled_data): -1240 tmp_values[i] = item.r_values.get(name, item.value) -1241 tmp_idl = item.idl.get(name) -1242 if tmp_idl is not None: -1243 idl.append(tmp_idl) -1244 if multi > 0: -1245 tmp_values = np.array(tmp_values).reshape(data.shape) -1246 new_r_values[name] = func(tmp_values, **kwargs) -1247 new_idl_d[name] = _merge_idx(idl) -1248 -1249 def _compute_scalefactor_missing_rep(obs): -1250 """ -1251 Computes the scale factor that is to be multiplied with the deltas -1252 in the case where Obs with different subsets of replica are merged. -1253 Returns a dictionary with the scale factor for each Monte Carlo name. -1254 -1255 Parameters -1256 ---------- -1257 obs : Obs -1258 The observable corresponding to the deltas that are to be scaled -1259 """ -1260 scalef_d = {} -1261 for mc_name in obs.mc_names: -1262 mc_idl_d = [name for name in obs.idl if name.startswith(mc_name + '|')] -1263 new_mc_idl_d = [name for name in new_idl_d if name.startswith(mc_name + '|')] -1264 if len(mc_idl_d) > 0 and len(mc_idl_d) < len(new_mc_idl_d): -1265 scalef_d[mc_name] = sum([len(new_idl_d[name]) for name in new_mc_idl_d]) / sum([len(new_idl_d[name]) for name in mc_idl_d]) -1266 return scalef_d -1267 -1268 if 'man_grad' in kwargs: -1269 deriv = np.asarray(kwargs.get('man_grad')) -1270 if new_values.shape + data.shape != deriv.shape: -1271 raise ValueError('Manual derivative does not have correct shape.') -1272 elif kwargs.get('num_grad') is True: -1273 if multi > 0: -1274 raise Exception('Multi mode currently not supported for numerical derivative') -1275 options = { -1276 'base_step': 0.1, -1277 'step_ratio': 2.5} -1278 for key in options.keys(): -1279 kwarg = kwargs.get(key) -1280 if kwarg is not None: -1281 options[key] = kwarg -1282 tmp_df = nd.Gradient(func, order=4, **{k: v for k, v in options.items() if v is not None})(values, **kwargs) -1283 if tmp_df.size == 1: -1284 deriv = np.array([tmp_df.real]) -1285 else: -1286 deriv = tmp_df.real -1287 else: -1288 deriv = jacobian(func)(values, **kwargs) -1289 -1290 final_result = np.zeros(new_values.shape, dtype=object) +1234 multi = int(isinstance(new_values, np.ndarray)) +1235 +1236 new_r_values = {} +1237 new_idl_d = {} +1238 for name in new_sample_names: +1239 idl = [] +1240 tmp_values = np.zeros(n_obs) +1241 for i, item in enumerate(raveled_data): +1242 tmp_values[i] = item.r_values.get(name, item.value) +1243 tmp_idl = item.idl.get(name) +1244 if tmp_idl is not None: +1245 idl.append(tmp_idl) +1246 if multi > 0: +1247 tmp_values = np.array(tmp_values).reshape(data.shape) +1248 new_r_values[name] = func(tmp_values, **kwargs) +1249 new_idl_d[name] = _merge_idx(idl) +1250 +1251 def _compute_scalefactor_missing_rep(obs): +1252 """ +1253 Computes the scale factor that is to be multiplied with the deltas +1254 in the case where Obs with different subsets of replica are merged. +1255 Returns a dictionary with the scale factor for each Monte Carlo name. +1256 +1257 Parameters +1258 ---------- +1259 obs : Obs +1260 The observable corresponding to the deltas that are to be scaled +1261 """ +1262 scalef_d = {} +1263 for mc_name in obs.mc_names: +1264 mc_idl_d = [name for name in obs.idl if name.startswith(mc_name + '|')] +1265 new_mc_idl_d = [name for name in new_idl_d if name.startswith(mc_name + '|')] +1266 if len(mc_idl_d) > 0 and len(mc_idl_d) < len(new_mc_idl_d): +1267 scalef_d[mc_name] = sum([len(new_idl_d[name]) for name in new_mc_idl_d]) / sum([len(new_idl_d[name]) for name in mc_idl_d]) +1268 return scalef_d +1269 +1270 if 'man_grad' in kwargs: +1271 deriv = np.asarray(kwargs.get('man_grad')) +1272 if new_values.shape + data.shape != deriv.shape: +1273 raise ValueError('Manual derivative does not have correct shape.') +1274 elif kwargs.get('num_grad') is True: +1275 if multi > 0: +1276 raise Exception('Multi mode currently not supported for numerical derivative') +1277 options = { +1278 'base_step': 0.1, +1279 'step_ratio': 2.5} +1280 for key in options.keys(): +1281 kwarg = kwargs.get(key) +1282 if kwarg is not None: +1283 options[key] = kwarg +1284 tmp_df = nd.Gradient(func, order=4, **{k: v for k, v in options.items() if v is not None})(values, **kwargs) +1285 if tmp_df.size == 1: +1286 deriv = np.array([tmp_df.real]) +1287 else: +1288 deriv = tmp_df.real +1289 else: +1290 deriv = jacobian(func)(values, **kwargs) 1291 -1292 if array_mode is True: +1292 final_result = np.zeros(new_values.shape, dtype=object) 1293 -1294 class _Zero_grad(): -1295 def __init__(self, N): -1296 self.grad = np.zeros((N, 1)) -1297 -1298 new_covobs_lengths = dict(set([y for x in [[(n, o.covobs[n].N) for n in o.cov_names] for o in raveled_data] for y in x])) -1299 d_extracted = {} -1300 g_extracted = {} -1301 for name in new_sample_names: -1302 d_extracted[name] = [] -1303 ens_length = len(new_idl_d[name]) -1304 for i_dat, dat in enumerate(data): -1305 d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas.get(name, np.zeros(ens_length)), o.idl.get(name, new_idl_d[name]), o.shape.get(name, ens_length), new_idl_d[name], _compute_scalefactor_missing_rep(o).get(name.split('|')[0], 1)) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, ))) -1306 for name in new_cov_names: -1307 g_extracted[name] = [] -1308 zero_grad = _Zero_grad(new_covobs_lengths[name]) -1309 for i_dat, dat in enumerate(data): -1310 g_extracted[name].append(np.array([o.covobs.get(name, zero_grad).grad for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (new_covobs_lengths[name], 1))) -1311 -1312 for i_val, new_val in np.ndenumerate(new_values): -1313 new_deltas = {} -1314 new_grad = {} -1315 if array_mode is True: -1316 for name in new_sample_names: -1317 ens_length = d_extracted[name][0].shape[-1] -1318 new_deltas[name] = np.zeros(ens_length) -1319 for i_dat, dat in enumerate(d_extracted[name]): -1320 new_deltas[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) -1321 for name in new_cov_names: -1322 new_grad[name] = 0 -1323 for i_dat, dat in enumerate(g_extracted[name]): -1324 new_grad[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) -1325 else: -1326 for j_obs, obs in np.ndenumerate(data): -1327 scalef_d = _compute_scalefactor_missing_rep(obs) -1328 for name in obs.names: -1329 if name in obs.cov_names: -1330 new_grad[name] = new_grad.get(name, 0) + deriv[i_val + j_obs] * obs.covobs[name].grad -1331 else: -1332 new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name], scalef_d.get(name.split('|')[0], 1)) -1333 -1334 new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad} +1294 if array_mode is True: +1295 +1296 class _Zero_grad(): +1297 def __init__(self, N): +1298 self.grad = np.zeros((N, 1)) +1299 +1300 new_covobs_lengths = dict(set([y for x in [[(n, o.covobs[n].N) for n in o.cov_names] for o in raveled_data] for y in x])) +1301 d_extracted = {} +1302 g_extracted = {} +1303 for name in new_sample_names: +1304 d_extracted[name] = [] +1305 ens_length = len(new_idl_d[name]) +1306 for i_dat, dat in enumerate(data): +1307 d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas.get(name, np.zeros(ens_length)), o.idl.get(name, new_idl_d[name]), o.shape.get(name, ens_length), new_idl_d[name], _compute_scalefactor_missing_rep(o).get(name.split('|')[0], 1)) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, ))) +1308 for name in new_cov_names: +1309 g_extracted[name] = [] +1310 zero_grad = _Zero_grad(new_covobs_lengths[name]) +1311 for i_dat, dat in enumerate(data): +1312 g_extracted[name].append(np.array([o.covobs.get(name, zero_grad).grad for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (new_covobs_lengths[name], 1))) +1313 +1314 for i_val, new_val in np.ndenumerate(new_values): +1315 new_deltas = {} +1316 new_grad = {} +1317 if array_mode is True: +1318 for name in new_sample_names: +1319 ens_length = d_extracted[name][0].shape[-1] +1320 new_deltas[name] = np.zeros(ens_length) +1321 for i_dat, dat in enumerate(d_extracted[name]): +1322 new_deltas[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) +1323 for name in new_cov_names: +1324 new_grad[name] = 0 +1325 for i_dat, dat in enumerate(g_extracted[name]): +1326 new_grad[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) +1327 else: +1328 for j_obs, obs in np.ndenumerate(data): +1329 scalef_d = _compute_scalefactor_missing_rep(obs) +1330 for name in obs.names: +1331 if name in obs.cov_names: +1332 new_grad[name] = new_grad.get(name, 0) + deriv[i_val + j_obs] * obs.covobs[name].grad +1333 else: +1334 new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name], scalef_d.get(name.split('|')[0], 1)) 1335 -1336 if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()): -1337 raise ValueError('The same name has been used for deltas and covobs!') -1338 new_samples = [] -1339 new_means = [] -1340 new_idl = [] -1341 new_names_obs = [] -1342 for name in new_names: -1343 if name not in new_covobs: -1344 new_samples.append(new_deltas[name]) -1345 new_idl.append(new_idl_d[name]) -1346 new_means.append(new_r_values[name][i_val]) -1347 new_names_obs.append(name) -1348 final_result[i_val] = Obs(new_samples, new_names_obs, means=new_means, idl=new_idl) -1349 for name in new_covobs: -1350 final_result[i_val].names.append(name) -1351 final_result[i_val]._covobs = new_covobs -1352 final_result[i_val]._value = new_val -1353 final_result[i_val].reweighted = reweighted -1354 -1355 if multi == 0: -1356 final_result = final_result.item() -1357 -1358 return final_result +1336 new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad} +1337 +1338 if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()): +1339 raise ValueError('The same name has been used for deltas and covobs!') +1340 new_samples = [] +1341 new_means = [] +1342 new_idl = [] +1343 new_names_obs = [] +1344 for name in new_names: +1345 if name not in new_covobs: +1346 new_samples.append(new_deltas[name]) +1347 new_idl.append(new_idl_d[name]) +1348 new_means.append(new_r_values[name][i_val]) +1349 new_names_obs.append(name) +1350 final_result[i_val] = Obs(new_samples, new_names_obs, means=new_means, idl=new_idl) +1351 for name in new_covobs: +1352 final_result[i_val].names.append(name) +1353 final_result[i_val]._covobs = new_covobs +1354 final_result[i_val]._value = new_val +1355 final_result[i_val].reweighted = reweighted +1356 +1357 if multi == 0: +1358 final_result = final_result.item() +1359 +1360 return final_result
1390def reweight(weight, obs, **kwargs): -1391 """Reweight a list of observables. -1392 -1393 Parameters -1394 ---------- -1395 weight : Obs -1396 Reweighting factor. An Observable that has to be defined on a superset of the -1397 configurations in obs[i].idl for all i. -1398 obs : list -1399 list of Obs, e.g. [obs1, obs2, obs3]. -1400 all_configs : bool -1401 if True, the reweighted observables are normalized by the average of -1402 the reweighting factor on all configurations in weight.idl and not -1403 on the configurations in obs[i].idl. Default False. -1404 """ -1405 result = [] -1406 for i in range(len(obs)): -1407 if len(obs[i].cov_names): -1408 raise ValueError('Error: Not possible to reweight an Obs that contains covobs!') -1409 if not set(obs[i].names).issubset(weight.names): -1410 raise ValueError('Error: Ensembles do not fit') -1411 for name in obs[i].names: -1412 if not set(obs[i].idl[name]).issubset(weight.idl[name]): -1413 raise ValueError('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name)) -1414 new_samples = [] -1415 w_deltas = {} -1416 for name in sorted(obs[i].names): -1417 w_deltas[name] = _reduce_deltas(weight.deltas[name], weight.idl[name], obs[i].idl[name]) -1418 new_samples.append((w_deltas[name] + weight.r_values[name]) * (obs[i].deltas[name] + obs[i].r_values[name])) -1419 tmp_obs = Obs(new_samples, sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) -1420 -1421 if kwargs.get('all_configs'): -1422 new_weight = weight -1423 else: -1424 new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(obs[i].names)], sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) -1425 -1426 result.append(tmp_obs / new_weight) -1427 result[-1].reweighted = True -1428 -1429 return result +@@ -5695,47 +5712,50 @@ on the configurations in obs[i].idl. Default False.1392def reweight(weight, obs, **kwargs): +1393 """Reweight a list of observables. +1394 +1395 Parameters +1396 ---------- +1397 weight : Obs +1398 Reweighting factor. An Observable that has to be defined on a superset of the +1399 configurations in obs[i].idl for all i. +1400 obs : list +1401 list of Obs, e.g. [obs1, obs2, obs3]. +1402 all_configs : bool +1403 if True, the reweighted observables are normalized by the average of +1404 the reweighting factor on all configurations in weight.idl and not +1405 on the configurations in obs[i].idl. Default False. +1406 """ +1407 result = [] +1408 for i in range(len(obs)): +1409 if len(obs[i].cov_names): +1410 raise ValueError('Error: Not possible to reweight an Obs that contains covobs!') +1411 if not set(obs[i].names).issubset(weight.names): +1412 raise ValueError('Error: Ensembles do not fit') +1413 if len(obs[i].mc_names) > 1 or len(weight.mc_names) > 1: +1414 raise ValueError('Error: Cannot reweight an Obs that contains multiple ensembles.') +1415 for name in obs[i].names: +1416 if not set(obs[i].idl[name]).issubset(weight.idl[name]): +1417 raise ValueError('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name)) +1418 new_samples = [] +1419 w_deltas = {} +1420 for name in sorted(obs[i].names): +1421 w_deltas[name] = _reduce_deltas(weight.deltas[name], weight.idl[name], obs[i].idl[name]) +1422 new_samples.append((w_deltas[name] + weight.r_values[name]) * (obs[i].deltas[name] + obs[i].r_values[name])) +1423 tmp_obs = Obs(new_samples, sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) +1424 +1425 if kwargs.get('all_configs'): +1426 new_weight = weight +1427 else: +1428 new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(obs[i].names)], sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) +1429 +1430 result.append(tmp_obs / new_weight) +1431 result[-1].reweighted = True +1432 +1433 return result
1432def correlate(obs_a, obs_b): -1433 """Correlate two observables. -1434 -1435 Parameters -1436 ---------- -1437 obs_a : Obs -1438 First observable -1439 obs_b : Obs -1440 Second observable -1441 -1442 Notes -1443 ----- -1444 Keep in mind to only correlate primary observables which have not been reweighted -1445 yet. The reweighting has to be applied after correlating the observables. -1446 Currently only works if ensembles are identical (this is not strictly necessary). -1447 """ -1448 -1449 if sorted(obs_a.names) != sorted(obs_b.names): -1450 raise ValueError(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}") -1451 if len(obs_a.cov_names) or len(obs_b.cov_names): -1452 raise ValueError('Error: Not possible to correlate Obs that contain covobs!') -1453 for name in obs_a.names: -1454 if obs_a.shape[name] != obs_b.shape[name]: -1455 raise ValueError('Shapes of ensemble', name, 'do not fit') -1456 if obs_a.idl[name] != obs_b.idl[name]: -1457 raise ValueError('idl of ensemble', name, 'do not fit') -1458 -1459 if obs_a.reweighted is True: -1460 warnings.warn("The first observable is already reweighted.", RuntimeWarning) -1461 if obs_b.reweighted is True: -1462 warnings.warn("The second observable is already reweighted.", RuntimeWarning) -1463 -1464 new_samples = [] -1465 new_idl = [] -1466 for name in sorted(obs_a.names): -1467 new_samples.append((obs_a.deltas[name] + obs_a.r_values[name]) * (obs_b.deltas[name] + obs_b.r_values[name])) -1468 new_idl.append(obs_a.idl[name]) -1469 -1470 o = Obs(new_samples, sorted(obs_a.names), idl=new_idl) -1471 o.reweighted = obs_a.reweighted or obs_b.reweighted -1472 return o +@@ -5754,7 +5774,8 @@ Second observable1436def correlate(obs_a, obs_b): +1437 """Correlate two observables. +1438 +1439 Parameters +1440 ---------- +1441 obs_a : Obs +1442 First observable +1443 obs_b : Obs +1444 Second observable +1445 +1446 Notes +1447 ----- +1448 Keep in mind to only correlate primary observables which have not been reweighted +1449 yet. The reweighting has to be applied after correlating the observables. +1450 Only works if a single ensemble is present in the Obs. +1451 Currently only works if ensemble content is identical (this is not strictly necessary). +1452 """ +1453 +1454 if len(obs_a.mc_names) > 1 or len(obs_b.mc_names) > 1: +1455 raise ValueError('Error: Cannot correlate Obs that contain multiple ensembles.') +1456 if sorted(obs_a.names) != sorted(obs_b.names): +1457 raise ValueError(f"Ensembles do not fit {set(sorted(obs_a.names)) ^ set(sorted(obs_b.names))}") +1458 if len(obs_a.cov_names) or len(obs_b.cov_names): +1459 raise ValueError('Error: Not possible to correlate Obs that contain covobs!') +1460 for name in obs_a.names: +1461 if obs_a.shape[name] != obs_b.shape[name]: +1462 raise ValueError('Shapes of ensemble', name, 'do not fit') +1463 if obs_a.idl[name] != obs_b.idl[name]: +1464 raise ValueError('idl of ensemble', name, 'do not fit') +1465 +1466 if obs_a.reweighted is True: +1467 warnings.warn("The first observable is already reweighted.", RuntimeWarning) +1468 if obs_b.reweighted is True: +1469 warnings.warn("The second observable is already reweighted.", RuntimeWarning) +1470 +1471 new_samples = [] +1472 new_idl = [] +1473 for name in sorted(obs_a.names): +1474 new_samples.append((obs_a.deltas[name] + obs_a.r_values[name]) * (obs_b.deltas[name] + obs_b.r_values[name])) +1475 new_idl.append(obs_a.idl[name]) +1476 +1477 o = Obs(new_samples, sorted(obs_a.names), idl=new_idl) +1478 o.reweighted = obs_a.reweighted or obs_b.reweighted +1479 return oKeep in mind to only correlate primary observables which have not been reweighted yet. The reweighting has to be applied after correlating the observables. -Currently only works if ensembles are identical (this is not strictly necessary).
+Only works if a single ensemble is present in the Obs. +Currently only works if ensemble content is identical (this is not strictly necessary).
1475def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs): -1476 r'''Calculates the error covariance matrix of a set of observables. -1477 -1478 WARNING: This function should be used with care, especially for observables with support on multiple -1479 ensembles with differing autocorrelations. See the notes below for details. -1480 -1481 The gamma method has to be applied first to all observables. -1482 -1483 Parameters -1484 ---------- -1485 obs : list or numpy.ndarray -1486 List or one dimensional array of Obs -1487 visualize : bool -1488 If True plots the corresponding normalized correlation matrix (default False). -1489 correlation : bool -1490 If True the correlation matrix instead of the error covariance matrix is returned (default False). -1491 smooth : None or int -1492 If smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue -1493 smoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the -1494 largest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely -1495 small ones. -1496 -1497 Notes -1498 ----- -1499 The error covariance is defined such that it agrees with the squared standard error for two identical observables -1500 $$\operatorname{cov}(a,a)=\sum_{s=1}^N\delta_a^s\delta_a^s/N^2=\Gamma_{aa}(0)/N=\operatorname{var}(a)/N=\sigma_a^2$$ -1501 in the absence of autocorrelation. -1502 The error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite -1503 $$\sum_{i,j}v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v\in\mathbb{R}^M$, while such an identity does not hold for larger windows/lags. -1504 For observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements. -1505 $$\tau_{\mathrm{int}, ij}=\sqrt{\tau_{\mathrm{int}, i}\times \tau_{\mathrm{int}, j}}$$ -1506 This construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors). -1507 ''' -1508 -1509 length = len(obs) -1510 -1511 max_samples = np.max([o.N for o in obs]) -1512 if max_samples <= length and not [item for sublist in [o.cov_names for o in obs] for item in sublist]: -1513 warnings.warn(f"The dimension of the covariance matrix ({length}) is larger or equal to the number of samples ({max_samples}). This will result in a rank deficient matrix.", RuntimeWarning) -1514 -1515 cov = np.zeros((length, length)) -1516 for i in range(length): -1517 for j in range(i, length): -1518 cov[i, j] = _covariance_element(obs[i], obs[j]) -1519 cov = cov + cov.T - np.diag(np.diag(cov)) -1520 -1521 corr = np.diag(1 / np.sqrt(np.diag(cov))) @ cov @ np.diag(1 / np.sqrt(np.diag(cov))) -1522 -1523 if isinstance(smooth, int): -1524 corr = _smooth_eigenvalues(corr, smooth) -1525 -1526 if visualize: -1527 plt.matshow(corr, vmin=-1, vmax=1) -1528 plt.set_cmap('RdBu') -1529 plt.colorbar() -1530 plt.draw() -1531 -1532 if correlation is True: -1533 return corr -1534 -1535 errors = [o.dvalue for o in obs] -1536 cov = np.diag(errors) @ corr @ np.diag(errors) -1537 -1538 eigenvalues = np.linalg.eigh(cov)[0] -1539 if not np.all(eigenvalues >= 0): -1540 warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning) +@@ -5889,27 +5910,27 @@ This construction ensures that the estimated covariance matrix is positive semi-1482def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs): +1483 r'''Calculates the error covariance matrix of a set of observables. +1484 +1485 WARNING: This function should be used with care, especially for observables with support on multiple +1486 ensembles with differing autocorrelations. See the notes below for details. +1487 +1488 The gamma method has to be applied first to all observables. +1489 +1490 Parameters +1491 ---------- +1492 obs : list or numpy.ndarray +1493 List or one dimensional array of Obs +1494 visualize : bool +1495 If True plots the corresponding normalized correlation matrix (default False). +1496 correlation : bool +1497 If True the correlation matrix instead of the error covariance matrix is returned (default False). +1498 smooth : None or int +1499 If smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue +1500 smoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the +1501 largest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely +1502 small ones. +1503 +1504 Notes +1505 ----- +1506 The error covariance is defined such that it agrees with the squared standard error for two identical observables +1507 $$\operatorname{cov}(a,a)=\sum_{s=1}^N\delta_a^s\delta_a^s/N^2=\Gamma_{aa}(0)/N=\operatorname{var}(a)/N=\sigma_a^2$$ +1508 in the absence of autocorrelation. +1509 The error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite +1510 $$\sum_{i,j}v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v\in\mathbb{R}^M$, while such an identity does not hold for larger windows/lags. +1511 For observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements. +1512 $$\tau_{\mathrm{int}, ij}=\sqrt{\tau_{\mathrm{int}, i}\times \tau_{\mathrm{int}, j}}$$ +1513 This construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors). +1514 ''' +1515 +1516 length = len(obs) +1517 +1518 max_samples = np.max([o.N for o in obs]) +1519 if max_samples <= length and not [item for sublist in [o.cov_names for o in obs] for item in sublist]: +1520 warnings.warn(f"The dimension of the covariance matrix ({length}) is larger or equal to the number of samples ({max_samples}). This will result in a rank deficient matrix.", RuntimeWarning) +1521 +1522 cov = np.zeros((length, length)) +1523 for i in range(length): +1524 for j in range(i, length): +1525 cov[i, j] = _covariance_element(obs[i], obs[j]) +1526 cov = cov + cov.T - np.diag(np.diag(cov)) +1527 +1528 corr = np.diag(1 / np.sqrt(np.diag(cov))) @ cov @ np.diag(1 / np.sqrt(np.diag(cov))) +1529 +1530 if isinstance(smooth, int): +1531 corr = _smooth_eigenvalues(corr, smooth) +1532 +1533 if visualize: +1534 plt.matshow(corr, vmin=-1, vmax=1) +1535 plt.set_cmap('RdBu') +1536 plt.colorbar() +1537 plt.draw() +1538 +1539 if correlation is True: +1540 return corr 1541 -1542 return cov +1542 errors = [o.dvalue for o in obs] +1543 cov = np.diag(errors) @ corr @ np.diag(errors) +1544 +1545 eigenvalues = np.linalg.eigh(cov)[0] +1546 if not np.all(eigenvalues >= 0): +1547 warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning) +1548 +1549 return cov
1545def invert_corr_cov_cholesky(corr, inverrdiag): -1546 """Constructs a lower triangular matrix `chol` via the Cholesky decomposition of the correlation matrix `corr` -1547 and then returns the inverse covariance matrix `chol_inv` as a lower triangular matrix by solving `chol * x = inverrdiag`. -1548 -1549 Parameters -1550 ---------- -1551 corr : np.ndarray -1552 correlation matrix -1553 inverrdiag : np.ndarray -1554 diagonal matrix, the entries are the inverse errors of the data points considered -1555 """ -1556 -1557 condn = np.linalg.cond(corr) -1558 if condn > 0.1 / np.finfo(float).eps: -1559 raise ValueError(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})") -1560 if condn > 1e13: -1561 warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning) -1562 chol = np.linalg.cholesky(corr) -1563 chol_inv = scipy.linalg.solve_triangular(chol, inverrdiag, lower=True) -1564 -1565 return chol_inv +@@ -5939,67 +5960,67 @@ diagonal matrix, the entries are the inverse errors of the data points considere1552def invert_corr_cov_cholesky(corr, inverrdiag): +1553 """Constructs a lower triangular matrix `chol` via the Cholesky decomposition of the correlation matrix `corr` +1554 and then returns the inverse covariance matrix `chol_inv` as a lower triangular matrix by solving `chol * x = inverrdiag`. +1555 +1556 Parameters +1557 ---------- +1558 corr : np.ndarray +1559 correlation matrix +1560 inverrdiag : np.ndarray +1561 diagonal matrix, the entries are the inverse errors of the data points considered +1562 """ +1563 +1564 condn = np.linalg.cond(corr) +1565 if condn > 0.1 / np.finfo(float).eps: +1566 raise ValueError(f"Cannot invert correlation matrix as its condition number exceeds machine precision ({condn:1.2e})") +1567 if condn > 1e13: +1568 warnings.warn("Correlation matrix may be ill-conditioned, condition number: {%1.2e}" % (condn), RuntimeWarning) +1569 chol = np.linalg.cholesky(corr) +1570 chol_inv = scipy.linalg.solve_triangular(chol, inverrdiag, lower=True) +1571 +1572 return chol_inv
1568def sort_corr(corr, kl, yd): -1569 """ Reorders a correlation matrix to match the alphabetical order of its underlying y data. -1570 -1571 The ordering of the input correlation matrix `corr` is given by the list of keys `kl`. -1572 The input dictionary `yd` (with the same keys `kl`) must contain the corresponding y data -1573 that the correlation matrix is based on. -1574 This function sorts the list of keys `kl` alphabetically and sorts the matrix `corr` -1575 according to this alphabetical order such that the sorted matrix `corr_sorted` corresponds -1576 to the y data `yd` when arranged in an alphabetical order by its keys. +@@ -6063,24 +6084,24 @@ of1575def sort_corr(corr, kl, yd): +1576 """ Reorders a correlation matrix to match the alphabetical order of its underlying y data. 1577 -1578 Parameters -1579 ---------- -1580 corr : np.ndarray -1581 A square correlation matrix constructed using the order of the y data specified by `kl`. -1582 The dimensions of `corr` should match the total number of y data points in `yd` combined. -1583 kl : list of str -1584 A list of keys that denotes the order in which the y data from `yd` was used to build the -1585 input correlation matrix `corr`. -1586 yd : dict of list -1587 A dictionary where each key corresponds to a unique identifier, and its value is a list of -1588 y data points. The total number of y data points across all keys must match the dimensions -1589 of `corr`. The lists in the dictionary can be lists of Obs. -1590 -1591 Returns -1592 ------- -1593 np.ndarray -1594 A new, sorted correlation matrix that corresponds to the y data from `yd` when arranged alphabetically by its keys. -1595 -1596 Example -1597 ------- -1598 >>> import numpy as np -1599 >>> import pyerrors as pe -1600 >>> corr = np.array([[1, 0.2, 0.3], [0.2, 1, 0.4], [0.3, 0.4, 1]]) -1601 >>> kl = ['b', 'a'] -1602 >>> yd = {'a': [1, 2], 'b': [3]} -1603 >>> sorted_corr = pe.obs.sort_corr(corr, kl, yd) -1604 >>> print(sorted_corr) -1605 array([[1. , 0.3, 0.4], -1606 [0.3, 1. , 0.2], -1607 [0.4, 0.2, 1. ]]) -1608 -1609 """ -1610 kl_sorted = sorted(kl) -1611 -1612 posd = {} -1613 ofs = 0 -1614 for ki, k in enumerate(kl): -1615 posd[k] = [i + ofs for i in range(len(yd[k]))] -1616 ofs += len(posd[k]) -1617 -1618 mapping = [] -1619 for k in kl_sorted: -1620 for i in range(len(yd[k])): -1621 mapping.append(posd[k][i]) -1622 -1623 corr_sorted = np.zeros_like(corr) -1624 for i in range(corr.shape[0]): -1625 for j in range(corr.shape[0]): -1626 corr_sorted[i][j] = corr[mapping[i]][mapping[j]] -1627 -1628 return corr_sorted +1578 The ordering of the input correlation matrix `corr` is given by the list of keys `kl`. +1579 The input dictionary `yd` (with the same keys `kl`) must contain the corresponding y data +1580 that the correlation matrix is based on. +1581 This function sorts the list of keys `kl` alphabetically and sorts the matrix `corr` +1582 according to this alphabetical order such that the sorted matrix `corr_sorted` corresponds +1583 to the y data `yd` when arranged in an alphabetical order by its keys. +1584 +1585 Parameters +1586 ---------- +1587 corr : np.ndarray +1588 A square correlation matrix constructed using the order of the y data specified by `kl`. +1589 The dimensions of `corr` should match the total number of y data points in `yd` combined. +1590 kl : list of str +1591 A list of keys that denotes the order in which the y data from `yd` was used to build the +1592 input correlation matrix `corr`. +1593 yd : dict of list +1594 A dictionary where each key corresponds to a unique identifier, and its value is a list of +1595 y data points. The total number of y data points across all keys must match the dimensions +1596 of `corr`. The lists in the dictionary can be lists of Obs. +1597 +1598 Returns +1599 ------- +1600 np.ndarray +1601 A new, sorted correlation matrix that corresponds to the y data from `yd` when arranged alphabetically by its keys. +1602 +1603 Example +1604 ------- +1605 >>> import numpy as np +1606 >>> import pyerrors as pe +1607 >>> corr = np.array([[1, 0.2, 0.3], [0.2, 1, 0.4], [0.3, 0.4, 1]]) +1608 >>> kl = ['b', 'a'] +1609 >>> yd = {'a': [1, 2], 'b': [3]} +1610 >>> sorted_corr = pe.obs.sort_corr(corr, kl, yd) +1611 >>> print(sorted_corr) +1612 array([[1. , 0.3, 0.4], +1613 [0.3, 1. , 0.2], +1614 [0.4, 0.2, 1. ]]) +1615 +1616 """ +1617 kl_sorted = sorted(kl) +1618 +1619 posd = {} +1620 ofs = 0 +1621 for ki, k in enumerate(kl): +1622 posd[k] = [i + ofs for i in range(len(yd[k]))] +1623 ofs += len(posd[k]) +1624 +1625 mapping = [] +1626 for k in kl_sorted: +1627 for i in range(len(yd[k])): +1628 mapping.append(posd[k][i]) +1629 +1630 corr_sorted = np.zeros_like(corr) +1631 for i in range(corr.shape[0]): +1632 for j in range(corr.shape[0]): +1633 corr_sorted[i][j] = corr[mapping[i]][mapping[j]] +1634 +1635 return corr_sortedcorr
. The lists in the dictionary can be lists of Obs.
1708def import_jackknife(jacks, name, idl=None): -1709 """Imports jackknife samples and returns an Obs -1710 -1711 Parameters -1712 ---------- -1713 jacks : numpy.ndarray -1714 numpy array containing the mean value as zeroth entry and -1715 the N jackknife samples as first to Nth entry. -1716 name : str -1717 name of the ensemble the samples are defined on. -1718 """ -1719 length = len(jacks) - 1 -1720 prj = (np.ones((length, length)) - (length - 1) * np.identity(length)) -1721 samples = jacks[1:] @ prj -1722 mean = np.mean(samples) -1723 new_obs = Obs([samples - mean], [name], idl=idl, means=[mean]) -1724 new_obs._value = jacks[0] -1725 return new_obs +@@ -6110,34 +6131,34 @@ name of the ensemble the samples are defined on.1715def import_jackknife(jacks, name, idl=None): +1716 """Imports jackknife samples and returns an Obs +1717 +1718 Parameters +1719 ---------- +1720 jacks : numpy.ndarray +1721 numpy array containing the mean value as zeroth entry and +1722 the N jackknife samples as first to Nth entry. +1723 name : str +1724 name of the ensemble the samples are defined on. +1725 """ +1726 length = len(jacks) - 1 +1727 prj = (np.ones((length, length)) - (length - 1) * np.identity(length)) +1728 samples = jacks[1:] @ prj +1729 mean = np.mean(samples) +1730 new_obs = Obs([samples - mean], [name], idl=idl, means=[mean]) +1731 new_obs._value = jacks[0] +1732 return new_obs
1728def import_bootstrap(boots, name, random_numbers): -1729 """Imports bootstrap samples and returns an Obs -1730 -1731 Parameters -1732 ---------- -1733 boots : numpy.ndarray -1734 numpy array containing the mean value as zeroth entry and -1735 the N bootstrap samples as first to Nth entry. -1736 name : str -1737 name of the ensemble the samples are defined on. -1738 random_numbers : np.ndarray -1739 Array of shape (samples, length) containing the random numbers to generate the bootstrap samples, -1740 where samples is the number of bootstrap samples and length is the length of the original Monte Carlo -1741 chain to be reconstructed. -1742 """ -1743 samples, length = random_numbers.shape -1744 if samples != len(boots) - 1: -1745 raise ValueError("Random numbers do not have the correct shape.") -1746 -1747 if samples < length: -1748 raise ValueError("Obs can't be reconstructed if there are fewer bootstrap samples than Monte Carlo data points.") -1749 -1750 proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]) / length -1751 -1752 samples = scipy.linalg.lstsq(proj, boots[1:])[0] -1753 ret = Obs([samples], [name]) -1754 ret._value = boots[0] -1755 return ret +@@ -6171,38 +6192,46 @@ chain to be reconstructed.1735def import_bootstrap(boots, name, random_numbers): +1736 """Imports bootstrap samples and returns an Obs +1737 +1738 Parameters +1739 ---------- +1740 boots : numpy.ndarray +1741 numpy array containing the mean value as zeroth entry and +1742 the N bootstrap samples as first to Nth entry. +1743 name : str +1744 name of the ensemble the samples are defined on. +1745 random_numbers : np.ndarray +1746 Array of shape (samples, length) containing the random numbers to generate the bootstrap samples, +1747 where samples is the number of bootstrap samples and length is the length of the original Monte Carlo +1748 chain to be reconstructed. +1749 """ +1750 samples, length = random_numbers.shape +1751 if samples != len(boots) - 1: +1752 raise ValueError("Random numbers do not have the correct shape.") +1753 +1754 if samples < length: +1755 raise ValueError("Obs can't be reconstructed if there are fewer bootstrap samples than Monte Carlo data points.") +1756 +1757 proj = np.vstack([np.bincount(o, minlength=length) for o in random_numbers]) / length +1758 +1759 samples = scipy.linalg.lstsq(proj, boots[1:])[0] +1760 ret = Obs([samples], [name]) +1761 ret._value = boots[0] +1762 return ret
1758def merge_obs(list_of_obs): -1759 """Combine all observables in list_of_obs into one new observable -1760 -1761 Parameters -1762 ---------- -1763 list_of_obs : list -1764 list of the Obs object to be combined -1765 -1766 Notes -1767 ----- -1768 It is not possible to combine obs which are based on the same replicum -1769 """ -1770 replist = [item for obs in list_of_obs for item in obs.names] -1771 if (len(replist) == len(set(replist))) is False: -1772 raise ValueError('list_of_obs contains duplicate replica: %s' % (str(replist))) -1773 if any([len(o.cov_names) for o in list_of_obs]): -1774 raise ValueError('Not possible to merge data that contains covobs!') -1775 new_dict = {} -1776 idl_dict = {} -1777 for o in list_of_obs: -1778 new_dict.update({key: o.deltas.get(key, 0) + o.r_values.get(key, 0) -1779 for key in set(o.deltas) | set(o.r_values)}) -1780 idl_dict.update({key: o.idl.get(key, 0) for key in set(o.deltas)}) -1781 -1782 names = sorted(new_dict.keys()) -1783 o = Obs([new_dict[name] for name in names], names, idl=[idl_dict[name] for name in names]) -1784 o.reweighted = np.max([oi.reweighted for oi in list_of_obs]) -1785 return o +-1765def merge_obs(list_of_obs): +1766 """Combine all observables in list_of_obs into one new observable. +1767 This allows to merge Obs that have been computed on multiple replica +1768 of the same ensemble. +1769 If you like to merge Obs that are based on several ensembles, please +1770 average them yourself. +1771 +1772 Parameters +1773 ---------- +1774 list_of_obs : list +1775 list of the Obs object to be combined +1776 +1777 Notes +1778 ----- +1779 It is not possible to combine obs which are based on the same replicum +1780 """ +1781 replist = [item for obs in list_of_obs for item in obs.names] +1782 if (len(replist) == len(set(replist))) is False: +1783 raise ValueError('list_of_obs contains duplicate replica: %s' % (str(replist))) +1784 if any([len(o.cov_names) for o in list_of_obs]): +1785 raise ValueError('Not possible to merge data that contains covobs!') +1786 new_dict = {} +1787 idl_dict = {} +1788 for o in list_of_obs: +1789 new_dict.update({key: o.deltas.get(key, 0) + o.r_values.get(key, 0) +1790 for key in set(o.deltas) | set(o.r_values)}) +1791 idl_dict.update({key: o.idl.get(key, 0) for key in set(o.deltas)}) +1792 +1793 names = sorted(new_dict.keys()) +1794 o = Obs([new_dict[name] for name in names], names, idl=[idl_dict[name] for name in names]) +1795 o.reweighted = np.max([oi.reweighted for oi in list_of_obs]) +1796 return oCombine all observables in list_of_obs into one new observable
+-Combine all observables in list_of_obs into one new observable. +This allows to merge Obs that have been computed on multiple replica +of the same ensemble. +If you like to merge Obs that are based on several ensembles, please +average them yourself.
Parameters
@@ -6229,47 +6258,47 @@ list of the Obs object to be combined1788def cov_Obs(means, cov, name, grad=None): -1789 """Create an Obs based on mean(s) and a covariance matrix -1790 -1791 Parameters -1792 ---------- -1793 mean : list of floats or float -1794 N mean value(s) of the new Obs -1795 cov : list or array -1796 2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance -1797 name : str -1798 identifier for the covariance matrix -1799 grad : list or array -1800 Gradient of the Covobs wrt. the means belonging to cov. -1801 """ -1802 -1803 def covobs_to_obs(co): -1804 """Make an Obs out of a Covobs -1805 -1806 Parameters -1807 ---------- -1808 co : Covobs -1809 Covobs to be embedded into the Obs -1810 """ -1811 o = Obs([], [], means=[]) -1812 o._value = co.value -1813 o.names.append(co.name) -1814 o._covobs[co.name] = co -1815 o._dvalue = np.sqrt(co.errsq()) -1816 return o -1817 -1818 ol = [] -1819 if isinstance(means, (float, int)): -1820 means = [means] -1821 -1822 for i in range(len(means)): -1823 ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad))) -1824 if ol[0].covobs[name].N != len(means): -1825 raise ValueError('You have to provide %d mean values!' % (ol[0].N)) -1826 if len(ol) == 1: -1827 return ol[0] -1828 return ol +diff --git a/docs/search.js b/docs/search.js index 34f59c0f..7a26d026 100644 --- a/docs/search.js +++ b/docs/search.js @@ -1,6 +1,6 @@ window.pdocSearch = (function(){ /** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u1799def cov_Obs(means, cov, name, grad=None): +1800 """Create an Obs based on mean(s) and a covariance matrix +1801 +1802 Parameters +1803 ---------- +1804 mean : list of floats or float +1805 N mean value(s) of the new Obs +1806 cov : list or array +1807 2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance +1808 name : str +1809 identifier for the covariance matrix +1810 grad : list or array +1811 Gradient of the Covobs wrt. the means belonging to cov. +1812 """ +1813 +1814 def covobs_to_obs(co): +1815 """Make an Obs out of a Covobs +1816 +1817 Parameters +1818 ---------- +1819 co : Covobs +1820 Covobs to be embedded into the Obs +1821 """ +1822 o = Obs([], [], means=[]) +1823 o._value = co.value +1824 o.names.append(co.name) +1825 o._covobs[co.name] = co +1826 o._dvalue = np.sqrt(co.errsq()) +1827 return o +1828 +1829 ol = [] +1830 if isinstance(means, (float, int)): +1831 means = [means] +1832 +1833 for i in range(len(means)): +1834 ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad))) +1835 if ol[0].covobs[name].N != len(means): +1836 raise ValueError('You have to provide %d mean values!' % (ol[0].N)) +1837 if len(ol) == 1: +1838 return ol[0] +1839 return ol0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e 1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();o What is pyerrors?\n\n \n\n
pyerrors
is a python package for error computation and propagation of Markov chain Monte Carlo data.\nIt is based on the gamma method arXiv:hep-lat/0306017. Some of its features are:\n
\n\n- automatic differentiation for exact linear error propagation as suggested in arXiv:1809.01289 (partly based on the autograd package).
\n- treatment of slow modes in the simulation as suggested in arXiv:1009.5228.
\n- coherent error propagation for data from different Markov chains.
\n- non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in arXiv:1809.01289.
\n- real and complex matrix operations and their error propagation based on automatic differentiation (Matrix inverse, Cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...).
\nMore detailed examples can found in the GitHub repository
\n\n.
If you use
\n\npyerrors
for research that leads to a publication please consider citing:\n
\n\n- Fabian Joswig, Simon Kuberski, Justus T. Kuhlmann, Jan Neuendorf, pyerrors: a python framework for error analysis of Monte Carlo data. Comput.Phys.Commun. 288 (2023) 108750.
\n- Ulli Wolff, Monte Carlo errors with less errors. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
\n- Alberto Ramos, Automatic differentiation for error analysis of Monte Carlo data. Comput.Phys.Commun. 238 (2019) 19-35.
\nand
\n\n\n
\n\n- Stefan Schaefer, Rainer Sommer, Francesco Virotta, Critical slowing down and error analysis in lattice QCD simulations. Nucl.Phys.B 845 (2011) 93-119.
\nwhere applicable.
\n\nThere exist similar publicly available implementations of gamma method error analysis suites in Fortran, Julia and Python.
\n\nInstallation
\n\nInstall the most recent release using pip and pypi:
\n\n\n\n\n\npython -m pip install pyerrors # Fresh install\npython -m pip install -U pyerrors # Update\n
Install the most recent release using conda and conda-forge:
\n\n\n\n\n\nconda install -c conda-forge pyerrors # Fresh install\nconda update -c conda-forge pyerrors # Update\n
Install the current
\n\ndevelop
version:\n\n\n\npython -m pip install -U --no-deps --force-reinstall git+https://github.com/fjosw/pyerrors.git@develop\n
(Also works for any feature branch).
\n\nBasic example
\n\n\n\n\n\nimport numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name']) # Initialize an Obs object\nmy_new_obs = 2 * np.log(my_obs) / my_obs ** 2 # Construct derived Obs object\nmy_new_obs.gamma_method() # Estimate the statistical error\nprint(my_new_obs) # Print the result to stdout\n> 0.31498(72)\n
The
\n\nObs
class\n\n
pyerrors
introduces a new datatype,Obs
, which simplifies error propagation and estimation for auto- and cross-correlated data.\nAnObs
object can be initialized with two arguments, the first is a list containing the samples for an observable from a Monte Carlo chain.\nThe samples can either be provided as python list or as numpy array.\nThe second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble. It is crucial for the correct error propagation that observations from the same Monte Carlo history are labeled with the same name. See Multiple ensembles/replica for details.\n\n\n\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\n
Error propagation
\n\nWhen performing mathematical operations on
\n\nObs
objects the correct error propagation is intrinsically taken care of using a first order Taylor expansion\n$$\\delta_f^i=\\sum_\\alpha \\bar{f}_\\alpha \\delta_\\alpha^i\\,,\\quad \\delta_\\alpha^i=a_\\alpha^i-\\bar{a}_\\alpha\\,,$$\nas introduced in arXiv:hep-lat/0306017.\nThe required derivatives $\\bar{f}_\\alpha$ are evaluated up to machine precision via automatic differentiation as suggested in arXiv:1809.01289.The
\n\nObs
class is designed such that mathematical numpy functions can be used onObs
just as for regular floats.\n\n\n\nimport numpy as np\nimport pyerrors as pe\n\nmy_obs1 = pe.Obs([samples1], ['ensemble_name'])\nmy_obs2 = pe.Obs([samples2], ['ensemble_name'])\n\nmy_sum = my_obs1 + my_obs2\n\nmy_m_eff = np.log(my_obs1 / my_obs2)\n\niamzero = my_m_eff - my_m_eff\n# Check that value and fluctuations are zero within machine precision\nprint(iamzero == 0.0)\n> True\n
Error estimation
\n\nThe error estimation within
\n\npyerrors
is based on the gamma method introduced in arXiv:hep-lat/0306017.\nAfter having arrived at the derived quantity of interest thegamma_method
can be called as detailed in the following example.\n\n\n\nmy_sum.gamma_method()\nprint(my_sum)\n> 1.70(57)\nmy_sum.details()\n> Result 1.70000000e+00 +/- 5.72046658e-01 +/- 7.56746598e-02 (33.650%)\n> t_int 2.71422900e+00 +/- 6.40320983e-01 S = 2.00\n> 1000 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
The
\n\ngamma_method
is not automatically called after every intermediate step in order to prevent computational overhead.We use the following definition of the integrated autocorrelation time established in Madras & Sokal 1988\n$$\\tau_\\mathrm{int}=\\frac{1}{2}+\\sum_{t=1}^{W}\\rho(t)\\geq \\frac{1}{2}\\,.$$\nThe window $W$ is determined via the automatic windowing procedure described in arXiv:hep-lat/0306017.\nThe standard value for the parameter $S$ of this automatic windowing procedure is $S=2$. Other values for $S$ can be passed to the
\n\ngamma_method
as parameter.\n\n\n\nmy_sum.gamma_method(S=3.0)\nmy_sum.details()\n> Result 1.70000000e+00 +/- 6.30675201e-01 +/- 1.04585650e-01 (37.099%)\n> t_int 3.29909703e+00 +/- 9.77310102e-01 S = 3.00\n> 1000 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
The integrated autocorrelation time $\\tau_\\mathrm{int}$ and the autocorrelation function $\\rho(W)$ can be monitored via the methods
\n\npyerrors.obs.Obs.plot_tauint
andpyerrors.obs.Obs.plot_rho
.If the parameter $S$ is set to zero it is assumed that the dataset does not exhibit any autocorrelation and the window size is chosen to be zero.\nIn this case the error estimate is identical to the sample standard error.
\n\nExponential tails
\n\nSlow modes in the Monte Carlo history can be accounted for by attaching an exponential tail to the autocorrelation function $\\rho$ as suggested in arXiv:1009.5228. The longest autocorrelation time in the history, $\\tau_\\mathrm{exp}$, can be passed to the
\n\ngamma_method
as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.\n\n\n\nmy_sum.gamma_method(tau_exp=7.2)\nmy_sum.details()\n> Result 1.70000000e+00 +/- 6.28097762e-01 +/- 5.79077524e-02 (36.947%)\n> t_int 3.27218667e+00 +/- 7.99583654e-01 tau_exp = 7.20, N_sigma = 1\n> 1000 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
For the full API see
\n\npyerrors.obs.Obs.gamma_method
.Multiple ensembles/replica
\n\nError propagation for multiple ensembles (Markov chains with different simulation parameters) is handled automatically. Ensembles are uniquely identified by their
\n\nname
.\n\n\n\nobs1 = pe.Obs([samples1], ['ensemble1'])\nobs2 = pe.Obs([samples2], ['ensemble2'])\n\nmy_sum = obs1 + obs2\nmy_sum.details()\n> Result 2.00697958e+00\n> 1500 samples in 2 ensembles:\n> \u00b7 Ensemble 'ensemble1' : 1000 configurations (from 1 to 1000)\n> \u00b7 Ensemble 'ensemble2' : 500 configurations (from 1 to 500)\n
Observables from the same Monte Carlo chain have to be initialized with the same name for correct error propagation. If different names were used in this case the data would be treated as statistically independent resulting in loss of relevant information and a potential over or under estimate of the statistical error.
\n\n\n\n
pyerrors
identifies multiple replica (independent Markov chains with identical simulation parameters) by the vertical bar|
in the name of the data set.\n\n\n\nobs1 = pe.Obs([samples1], ['ensemble1|r01'])\nobs2 = pe.Obs([samples2], ['ensemble1|r02'])\n\n> my_sum = obs1 + obs2\n> my_sum.details()\n> Result 2.00697958e+00\n> 1500 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble1'\n> \u00b7 Replicum 'r01' : 1000 configurations (from 1 to 1000)\n> \u00b7 Replicum 'r02' : 500 configurations (from 1 to 500)\n
Error estimation for multiple ensembles
\n\nIn order to keep track of different error analysis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.
\n\n\n\n\n\npe.Obs.S_dict['ensemble1'] = 2.5\npe.Obs.tau_exp_dict['ensemble2'] = 8.0\npe.Obs.tau_exp_dict['ensemble3'] = 2.0\n
In case the
\n\ngamma_method
is called without any parameters it will use the values specified in the dictionaries for the respective ensembles.\nPassing arguments to thegamma_method
still dominates over the dictionaries.Irregular Monte Carlo chains
\n\n\n\n
Obs
objects defined on irregular Monte Carlo chains can be initialized with the parameteridl
.\n\n\n\n# Observable defined on configurations 20 to 519\nobs1 = pe.Obs([samples1], ['ensemble1'], idl=[range(20, 520)])\nobs1.details()\n> Result 9.98319881e-01\n> 500 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble1' : 500 configurations (from 20 to 519)\n\n# Observable defined on every second configuration between 5 and 1003\nobs2 = pe.Obs([samples2], ['ensemble1'], idl=[range(5, 1005, 2)])\nobs2.details()\n> Result 9.99100712e-01\n> 500 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble1' : 500 configurations (from 5 to 1003 in steps of 2)\n\n# Observable defined on configurations 2, 9, 28, 29 and 501\nobs3 = pe.Obs([samples3], ['ensemble1'], idl=[[2, 9, 28, 29, 501]])\nobs3.details()\n> Result 1.01718064e+00\n> 5 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble1' : 5 configurations (irregular range)\n
\n\n
Obs
objects defined on regular and irregular histories of the same ensemble can be combined with each other and the correct error propagation and estimation is automatically taken care of.Warning: Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions.\nMake sure to check the autocorrelation time with e.g.
\n\npyerrors.obs.Obs.plot_rho
orpyerrors.obs.Obs.plot_tauint
.For the full API see
\n\npyerrors.obs.Obs
.Correlators
\n\nWhen one is not interested in single observables but correlation functions,
\n\npyerrors
offers theCorr
class which simplifies the corresponding error propagation and provides the user with a set of standard methods. In order to initialize aCorr
objects one needs to arrange the data as a list ofObs
\n\n\n\nmy_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3])\nprint(my_corr)\n> x0/a Corr(x0/a)\n> ------------------\n> 0 0.7957(80)\n> 1 0.5156(51)\n> 2 0.3227(33)\n> 3 0.2041(21)\n
In case the correlation functions are not defined on the outermost timeslices, for example because of fixed boundary conditions, a padding can be introduced.
\n\n\n\n\n\nmy_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3], padding=[1, 1])\nprint(my_corr)\n> x0/a Corr(x0/a)\n> ------------------\n> 0\n> 1 0.7957(80)\n> 2 0.5156(51)\n> 3 0.3227(33)\n> 4 0.2041(21)\n> 5\n
The individual entries of a correlator can be accessed via slicing
\n\n\n\n\n\nprint(my_corr[3])\n> 0.3227(33)\n
Error propagation with the
\n\nCorr
class works very similar toObs
objects. Mathematical operations are overloaded andCorr
objects can be computed together with otherCorr
objects,Obs
objects or real numbers and integers.\n\n\n\nmy_new_corr = 0.3 * my_corr[2] * my_corr * my_corr + 12 / my_corr\n
\n\n
pyerrors
provides the user with a set of regularly used methods for the manipulation of correlator objects:\n
\n\n- \n
Corr.gamma_method
applies the gamma method to all entries of the correlator.- \n
Corr.m_eff
to construct effective masses. Various variants for periodic and fixed temporal boundary conditions are available.- \n
Corr.deriv
returns the first derivative of the correlator asCorr
. Different discretizations of the numerical derivative are available.- \n
Corr.second_deriv
returns the second derivative of the correlator asCorr
. Different discretizations of the numerical derivative are available.- \n
Corr.symmetric
symmetrizes parity even correlations functions, assuming periodic boundary conditions.- \n
Corr.anti_symmetric
anti-symmetrizes parity odd correlations functions, assuming periodic boundary conditions.- \n
Corr.T_symmetry
averages a correlator with its time symmetry partner, assuming fixed boundary conditions.- \n
Corr.plateau
extracts a plateau value from the correlator in a given range.- \n
Corr.roll
periodically shifts the correlator.- \n
Corr.reverse
reverses the time ordering of the correlator.- \n
Corr.correlate
constructs a disconnected correlation function from the correlator and anotherCorr
orObs
object.- \n
Corr.reweight
reweights the correlator.\n\n
pyerrors
can also handle matrices of correlation functions and extract energy states from these matrices via a generalized eigenvalue problem (seepyerrors.correlators.Corr.GEVP
).For the full API see
\n\npyerrors.correlators.Corr
.Complex valued observables
\n\n\n\n
pyerrors
can handle complex valued observables via the classpyerrors.obs.CObs
.\nCObs
are initialized with a real and an imaginary part which both can beObs
valued.\n\n\n\nmy_real_part = pe.Obs([samples1], ['ensemble1'])\nmy_imag_part = pe.Obs([samples2], ['ensemble1'])\n\nmy_cobs = pe.CObs(my_real_part, my_imag_part)\nmy_cobs.gamma_method()\nprint(my_cobs)\n> (0.9959(91)+0.659(28)j)\n
Elementary mathematical operations are overloaded and samples are properly propagated as for the
\n\nObs
class.\n\n\n\nmy_derived_cobs = (my_cobs + my_cobs.conjugate()) / np.abs(my_cobs)\nmy_derived_cobs.gamma_method()\nprint(my_derived_cobs)\n> (1.668(23)+0.0j)\n
The
\n\nCovobs
classIn many projects, auxiliary data that is not based on Monte Carlo chains enters. Examples are experimentally determined mesons masses which are used to set the scale or renormalization constants. These numbers come with an error that has to be propagated through the analysis. The
\n\nCovobs
class allows to define such quantities inpyerrors
. Furthermore, external input might consist of correlated quantities. An example are the parameters of an interpolation formula, which are defined via mean values and a covariance matrix between all parameters. The contribution of the interpolation formula to the error of a derived quantity therefore might depend on the complete covariance matrix.This concept is built into the definition of
\n\nCovobs
. Inpyerrors
, external input is defined by $M$ mean values, a $M\\times M$ covariance matrix, where $M=1$ is permissible, and a name that uniquely identifies the covariance matrix. Below, we define the pion mass, based on its mean value and error, 134.9768(5). Note, that the square of the error enterscov_Obs
, since the second argument of this function is the covariance matrix of theCovobs
.\n\n\n\nimport pyerrors.obs as pe\n\nmpi = pe.cov_Obs(134.9768, 0.0005**2, 'pi^0 mass')\nmpi.gamma_method()\nmpi.details()\n> Result 1.34976800e+02 +/- 5.00000000e-04 +/- 0.00000000e+00 (0.000%)\n> pi^0 mass 5.00000000e-04\n> 0 samples in 1 ensemble:\n> \u00b7 Covobs 'pi^0 mass'\n
The resulting object
\n\nmpi
is anObs
that contains aCovobs
. In the following, it may be handled as any otherObs
. The contribution of the covariance matrix to the error of anObs
is determined from the $M \\times M$ covariance matrix $\\Sigma$ and the gradient of theObs
with respect to the external quantities, which is the $1\\times M$ Jacobian matrix $J$, via\n$$s = \\sqrt{J^T \\Sigma J}\\,,$$\nwhere the Jacobian is computed for each derived quantity via automatic differentiation.Correlated auxiliary data is defined similarly to above, e.g., via
\n\n\n\n\n\nRAP = pe.cov_Obs([16.7457, -19.0475], [[3.49591, -6.07560], [-6.07560, 10.5834]], 'R_AP, 1906.03445, (5.3a)')\nprint(RAP)\n> [Obs[16.7(1.9)], Obs[-19.0(3.3)]]\n
where
\n\nRAP
now is a list of twoObs
that contains the two correlated parameters.Since the gradient of a derived observable with respect to an external covariance matrix is propagated through the entire analysis, the
\n\nCovobs
class allows to quote the derivative of a result with respect to the external quantities. If these derivatives are published together with the result, small shifts in the definition of external quantities, e.g., the definition of the physical point, can be performed a posteriori based on the published information. This may help to compare results of different groups. The gradient of anObs
o
with respect to a covariance matrix with the identifying stringk
may be accessed via\n\n\n\no.covobs[k].grad\n
Error propagation in iterative algorithms
\n\n\n\n
pyerrors
supports exact linear error propagation for iterative algorithms like various variants of non-linear least squares fits or root finding. The derivatives required for the error propagation are calculated as described in arXiv:1809.01289.Least squares fits
\n\nStandard non-linear least square fits with errors on the dependent but not the independent variables can be performed with
\n\npyerrors.fits.least_squares
. As default solver the Levenberg-Marquardt algorithm implemented in scipy is used.Fit functions have to be of the following form
\n\n\n\n\n\nimport autograd.numpy as anp\n\ndef func(a, x):\n return a[1] * anp.exp(-a[0] * x)\n
It is important that numerical functions refer to
\n\nautograd.numpy
instead ofnumpy
for the automatic differentiation in iterative algorithms to work properly.Fits can then be performed via
\n\n\n\n\n\nfit_result = pe.fits.least_squares(x, y, func)\nprint("\\n", fit_result)\n> Fit with 2 parameters\n> Method: Levenberg-Marquardt\n> `ftol` termination condition is satisfied.\n> chisquare/d.o.f.: 0.9593035785160936\n\n> Goodness of fit:\n> \u03c7\u00b2/d.o.f. = 0.959304\n> p-value = 0.5673\n> Fit parameters:\n> 0 0.0548(28)\n> 1 1.933(64)\n
where x is a
\n\nlist
ornumpy.array
offloats
and y is alist
ornumpy.array
ofObs
.Data stored in
\n\nCorr
objects can be fitted directly using theCorr.fit
method.\n\n\n\nmy_corr = pe.Corr(y)\nfit_result = my_corr.fit(func, fitrange=[12, 25])\n
this can simplify working with absolute fit ranges and takes care of gaps in the data automatically.
\n\nFor fit functions with multiple independent variables the fit function can be of the form
\n\n\n\n\n\ndef func(a, x):\n (x1, x2) = x\n return a[0] * x1 ** 2 + a[1] * x2\n
\n\n
pyerrors
also supports correlated fits which can be triggered via the parametercorrelated_fit=True
.\nDetails about how the required covariance matrix is estimated can be found inpyerrors.obs.covariance
.\nDirect visualizations of the performed fits can be triggered viaresplot=True
orqqplot=True
.For all available options including combined fits to multiple datasets see
\n\npyerrors.fits.least_squares
.Total least squares fits
\n\n\n\n
pyerrors
can also fit data with errors on both the dependent and independent variables using the total least squares method also referred to as orthogonal distance regression as implemented in scipy, seepyerrors.fits.least_squares
. The syntax is identical to the standard least squares case, the only difference being thatx
also has to be alist
ornumpy.array
ofObs
.For the full API see
\n\npyerrors.fits
for fits andpyerrors.roots
for finding roots of functions.Matrix operations
\n\n\n\n
pyerrors
provides wrappers forObs
- andCObs
-valued matrix operations based onnumpy.linalg
. The supported functions include:\n
\n\n- \n
inv
for the matrix inverse.- \n
cholseky
for the Cholesky decomposition.- \n
det
for the matrix determinant.- \n
eigh
for eigenvalues and eigenvectors of hermitean matrices.- \n
eig
for eigenvalues of general matrices.- \n
pinv
for the Moore-Penrose pseudoinverse.- \n
svd
for the singular-value-decomposition.For the full API see
\n\npyerrors.linalg
.Export data
\n\n\n\nThe preferred exported file format within
\n\npyerrors
is json.gz. Files written to this format are valid JSON files that have been compressed using gzip. The structure of the content is inspired by the dobs format of the ALPHA collaboration. The aim of the format is to facilitate the storage of data in a self-contained way such that, even years after the creation of the file, it is possible to extract all necessary information:\n
\n\n- What observables are stored? Possibly: How exactly are they defined.
\n- How does each single ensemble or external quantity contribute to the error of the observable?
\n- Who did write the file when and on which machine?
\nThis can be achieved by storing all information in one single file. The export routines of
\n\npyerrors
are written such that as much information as possible is written automatically as described in the following example\n\n\n\nmy_obs = pe.Obs([samples], ["test_ensemble"])\nmy_obs.tag = "My observable"\n\npe.input.json.dump_to_json(my_obs, "test_output_file", description="This file contains a test observable")\n# For a single observable one can equivalently use the class method dump\nmy_obs.dump("test_output_file", description="This file contains a test observable")\n\ncheck = pe.input.json.load_json("test_output_file")\n\nprint(my_obs == check)\n> True\n
The format also allows to directly write out the content of
\n\nCorr
objects or lists and arrays ofObs
objects by passing the desired data topyerrors.input.json.dump_to_json
.json.gz format specification
\n\nThe first entries of the file provide optional auxiliary information:
\n\n\n
\n\n- \n
program
is a string that indicates which program was used to write the file.- \n
version
is a string that specifies the version of the format.- \n
who
is a string that specifies the user name of the creator of the file.- \n
date
is a string and contains the creation date of the file.- \n
host
is a string and contains the hostname of the machine where the file has been written.- \n
description
contains information on the content of the file. This field is not filled automatically inpyerrors
. The user is advised to provide as detailed information as possible in this field. Examples are: Input files of measurements or simulations, LaTeX formulae or references to publications to specify how the observables have been computed, details on the analysis strategy, ... This field may be any valid JSON type. Strings, arrays or objects (equivalent to dicts in python) are well suited to provide information.The only necessary entry of the file is the field\n-
\n\nobsdata
, an array that contains the actual data.Each entry of the array belongs to a single structure of observables. Currently, these structures can be either of
\n\nObs
,list
,numpy.ndarray
,Corr
. AllObs
inside a structure (with dimension > 0) have to be defined on the same set of configurations. Different structures, that are represented by entries of the arrayobsdata
, are treated independently. Each entry of the arrayobsdata
has the following required entries:\n
\n\n- \n
type
is a string that specifies the type of the structure. This allows to parse the content to the correct form after reading the file. It is always possible to interpret the content as list of Obs.- \n
value
is an array that contains the mean values of the Obs inside the structure.\nThe following entries are optional:- \n
layout
is a string that specifies the layout of multi-dimensional structures. Examples are \"2, 2\" for a 2x2 dimensional matrix or \"64, 4, 4\" for a Corr with $T=64$ and 4x4 matrices on each time slices. \"1\" denotes a single Obs. Multi-dimensional structures are stored in row-major format (see below).- \n
tag
is any JSON type. It contains additional information concerning the structure. Thetag
of anObs
inpyerrors
is written here.- \n
reweighted
is a Bool that may be used to specify, whether theObs
in the structure have been reweighted.- \n
data
is an array that contains the data from MC chains. We will define it below.- \n
cdata
is an array that contains the data from external quantities with an error (Covobs
inpyerrors
). We will define it below.The array
\n\ndata
contains the data from MC chains. Each entry of the array corresponds to one ensemble and contains:\n
\n\n- \n
id
, a string that contains the name of the ensemble- \n
replica
, an array that contains an entry per replica of the ensemble.Each entry of
\n\nreplica
contains\nname
, a string that contains the name of the replica\ndeltas
, an array that contains the actual data.Each entry in
\n\ndeltas
corresponds to one configuration of the replica and has $1+N$ many entries. The first entry is an integer that specifies the configuration number that, together with ensemble and replica name, may be used to uniquely identify the configuration on which the data has been obtained. The following N entries specify the deltas, i.e., the deviation of the observable from the mean value on this configuration, of eachObs
inside the structure. Multi-dimensional structures are stored in a row-major format. For primary observables, such as correlation functions, $value + delta_i$ matches the primary data obtained on the configuration.The array
\n\ncdata
contains information about the contribution of auxiliary observables, represented byCovobs
inpyerrors
, to the total error of the observables. Each entry of the array belongs to one auxiliary covariance matrix and contains:\n
\n\n- \n
id
, a string that identifies the covariance matrix- \n
layout
, a string that defines the dimensions of the $M\\times M$ covariance matrix (has to be \"M, M\" or \"1\").- \n
cov
, an array that contains the $M\\times M$ many entries of the covariance matrix, stored in row-major format.- \n
grad
, an array that contains N entries, one for eachObs
inside the structure. Each entry itself is an array, that contains the M gradients of the Nth observable with respect to the quantity that corresponds to the Mth diagonal entry of the covariance matrix.A JSON schema that may be used to verify the correctness of a file with respect to the format definition is stored in ./examples/json_schema.json. The schema is a self-descriptive format definition and contains an exemplary file.
\n\nJulia I/O routines for the json.gz format, compatible with ADerrors.jl, can be found here.
\n"}, "pyerrors.correlators": {"fullname": "pyerrors.correlators", "modulename": "pyerrors.correlators", "kind": "module", "doc": "\n"}, "pyerrors.correlators.Corr": {"fullname": "pyerrors.correlators.Corr", "modulename": "pyerrors.correlators", "qualname": "Corr", "kind": "class", "doc": "The class for a correlator (time dependent sequence of pe.Obs).
\n\nEverything, this class does, can be achieved using lists or arrays of Obs.\nBut it is simply more convenient to have a dedicated object for correlators.\nOne often wants to add or multiply correlators of the same length at every timeslice and it is inconvenient\nto iterate over all timeslices for every operation. This is especially true, when dealing with matrices.
\n\nThe correlator can have two types of content: An Obs at every timeslice OR a matrix at every timeslice.\nOther dependency (eg. spatial) are not supported.
\n\nThe Corr class can also deal with missing measurements or paddings for fixed boundary conditions.\nThe missing entries are represented via the
\n\nNone
object.Initialization
\n\nA simple correlator can be initialized with a list or a one-dimensional array of
\n\nObs
orCobs
\n\n\n\ncorr11 = pe.Corr([obs1, obs2])\ncorr11 = pe.Corr(np.array([obs1, obs2]))\n
A matrix-valued correlator can either be initialized via a two-dimensional array of
\n\nCorr
objects\n\n\n\nmatrix_corr = pe.Corr(np.array([[corr11, corr12], [corr21, corr22]]))\n
or alternatively via a three-dimensional array of
\n"}, "pyerrors.correlators.Corr.__init__": {"fullname": "pyerrors.correlators.Corr.__init__", "modulename": "pyerrors.correlators", "qualname": "Corr.__init__", "kind": "function", "doc": "Obs
orCObs
of shape (T, N, N) where T is\nthe temporal extent of the correlator and N is the dimension of the matrix.Initialize a Corr object.
\n\nParameters
\n\n\n
\n", "signature": "(data_input, padding=[0, 0], prange=None)"}, "pyerrors.correlators.Corr.tag": {"fullname": "pyerrors.correlators.Corr.tag", "modulename": "pyerrors.correlators", "qualname": "Corr.tag", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.content": {"fullname": "pyerrors.correlators.Corr.content", "modulename": "pyerrors.correlators", "qualname": "Corr.content", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.T": {"fullname": "pyerrors.correlators.Corr.T", "modulename": "pyerrors.correlators", "qualname": "Corr.T", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.prange": {"fullname": "pyerrors.correlators.Corr.prange", "modulename": "pyerrors.correlators", "qualname": "Corr.prange", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.reweighted": {"fullname": "pyerrors.correlators.Corr.reweighted", "modulename": "pyerrors.correlators", "qualname": "Corr.reweighted", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.gamma_method": {"fullname": "pyerrors.correlators.Corr.gamma_method", "modulename": "pyerrors.correlators", "qualname": "Corr.gamma_method", "kind": "function", "doc": "- data_input (list or array):\nlist of Obs or list of arrays of Obs or array of Corrs (see class docstring for details).
\n- padding (list, optional):\nList with two entries where the first labels the padding\nat the front of the correlator and the second the padding\nat the back.
\n- prange (list, optional):\nList containing the first and last timeslice of the plateau\nregion identified for this correlator.
\nApply the gamma method to the content of the Corr.
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.gm": {"fullname": "pyerrors.correlators.Corr.gm", "modulename": "pyerrors.correlators", "qualname": "Corr.gm", "kind": "function", "doc": "Apply the gamma method to the content of the Corr.
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.projected": {"fullname": "pyerrors.correlators.Corr.projected", "modulename": "pyerrors.correlators", "qualname": "Corr.projected", "kind": "function", "doc": "We need to project the Correlator with a Vector to get a single value at each timeslice.
\n\nThe method can use one or two vectors.\nIf two are specified it returns v1@G@v2 (the order might be very important.)\nBy default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to
\n", "signature": "(self, vector_l=None, vector_r=None, normalize=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.item": {"fullname": "pyerrors.correlators.Corr.item", "modulename": "pyerrors.correlators", "qualname": "Corr.item", "kind": "function", "doc": "Picks the element [i,j] from every matrix and returns a correlator containing one Obs per timeslice.
\n\nParameters
\n\n\n
\n", "signature": "(self, i, j):", "funcdef": "def"}, "pyerrors.correlators.Corr.plottable": {"fullname": "pyerrors.correlators.Corr.plottable", "modulename": "pyerrors.correlators", "qualname": "Corr.plottable", "kind": "function", "doc": "- i (int):\nFirst index to be picked.
\n- j (int):\nSecond index to be picked.
\nOutputs the correlator in a plotable format.
\n\nOutputs three lists containing the timeslice index, the value on each\ntimeslice and the error on each timeslice.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.symmetric": {"fullname": "pyerrors.correlators.Corr.symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.symmetric", "kind": "function", "doc": "Symmetrize the correlator around x0=0.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.anti_symmetric": {"fullname": "pyerrors.correlators.Corr.anti_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.anti_symmetric", "kind": "function", "doc": "Anti-symmetrize the correlator around x0=0.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.is_matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.is_matrix_symmetric", "kind": "function", "doc": "Checks whether a correlator matrices is symmetric on every timeslice.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.trace": {"fullname": "pyerrors.correlators.Corr.trace", "modulename": "pyerrors.correlators", "qualname": "Corr.trace", "kind": "function", "doc": "Calculates the per-timeslice trace of a correlator matrix.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.matrix_symmetric", "kind": "function", "doc": "Symmetrizes the correlator matrices on every timeslice.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.GEVP": {"fullname": "pyerrors.correlators.Corr.GEVP", "modulename": "pyerrors.correlators", "qualname": "Corr.GEVP", "kind": "function", "doc": "Solve the generalized eigenvalue problem on the correlator matrix and returns the corresponding eigenvectors.
\n\nThe eigenvectors are sorted according to the descending eigenvalues, the zeroth eigenvector(s) correspond to the\nlargest eigenvalue(s). The eigenvector(s) for the individual states can be accessed via slicing
\n\n\n\n\n\nC.GEVP(t0=2)[0] # Ground state vector(s)\nC.GEVP(t0=2)[:3] # Vectors for the lowest three states\n
Parameters
\n\n\n
\n\n- t0 (int):\nThe time t0 for the right hand side of the GEVP according to $G(t)v_i=\\lambda_i G(t_0)v_i$
\n- ts (int):\nfixed time $G(t_s)v_i=\\lambda_i G(t_0)v_i$ if sort=None.\nIf sort=\"Eigenvector\" it gives a reference point for the sorting method.
\n- sort (string):\nIf this argument is set, a list of self.T vectors per state is returned. If it is set to None, only one vector is returned.\n
\n\n
- \"Eigenvalue\": The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice. (default)
\n- \"Eigenvector\": Use the method described in arXiv:2004.10472 to find the set of v(t) belonging to the state.\nThe reference state is identified by its eigenvalue at $t=t_s$.
\n- None: The GEVP is solved only at ts, no sorting is necessary
\n- vector_obs (bool):\nIf True, uncertainties are propagated in the eigenvector computation (default False).
\nOther Parameters
\n\n\n
\n", "signature": "(self, t0, ts=None, sort='Eigenvalue', vector_obs=False, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.Eigenvalue": {"fullname": "pyerrors.correlators.Corr.Eigenvalue", "modulename": "pyerrors.correlators", "qualname": "Corr.Eigenvalue", "kind": "function", "doc": "- state (int):\nReturns only the vector(s) for a specified state. The lowest state is zero.
\n- method (str):\nMethod used to solve the GEVP.\n
\n\n
- \"eigh\": Use scipy.linalg.eigh to solve the GEVP. (default for vector_obs=False)
\n- \"cholesky\": Use manually implemented solution via the Cholesky decomposition. Automatically chosen if vector_obs==True.
\nDetermines the eigenvalue of the GEVP by solving and projecting the correlator
\n\nParameters
\n\n\n
\n", "signature": "(self, t0, ts=None, state=0, sort='Eigenvalue', **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.Hankel": {"fullname": "pyerrors.correlators.Corr.Hankel", "modulename": "pyerrors.correlators", "qualname": "Corr.Hankel", "kind": "function", "doc": "- state (int):\nThe state one is interested in ordered by energy. The lowest state is zero.
\n- All other parameters are identical to the ones of Corr.GEVP.
\nConstructs an NxN Hankel matrix
\n\nC(t) c(t+1) ... c(t+n-1)\nC(t+1) c(t+2) ... c(t+n)\n.................\nC(t+(n-1)) c(t+n) ... c(t+2(n-1))
\n\nParameters
\n\n\n
\n", "signature": "(self, N, periodic=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.roll": {"fullname": "pyerrors.correlators.Corr.roll", "modulename": "pyerrors.correlators", "qualname": "Corr.roll", "kind": "function", "doc": "- N (int):\nDimension of the Hankel matrix
\n- periodic (bool, optional):\ndetermines whether the matrix is extended periodically
\nPeriodically shift the correlator by dt timeslices
\n\nParameters
\n\n\n
\n", "signature": "(self, dt):", "funcdef": "def"}, "pyerrors.correlators.Corr.reverse": {"fullname": "pyerrors.correlators.Corr.reverse", "modulename": "pyerrors.correlators", "qualname": "Corr.reverse", "kind": "function", "doc": "- dt (int):\nnumber of timeslices
\nReverse the time ordering of the Corr
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.thin": {"fullname": "pyerrors.correlators.Corr.thin", "modulename": "pyerrors.correlators", "qualname": "Corr.thin", "kind": "function", "doc": "Thin out a correlator to suppress correlations
\n\nParameters
\n\n\n
\n", "signature": "(self, spacing=2, offset=0):", "funcdef": "def"}, "pyerrors.correlators.Corr.correlate": {"fullname": "pyerrors.correlators.Corr.correlate", "modulename": "pyerrors.correlators", "qualname": "Corr.correlate", "kind": "function", "doc": "- spacing (int):\nKeep only every 'spacing'th entry of the correlator
\n- offset (int):\nOffset the equal spacing
\nCorrelate the correlator with another correlator or Obs
\n\nParameters
\n\n\n
\n", "signature": "(self, partner):", "funcdef": "def"}, "pyerrors.correlators.Corr.reweight": {"fullname": "pyerrors.correlators.Corr.reweight", "modulename": "pyerrors.correlators", "qualname": "Corr.reweight", "kind": "function", "doc": "- partner (Obs or Corr):\npartner to correlate the correlator with.\nCan either be an Obs which is correlated with all entries of the\ncorrelator or a Corr of same length.
\nReweight the correlator.
\n\nParameters
\n\n\n
\n", "signature": "(self, weight, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.T_symmetry": {"fullname": "pyerrors.correlators.Corr.T_symmetry", "modulename": "pyerrors.correlators", "qualname": "Corr.T_symmetry", "kind": "function", "doc": "- weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
\n- all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
\nReturn the time symmetry average of the correlator and its partner
\n\nParameters
\n\n\n
\n", "signature": "(self, partner, parity=1):", "funcdef": "def"}, "pyerrors.correlators.Corr.deriv": {"fullname": "pyerrors.correlators.Corr.deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.deriv", "kind": "function", "doc": "- partner (Corr):\nTime symmetry partner of the Corr
\n- parity (int):\nParity quantum number of the correlator, can be +1 or -1
\nReturn the first derivative of the correlator with respect to x0.
\n\nParameters
\n\n\n
\n", "signature": "(self, variant='symmetric'):", "funcdef": "def"}, "pyerrors.correlators.Corr.second_deriv": {"fullname": "pyerrors.correlators.Corr.second_deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.second_deriv", "kind": "function", "doc": "- variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice: symmetric, forward, backward, improved, log, default: symmetric
\nReturn the second derivative of the correlator with respect to x0.
\n\nParameters
\n\n\n
\n", "signature": "(self, variant='symmetric'):", "funcdef": "def"}, "pyerrors.correlators.Corr.m_eff": {"fullname": "pyerrors.correlators.Corr.m_eff", "modulename": "pyerrors.correlators", "qualname": "Corr.m_eff", "kind": "function", "doc": "- variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice:\n - symmetric (default)\n $$\\tilde{\\partial}^2_0 f(x_0) = f(x_0+1)-2f(x_0)+f(x_0-1)$$\n - big_symmetric\n $$\\partial^2_0 f(x_0) = \\frac{f(x_0+2)-2f(x_0)+f(x_0-2)}{4}$$\n - improved\n $$\\partial^2_0 f(x_0) = \\frac{-f(x_0+2) + 16 * f(x_0+1) - 30 * f(x_0) + 16 * f(x_0-1) - f(x_0-2)}{12}$$\n - log\n $$f(x) = \\tilde{\\partial}^2_0 log(f(x_0))+(\\tilde{\\partial}_0 log(f(x_0)))^2$$
\nReturns the effective mass of the correlator as correlator object
\n\nParameters
\n\n\n
\n", "signature": "(self, variant='log', guess=1.0):", "funcdef": "def"}, "pyerrors.correlators.Corr.fit": {"fullname": "pyerrors.correlators.Corr.fit", "modulename": "pyerrors.correlators", "qualname": "Corr.fit", "kind": "function", "doc": "- variant (str):\nlog : uses the standard effective mass log(C(t) / C(t+1))\ncosh, periodic : Use periodicity of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.\nsinh : Use anti-periodicity of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.\nSee, e.g., arXiv:1205.5380\narccosh : Uses the explicit form of the symmetrized correlator (not recommended)\nlogsym: uses the symmetric effective mass log(C(t-1) / C(t+1))/2
\n- guess (float):\nguess for the root finder, only relevant for the root variant
\nFits function to the data
\n\nParameters
\n\n\n
\n", "signature": "(self, function, fitrange=None, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.plateau": {"fullname": "pyerrors.correlators.Corr.plateau", "modulename": "pyerrors.correlators", "qualname": "Corr.plateau", "kind": "function", "doc": "- function (obj):\nfunction to fit to the data. See fits.least_squares for details.
\n- fitrange (list):\nTwo element list containing the timeslices on which the fit is supposed to start and stop.\nCaution: This range is inclusive as opposed to standard python indexing.\n
\nfitrange=[4, 6]
corresponds to the three entries 4, 5 and 6.\nIf not specified, self.prange or all timeslices are used.- silent (bool):\nDecides whether output is printed to the standard output.
\nExtract a plateau value from a Corr object
\n\nParameters
\n\n\n
\n", "signature": "(self, plateau_range=None, method='fit', auto_gamma=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.set_prange": {"fullname": "pyerrors.correlators.Corr.set_prange", "modulename": "pyerrors.correlators", "qualname": "Corr.set_prange", "kind": "function", "doc": "- plateau_range (list):\nlist with two entries, indicating the first and the last timeslice\nof the plateau region.
\n- method (str):\nmethod to extract the plateau.\n 'fit' fits a constant to the plateau region\n 'avg', 'average' or 'mean' just average over the given timeslices.
\n- auto_gamma (bool):\napply gamma_method with default parameters to the Corr. Defaults to None
\nSets the attribute prange of the Corr object.
\n", "signature": "(self, prange):", "funcdef": "def"}, "pyerrors.correlators.Corr.show": {"fullname": "pyerrors.correlators.Corr.show", "modulename": "pyerrors.correlators", "qualname": "Corr.show", "kind": "function", "doc": "Plots the correlator using the tag of the correlator as label if available.
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tx_range=None,\tcomp=None,\ty_range=None,\tlogscale=False,\tplateau=None,\tfit_res=None,\tfit_key=None,\tylabel=None,\tsave=None,\tauto_gamma=False,\thide_sigma=None,\treferences=None,\ttitle=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.spaghetti_plot": {"fullname": "pyerrors.correlators.Corr.spaghetti_plot", "modulename": "pyerrors.correlators", "qualname": "Corr.spaghetti_plot", "kind": "function", "doc": "- x_range (list):\nlist of two values, determining the range of the x-axis e.g. [4, 8].
\n- comp (Corr or list of Corr):\nCorrelator or list of correlators which are plotted for comparison.\nThe tags of these correlators are used as labels if available.
\n- logscale (bool):\nSets y-axis to logscale.
\n- plateau (Obs):\nPlateau value to be visualized in the figure.
\n- fit_res (Fit_result):\nFit_result object to be visualized.
\n- fit_key (str):\nKey for the fit function in Fit_result.fit_function (for combined fits).
\n- ylabel (str):\nLabel for the y-axis.
\n- save (str):\npath to file in which the figure should be saved.
\n- auto_gamma (bool):\nApply the gamma method with standard parameters to all correlators and plateau values before plotting.
\n- hide_sigma (float):\nHides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors.
\n- references (list):\nList of floating point values that are displayed as horizontal lines for reference.
\n- title (string):\nOptional title of the figure.
\nProduces a spaghetti plot of the correlator suited to monitor exceptional configurations.
\n\nParameters
\n\n\n
\n", "signature": "(self, logscale=True):", "funcdef": "def"}, "pyerrors.correlators.Corr.dump": {"fullname": "pyerrors.correlators.Corr.dump", "modulename": "pyerrors.correlators", "qualname": "Corr.dump", "kind": "function", "doc": "- logscale (bool):\nDetermines whether the scale of the y-axis is logarithmic or standard.
\nDumps the Corr into a file of chosen type
\n\nParameters
\n\n\n
\n", "signature": "(self, filename, datatype='json.gz', **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.print": {"fullname": "pyerrors.correlators.Corr.print", "modulename": "pyerrors.correlators", "qualname": "Corr.print", "kind": "function", "doc": "\n", "signature": "(self, print_range=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.sqrt": {"fullname": "pyerrors.correlators.Corr.sqrt", "modulename": "pyerrors.correlators", "qualname": "Corr.sqrt", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.log": {"fullname": "pyerrors.correlators.Corr.log", "modulename": "pyerrors.correlators", "qualname": "Corr.log", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.exp": {"fullname": "pyerrors.correlators.Corr.exp", "modulename": "pyerrors.correlators", "qualname": "Corr.exp", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.sin": {"fullname": "pyerrors.correlators.Corr.sin", "modulename": "pyerrors.correlators", "qualname": "Corr.sin", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.cos": {"fullname": "pyerrors.correlators.Corr.cos", "modulename": "pyerrors.correlators", "qualname": "Corr.cos", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.tan": {"fullname": "pyerrors.correlators.Corr.tan", "modulename": "pyerrors.correlators", "qualname": "Corr.tan", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.sinh": {"fullname": "pyerrors.correlators.Corr.sinh", "modulename": "pyerrors.correlators", "qualname": "Corr.sinh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.cosh": {"fullname": "pyerrors.correlators.Corr.cosh", "modulename": "pyerrors.correlators", "qualname": "Corr.cosh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.tanh": {"fullname": "pyerrors.correlators.Corr.tanh", "modulename": "pyerrors.correlators", "qualname": "Corr.tanh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsin": {"fullname": "pyerrors.correlators.Corr.arcsin", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsin", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arccos": {"fullname": "pyerrors.correlators.Corr.arccos", "modulename": "pyerrors.correlators", "qualname": "Corr.arccos", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arctan": {"fullname": "pyerrors.correlators.Corr.arctan", "modulename": "pyerrors.correlators", "qualname": "Corr.arctan", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsinh": {"fullname": "pyerrors.correlators.Corr.arcsinh", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsinh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arccosh": {"fullname": "pyerrors.correlators.Corr.arccosh", "modulename": "pyerrors.correlators", "qualname": "Corr.arccosh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arctanh": {"fullname": "pyerrors.correlators.Corr.arctanh", "modulename": "pyerrors.correlators", "qualname": "Corr.arctanh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.real": {"fullname": "pyerrors.correlators.Corr.real", "modulename": "pyerrors.correlators", "qualname": "Corr.real", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.imag": {"fullname": "pyerrors.correlators.Corr.imag", "modulename": "pyerrors.correlators", "qualname": "Corr.imag", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.prune": {"fullname": "pyerrors.correlators.Corr.prune", "modulename": "pyerrors.correlators", "qualname": "Corr.prune", "kind": "function", "doc": "- filename (str):\nName of the file to be saved.
\n- datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
\n- path (str):\nspecifies a custom path for the file (default '.')
\nProject large correlation matrix to lowest states
\n\nThis method can be used to reduce the size of an (N x N) correlation matrix\nto (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise\nis still small.
\n\nParameters
\n\n\n
\n\n- Ntrunc (int):\nRank of the target matrix.
\n- tproj (int):\nTime where the eigenvectors are evaluated, corresponds to ts in the GEVP method.\nThe default value is 3.
\n- t0proj (int):\nTime where the correlation matrix is inverted. Choosing t0proj=1 is strongly\ndiscouraged for O(a) improved theories, since the correctness of the procedure\ncannot be granted in this case. The default value is 2.
\n- basematrix (Corr):\nCorrelation matrix that is used to determine the eigenvectors of the\nlowest states based on a GEVP. basematrix is taken to be the Corr itself if\nis is not specified.
\nNotes
\n\nWe have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving\nthe GEVP $$C(t) v_n(t, t_0) = \\lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \\equiv t_\\mathrm{proj}$\nand $t_0 \\equiv t_{0, \\mathrm{proj}}$. The target matrix is projected onto the subspace of the\nresulting eigenvectors $v_n, n=1,\\dots,N_\\mathrm{trunc}$ via\n$$G^\\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large\ncorrelation matrix and to remove some noise that is added by irrelevant operators.\nThis may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated\nbound $t_0 \\leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$.
\n", "signature": "(self, Ntrunc, tproj=3, t0proj=2, basematrix=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.N": {"fullname": "pyerrors.correlators.Corr.N", "modulename": "pyerrors.correlators", "qualname": "Corr.N", "kind": "variable", "doc": "\n"}, "pyerrors.covobs": {"fullname": "pyerrors.covobs", "modulename": "pyerrors.covobs", "kind": "module", "doc": "\n"}, "pyerrors.covobs.Covobs": {"fullname": "pyerrors.covobs.Covobs", "modulename": "pyerrors.covobs", "qualname": "Covobs", "kind": "class", "doc": "\n"}, "pyerrors.covobs.Covobs.__init__": {"fullname": "pyerrors.covobs.Covobs.__init__", "modulename": "pyerrors.covobs", "qualname": "Covobs.__init__", "kind": "function", "doc": "Initialize Covobs object.
\n\nParameters
\n\n\n
\n", "signature": "(mean, cov, name, pos=None, grad=None)"}, "pyerrors.covobs.Covobs.name": {"fullname": "pyerrors.covobs.Covobs.name", "modulename": "pyerrors.covobs", "qualname": "Covobs.name", "kind": "variable", "doc": "\n"}, "pyerrors.covobs.Covobs.value": {"fullname": "pyerrors.covobs.Covobs.value", "modulename": "pyerrors.covobs", "qualname": "Covobs.value", "kind": "variable", "doc": "\n"}, "pyerrors.covobs.Covobs.errsq": {"fullname": "pyerrors.covobs.Covobs.errsq", "modulename": "pyerrors.covobs", "qualname": "Covobs.errsq", "kind": "function", "doc": "- mean (float):\nMean value of the new Obs
\n- cov (list or array):\n2d Covariance matrix or 1d diagonal entries
\n- name (str):\nidentifier for the covariance matrix
\n- pos (int):\nPosition of the variance belonging to mean in cov.\nIs taken to be 1 if cov is 0-dimensional
\n- grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
\nReturn the variance (= square of the error) of the Covobs
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.covobs.Covobs.cov": {"fullname": "pyerrors.covobs.Covobs.cov", "modulename": "pyerrors.covobs", "qualname": "Covobs.cov", "kind": "variable", "doc": "\n"}, "pyerrors.covobs.Covobs.grad": {"fullname": "pyerrors.covobs.Covobs.grad", "modulename": "pyerrors.covobs", "qualname": "Covobs.grad", "kind": "variable", "doc": "\n"}, "pyerrors.dirac": {"fullname": "pyerrors.dirac", "modulename": "pyerrors.dirac", "kind": "module", "doc": "\n"}, "pyerrors.dirac.gammaX": {"fullname": "pyerrors.dirac.gammaX", "modulename": "pyerrors.dirac", "qualname": "gammaX", "kind": "variable", "doc": "\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j],\n [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, -0.-1.j, 0.+0.j, 0.+0.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaY": {"fullname": "pyerrors.dirac.gammaY", "modulename": "pyerrors.dirac", "qualname": "gammaY", "kind": "variable", "doc": "\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],\n [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaZ": {"fullname": "pyerrors.dirac.gammaZ", "modulename": "pyerrors.dirac", "qualname": "gammaZ", "kind": "variable", "doc": "\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaT": {"fullname": "pyerrors.dirac.gammaT", "modulename": "pyerrors.dirac", "qualname": "gammaT", "kind": "variable", "doc": "\n", "default_value": "array([[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n [1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gamma": {"fullname": "pyerrors.dirac.gamma", "modulename": "pyerrors.dirac", "qualname": "gamma", "kind": "variable", "doc": "\n", "default_value": "array([[[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j],\n [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, -0.-1.j, 0.+0.j, 0.+0.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],\n [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n [ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]])"}, "pyerrors.dirac.gamma5": {"fullname": "pyerrors.dirac.gamma5", "modulename": "pyerrors.dirac", "qualname": "gamma5", "kind": "variable", "doc": "\n", "default_value": "array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j]])"}, "pyerrors.dirac.identity": {"fullname": "pyerrors.dirac.identity", "modulename": "pyerrors.dirac", "qualname": "identity", "kind": "variable", "doc": "\n", "default_value": "array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])"}, "pyerrors.dirac.epsilon_tensor": {"fullname": "pyerrors.dirac.epsilon_tensor", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor", "kind": "function", "doc": "Rank-3 epsilon tensor
\n\nBased on https://codegolf.stackexchange.com/a/160375
\n\nReturns
\n\n\n
\n", "signature": "(i, j, k):", "funcdef": "def"}, "pyerrors.dirac.epsilon_tensor_rank4": {"fullname": "pyerrors.dirac.epsilon_tensor_rank4", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor_rank4", "kind": "function", "doc": "- elem (int):\nElement (i,j,k) of the epsilon tensor of rank 3
\nRank-4 epsilon tensor
\n\nExtension of https://codegolf.stackexchange.com/a/160375
\n\nReturns
\n\n\n
\n", "signature": "(i, j, k, o):", "funcdef": "def"}, "pyerrors.dirac.Grid_gamma": {"fullname": "pyerrors.dirac.Grid_gamma", "modulename": "pyerrors.dirac", "qualname": "Grid_gamma", "kind": "function", "doc": "- elem (int):\nElement (i,j,k,o) of the epsilon tensor of rank 4
\nReturns gamma matrix in Grid labeling.
\n", "signature": "(gamma_tag):", "funcdef": "def"}, "pyerrors.fits": {"fullname": "pyerrors.fits", "modulename": "pyerrors.fits", "kind": "module", "doc": "\n"}, "pyerrors.fits.Fit_result": {"fullname": "pyerrors.fits.Fit_result", "modulename": "pyerrors.fits", "qualname": "Fit_result", "kind": "class", "doc": "Represents fit results.
\n\nAttributes
\n\n\n
\n", "bases": "collections.abc.Sequence"}, "pyerrors.fits.Fit_result.fit_parameters": {"fullname": "pyerrors.fits.Fit_result.fit_parameters", "modulename": "pyerrors.fits", "qualname": "Fit_result.fit_parameters", "kind": "variable", "doc": "\n"}, "pyerrors.fits.Fit_result.gamma_method": {"fullname": "pyerrors.fits.Fit_result.gamma_method", "modulename": "pyerrors.fits", "qualname": "Fit_result.gamma_method", "kind": "function", "doc": "- fit_parameters (list):\nresults for the individual fit parameters,\nalso accessible via indices.
\n- chisquare_by_dof (float):\nreduced chisquare.
\n- p_value (float):\np-value of the fit
\n- t2_p_value (float):\nHotelling t-squared p-value for correlated fits.
\nApply the gamma method to all fit parameters
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.fits.Fit_result.gm": {"fullname": "pyerrors.fits.Fit_result.gm", "modulename": "pyerrors.fits", "qualname": "Fit_result.gm", "kind": "function", "doc": "Apply the gamma method to all fit parameters
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.fits.least_squares": {"fullname": "pyerrors.fits.least_squares", "modulename": "pyerrors.fits", "qualname": "least_squares", "kind": "function", "doc": "Performs a non-linear fit to y = func(x).\n ```
\n\nParameters
\n\n\n
\n\n- For an uncombined fit:
\n- x (list):\nlist of floats.
\n- y (list):\nlist of Obs.
\n- \n
func (object):\nfit function, has to be of the form
\n\n\n\n\n\nimport autograd.numpy as anp\n\ndef func(a, x):\n return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
For multiple x values func can be of the form
\n\n\n\n\n\ndef func(a, x):\n (x1, x2) = x\n return a[0] * x1 ** 2 + a[1] * x2\n
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.
- OR For a combined fit:
\n- x (dict):\ndict of lists.
\n- y (dict):\ndict of lists of Obs.
\n- \n
funcs (dict):\ndict of objects\nfit functions have to be of the form (here a[0] is the common fit parameter)\n```python\nimport autograd.numpy as anp\nfuncs = {\"a\": func_a,\n \"b\": func_b}
\n\ndef func_a(a, x):\n return a[1] * anp.exp(-a[0] * x)
\n\ndef func_b(a, x):\n return a[2] * anp.exp(-a[0] * x)
\n\nIt is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.
- priors (dict or list, optional):\npriors can either be a dictionary with integer keys and the corresponding priors as values or\na list with an entry for every parameter in the fit. The entries can either be\nObs (e.g. results from a previous fit) or strings containing a value and an error formatted like\n0.548(23), 500(40) or 0.5(0.4)
\n- silent (bool, optional):\nIf true all output to the console is omitted (default False).
\n- initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for\nnon-linear fits with many parameters. In case of correlated fits the guess is used to perform\nan uncorrelated fit which then serves as guess for the correlated fit.
\n- method (str, optional):\ncan be used to choose an alternative method for the minimization of chisquare.\nThe possible methods are the ones which can be used for scipy.optimize.minimize and\nmigrad of iminuit. If no method is specified, Levenberg-Marquard is used.\nReliable alternatives are migrad, Powell and Nelder-Mead.
\n- tol (float, optional):\ncan be used (only for combined fits and methods other than Levenberg-Marquard) to set the tolerance for convergence\nto a different value to either speed up convergence at the cost of a larger error on the fitted parameters (and possibly\ninvalid estimates for parameter uncertainties) or smaller values to get more accurate parameter values\nThe stopping criterion depends on the method, e.g. migrad: edm_max = 0.002 * tol * errordef (EDM criterion: edm < edm_max)
\n- correlated_fit (bool):\nIf True, use the full inverse covariance matrix in the definition of the chisquare cost function.\nFor details about how the covariance matrix is estimated see
\npyerrors.obs.covariance
.\nIn practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix).\nThis procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning).- inv_chol_cov_matrix [array,list], optional: array: shape = (no of y values) X (no of y values)\nlist: for an uncombined fit: [\"\"]\nfor a combined fit: list of keys belonging to the corr_matrix saved in the array, must be the same as the keys of the y dict in alphabetical order\nIf correlated_fit=True is set as well, can provide an inverse covariance matrix (y errors, dy_f included!) of your own choosing for a correlated fit.\nThe matrix must be a lower triangular matrix constructed from a Cholesky decomposition: The function invert_corr_cov_cholesky(corr, inverrdiag) can be\nused to construct it from a correlation matrix (corr) and the errors dy_f of the data points (inverrdiag = np.diag(1 / np.asarray(dy_f))). For the correct\nordering the correlation matrix (corr) can be sorted via the function sort_corr(corr, kl, yd) where kl is the list of keys and yd the y dict.
\n- expected_chisquare (bool):\nIf True estimates the expected chisquare which is\ncorrected by effects caused by correlated input data (default False).
\n- resplot (bool):\nIf True, a plot which displays fit, data and residuals is generated (default False).
\n- qqplot (bool):\nIf True, a quantile-quantile plot of the fit result is generated (default False).
\n- num_grad (bool):\nUse numerical differentation instead of automatic differentiation to perform the error propagation (default False).
\nReturns
\n\n\n
\n\n- output (Fit_result):\nParameters and information on the fitted result.
\nExamples
\n\n\n\n", "signature": "(x, y, func, priors=None, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.fits.total_least_squares": {"fullname": "pyerrors.fits.total_least_squares", "modulename": "pyerrors.fits", "qualname": "total_least_squares", "kind": "function", "doc": "\n>>> # Example of a correlated (correlated_fit = True, inv_chol_cov_matrix handed over) combined fit, based on a randomly generated data set\n>>> import numpy as np\n>>> from scipy.stats import norm\n>>> from scipy.linalg import cholesky\n>>> import pyerrors as pe\n>>> # generating the random data set\n>>> num_samples = 400\n>>> N = 3\n>>> x = np.arange(N)\n>>> x1 = norm.rvs(size=(N, num_samples)) # generate random numbers\n>>> x2 = norm.rvs(size=(N, num_samples)) # generate random numbers\n>>> r = r1 = r2 = np.zeros((N, N))\n>>> y = {}\n>>> for i in range(N):\n>>> for j in range(N):\n>>> r[i, j] = np.exp(-0.8 * np.fabs(i - j)) # element in correlation matrix\n>>> errl = np.sqrt([3.4, 2.5, 3.6]) # set y errors\n>>> for i in range(N):\n>>> for j in range(N):\n>>> r[i, j] *= errl[i] * errl[j] # element in covariance matrix\n>>> c = cholesky(r, lower=True)\n>>> y = {'a': np.dot(c, x1), 'b': np.dot(c, x2)} # generate y data with the covariance matrix defined\n>>> # random data set has been generated, now the dictionaries and the inverse covariance matrix to be handed over are built\n>>> x_dict = {}\n>>> y_dict = {}\n>>> chol_inv_dict = {}\n>>> data = []\n>>> for key in y.keys():\n>>> x_dict[key] = x\n>>> for i in range(N):\n>>> data.append(pe.Obs([[i + 1 + o for o in y[key][i]]], ['ens'])) # generate y Obs from the y data\n>>> [o.gamma_method() for o in data]\n>>> corr = pe.covariance(data, correlation=True)\n>>> inverrdiag = np.diag(1 / np.asarray([o.dvalue for o in data]))\n>>> chol_inv = pe.obs.invert_corr_cov_cholesky(corr, inverrdiag) # gives form of the inverse covariance matrix needed for the combined correlated fit below\n>>> y_dict = {'a': data[:3], 'b': data[3:]}\n>>> # common fit parameter p[0] in combined fit\n>>> def fit1(p, x):\n>>> return p[0] + p[1] * x\n>>> def fit2(p, x):\n>>> return p[0] + p[2] * x\n>>> fitf_dict = {'a': fit1, 'b':fit2}\n>>> fitp_inv_cov_combined_fit = pe.least_squares(x_dict,y_dict, fitf_dict, correlated_fit = True, inv_chol_cov_matrix = [chol_inv,['a','b']])\nFit with 3 parameters\nMethod: Levenberg-Marquardt\n`ftol` termination condition is satisfied.\nchisquare/d.o.f.: 0.5388013574561786 # random\nfit parameters [1.11897846 0.96361162 0.92325319] # random\n
Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.
\n\nParameters
\n\n\n
\n\n- x (list):\nlist of Obs, or a tuple of lists of Obs
\n- y (list):\nlist of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
\n- \n
func (object):\nfunc has to be of the form
\n\n\n\n\n\nimport autograd.numpy as anp\n\ndef func(a, x):\n return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
For multiple x values func can be of the form
\n\n\n\n\n\ndef func(a, x):\n (x1, x2) = x\n return a[0] * x1 ** 2 + a[1] * x2\n
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.
- silent (bool, optional):\nIf true all output to the console is omitted (default False).
\n- initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for non-linear\nfits with many parameters.
\n- expected_chisquare (bool):\nIf true prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
\n- num_grad (bool):\nUse numerical differentation instead of automatic differentiation to perform the error propagation (default False).
\nNotes
\n\nBased on the orthogonal distance regression module of scipy.
\n\nReturns
\n\n\n
\n", "signature": "(x, y, func, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.fits.fit_lin": {"fullname": "pyerrors.fits.fit_lin", "modulename": "pyerrors.fits", "qualname": "fit_lin", "kind": "function", "doc": "- output (Fit_result):\nParameters and information on the fitted result.
\nPerforms a linear fit to y = n + m * x and returns two Obs n, m.
\n\nParameters
\n\n\n
\n\n- x (list):\nCan either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.
\n- y (list):\nList of Obs, the dvalues of the Obs are used as yerror for the fit.
\nReturns
\n\n\n
\n", "signature": "(x, y, **kwargs):", "funcdef": "def"}, "pyerrors.fits.qqplot": {"fullname": "pyerrors.fits.qqplot", "modulename": "pyerrors.fits", "qualname": "qqplot", "kind": "function", "doc": "- fit_parameters (list[Obs]):\nLIist of fitted observables.
\nGenerates a quantile-quantile plot of the fit result which can be used to\n check if the residuals of the fit are gaussian distributed.
\n\nReturns
\n\n\n
\n", "signature": "(x, o_y, func, p, title=''):", "funcdef": "def"}, "pyerrors.fits.residual_plot": {"fullname": "pyerrors.fits.residual_plot", "modulename": "pyerrors.fits", "qualname": "residual_plot", "kind": "function", "doc": "- None
\nGenerates a plot which compares the fit to the data and displays the corresponding residuals
\n\nFor uncorrelated data the residuals are expected to be distributed ~N(0,1).
\n\nReturns
\n\n\n
\n", "signature": "(x, y, func, fit_res, title=''):", "funcdef": "def"}, "pyerrors.fits.error_band": {"fullname": "pyerrors.fits.error_band", "modulename": "pyerrors.fits", "qualname": "error_band", "kind": "function", "doc": "- None
\nCalculate the error band for an array of sample values x, for given fit function func with optimized parameters beta.
\n\nReturns
\n\n\n
\n", "signature": "(x, func, beta):", "funcdef": "def"}, "pyerrors.fits.ks_test": {"fullname": "pyerrors.fits.ks_test", "modulename": "pyerrors.fits", "qualname": "ks_test", "kind": "function", "doc": "- err (np.array(Obs)):\nError band for an array of sample values x
\nPerforms a Kolmogorov\u2013Smirnov test for the p-values of all fit object.
\n\nParameters
\n\n\n
\n\n- objects (list):\nList of fit results to include in the analysis (optional).
\nReturns
\n\n\n
\n", "signature": "(objects=None):", "funcdef": "def"}, "pyerrors.input": {"fullname": "pyerrors.input", "modulename": "pyerrors.input", "kind": "module", "doc": "- None
\n\n\n
pyerrors
includes aninput
submodule in which input routines and parsers for the output of various numerical programs are contained.Jackknife samples
\n\nFor comparison with other analysis workflows
\n"}, "pyerrors.input.bdio": {"fullname": "pyerrors.input.bdio", "modulename": "pyerrors.input.bdio", "kind": "module", "doc": "\n"}, "pyerrors.input.bdio.read_ADerrors": {"fullname": "pyerrors.input.bdio.read_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "read_ADerrors", "kind": "function", "doc": "pyerrors
can also generate jackknife samples from anObs
object or import jackknife samples into anObs
object.\nSeepyerrors.obs.Obs.export_jackknife
andpyerrors.obs.import_jackknife
for details.Extract generic MCMC data from a bdio file
\n\nread_ADerrors requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n\n- file_path -- path to the bdio file
\n- bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
\nReturns
\n\n\n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.write_ADerrors": {"fullname": "pyerrors.input.bdio.write_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "write_ADerrors", "kind": "function", "doc": "- data (List[Obs]):\nExtracted data
\nWrite Obs to a bdio file according to ADerrors conventions
\n\nread_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n\n- file_path -- path to the bdio file
\n- bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
\nReturns
\n\n\n
\n", "signature": "(obs_list, file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.read_mesons": {"fullname": "pyerrors.input.bdio.read_mesons", "modulename": "pyerrors.input.bdio", "qualname": "read_mesons", "kind": "function", "doc": "- success (int):\nreturns 0 is successful
\nExtract mesons data from a bdio file and return it as a dictionary
\n\nThe dictionary can be accessed with a tuple consisting of (type, source_position, kappa1, kappa2)
\n\nread_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n\n- file_path (str):\npath to the bdio file
\n- bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
\n- start (int):\nThe first configuration to be read (default 1)
\n- stop (int):\nThe last configuration to be read (default None)
\n- step (int):\nFixed step size between two measurements (default 1)
\n- alternative_ensemble_name (str):\nManually overwrite ensemble name
\nReturns
\n\n\n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.read_dSdm": {"fullname": "pyerrors.input.bdio.read_dSdm", "modulename": "pyerrors.input.bdio", "qualname": "read_dSdm", "kind": "function", "doc": "- data (dict):\nExtracted meson data
\nExtract dSdm data from a bdio file and return it as a dictionary
\n\nThe dictionary can be accessed with a tuple consisting of (type, kappa)
\n\nread_dSdm requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.dobs": {"fullname": "pyerrors.input.dobs", "modulename": "pyerrors.input.dobs", "kind": "module", "doc": "\n"}, "pyerrors.input.dobs.create_pobs_string": {"fullname": "pyerrors.input.dobs.create_pobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_pobs_string", "kind": "function", "doc": "- file_path (str):\npath to the bdio file
\n- bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
\n- start (int):\nThe first configuration to be read (default 1)
\n- stop (int):\nThe last configuration to be read (default None)
\n- step (int):\nFixed step size between two measurements (default 1)
\n- alternative_ensemble_name (str):\nManually overwrite ensemble name
\nExport a list of Obs or structures containing Obs to an xml string\naccording to the Zeuthen pobs format.
\n\nTags are not written or recovered automatically. The separator | is removed from the replica names.
\n\nParameters
\n\n\n
\n\n- obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
\n- name (str):\nThe name of the observable.
\n- spec (str):\nOptional string that describes the contents of the file.
\n- origin (str):\nSpecify where the data has its origin.
\n- symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
\n- enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
\nReturns
\n\n\n
\n", "signature": "(obsl, name, spec='', origin='', symbol=[], enstag=None):", "funcdef": "def"}, "pyerrors.input.dobs.write_pobs": {"fullname": "pyerrors.input.dobs.write_pobs", "modulename": "pyerrors.input.dobs", "qualname": "write_pobs", "kind": "function", "doc": "- xml_str (str):\nXML formatted string of the input data
\nExport a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen pobs format.
\n\nTags are not written or recovered automatically. The separator | is removed from the replica names.
\n\nParameters
\n\n\n
\n\n- obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
\n- fname (str):\nFilename of the output file.
\n- name (str):\nThe name of the observable.
\n- spec (str):\nOptional string that describes the contents of the file.
\n- origin (str):\nSpecify where the data has its origin.
\n- symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
\n- enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
\n- gz (bool):\nIf True, the output is a gzipped xml. If False, the output is an xml file.
\nReturns
\n\n\n
\n", "signature": "(\tobsl,\tfname,\tname,\tspec='',\torigin='',\tsymbol=[],\tenstag=None,\tgz=True):", "funcdef": "def"}, "pyerrors.input.dobs.read_pobs": {"fullname": "pyerrors.input.dobs.read_pobs", "modulename": "pyerrors.input.dobs", "qualname": "read_pobs", "kind": "function", "doc": "- None
\nImport a list of Obs from an xml.gz file in the Zeuthen pobs format.
\n\nTags are not written or recovered automatically.
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
\n- separatior_insertion (str or int):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nNone (default): Replica names remain unchanged.
\nReturns
\n\n\n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=None):", "funcdef": "def"}, "pyerrors.input.dobs.import_dobs_string": {"fullname": "pyerrors.input.dobs.import_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "import_dobs_string", "kind": "function", "doc": "- res (list[Obs]):\nImported data
\n- or
\n- res (dict):\nImported data and meta-data
\nImport a list of Obs from a string in the Zeuthen dobs format.
\n\nTags are not written or recovered automatically.
\n\nParameters
\n\n\n
\n\n- content (str):\nXML string containing the data
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
\n- separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
\nReturns
\n\n\n
\n", "signature": "(content, full_output=False, separator_insertion=True):", "funcdef": "def"}, "pyerrors.input.dobs.read_dobs": {"fullname": "pyerrors.input.dobs.read_dobs", "modulename": "pyerrors.input.dobs", "qualname": "read_dobs", "kind": "function", "doc": "- res (list[Obs]):\nImported data
\n- or
\n- res (dict):\nImported data and meta-data
\nImport a list of Obs from an xml.gz file in the Zeuthen dobs format.
\n\nTags are not written or recovered automatically.
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
\n- gz (bool):\nIf True, assumes that data is gzipped. If False, assumes XML file.
\n- separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
\nReturns
\n\n\n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=True):", "funcdef": "def"}, "pyerrors.input.dobs.create_dobs_string": {"fullname": "pyerrors.input.dobs.create_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_dobs_string", "kind": "function", "doc": "- res (list[Obs]):\nImported data
\n- or
\n- res (dict):\nImported data and meta-data
\nGenerate the string for the export of a list of Obs or structures containing Obs\nto a .xml.gz file according to the Zeuthen dobs format.
\n\nTags are not written or recovered automatically. The separator |is removed from the replica names.
\n\nParameters
\n\n\n
\n\n- obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
\n- name (str):\nThe name of the observable.
\n- spec (str):\nOptional string that describes the contents of the file.
\n- origin (str):\nSpecify where the data has its origin.
\n- symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
\n- who (str):\nProvide the name of the person that exports the data.
\n- enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
\nReturns
\n\n\n
\n", "signature": "(\tobsl,\tname,\tspec='dobs v1.0',\torigin='',\tsymbol=[],\twho=None,\tenstags=None):", "funcdef": "def"}, "pyerrors.input.dobs.write_dobs": {"fullname": "pyerrors.input.dobs.write_dobs", "modulename": "pyerrors.input.dobs", "qualname": "write_dobs", "kind": "function", "doc": "- xml_str (str):\nXML string generated from the data
\nExport a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen dobs format.
\n\nTags are not written or recovered automatically. The separator | is removed from the replica names.
\n\nParameters
\n\n\n
\n\n- obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
\n- fname (str):\nFilename of the output file.
\n- name (str):\nThe name of the observable.
\n- spec (str):\nOptional string that describes the contents of the file.
\n- origin (str):\nSpecify where the data has its origin.
\n- symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
\n- who (str):\nProvide the name of the person that exports the data.
\n- enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
\n- gz (bool):\nIf True, the output is a gzipped XML. If False, the output is a XML file.
\nReturns
\n\n\n
\n", "signature": "(\tobsl,\tfname,\tname,\tspec='dobs v1.0',\torigin='',\tsymbol=[],\twho=None,\tenstags=None,\tgz=True):", "funcdef": "def"}, "pyerrors.input.hadrons": {"fullname": "pyerrors.input.hadrons", "modulename": "pyerrors.input.hadrons", "kind": "module", "doc": "\n"}, "pyerrors.input.hadrons.read_hd5": {"fullname": "pyerrors.input.hadrons.read_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_hd5", "kind": "function", "doc": "- None
\nRead hadrons hdf5 file and extract entry based on attributes.
\n\nParameters
\n\n\n
\n\n- filestem (str):\nFull namestem of the files to read, including the full path.
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- group (str):\nlabel of the group to be extracted.
\n- \n
attrs (dict or int):\nDictionary containing the attributes. For example
\n\n\n\n\n\nattrs = {"gamma_snk": "Gamma5",\n "gamma_src": "Gamma5"}\n
Alternatively an integer can be specified to identify the sub group.\nThis is discouraged as the order in the file is not guaranteed.
- idl (range):\nIf specified only configurations in the given range are read in.
\n- part (str):\nstring specifying whether to extract the real part ('real'),\nthe imaginary part ('imag') or a complex correlator ('complex').\nDefault 'real'.
\nReturns
\n\n\n
\n", "signature": "(filestem, ens_id, group, attrs=None, idl=None, part='real'):", "funcdef": "def"}, "pyerrors.input.hadrons.read_meson_hd5": {"fullname": "pyerrors.input.hadrons.read_meson_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_meson_hd5", "kind": "function", "doc": "- corr (Corr):\nCorrelator of the source sink combination in question.
\nRead hadrons meson hdf5 file and extract the meson labeled 'meson'
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- meson (str):\nlabel of the meson to be extracted, standard value meson_0 which\ncorresponds to the pseudoscalar pseudoscalar two-point function.
\n- gammas (tuple of strings):\nInstrad of a meson label one can also provide a tuple of two strings\nindicating the gamma matrices at sink and source (gamma_snk, gamma_src).\n(\"Gamma5\", \"Gamma5\") corresponds to the pseudoscalar pseudoscalar\ntwo-point function. The gammas argument dominateds over meson.
\n- idl (range):\nIf specified only configurations in the given range are read in.
\nReturns
\n\n\n
\n", "signature": "(path, filestem, ens_id, meson='meson_0', idl=None, gammas=None):", "funcdef": "def"}, "pyerrors.input.hadrons.extract_t0_hd5": {"fullname": "pyerrors.input.hadrons.extract_t0_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "extract_t0_hd5", "kind": "function", "doc": "- corr (Corr):\nCorrelator of the source sink combination in question.
\nRead hadrons FlowObservables hdf5 file and extract t0
\n\nParameters
\n\n\n
\n", "signature": "(\tpath,\tfilestem,\tens_id,\tobs='Clover energy density',\tfit_range=5,\tidl=None,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"fullname": "pyerrors.input.hadrons.read_DistillationContraction_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_DistillationContraction_hd5", "kind": "function", "doc": "- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- obs (str):\nlabel of the observable from which t0 should be extracted.\nOptions: 'Clover energy density' and 'Plaquette energy density'
\n- fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
\n- idl (range):\nIf specified only configurations in the given range are read in.
\n- plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
\nRead hadrons DistillationContraction hdf5 files in given directory structure
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the directories to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- diagrams (list):\nList of strings of the diagrams to extract, e.g. [\"direct\", \"box\", \"cross\"].
\n- idl (range):\nIf specified only configurations in the given range are read in.
\nReturns
\n\n\n
\n", "signature": "(path, ens_id, diagrams=['direct'], idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.Npr_matrix": {"fullname": "pyerrors.input.hadrons.Npr_matrix", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix", "kind": "class", "doc": "- result (dict):\nextracted DistillationContration data
\nndarray(shape, dtype=float, buffer=None, offset=0,\n strides=None, order=None)
\n\nAn array object represents a multidimensional, homogeneous array\nof fixed-size items. An associated data-type object describes the\nformat of each element in the array (its byte-order, how many bytes it\noccupies in memory, whether it is an integer, a floating point number,\nor something else, etc.)
\n\nArrays should be constructed using
\n\narray
,zeros
orempty
(refer\nto the See Also section below). The parameters given here refer to\na low-level method (ndarray(...)
) for instantiating an array.For more information, refer to the
\n\nnumpy
module and examine the\nmethods and attributes of an array.Parameters
\n\n\n
\n\n- (for the __new__ method; see Notes below)
\n- shape (tuple of ints):\nShape of created array.
\n- dtype (data-type, optional):\nAny object that can be interpreted as a numpy data type.
\n- buffer (object exposing buffer interface, optional):\nUsed to fill the array with data.
\n- offset (int, optional):\nOffset of array data in buffer.
\n- strides (tuple of ints, optional):\nStrides of data in memory.
\n- order ({'C', 'F'}, optional):\nRow-major (C-style) or column-major (Fortran-style) order.
\nAttributes
\n\n\n
\n\n- T (ndarray):\nTranspose of the array.
\n- data (buffer):\nThe array's elements, in memory.
\n- dtype (dtype object):\nDescribes the format of the elements in the array.
\n- flags (dict):\nDictionary containing information related to memory use, e.g.,\n'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
\n- flat (numpy.flatiter object):\nFlattened version of the array as an iterator. The iterator\nallows assignments, e.g.,
\nx.flat = 3
(Seendarray.flat
for\nassignment examples; TODO).- imag (ndarray):\nImaginary part of the array.
\n- real (ndarray):\nReal part of the array.
\n- size (int):\nNumber of elements in the array.
\n- itemsize (int):\nThe memory use of each array element in bytes.
\n- nbytes (int):\nThe total number of bytes required to store the array data,\ni.e.,
\nitemsize * size
.- ndim (int):\nThe array's number of dimensions.
\n- shape (tuple of ints):\nShape of the array.
\n- strides (tuple of ints):\nThe step-size required to move from one element to the next in\nmemory. For example, a contiguous
\n(3, 4)
array of type\nint16
in C-order has strides(8, 2)
. This implies that\nto move from element to element in memory requires jumps of 2 bytes.\nTo move from row-to-row, one needs to jump 8 bytes at a time\n(2 * 4
).- ctypes (ctypes object):\nClass containing properties of the array needed for interaction\nwith ctypes.
\n- base (ndarray):\nIf the array is a view into another array, that array is its
\nbase
\n(unless that array is also a view). Thebase
array is where the\narray data is actually stored.See Also
\n\n\n\n
array
: Construct an array.
\nzeros
: Create an array, each element of which is zero.
\nempty
: Create an array, but leave its allocated memory unchanged (i.e.,\nit contains \"garbage\").
\ndtype
: Create a data-type.
\nnumpy.typing.NDArray
: An ndarray alias :term:generic <generic type>
\nw.r.t. itsdtype.type <numpy.dtype.type>
.Notes
\n\nThere are two modes of creating an array using
\n\n__new__
:\n
\n\n- If
\nbuffer
is None, then onlyshape
,dtype
, andorder
\nare used.- If
\nbuffer
is an object exposing the buffer interface, then\nall keywords are interpreted.No
\n\n__init__
method is needed because the array is fully initialized\nafter the__new__
method.Examples
\n\nThese examples illustrate the low-level
\n\nndarray
constructor. Refer\nto theSee Also
section above for easier ways of constructing an\nndarray.First mode,
\n\nbuffer
is None:\n\n\n\n>>> import numpy as np\n>>> np.ndarray(shape=(2,2), dtype=float, order='F')\narray([[0.0e+000, 0.0e+000], # random\n [ nan, 2.5e-323]])\n
Second mode:
\n\n\n\n", "bases": "numpy.ndarray"}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"fullname": "pyerrors.input.hadrons.Npr_matrix.g5H", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix.g5H", "kind": "variable", "doc": "\n>>> np.ndarray((2,), buffer=np.array([1,2,3]),\n... offset=np.int_().itemsize,\n... dtype=int) # offset = 1*itemsize, i.e. skip first element\narray([2, 3])\n
Gamma_5 hermitean conjugate
\n\nUses the fact that the propagator is gamma5 hermitean, so just the\nin and out momenta of the propagator are exchanged.
\n"}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"fullname": "pyerrors.input.hadrons.read_ExternalLeg_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_ExternalLeg_hd5", "kind": "function", "doc": "Read hadrons ExternalLeg hdf5 file and output an array of CObs
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- idl (range):\nIf specified only configurations in the given range are read in.
\nReturns
\n\n\n
\n", "signature": "(path, filestem, ens_id, idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"fullname": "pyerrors.input.hadrons.read_Bilinear_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Bilinear_hd5", "kind": "function", "doc": "- result (Npr_matrix):\nread Cobs-matrix
\nRead hadrons Bilinear hdf5 file and output an array of CObs
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- idl (range):\nIf specified only configurations in the given range are read in.
\nReturns
\n\n\n
\n", "signature": "(path, filestem, ens_id, idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"fullname": "pyerrors.input.hadrons.read_Fourquark_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Fourquark_hd5", "kind": "function", "doc": "- result_dict (dict[Npr_matrix]):\nextracted Bilinears
\nRead hadrons FourquarkFullyConnected hdf5 file and output an array of CObs
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- idl (range):\nIf specified only configurations in the given range are read in.
\n- vertices (list):\nVertex functions to be extracted.
\nReturns
\n\n\n
\n", "signature": "(path, filestem, ens_id, idl=None, vertices=['VA', 'AV']):", "funcdef": "def"}, "pyerrors.input.json": {"fullname": "pyerrors.input.json", "modulename": "pyerrors.input.json", "kind": "module", "doc": "\n"}, "pyerrors.input.json.create_json_string": {"fullname": "pyerrors.input.json.create_json_string", "modulename": "pyerrors.input.json", "qualname": "create_json_string", "kind": "function", "doc": "- result_dict (dict):\nextracted fourquark matrizes
\nGenerate the string for the export of a list of Obs or structures containing Obs\nto a .json(.gz) file
\n\nParameters
\n\n\n
\n\n- ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
\n- description (str):\nOptional string that describes the contents of the json file.
\n- indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
\nReturns
\n\n\n
\n", "signature": "(ol, description='', indent=1):", "funcdef": "def"}, "pyerrors.input.json.dump_to_json": {"fullname": "pyerrors.input.json.dump_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_to_json", "kind": "function", "doc": "- json_string (str):\nString for export to .json(.gz) file
\nExport a list of Obs or structures containing Obs to a .json(.gz) file.\nDict keys that are not JSON-serializable such as floats are converted to strings.
\n\nParameters
\n\n\n
\n\n- ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
\n- fname (str):\nFilename of the output file.
\n- description (str):\nOptional string that describes the contents of the json file.
\n- indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
\n- gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
\nReturns
\n\n\n
\n", "signature": "(ol, fname, description='', indent=1, gz=True):", "funcdef": "def"}, "pyerrors.input.json.import_json_string": {"fullname": "pyerrors.input.json.import_json_string", "modulename": "pyerrors.input.json", "qualname": "import_json_string", "kind": "function", "doc": "- Null
\nReconstruct a list of Obs or structures containing Obs from a json string.
\n\nThe following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.
\n\nParameters
\n\n\n
\n\n- json_string (str):\njson string containing the data.
\n- verbose (bool):\nPrint additional information that was written to the file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
\nReturns
\n\n\n
\n", "signature": "(json_string, verbose=True, full_output=False):", "funcdef": "def"}, "pyerrors.input.json.load_json": {"fullname": "pyerrors.input.json.load_json", "modulename": "pyerrors.input.json", "qualname": "load_json", "kind": "function", "doc": "- result (list[Obs]):\nreconstructed list of observables from the json string
\n- or
\n- result (Obs):\nonly one observable if the list only has one entry
\n- or
\n- result (dict):\nif full_output=True
\nImport a list of Obs or structures containing Obs from a .json(.gz) file.
\n\nThe following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- verbose (bool):\nPrint additional information that was written to the file.
\n- gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
\nReturns
\n\n\n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False):", "funcdef": "def"}, "pyerrors.input.json.dump_dict_to_json": {"fullname": "pyerrors.input.json.dump_dict_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_dict_to_json", "kind": "function", "doc": "- result (list[Obs]):\nreconstructed list of observables from the json string
\n- or
\n- result (Obs):\nonly one observable if the list only has one entry
\n- or
\n- result (dict):\nif full_output=True
\nExport a dict of Obs or structures containing Obs to a .json(.gz) file
\n\nParameters
\n\n\n
\n\n- od (dict):\nDict of JSON valid structures and objects that will be exported.\nAt the moment, these objects can be either of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
\n- fname (str):\nFilename of the output file.
\n- description (str):\nOptional string that describes the contents of the json file.
\n- indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
\n- reps (str):\nSpecify the structure of the placeholder in exported dict to be reps[0-9]+.
\n- gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
\nReturns
\n\n\n
\n", "signature": "(od, fname, description='', indent=1, reps='DICTOBS', gz=True):", "funcdef": "def"}, "pyerrors.input.json.load_json_dict": {"fullname": "pyerrors.input.json.load_json_dict", "modulename": "pyerrors.input.json", "qualname": "load_json_dict", "kind": "function", "doc": "- None
\nImport a dict of Obs or structures containing Obs from a .json(.gz) file.
\n\nThe following structures are supported: Obs, list, numpy.ndarray, Corr
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- verbose (bool):\nPrint additional information that was written to the file.
\n- gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
\n- reps (str):\nSpecify the structure of the placeholder in imported dict to be reps[0-9]+.
\nReturns
\n\n\n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False, reps='DICTOBS'):", "funcdef": "def"}, "pyerrors.input.misc": {"fullname": "pyerrors.input.misc", "modulename": "pyerrors.input.misc", "kind": "module", "doc": "\n"}, "pyerrors.input.misc.fit_t0": {"fullname": "pyerrors.input.misc.fit_t0", "modulename": "pyerrors.input.misc", "qualname": "fit_t0", "kind": "function", "doc": "- data (Obs / list / Corr):\nRead data
\n- or
\n- data (dict):\nRead data and meta-data
\nCompute the root of (flow-based) data based on a dictionary that contains\nthe necessary information in key-value pairs a la (flow time: observable at flow time).
\n\nIt is assumed that the data is monotonically increasing and passes zero from below.\nNo exception is thrown if this is not the case (several roots, no monotonic increase).\nAn exception is thrown if no root can be found in the data.
\n\nA linear fit in the vicinity of the root is performed to exctract the root from the\ntwo fit parameters.
\n\nParameters
\n\n\n
\n\n- t2E_dict (dict):\nDictionary with pairs of (flow time: observable at flow time) where the flow times\nare of type float and the observables of type Obs.
\n- fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit.
\n- plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data. (Default: False)
\n- observable (str):\nKeyword to identify the observable to print the correct ylabel (if plot_fit is True)\nfor the observables 't0' and 'w0'. No y label is printed otherwise. (Default: 't0')
\nReturns
\n\n\n
\n", "signature": "(t2E_dict, fit_range, plot_fit=False, observable='t0'):", "funcdef": "def"}, "pyerrors.input.misc.read_pbp": {"fullname": "pyerrors.input.misc.read_pbp", "modulename": "pyerrors.input.misc", "qualname": "read_pbp", "kind": "function", "doc": "- root (Obs):\nThe root of the data series.
\nRead pbp format from given folder structure.
\n\nParameters
\n\n\n
\n\n- r_start (list):\nlist which contains the first config to be read for each replicum
\n- r_stop (list):\nlist which contains the last config to be read for each replicum
\nReturns
\n\n\n
\n", "signature": "(path, prefix, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD": {"fullname": "pyerrors.input.openQCD", "modulename": "pyerrors.input.openQCD", "kind": "module", "doc": "\n"}, "pyerrors.input.openQCD.read_rwms": {"fullname": "pyerrors.input.openQCD.read_rwms", "modulename": "pyerrors.input.openQCD", "qualname": "read_rwms", "kind": "function", "doc": "- result (list[Obs]):\nlist of observables read
\nRead rwms format from given folder structure. Returns a list of length nrw
\n\nParameters
\n\n\n
\n\n- path (str):\npath that contains the data files
\n- prefix (str):\nall files in path that start with prefix are considered as input files.\nMay be used together postfix to consider only special file endings.\nPrefix is ignored, if the keyword 'files' is used.
\n- version (str):\nversion of openQCD, default 2.0
\n- names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
\n- r_start (list):\nlist which contains the first config to be read for each replicum
\n- r_stop (list):\nlist which contains the last config to be read for each replicum
\n- r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
\n- postfix (str):\npostfix of the file to read, e.g. '.ms1' for openQCD-files
\n- files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
\n- print_err (bool):\nPrint additional information that is useful for debugging.
\nReturns
\n\n\n
\n", "signature": "(path, prefix, version='2.0', names=None, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.extract_t0": {"fullname": "pyerrors.input.openQCD.extract_t0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_t0", "kind": "function", "doc": "- rwms (Obs):\nReweighting factors read
\nExtract t0/a^2 from given .ms.dat files. Returns t0 as Obs.
\n\nIt is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t^2
\n\n- c (where c=0.3 by default)\nis fitted with a linear function\nfrom which the exact root is extracted. It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.
\n\nParameters
\n\n\n
\n\n- path (str):\nPath to .ms.dat files
\n- prefix (str):\nEnsemble prefix
\n- dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
\n- xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
\n- spatial_extent (int):\nspatial extent of the lattice, required for normalization.
\n- fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
\n- postfix (str):\nPostfix of measurement file (Default: ms)
\n- c (float):\nConstant that defines the flow scale. Default 0.3 for t_0, choose 2./3 for t_1.
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
\n- plaquette (bool):\nIf true extract the plaquette estimate of t0 instead.
\n- names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
\n- files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
\n- plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
\n- assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
\nReturns
\n\n\n
\n", "signature": "(\tpath,\tprefix,\tdtr_read,\txmin,\tspatial_extent,\tfit_range=5,\tpostfix='ms',\tc=0.3,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.extract_w0": {"fullname": "pyerrors.input.openQCD.extract_w0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_w0", "kind": "function", "doc": "- t0 (Obs):\nExtracted t0
\nExtract w0/a from given .ms.dat files. Returns w0 as Obs.
\n\nIt is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t d(t^2
\n\n)/dt - (where c=0.3 by default)\nis fitted with a linear function\nfrom which the exact root is extracted. It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.
\n\nParameters
\n\n\n
\n\n- path (str):\nPath to .ms.dat files
\n- prefix (str):\nEnsemble prefix
\n- dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
\n- xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
\n- spatial_extent (int):\nspatial extent of the lattice, required for normalization.
\n- fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
\n- postfix (str):\nPostfix of measurement file (Default: ms)
\n- c (float):\nConstant that defines the flow scale. Default 0.3 for w_0, choose 2./3 for w_1.
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
\n- plaquette (bool):\nIf true extract the plaquette estimate of w0 instead.
\n- names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
\n- files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
\n- plot_fit (bool):\nIf true, the fit for the extraction of w0 is shown together with the data.
\n- assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
\nReturns
\n\n\n
\n", "signature": "(\tpath,\tprefix,\tdtr_read,\txmin,\tspatial_extent,\tfit_range=5,\tpostfix='ms',\tc=0.3,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop": {"fullname": "pyerrors.input.openQCD.read_qtop", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop", "kind": "function", "doc": "- w0 (Obs):\nExtracted w0
\nRead the topologial charge based on openQCD gradient flow measurements.
\n\nParameters
\n\n\n
\n\n- path (str):\npath of the measurement files
\n- prefix (str):\nprefix of the measurement files, e.g.
\n_id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files. - c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
\n- dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
\n- steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
\n- version (str):\nEither openQCD or sfqcd, depending on the data.
\n- L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
\n- postfix (str):\npostfix of the file to read, e.g. '.gfms.dat' for openQCD-files
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
\n- Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
\n- integer_charge (bool):\nIf True, the charge is rounded towards the nearest integer on each config.
\nReturns
\n\n\n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, version='openQCD', **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_gf_coupling": {"fullname": "pyerrors.input.openQCD.read_gf_coupling", "modulename": "pyerrors.input.openQCD", "qualname": "read_gf_coupling", "kind": "function", "doc": "- result (Obs):\nRead topological charge
\nRead the gradient flow coupling based on sfqcd gradient flow measurements. See 1607.06423 for details.
\n\nNote: The current implementation only works for c=0.3 and T=L. The definition of the coupling in 1607.06423 requires projection to topological charge zero which is not done within this function but has to be performed in a separate step.
\n\nParameters
\n\n\n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, Zeuthen_flow=True, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.qtop_projection": {"fullname": "pyerrors.input.openQCD.qtop_projection", "modulename": "pyerrors.input.openQCD", "qualname": "qtop_projection", "kind": "function", "doc": "- path (str):\npath of the measurement files
\n- prefix (str):\nprefix of the measurement files, e.g.
\n_id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files. - c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
\n- dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
\n- steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
\n- postfix (str):\npostfix of the file to read, e.g. '.gfms.dat' for openQCD-files
\n- Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for the coupling. If False, the Wilson flow is used.
\nReturns the projection to the topological charge sector defined by target.
\n\nParameters
\n\n\n
\n\n- path (Obs):\nTopological charge.
\n- target (int):\nSpecifies the topological sector to be reweighted to (default 0)
\nReturns
\n\n\n
\n", "signature": "(qtop, target=0):", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop_sector": {"fullname": "pyerrors.input.openQCD.read_qtop_sector", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop_sector", "kind": "function", "doc": "- reto (Obs):\nprojection to the topological charge sector defined by target
\nConstructs reweighting factors to a specified topological sector.
\n\nParameters
\n\n\n
\n\n- path (str):\npath of the measurement files
\n- prefix (str):\nprefix of the measurement files, e.g.
\n_id0_r0.ms.dat - c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L
\n- target (int):\nSpecifies the topological sector to be reweighted to (default 0)
\n- dtr_cnfg (int):\n(optional) parameter that specifies the number of trajectories\nbetween two configs.\nif it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
\n- steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
\n- version (str):\nversion string of the openQCD (sfqcd) version used to create\nthe ensemble. Default is 2.0. May also be set to sfqcd.
\n- L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
\n- r_start (list):\noffset of the first ensemble, making it easier to match\nlater on with other Obs
\n- r_stop (list):\nlast configurations that need to be read (per replicum)
\n- files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
\n- Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
\nReturns
\n\n\n
\n", "signature": "(path, prefix, c, target=0, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_ms5_xsf": {"fullname": "pyerrors.input.openQCD.read_ms5_xsf", "modulename": "pyerrors.input.openQCD", "qualname": "read_ms5_xsf", "kind": "function", "doc": "- reto (Obs):\nprojection to the topological charge sector defined by target
\nRead data from files in the specified directory with the specified prefix and quark combination extension, and return a
\n\nCorr
object containing the data.Parameters
\n\n\n
\n\n- path (str):\nThe directory to search for the files in.
\n- prefix (str):\nThe prefix to match the files against.
\n- qc (str):\nThe quark combination extension to match the files against.
\n- corr (str):\nThe correlator to extract data for.
\n- sep (str, optional):\nThe separator to use when parsing the replika names.
\n- \n
**kwargs: Additional keyword arguments. The following keyword arguments are recognized:
\n\n\n
- names (List[str]): A list of names to use for the replicas.
\n- files (List[str]): A list of files to read data from.
\n- idl (List[List[int]]): A list of idls per replicum, resticting data to the idls given.
\nReturns
\n\n\n
\n\n- Corr: A complex valued
\nCorr
object containing the data read from the files. In case of boudary to bulk correlators.- or
\n- CObs: A complex valued
\nCObs
object containing the data read from the files. In case of boudary to boundary correlators.Raises
\n\n\n
\n", "signature": "(path, prefix, qc, corr, sep='r', **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas": {"fullname": "pyerrors.input.pandas", "modulename": "pyerrors.input.pandas", "kind": "module", "doc": "\n"}, "pyerrors.input.pandas.to_sql": {"fullname": "pyerrors.input.pandas.to_sql", "modulename": "pyerrors.input.pandas", "qualname": "to_sql", "kind": "function", "doc": "- FileNotFoundError: If no files matching the specified prefix and quark combination extension are found in the specified directory.
\n- IOError: If there is an error reading a file.
\n- struct.error: If there is an error unpacking binary data.
\nWrite DataFrame including Obs or Corr valued columns to sqlite database.
\n\nParameters
\n\n\n
\n\n- df (pandas.DataFrame):\nDataframe to be written to the database.
\n- table_name (str):\nName of the table in the database.
\n- db (str):\nPath to the sqlite database.
\n- if exists (str):\nHow to behave if table already exists. Options 'fail', 'replace', 'append'.
\n- gz (bool):\nIf True the json strings are gzipped.
\nReturns
\n\n\n
\n", "signature": "(df, table_name, db, if_exists='fail', gz=True, **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas.read_sql": {"fullname": "pyerrors.input.pandas.read_sql", "modulename": "pyerrors.input.pandas", "qualname": "read_sql", "kind": "function", "doc": "- None
\nExecute SQL query on sqlite database and obtain DataFrame including Obs or Corr valued columns.
\n\nParameters
\n\n\n
\n\n- sql (str):\nSQL query to be executed.
\n- db (str):\nPath to the sqlite database.
\n- auto_gamma (bool):\nIf True applies the gamma_method to all imported Obs objects with the default parameters for\nthe error analysis. Default False.
\nReturns
\n\n\n
\n", "signature": "(sql, db, auto_gamma=False, **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas.dump_df": {"fullname": "pyerrors.input.pandas.dump_df", "modulename": "pyerrors.input.pandas", "qualname": "dump_df", "kind": "function", "doc": "- data (pandas.DataFrame):\nDataframe with the content of the sqlite database.
\nExports a pandas DataFrame containing Obs valued columns to a (gzipped) csv file.
\n\nBefore making use of pandas to_csv functionality Obs objects are serialized via the standardized\njson format of pyerrors.
\n\nParameters
\n\n\n
\n\n- df (pandas.DataFrame):\nDataframe to be dumped to a file.
\n- fname (str):\nFilename of the output file.
\n- gz (bool):\nIf True, the output is a gzipped csv file. If False, the output is a csv file.
\nReturns
\n\n\n
\n", "signature": "(df, fname, gz=True):", "funcdef": "def"}, "pyerrors.input.pandas.load_df": {"fullname": "pyerrors.input.pandas.load_df", "modulename": "pyerrors.input.pandas", "qualname": "load_df", "kind": "function", "doc": "- None
\nImports a pandas DataFrame from a csv.(gz) file in which Obs objects are serialized as json strings.
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- auto_gamma (bool):\nIf True applies the gamma_method to all imported Obs objects with the default parameters for\nthe error analysis. Default False.
\n- gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
\nReturns
\n\n\n
\n", "signature": "(fname, auto_gamma=False, gz=True):", "funcdef": "def"}, "pyerrors.input.sfcf": {"fullname": "pyerrors.input.sfcf", "modulename": "pyerrors.input.sfcf", "kind": "module", "doc": "\n"}, "pyerrors.input.sfcf.sep": {"fullname": "pyerrors.input.sfcf.sep", "modulename": "pyerrors.input.sfcf", "qualname": "sep", "kind": "variable", "doc": "\n", "default_value": "'/'"}, "pyerrors.input.sfcf.read_sfcf": {"fullname": "pyerrors.input.sfcf.read_sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf", "kind": "function", "doc": "- data (pandas.DataFrame):\nDataframe with the content of the sqlite database.
\nRead sfcf files from given folder structure.
\n\nParameters
\n\n\n
\n\n- path (str):\nPath to the sfcf files.
\n- prefix (str):\nPrefix of the sfcf files.
\n- name (str):\nName of the correlation function to read.
\n- quarks (str):\nLabel of the quarks used in the sfcf input file. e.g. \"quark quark\"\nfor version 0.0 this does NOT need to be given with the typical \" - \"\nthat is present in the output file,\nthis is done automatically for this version
\n- corr_type (str):\nType of correlation function to read. Can be\n
\n\n
- 'bi' for boundary-inner
\n- 'bb' for boundary-boundary
\n- 'bib' for boundary-inner-boundary
\n- noffset (int):\nOffset of the source (only relevant when wavefunctions are used)
\n- wf (int):\nID of wave function
\n- wf2 (int):\nID of the second wavefunction\n(only relevant for boundary-to-boundary correlation functions)
\n- im (bool):\nif True, read imaginary instead of real part\nof the correlation function.
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
\n- ens_name (str):\nreplaces the name of the ensemble
\n- version (str):\nversion of SFCF, with which the measurement was done.\nif the compact output option (-c) was specified,\nappend a \"c\" to the version (e.g. \"1.0c\")\nif the append output option (-a) was specified,\nappend an \"a\" to the version
\n- cfg_separator (str):\nString that separates the ensemble identifier from the configuration number (default 'n').
\n- replica (list):\nlist of replica to be read, default is all
\n- files (list):\nlist of files to be read per replica, default is all.\nfor non-compact output format, hand the folders to be read here.
\n- check_configs (list[list[int]]):\nlist of list of supposed configs, eg. [range(1,1000)]\nfor one replicum with 1000 configs
\nReturns
\n\n\n
\n", "signature": "(\tpath,\tprefix,\tname,\tquarks='.*',\tcorr_type='bi',\tnoffset=0,\twf=0,\twf2=0,\tversion='1.0c',\tcfg_separator='n',\tsilent=False,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.sfcf.read_sfcf_multi": {"fullname": "pyerrors.input.sfcf.read_sfcf_multi", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf_multi", "kind": "function", "doc": "- result (list[Obs]):\nlist of Observables with length T, observable per timeslice.\nbb-type correlators have length 1.
\nRead sfcf files from given folder structure.
\n\nParameters
\n\n\n
\n\n- path (str):\nPath to the sfcf files.
\n- prefix (str):\nPrefix of the sfcf files.
\n- name (str):\nName of the correlation function to read.
\n- quarks_list (list[str]):\nLabel of the quarks used in the sfcf input file. e.g. \"quark quark\"\nfor version 0.0 this does NOT need to be given with the typical \" - \"\nthat is present in the output file,\nthis is done automatically for this version
\n- corr_type_list (list[str]):\nType of correlation function to read. Can be\n
\n\n
- 'bi' for boundary-inner
\n- 'bb' for boundary-boundary
\n- 'bib' for boundary-inner-boundary
\n- noffset_list (list[int]):\nOffset of the source (only relevant when wavefunctions are used)
\n- wf_list (int):\nID of wave function
\n- wf2_list (list[int]):\nID of the second wavefunction\n(only relevant for boundary-to-boundary correlation functions)
\n- im (bool):\nif True, read imaginary instead of real part\nof the correlation function.
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
\n- ens_name (str):\nreplaces the name of the ensemble
\n- version (str):\nversion of SFCF, with which the measurement was done.\nif the compact output option (-c) was specified,\nappend a \"c\" to the version (e.g. \"1.0c\")\nif the append output option (-a) was specified,\nappend an \"a\" to the version
\n- cfg_separator (str):\nString that separates the ensemble identifier from the configuration number (default 'n').
\n- replica (list):\nlist of replica to be read, default is all
\n- files (list[list[int]]):\nlist of files to be read per replica, default is all.\nfor non-compact output format, hand the folders to be read here.
\n- check_configs (list[list[int]]):\nlist of list of supposed configs, eg. [range(1,1000)]\nfor one replicum with 1000 configs
\n- rep_string (str):\nSeparator of ensemble name and replicum. Example: In \"ensAr0\", \"r\" would be the separator string.
\nReturns
\n\n\n
\n", "signature": "(\tpath,\tprefix,\tname_list,\tquarks_list=['.*'],\tcorr_type_list=['bi'],\tnoffset_list=[0],\twf_list=[0],\twf2_list=[0],\tversion='1.0c',\tcfg_separator='n',\tsilent=False,\tkeyed_out=False,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.utils": {"fullname": "pyerrors.input.utils", "modulename": "pyerrors.input.utils", "kind": "module", "doc": "- result (dict[list[Obs]]):\ndict with one of the following properties:\nif keyed_out:\n dict[key] = list[Obs]\n where key has the form name/quarks/offset/wf/wf2\nif not keyed_out:\n dict[name][quarks][offset][wf][wf2] = list[Obs]
\nUtilities for the input
\n"}, "pyerrors.input.utils.sort_names": {"fullname": "pyerrors.input.utils.sort_names", "modulename": "pyerrors.input.utils", "qualname": "sort_names", "kind": "function", "doc": "Sorts a list of names of replika with searches for
\n\nr
andid
in the replikum string.\nIf this search fails, a fallback method is used,\nwhere the strings are simply compared and the first diffeing numeral is used for differentiation.Parameters
\n\n\n
\n\n- ll (list):\nlist to sort
\nReturns
\n\n\n
\n", "signature": "(ll):", "funcdef": "def"}, "pyerrors.input.utils.check_idl": {"fullname": "pyerrors.input.utils.check_idl", "modulename": "pyerrors.input.utils", "qualname": "check_idl", "kind": "function", "doc": "- ll (list):\nsorted list
\nChecks if list of configurations is contained in an idl
\n\nParameters
\n\n\n
\n\n- idl (range or list):\nidl of the current replicum
\n- che (list):\nlist of configurations to be checked against
\nReturns
\n\n\n
\n", "signature": "(idl, che):", "funcdef": "def"}, "pyerrors.input.utils.check_params": {"fullname": "pyerrors.input.utils.check_params", "modulename": "pyerrors.input.utils", "qualname": "check_params", "kind": "function", "doc": "- miss_str (str):\nstring with integers of which idls are missing
\nCheck if, for sfcf, the parameter hashes at the end of the parameter files are in fact the expected one.
\n\nParameters
\n\n\n
\n\n- path (str):\nmeasurement path, same as for sfcf read method
\n- param_hash (str):\nexpected parameter hash
\n- prefix (str):\ndata prefix to find the appropriate replicum folders in path
\n- param_prefix (str):\nprefix of the parameter file. Defaults to 'parameters_'
\nReturns
\n\n\n
\n", "signature": "(path, param_hash, prefix, param_prefix='parameters_'):", "funcdef": "def"}, "pyerrors.integrate": {"fullname": "pyerrors.integrate", "modulename": "pyerrors.integrate", "kind": "module", "doc": "\n"}, "pyerrors.integrate.quad": {"fullname": "pyerrors.integrate.quad", "modulename": "pyerrors.integrate", "qualname": "quad", "kind": "function", "doc": "- nums (dict):\ndictionary of faulty parameter files sorted by the replica paths
\nPerforms a (one-dimensional) numeric integration of f(p, x) from a to b.
\n\nThe integration is performed using scipy.integrate.quad().\nAll parameters that can be passed to scipy.integrate.quad may also be passed to this function.\nThe output is the same as for scipy.integrate.quad, the first element being an Obs.
\n\nParameters
\n\n\n
\n\n- \n
func (object):\nfunction to integrate, has to be of the form
\n\n\n\n\n\nimport autograd.numpy as anp\n\ndef func(p, x):\n return p[0] + p[1] * x + p[2] * anp.sinh(x)\n
where x is the integration variable.
- p (list of floats or Obs):\nparameters of the function func.
\n- a (float or Obs):\nLower limit of integration (use -numpy.inf for -infinity).
\n- b (float or Obs):\nUpper limit of integration (use -numpy.inf for -infinity).
\n- All parameters of scipy.integrate.quad
\nReturns
\n\n\n
\n", "signature": "(func, p, a, b, **kwargs):", "funcdef": "def"}, "pyerrors.linalg": {"fullname": "pyerrors.linalg", "modulename": "pyerrors.linalg", "kind": "module", "doc": "\n"}, "pyerrors.linalg.matmul": {"fullname": "pyerrors.linalg.matmul", "modulename": "pyerrors.linalg", "qualname": "matmul", "kind": "function", "doc": "- y (Obs):\nThe integral of func from
\na
tob
.- abserr (float):\nAn estimate of the absolute error in the result.
\n- infodict (dict):\nA dictionary containing additional information.\nRun scipy.integrate.quad_explain() for more information.
\n- message: A convergence message.
\n- explain: Appended only with 'cos' or 'sin' weighting and infinite\nintegration limits, it contains an explanation of the codes in\ninfodict['ierlst']
\nMatrix multiply all operands.
\n\nParameters
\n\n\n
\n", "signature": "(*operands):", "funcdef": "def"}, "pyerrors.linalg.jack_matmul": {"fullname": "pyerrors.linalg.jack_matmul", "modulename": "pyerrors.linalg", "qualname": "jack_matmul", "kind": "function", "doc": "- operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
\n- This implementation is faster compared to standard multiplication via the @ operator.
\nMatrix multiply both operands making use of the jackknife approximation.
\n\nParameters
\n\n\n
\n", "signature": "(*operands):", "funcdef": "def"}, "pyerrors.linalg.einsum": {"fullname": "pyerrors.linalg.einsum", "modulename": "pyerrors.linalg", "qualname": "einsum", "kind": "function", "doc": "- operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
\n- For large matrices this is considerably faster compared to matmul.
\nWrapper for numpy.einsum
\n\nParameters
\n\n\n
\n", "signature": "(subscripts, *operands):", "funcdef": "def"}, "pyerrors.linalg.inv": {"fullname": "pyerrors.linalg.inv", "modulename": "pyerrors.linalg", "qualname": "inv", "kind": "function", "doc": "- subscripts (str):\nSubscripts for summation (see numpy documentation for details)
\n- operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
\nInverse of Obs or CObs valued matrices.
\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.cholesky": {"fullname": "pyerrors.linalg.cholesky", "modulename": "pyerrors.linalg", "qualname": "cholesky", "kind": "function", "doc": "Cholesky decomposition of Obs valued matrices.
\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.det": {"fullname": "pyerrors.linalg.det", "modulename": "pyerrors.linalg", "qualname": "det", "kind": "function", "doc": "Determinant of Obs valued matrices.
\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.eigh": {"fullname": "pyerrors.linalg.eigh", "modulename": "pyerrors.linalg", "qualname": "eigh", "kind": "function", "doc": "Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.eig": {"fullname": "pyerrors.linalg.eig", "modulename": "pyerrors.linalg", "qualname": "eig", "kind": "function", "doc": "Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.eigv": {"fullname": "pyerrors.linalg.eigv", "modulename": "pyerrors.linalg", "qualname": "eigv", "kind": "function", "doc": "Computes the eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.pinv": {"fullname": "pyerrors.linalg.pinv", "modulename": "pyerrors.linalg", "qualname": "pinv", "kind": "function", "doc": "Computes the Moore-Penrose pseudoinverse of a matrix of Obs.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.svd": {"fullname": "pyerrors.linalg.svd", "modulename": "pyerrors.linalg", "qualname": "svd", "kind": "function", "doc": "Computes the singular value decomposition of a matrix of Obs.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.misc": {"fullname": "pyerrors.misc", "modulename": "pyerrors.misc", "kind": "module", "doc": "\n"}, "pyerrors.misc.print_config": {"fullname": "pyerrors.misc.print_config", "modulename": "pyerrors.misc", "qualname": "print_config", "kind": "function", "doc": "Print information about version of python, pyerrors and dependencies.
\n", "signature": "():", "funcdef": "def"}, "pyerrors.misc.errorbar": {"fullname": "pyerrors.misc.errorbar", "modulename": "pyerrors.misc", "qualname": "errorbar", "kind": "function", "doc": "pyerrors wrapper for the errorbars method of matplotlib
\n\nParameters
\n\n\n
\n", "signature": "(\tx,\ty,\taxes=<module 'matplotlib.pyplot' from '/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/matplotlib/pyplot.py'>,\t**kwargs):", "funcdef": "def"}, "pyerrors.misc.dump_object": {"fullname": "pyerrors.misc.dump_object", "modulename": "pyerrors.misc", "qualname": "dump_object", "kind": "function", "doc": "- x (list):\nA list of x-values which can be Obs.
\n- y (list):\nA list of y-values which can be Obs.
\n- axes ((matplotlib.pyplot.axes)):\nThe axes to plot on. default is plt.
\nDump object into pickle file.
\n\nParameters
\n\n\n
\n\n- obj (object):\nobject to be saved in the pickle file
\n- name (str):\nname of the file
\n- path (str):\nspecifies a custom path for the file (default '.')
\nReturns
\n\n\n
\n", "signature": "(obj, name, **kwargs):", "funcdef": "def"}, "pyerrors.misc.load_object": {"fullname": "pyerrors.misc.load_object", "modulename": "pyerrors.misc", "qualname": "load_object", "kind": "function", "doc": "- None
\nLoad object from pickle file.
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the file
\nReturns
\n\n\n
\n", "signature": "(path):", "funcdef": "def"}, "pyerrors.misc.pseudo_Obs": {"fullname": "pyerrors.misc.pseudo_Obs", "modulename": "pyerrors.misc", "qualname": "pseudo_Obs", "kind": "function", "doc": "- object (Obs):\nLoaded Object
\nGenerate an Obs object with given value, dvalue and name for test purposes
\n\nParameters
\n\n\n
\n\n- value (float):\ncentral value of the Obs to be generated.
\n- dvalue (float):\nerror of the Obs to be generated.
\n- name (str):\nname of the ensemble for which the Obs is to be generated.
\n- samples (int):\nnumber of samples for the Obs (default 1000).
\nReturns
\n\n\n
\n", "signature": "(value, dvalue, name, samples=1000):", "funcdef": "def"}, "pyerrors.misc.gen_correlated_data": {"fullname": "pyerrors.misc.gen_correlated_data", "modulename": "pyerrors.misc", "qualname": "gen_correlated_data", "kind": "function", "doc": "- res (Obs):\nGenerated Observable
\nGenerate observables with given covariance and autocorrelation times.
\n\nParameters
\n\n\n
\n\n- means (list):\nlist containing the mean value of each observable.
\n- cov (numpy.ndarray):\ncovariance matrix for the data to be generated.
\n- name (str):\nensemble name for the data to be geneated.
\n- tau (float or list):\ncan either be a real number or a list with an entry for\nevery dataset.
\n- samples (int):\nnumber of samples to be generated for each observable.
\nReturns
\n\n\n
\n", "signature": "(means, cov, name, tau=0.5, samples=1000):", "funcdef": "def"}, "pyerrors.mpm": {"fullname": "pyerrors.mpm", "modulename": "pyerrors.mpm", "kind": "module", "doc": "\n"}, "pyerrors.mpm.matrix_pencil_method": {"fullname": "pyerrors.mpm.matrix_pencil_method", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method", "kind": "function", "doc": "- corr_obs (list[Obs]):\nGenerated observable list
\nMatrix pencil method to extract k energy levels from data
\n\nImplementation of the matrix pencil method based on\neq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)
\n\nParameters
\n\n\n
\n\n- data (list):\ncan be a list of Obs for the analysis of a single correlator, or a list of lists\nof Obs if several correlators are to analyzed at once.
\n- k (int):\nNumber of states to extract (default 1).
\n- p (int):\nmatrix pencil parameter which filters noise. The optimal value is expected between\nlen(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is\nto len(data)/2 but could possibly suppress more noise (default len(data)//2).
\nReturns
\n\n\n
\n", "signature": "(corrs, k=1, p=None, **kwargs):", "funcdef": "def"}, "pyerrors.obs": {"fullname": "pyerrors.obs", "modulename": "pyerrors.obs", "kind": "module", "doc": "\n"}, "pyerrors.obs.Obs": {"fullname": "pyerrors.obs.Obs", "modulename": "pyerrors.obs", "qualname": "Obs", "kind": "class", "doc": "- energy_levels (list[Obs]):\nExtracted energy levels
\nClass for a general observable.
\n\nInstances of Obs are the basic objects of a pyerrors error analysis.\nThey are initialized with a list which contains arrays of samples for\ndifferent ensembles/replica and another list of same length which contains\nthe names of the ensembles/replica. Mathematical operations can be\nperformed on instances. The result is another instance of Obs. The error of\nan instance can be computed with the gamma_method. Also contains additional\nmethods for output and visualization of the error calculation.
\n\nAttributes
\n\n\n
\n"}, "pyerrors.obs.Obs.__init__": {"fullname": "pyerrors.obs.Obs.__init__", "modulename": "pyerrors.obs", "qualname": "Obs.__init__", "kind": "function", "doc": "- S_global (float):\nStandard value for S (default 2.0)
\n- S_dict (dict):\nDictionary for S values. If an entry for a given ensemble\nexists this overwrites the standard value for that ensemble.
\n- tau_exp_global (float):\nStandard value for tau_exp (default 0.0)
\n- tau_exp_dict (dict):\nDictionary for tau_exp values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
\n- N_sigma_global (float):\nStandard value for N_sigma (default 1.0)
\n- N_sigma_dict (dict):\nDictionary for N_sigma values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
\nInitialize Obs object.
\n\nParameters
\n\n\n
\n", "signature": "(samples, names, idl=None, **kwargs)"}, "pyerrors.obs.Obs.S_global": {"fullname": "pyerrors.obs.Obs.S_global", "modulename": "pyerrors.obs", "qualname": "Obs.S_global", "kind": "variable", "doc": "\n", "default_value": "2.0"}, "pyerrors.obs.Obs.S_dict": {"fullname": "pyerrors.obs.Obs.S_dict", "modulename": "pyerrors.obs", "qualname": "Obs.S_dict", "kind": "variable", "doc": "\n", "default_value": "{}"}, "pyerrors.obs.Obs.tau_exp_global": {"fullname": "pyerrors.obs.Obs.tau_exp_global", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_global", "kind": "variable", "doc": "\n", "default_value": "0.0"}, "pyerrors.obs.Obs.tau_exp_dict": {"fullname": "pyerrors.obs.Obs.tau_exp_dict", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_dict", "kind": "variable", "doc": "\n", "default_value": "{}"}, "pyerrors.obs.Obs.N_sigma_global": {"fullname": "pyerrors.obs.Obs.N_sigma_global", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_global", "kind": "variable", "doc": "\n", "default_value": "1.0"}, "pyerrors.obs.Obs.N_sigma_dict": {"fullname": "pyerrors.obs.Obs.N_sigma_dict", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_dict", "kind": "variable", "doc": "\n", "default_value": "{}"}, "pyerrors.obs.Obs.names": {"fullname": "pyerrors.obs.Obs.names", "modulename": "pyerrors.obs", "qualname": "Obs.names", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.shape": {"fullname": "pyerrors.obs.Obs.shape", "modulename": "pyerrors.obs", "qualname": "Obs.shape", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.r_values": {"fullname": "pyerrors.obs.Obs.r_values", "modulename": "pyerrors.obs", "qualname": "Obs.r_values", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.deltas": {"fullname": "pyerrors.obs.Obs.deltas", "modulename": "pyerrors.obs", "qualname": "Obs.deltas", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.N": {"fullname": "pyerrors.obs.Obs.N", "modulename": "pyerrors.obs", "qualname": "Obs.N", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.idl": {"fullname": "pyerrors.obs.Obs.idl", "modulename": "pyerrors.obs", "qualname": "Obs.idl", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.ddvalue": {"fullname": "pyerrors.obs.Obs.ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.ddvalue", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.reweighted": {"fullname": "pyerrors.obs.Obs.reweighted", "modulename": "pyerrors.obs", "qualname": "Obs.reweighted", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.tag": {"fullname": "pyerrors.obs.Obs.tag", "modulename": "pyerrors.obs", "qualname": "Obs.tag", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.value": {"fullname": "pyerrors.obs.Obs.value", "modulename": "pyerrors.obs", "qualname": "Obs.value", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.dvalue": {"fullname": "pyerrors.obs.Obs.dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.dvalue", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_names": {"fullname": "pyerrors.obs.Obs.e_names", "modulename": "pyerrors.obs", "qualname": "Obs.e_names", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.cov_names": {"fullname": "pyerrors.obs.Obs.cov_names", "modulename": "pyerrors.obs", "qualname": "Obs.cov_names", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.mc_names": {"fullname": "pyerrors.obs.Obs.mc_names", "modulename": "pyerrors.obs", "qualname": "Obs.mc_names", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_content": {"fullname": "pyerrors.obs.Obs.e_content", "modulename": "pyerrors.obs", "qualname": "Obs.e_content", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.covobs": {"fullname": "pyerrors.obs.Obs.covobs", "modulename": "pyerrors.obs", "qualname": "Obs.covobs", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.gamma_method": {"fullname": "pyerrors.obs.Obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "Obs.gamma_method", "kind": "function", "doc": "- samples (list):\nlist of numpy arrays containing the Monte Carlo samples
\n- names (list):\nlist of strings labeling the individual samples
\n- idl (list, optional):\nlist of ranges or lists on which the samples are defined
\nEstimate the error and related properties of the Obs.
\n\nParameters
\n\n\n
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.gm": {"fullname": "pyerrors.obs.Obs.gm", "modulename": "pyerrors.obs", "qualname": "Obs.gm", "kind": "function", "doc": "- S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
\n- tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
\n- N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
\n- fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
\nEstimate the error and related properties of the Obs.
\n\nParameters
\n\n\n
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.details": {"fullname": "pyerrors.obs.Obs.details", "modulename": "pyerrors.obs", "qualname": "Obs.details", "kind": "function", "doc": "- S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
\n- tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
\n- N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
\n- fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
\nOutput detailed properties of the Obs.
\n\nParameters
\n\n\n
\n", "signature": "(self, ens_content=True):", "funcdef": "def"}, "pyerrors.obs.Obs.reweight": {"fullname": "pyerrors.obs.Obs.reweight", "modulename": "pyerrors.obs", "qualname": "Obs.reweight", "kind": "function", "doc": "- ens_content (bool):\nprint details about the ensembles and replica if true.
\nReweight the obs with given rewighting factors.
\n\nParameters
\n\n\n
\n", "signature": "(self, weight):", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero_within_error": {"fullname": "pyerrors.obs.Obs.is_zero_within_error", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero_within_error", "kind": "function", "doc": "- weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
\n- all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl. Default False.
\nChecks whether the observable is zero within 'sigma' standard errors.
\n\nParameters
\n\n\n
\n", "signature": "(self, sigma=1):", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero": {"fullname": "pyerrors.obs.Obs.is_zero", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero", "kind": "function", "doc": "- sigma (int):\nNumber of standard errors used for the check.
\n- Works only properly when the gamma method was run.
\nChecks whether the observable is zero within a given tolerance.
\n\nParameters
\n\n\n
\n", "signature": "(self, atol=1e-10):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_tauint": {"fullname": "pyerrors.obs.Obs.plot_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.plot_tauint", "kind": "function", "doc": "- atol (float):\nAbsolute tolerance (for details see numpy documentation).
\nPlot integrated autocorrelation time for each ensemble.
\n\nParameters
\n\n\n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rho": {"fullname": "pyerrors.obs.Obs.plot_rho", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rho", "kind": "function", "doc": "- save (str):\nsaves the figure to a file named 'save' if.
\nPlot normalized autocorrelation function time for each ensemble.
\n\nParameters
\n\n\n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rep_dist": {"fullname": "pyerrors.obs.Obs.plot_rep_dist", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rep_dist", "kind": "function", "doc": "- save (str):\nsaves the figure to a file named 'save' if.
\nPlot replica distribution for each ensemble with more than one replicum.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_history": {"fullname": "pyerrors.obs.Obs.plot_history", "modulename": "pyerrors.obs", "qualname": "Obs.plot_history", "kind": "function", "doc": "Plot derived Monte Carlo history for each ensemble
\n\nParameters
\n\n\n
\n", "signature": "(self, expand=True):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_piechart": {"fullname": "pyerrors.obs.Obs.plot_piechart", "modulename": "pyerrors.obs", "qualname": "Obs.plot_piechart", "kind": "function", "doc": "- expand (bool):\nshow expanded history for irregular Monte Carlo chains (default: True).
\nPlot piechart which shows the fractional contribution of each\nensemble to the error and returns a dictionary containing the fractions.
\n\nParameters
\n\n\n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.dump": {"fullname": "pyerrors.obs.Obs.dump", "modulename": "pyerrors.obs", "qualname": "Obs.dump", "kind": "function", "doc": "- save (str):\nsaves the figure to a file named 'save' if.
\nDump the Obs to a file 'name' of chosen format.
\n\nParameters
\n\n\n
\n", "signature": "(self, filename, datatype='json.gz', description='', **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.export_jackknife": {"fullname": "pyerrors.obs.Obs.export_jackknife", "modulename": "pyerrors.obs", "qualname": "Obs.export_jackknife", "kind": "function", "doc": "- filename (str):\nname of the file to be saved.
\n- datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
\n- description (str):\nDescription for output file, only relevant for json.gz format.
\n- path (str):\nspecifies a custom path for the file (default '.')
\nExport jackknife samples from the Obs
\n\nReturns
\n\n\n
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.export_bootstrap": {"fullname": "pyerrors.obs.Obs.export_bootstrap", "modulename": "pyerrors.obs", "qualname": "Obs.export_bootstrap", "kind": "function", "doc": "- numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N jackknife samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived jackknife samples\nshould agree with samples from a full jackknife analysis up to O(1/N).
\nExport bootstrap samples from the Obs
\n\nParameters
\n\n\n
\n\n- samples (int):\nNumber of bootstrap samples to generate.
\n- random_numbers (np.ndarray):\nArray of shape (samples, length) containing the random numbers to generate the bootstrap samples.\nIf not provided the bootstrap samples are generated bashed on the md5 hash of the enesmble name.
\n- save_rng (str):\nSave the random numbers to a file if a path is specified.
\nReturns
\n\n\n
\n", "signature": "(self, samples=500, random_numbers=None, save_rng=None):", "funcdef": "def"}, "pyerrors.obs.Obs.sqrt": {"fullname": "pyerrors.obs.Obs.sqrt", "modulename": "pyerrors.obs", "qualname": "Obs.sqrt", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.log": {"fullname": "pyerrors.obs.Obs.log", "modulename": "pyerrors.obs", "qualname": "Obs.log", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.exp": {"fullname": "pyerrors.obs.Obs.exp", "modulename": "pyerrors.obs", "qualname": "Obs.exp", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sin": {"fullname": "pyerrors.obs.Obs.sin", "modulename": "pyerrors.obs", "qualname": "Obs.sin", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.cos": {"fullname": "pyerrors.obs.Obs.cos", "modulename": "pyerrors.obs", "qualname": "Obs.cos", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.tan": {"fullname": "pyerrors.obs.Obs.tan", "modulename": "pyerrors.obs", "qualname": "Obs.tan", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arcsin": {"fullname": "pyerrors.obs.Obs.arcsin", "modulename": "pyerrors.obs", "qualname": "Obs.arcsin", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arccos": {"fullname": "pyerrors.obs.Obs.arccos", "modulename": "pyerrors.obs", "qualname": "Obs.arccos", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arctan": {"fullname": "pyerrors.obs.Obs.arctan", "modulename": "pyerrors.obs", "qualname": "Obs.arctan", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sinh": {"fullname": "pyerrors.obs.Obs.sinh", "modulename": "pyerrors.obs", "qualname": "Obs.sinh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.cosh": {"fullname": "pyerrors.obs.Obs.cosh", "modulename": "pyerrors.obs", "qualname": "Obs.cosh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.tanh": {"fullname": "pyerrors.obs.Obs.tanh", "modulename": "pyerrors.obs", "qualname": "Obs.tanh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arcsinh": {"fullname": "pyerrors.obs.Obs.arcsinh", "modulename": "pyerrors.obs", "qualname": "Obs.arcsinh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arccosh": {"fullname": "pyerrors.obs.Obs.arccosh", "modulename": "pyerrors.obs", "qualname": "Obs.arccosh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arctanh": {"fullname": "pyerrors.obs.Obs.arctanh", "modulename": "pyerrors.obs", "qualname": "Obs.arctanh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.N_sigma": {"fullname": "pyerrors.obs.Obs.N_sigma", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.S": {"fullname": "pyerrors.obs.Obs.S", "modulename": "pyerrors.obs", "qualname": "Obs.S", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_ddvalue": {"fullname": "pyerrors.obs.Obs.e_ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_ddvalue", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_drho": {"fullname": "pyerrors.obs.Obs.e_drho", "modulename": "pyerrors.obs", "qualname": "Obs.e_drho", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_dtauint": {"fullname": "pyerrors.obs.Obs.e_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_dtauint", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_dvalue": {"fullname": "pyerrors.obs.Obs.e_dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_dvalue", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_n_dtauint": {"fullname": "pyerrors.obs.Obs.e_n_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_dtauint", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_n_tauint": {"fullname": "pyerrors.obs.Obs.e_n_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_tauint", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_rho": {"fullname": "pyerrors.obs.Obs.e_rho", "modulename": "pyerrors.obs", "qualname": "Obs.e_rho", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_tauint": {"fullname": "pyerrors.obs.Obs.e_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_tauint", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_windowsize": {"fullname": "pyerrors.obs.Obs.e_windowsize", "modulename": "pyerrors.obs", "qualname": "Obs.e_windowsize", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.tau_exp": {"fullname": "pyerrors.obs.Obs.tau_exp", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp", "kind": "variable", "doc": "\n"}, "pyerrors.obs.CObs": {"fullname": "pyerrors.obs.CObs", "modulename": "pyerrors.obs", "qualname": "CObs", "kind": "class", "doc": "- numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N import_bootstrap samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived bootstrap samples\nshould agree with samples from a full bootstrap analysis up to O(1/N).
\nClass for a complex valued observable.
\n"}, "pyerrors.obs.CObs.__init__": {"fullname": "pyerrors.obs.CObs.__init__", "modulename": "pyerrors.obs", "qualname": "CObs.__init__", "kind": "function", "doc": "\n", "signature": "(real, imag=0.0)"}, "pyerrors.obs.CObs.tag": {"fullname": "pyerrors.obs.CObs.tag", "modulename": "pyerrors.obs", "qualname": "CObs.tag", "kind": "variable", "doc": "\n"}, "pyerrors.obs.CObs.real": {"fullname": "pyerrors.obs.CObs.real", "modulename": "pyerrors.obs", "qualname": "CObs.real", "kind": "variable", "doc": "\n"}, "pyerrors.obs.CObs.imag": {"fullname": "pyerrors.obs.CObs.imag", "modulename": "pyerrors.obs", "qualname": "CObs.imag", "kind": "variable", "doc": "\n"}, "pyerrors.obs.CObs.gamma_method": {"fullname": "pyerrors.obs.CObs.gamma_method", "modulename": "pyerrors.obs", "qualname": "CObs.gamma_method", "kind": "function", "doc": "Executes the gamma_method for the real and the imaginary part.
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.CObs.is_zero": {"fullname": "pyerrors.obs.CObs.is_zero", "modulename": "pyerrors.obs", "qualname": "CObs.is_zero", "kind": "function", "doc": "Checks whether both real and imaginary part are zero within machine precision.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.CObs.conjugate": {"fullname": "pyerrors.obs.CObs.conjugate", "modulename": "pyerrors.obs", "qualname": "CObs.conjugate", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.gamma_method": {"fullname": "pyerrors.obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "gamma_method", "kind": "function", "doc": "Vectorized version of the gamma_method applicable to lists or arrays of Obs.
\n\nSee docstring of pe.Obs.gamma_method for details.
\n", "signature": "(x, **kwargs):", "funcdef": "def"}, "pyerrors.obs.gm": {"fullname": "pyerrors.obs.gm", "modulename": "pyerrors.obs", "qualname": "gm", "kind": "function", "doc": "Vectorized version of the gamma_method applicable to lists or arrays of Obs.
\n\nSee docstring of pe.Obs.gamma_method for details.
\n", "signature": "(x, **kwargs):", "funcdef": "def"}, "pyerrors.obs.derived_observable": {"fullname": "pyerrors.obs.derived_observable", "modulename": "pyerrors.obs", "qualname": "derived_observable", "kind": "function", "doc": "Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.
\n\nParameters
\n\n\n
\n\n- func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
\n- data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
\n- num_grad (bool):\nif True, numerical derivatives are used instead of autograd\n(default False). To control the numerical differentiation the\nkwargs of numdifftools.step_generators.MaxStepGenerator\ncan be used.
\n- man_grad (list):\nmanually supply a list or an array which contains the jacobian\nof func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
\nNotes
\n\nFor simple mathematical operations it can be practical to use anonymous\nfunctions. For the ratio of two observables one can e.g. use
\n\nnew_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])
\n", "signature": "(func, data, array_mode=False, **kwargs):", "funcdef": "def"}, "pyerrors.obs.reweight": {"fullname": "pyerrors.obs.reweight", "modulename": "pyerrors.obs", "qualname": "reweight", "kind": "function", "doc": "Reweight a list of observables.
\n\nParameters
\n\n\n
\n", "signature": "(weight, obs, **kwargs):", "funcdef": "def"}, "pyerrors.obs.correlate": {"fullname": "pyerrors.obs.correlate", "modulename": "pyerrors.obs", "qualname": "correlate", "kind": "function", "doc": "- weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
\n- obs (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
\n- all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl. Default False.
\nCorrelate two observables.
\n\nParameters
\n\n\n
\n\n- obs_a (Obs):\nFirst observable
\n- obs_b (Obs):\nSecond observable
\nNotes
\n\nKeep in mind to only correlate primary observables which have not been reweighted\nyet. The reweighting has to be applied after correlating the observables.\nCurrently only works if ensembles are identical (this is not strictly necessary).
\n", "signature": "(obs_a, obs_b):", "funcdef": "def"}, "pyerrors.obs.covariance": {"fullname": "pyerrors.obs.covariance", "modulename": "pyerrors.obs", "qualname": "covariance", "kind": "function", "doc": "Calculates the error covariance matrix of a set of observables.
\n\nWARNING: This function should be used with care, especially for observables with support on multiple\n ensembles with differing autocorrelations. See the notes below for details.
\n\nThe gamma method has to be applied first to all observables.
\n\nParameters
\n\n\n
\n\n- obs (list or numpy.ndarray):\nList or one dimensional array of Obs
\n- visualize (bool):\nIf True plots the corresponding normalized correlation matrix (default False).
\n- correlation (bool):\nIf True the correlation matrix instead of the error covariance matrix is returned (default False).
\n- smooth (None or int):\nIf smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue\nsmoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the\nlargest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely\nsmall ones.
\nNotes
\n\nThe error covariance is defined such that it agrees with the squared standard error for two identical observables\n$$\\operatorname{cov}(a,a)=\\sum_{s=1}^N\\delta_a^s\\delta_a^s/N^2=\\Gamma_{aa}(0)/N=\\operatorname{var}(a)/N=\\sigma_a^2$$\nin the absence of autocorrelation.\nThe error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite\n$$\\sum_{i,j}v_i\\Gamma_{ij}(0)v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i,j}v_i\\delta_i^s\\delta_j^s v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i}|v_i\\delta_i^s|^2\\geq 0\\,,$$ for every $v\\in\\mathbb{R}^M$, while such an identity does not hold for larger windows/lags.\nFor observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements.\n$$\\tau_{\\mathrm{int}, ij}=\\sqrt{\\tau_{\\mathrm{int}, i}\\times \\tau_{\\mathrm{int}, j}}$$\nThis construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors).
\n", "signature": "(obs, visualize=False, correlation=False, smooth=None, **kwargs):", "funcdef": "def"}, "pyerrors.obs.invert_corr_cov_cholesky": {"fullname": "pyerrors.obs.invert_corr_cov_cholesky", "modulename": "pyerrors.obs", "qualname": "invert_corr_cov_cholesky", "kind": "function", "doc": "Constructs a lower triangular matrix
\n\nchol
via the Cholesky decomposition of the correlation matrixcorr
\n and then returns the inverse covariance matrixchol_inv
as a lower triangular matrix by solvingchol * x = inverrdiag
.Parameters
\n\n\n
\n", "signature": "(corr, inverrdiag):", "funcdef": "def"}, "pyerrors.obs.sort_corr": {"fullname": "pyerrors.obs.sort_corr", "modulename": "pyerrors.obs", "qualname": "sort_corr", "kind": "function", "doc": "- corr (np.ndarray):\ncorrelation matrix
\n- inverrdiag (np.ndarray):\ndiagonal matrix, the entries are the inverse errors of the data points considered
\nReorders a correlation matrix to match the alphabetical order of its underlying y data.
\n\nThe ordering of the input correlation matrix
\n\ncorr
is given by the list of keyskl
.\nThe input dictionaryyd
(with the same keyskl
) must contain the corresponding y data\nthat the correlation matrix is based on.\nThis function sorts the list of keyskl
alphabetically and sorts the matrixcorr
\naccording to this alphabetical order such that the sorted matrixcorr_sorted
corresponds\nto the y datayd
when arranged in an alphabetical order by its keys.Parameters
\n\n\n
\n\n- corr (np.ndarray):\nA square correlation matrix constructed using the order of the y data specified by
\nkl
.\nThe dimensions ofcorr
should match the total number of y data points inyd
combined.- kl (list of str):\nA list of keys that denotes the order in which the y data from
\nyd
was used to build the\ninput correlation matrixcorr
.- yd (dict of list):\nA dictionary where each key corresponds to a unique identifier, and its value is a list of\ny data points. The total number of y data points across all keys must match the dimensions\nof
\ncorr
. The lists in the dictionary can be lists of Obs.Returns
\n\n\n
\n\n- np.ndarray: A new, sorted correlation matrix that corresponds to the y data from
\nyd
when arranged alphabetically by its keys.Example
\n\n\n\n", "signature": "(corr, kl, yd):", "funcdef": "def"}, "pyerrors.obs.import_jackknife": {"fullname": "pyerrors.obs.import_jackknife", "modulename": "pyerrors.obs", "qualname": "import_jackknife", "kind": "function", "doc": "\n>>> import numpy as np\n>>> import pyerrors as pe\n>>> corr = np.array([[1, 0.2, 0.3], [0.2, 1, 0.4], [0.3, 0.4, 1]])\n>>> kl = ['b', 'a']\n>>> yd = {'a': [1, 2], 'b': [3]}\n>>> sorted_corr = pe.obs.sort_corr(corr, kl, yd)\n>>> print(sorted_corr)\narray([[1. , 0.3, 0.4],\n [0.3, 1. , 0.2],\n [0.4, 0.2, 1. ]])\n
Imports jackknife samples and returns an Obs
\n\nParameters
\n\n\n
\n", "signature": "(jacks, name, idl=None):", "funcdef": "def"}, "pyerrors.obs.import_bootstrap": {"fullname": "pyerrors.obs.import_bootstrap", "modulename": "pyerrors.obs", "qualname": "import_bootstrap", "kind": "function", "doc": "- jacks (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N jackknife samples as first to Nth entry.
\n- name (str):\nname of the ensemble the samples are defined on.
\nImports bootstrap samples and returns an Obs
\n\nParameters
\n\n\n
\n", "signature": "(boots, name, random_numbers):", "funcdef": "def"}, "pyerrors.obs.merge_obs": {"fullname": "pyerrors.obs.merge_obs", "modulename": "pyerrors.obs", "qualname": "merge_obs", "kind": "function", "doc": "- boots (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N bootstrap samples as first to Nth entry.
\n- name (str):\nname of the ensemble the samples are defined on.
\n- random_numbers (np.ndarray):\nArray of shape (samples, length) containing the random numbers to generate the bootstrap samples,\nwhere samples is the number of bootstrap samples and length is the length of the original Monte Carlo\nchain to be reconstructed.
\nCombine all observables in list_of_obs into one new observable
\n\nParameters
\n\n\n
\n\n- list_of_obs (list):\nlist of the Obs object to be combined
\nNotes
\n\nIt is not possible to combine obs which are based on the same replicum
\n", "signature": "(list_of_obs):", "funcdef": "def"}, "pyerrors.obs.cov_Obs": {"fullname": "pyerrors.obs.cov_Obs", "modulename": "pyerrors.obs", "qualname": "cov_Obs", "kind": "function", "doc": "Create an Obs based on mean(s) and a covariance matrix
\n\nParameters
\n\n\n
\n", "signature": "(means, cov, name, grad=None):", "funcdef": "def"}, "pyerrors.roots": {"fullname": "pyerrors.roots", "modulename": "pyerrors.roots", "kind": "module", "doc": "\n"}, "pyerrors.roots.find_root": {"fullname": "pyerrors.roots.find_root", "modulename": "pyerrors.roots", "qualname": "find_root", "kind": "function", "doc": "- mean (list of floats or float):\nN mean value(s) of the new Obs
\n- cov (list or array):\n2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance
\n- name (str):\nidentifier for the covariance matrix
\n- grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
\nFinds the root of the function func(x, d) where d is an
\n\nObs
.Parameters
\n\n\n
\n\n- d (Obs):\nObs passed to the function.
\n- \n
func (object):\nFunction to be minimized. Any numpy functions have to use the autograd.numpy wrapper.\nExample:
\n\n\n\nimport autograd.numpy as anp\ndef root_func(x, d):\n return anp.exp(-x ** 2) - d\n
- \n
guess (float):\nInitial guess for the minimization.
Returns
\n\n\n
\n", "signature": "(d, func, guess=1.0, **kwargs):", "funcdef": "def"}, "pyerrors.special": {"fullname": "pyerrors.special", "modulename": "pyerrors.special", "kind": "module", "doc": "\n"}, "pyerrors.special.beta": {"fullname": "pyerrors.special.beta", "modulename": "pyerrors.special", "qualname": "beta", "kind": "function", "doc": "- res (Obs):\n
\nObs
valued root of the function.beta(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nbeta(a, b, out=None)
\n\nBeta function.
\n\nThis function is defined in 1 as
\n\n$$B(a, b) = \\int_0^1 t^{a-1}(1-t)^{b-1}dt\n = \\frac{\\Gamma(a)\\Gamma(b)}{\\Gamma(a+b)},$$
\n\nwhere \\( \\Gamma \\) is the gamma function.
\n\nParameters
\n\n\n
\n\n- a, b (array_like):\nReal-valued arguments
\n- out (ndarray, optional):\nOptional output array for the function result
\nReturns
\n\n\n
\n\n- scalar or ndarray: Value of the beta function
\nSee Also
\n\n\n\n
gamma
: the gamma function
\nbetainc
: the regularized incomplete beta function
\nbetaln
: the natural logarithm of the absolute\nvalue of the beta functionReferences
\n\nExamples
\n\n\n\n\n\n>>> import scipy.special as sc\n
The beta function relates to the gamma function by the\ndefinition given above:
\n\n\n\n\n\n>>> sc.beta(2, 3)\n0.08333333333333333\n>>> sc.gamma(2)*sc.gamma(3)/sc.gamma(2 + 3)\n0.08333333333333333\n
As this relationship demonstrates, the beta function\nis symmetric:
\n\n\n\n\n\n>>> sc.beta(1.7, 2.4)\n0.16567527689031739\n>>> sc.beta(2.4, 1.7)\n0.16567527689031739\n
This function satisfies \\( B(1, b) = 1/b \\):
\n\n\n\n\n\n>>> sc.beta(1, 4)\n0.25\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.betainc": {"fullname": "pyerrors.special.betainc", "modulename": "pyerrors.special", "qualname": "betainc", "kind": "function", "doc": "
\n\n
\n- \n
\nNIST Digital Library of Mathematical Functions,\nEq. 5.12.1. https://dlmf.nist.gov/5.12 ↩
\nbetainc(x1, x2, x3, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nbetainc(a, b, x, out=None)
\n\nRegularized incomplete beta function.
\n\nComputes the regularized incomplete beta function, defined as 1:
\n\n$$I_x(a, b) = \\frac{\\Gamma(a+b)}{\\Gamma(a)\\Gamma(b)} \\int_0^x\nt^{a-1}(1-t)^{b-1}dt,$$
\n\nfor \\( 0 \\leq x \\leq 1 \\).
\n\nThis function is the cumulative distribution function for the beta\ndistribution; its range is [0, 1].
\n\nParameters
\n\n\n
\n\n- a, b (array_like):\nPositive, real-valued parameters
\n- x (array_like):\nReal-valued such that \\( 0 \\leq x \\leq 1 \\),\nthe upper limit of integration
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: Value of the regularized incomplete beta function
\nSee Also
\n\n\n\n
beta
: beta function
\nbetaincinv
: inverse of the regularized incomplete beta function
\nbetaincc
: complement of the regularized incomplete beta function
\nscipy.stats.beta
: beta distributionNotes
\n\nThe term regularized in the name of this function refers to the\nscaling of the function by the gamma function terms shown in the\nformula. When not qualified as regularized, the name incomplete\nbeta function often refers to just the integral expression,\nwithout the gamma terms. One can use the function
\n\nbeta
from\nscipy.special
to get this \"nonregularized\" incomplete beta\nfunction by multiplying the result ofbetainc(a, b, x)
by\nbeta(a, b)
.This function wraps the
\n\nibeta
routine from the\nBoost Math C++ library 2.References
\n\nExamples
\n\nLet \\( B(a, b) \\) be the
\n\nbeta
function.\n\n\n\n>>> import scipy.special as sc\n
The coefficient in terms of
\n\ngamma
is equal to\n\\( 1/B(a, b) \\). Also, when \\( x=1 \\)\nthe integral is equal to \\( B(a, b) \\).\nTherefore, \\( I_{x=1}(a, b) = 1 \\) for any \\( a, b \\).\n\n\n\n>>> sc.betainc(0.2, 3.5, 1.0)\n1.0\n
It satisfies\n\\( I_x(a, b) = x^a F(a, 1-b, a+1, x)/ (aB(a, b)) \\),\nwhere \\( F \\) is the hypergeometric function
\n\nhyp2f1
:\n\n\n\n>>> a, b, x = 1.4, 3.1, 0.5\n>>> x**a * sc.hyp2f1(a, 1 - b, a + 1, x)/(a * sc.beta(a, b))\n0.8148904036225295\n>>> sc.betainc(a, b, x)\n0.8148904036225296\n
This functions satisfies the relationship\n\\( I_x(a, b) = 1 - I_{1-x}(b, a) \\):
\n\n\n\n\n\n>>> sc.betainc(2.2, 3.1, 0.4)\n0.49339638807619446\n>>> 1 - sc.betainc(3.1, 2.2, 1 - 0.4)\n0.49339638807619446\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.betaln": {"fullname": "pyerrors.special.betaln", "modulename": "pyerrors.special", "qualname": "betaln", "kind": "function", "doc": "
\n\n
\n- \n
\n\nNIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/8.17 ↩
\n- \n
\nThe Boost Developers. \"Boost C++ Libraries\". https://www.boost.org/. ↩
\nbetaln(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nbetaln(a, b, out=None)
\n\nNatural logarithm of absolute value of beta function.
\n\nComputes
\n\nln(abs(beta(a, b)))
.Parameters
\n\n\n
\n\n- a, b (array_like):\nPositive, real-valued parameters
\n- out (ndarray, optional):\nOptional output array for function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: Value of the betaln function
\nSee Also
\n\n\n\n
gamma
: the gamma function
\nbetainc
: the regularized incomplete beta function
\nbeta
: the beta functionExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> from scipy.special import betaln, beta\n
Verify that, for moderate values of
\n\na
andb
,betaln(a, b)
\nis the same aslog(beta(a, b))
:\n\n\n\n>>> betaln(3, 4)\n-4.0943445622221\n
\n\n\n\n>>> np.log(beta(3, 4))\n-4.0943445622221\n
In the following
\n\nbeta(a, b)
underflows to 0, so we can't compute\nthe logarithm of the actual value.\n\n\n\n>>> a = 400\n>>> b = 900\n>>> beta(a, b)\n0.0\n
We can compute the logarithm of
\n\nbeta(a, b)
by usingbetaln
:\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.polygamma": {"fullname": "pyerrors.special.polygamma", "modulename": "pyerrors.special", "qualname": "polygamma", "kind": "function", "doc": "\n>>> betaln(a, b)\n-804.3069951764146\n
Polygamma functions.
\n\nDefined as \\( \\psi^{(n)}(x) \\) where \\( \\psi \\) is the\n
\n\ndigamma
function. See [dlmf]_ for details.Parameters
\n\n\n
\n\n- n (array_like):\nThe order of the derivative of the digamma function; must be\nintegral
\n- x (array_like):\nReal valued input
\nReturns
\n\n\n
\n\n- ndarray: Function results
\nSee Also
\n\n\n\n
digamma
References
\n\n.. [dlmf] NIST, Digital Library of Mathematical Functions,\n https://dlmf.nist.gov/5.15
\n\nExamples
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.psi": {"fullname": "pyerrors.special.psi", "modulename": "pyerrors.special", "qualname": "psi", "kind": "function", "doc": "\n>>> from scipy import special\n>>> x = [2, 3, 25.5]\n>>> special.polygamma(1, x)\narray([ 0.64493407, 0.39493407, 0.03999467])\n>>> special.polygamma(0, x) == special.psi(x)\narray([ True, True, True], dtype=bool)\n
psi(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\npsi(z, out=None)
\n\nThe digamma function.
\n\nThe logarithmic derivative of the gamma function evaluated at
\n\nz
.Parameters
\n\n\n
\n\n- z (array_like):\nReal or complex argument.
\n- out (ndarray, optional):\nArray for the computed values of
\npsi
.Returns
\n\n\n
\n\n- digamma (scalar or ndarray):\nComputed values of
\npsi
.Notes
\n\nFor large values not close to the negative real axis,
\n\npsi
is\ncomputed using the asymptotic series (5.11.2) from 1. For small\narguments not close to the negative real axis, the recurrence\nrelation (5.5.2) from 2 is used until the argument is large\nenough to use the asymptotic series. For values close to the\nnegative real axis, the reflection formula (5.5.4) from 3 is\nused first. Note thatpsi
has a family of zeros on the\nnegative real axis which occur between the poles at nonpositive\nintegers. Around the zeros the reflection formula suffers from\ncancellation and the implementation loses precision. The sole\npositive zero and the first negative zero, however, are handled\nseparately by precomputing series expansions using 4, so the\nfunction should maintain full accuracy around the origin.References
\n\nExamples
\n\n\n\n\n\n>>> from scipy.special import psi\n>>> z = 3 + 4j\n>>> psi(z)\n(1.55035981733341+1.0105022091860445j)\n
Verify psi(z) = psi(z + 1) - 1/z:
\n\n\n\n\n\n>>> psi(z + 1) - 1/z\n(1.55035981733341+1.0105022091860445j)\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.digamma": {"fullname": "pyerrors.special.digamma", "modulename": "pyerrors.special", "qualname": "digamma", "kind": "function", "doc": "
\n\n
\n- \n
\n\nNIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 ↩
\n- \n
\n\nNIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 ↩
\n- \n
\n\nNIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 ↩
\n- \n
\nFredrik Johansson and others.\n\"mpmath: a Python library for arbitrary-precision floating-point arithmetic\"\n(Version 0.19) http://mpmath.org/ ↩
\npsi(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\npsi(z, out=None)
\n\nThe digamma function.
\n\nThe logarithmic derivative of the gamma function evaluated at
\n\nz
.Parameters
\n\n\n
\n\n- z (array_like):\nReal or complex argument.
\n- out (ndarray, optional):\nArray for the computed values of
\npsi
.Returns
\n\n\n
\n\n- digamma (scalar or ndarray):\nComputed values of
\npsi
.Notes
\n\nFor large values not close to the negative real axis,
\n\npsi
is\ncomputed using the asymptotic series (5.11.2) from 1. For small\narguments not close to the negative real axis, the recurrence\nrelation (5.5.2) from 2 is used until the argument is large\nenough to use the asymptotic series. For values close to the\nnegative real axis, the reflection formula (5.5.4) from 3 is\nused first. Note thatpsi
has a family of zeros on the\nnegative real axis which occur between the poles at nonpositive\nintegers. Around the zeros the reflection formula suffers from\ncancellation and the implementation loses precision. The sole\npositive zero and the first negative zero, however, are handled\nseparately by precomputing series expansions using 4, so the\nfunction should maintain full accuracy around the origin.References
\n\nExamples
\n\n\n\n\n\n>>> from scipy.special import psi\n>>> z = 3 + 4j\n>>> psi(z)\n(1.55035981733341+1.0105022091860445j)\n
Verify psi(z) = psi(z + 1) - 1/z:
\n\n\n\n\n\n>>> psi(z + 1) - 1/z\n(1.55035981733341+1.0105022091860445j)\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gamma": {"fullname": "pyerrors.special.gamma", "modulename": "pyerrors.special", "qualname": "gamma", "kind": "function", "doc": "
\n\n
\n- \n
\n\nNIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 ↩
\n- \n
\n\nNIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 ↩
\n- \n
\n\nNIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 ↩
\n- \n
\nFredrik Johansson and others.\n\"mpmath: a Python library for arbitrary-precision floating-point arithmetic\"\n(Version 0.19) http://mpmath.org/ ↩
\ngamma(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ngamma(z, out=None)
\n\ngamma function.
\n\nThe gamma function is defined as
\n\n$$\\Gamma(z) = \\int_0^\\infty t^{z-1} e^{-t} dt$$
\n\nfor \\( \\Re(z) > 0 \\) and is extended to the rest of the complex\nplane by analytic continuation. See [dlmf]_ for more details.
\n\nParameters
\n\n\n
\n\n- z (array_like):\nReal or complex valued argument
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: Values of the gamma function
\nNotes
\n\nThe gamma function is often referred to as the generalized\nfactorial since \\( \\Gamma(n + 1) = n! \\) for natural numbers\n\\( n \\). More generally it satisfies the recurrence relation\n\\( \\Gamma(z + 1) = z \\cdot \\Gamma(z) \\) for complex \\( z \\),\nwhich, combined with the fact that \\( \\Gamma(1) = 1 \\), implies\nthe above identity for \\( z = n \\).
\n\nThe gamma function has poles at non-negative integers and the sign\nof infinity as z approaches each pole depends upon the direction in\nwhich the pole is approached. For this reason, the consistent thing\nis for gamma(z) to return NaN at negative integers, and to return\n-inf when x = -0.0 and +inf when x = 0.0, using the signbit of zero\nto signify the direction in which the origin is being approached. This\nis for instance what is recommended for the gamma function in annex F\nentry 9.5.4 of the Iso C 99 standard [isoc99]_.
\n\nPrior to SciPy version 1.15,
\n\nscipy.special.gamma(z)
returned+inf
\nat each pole. This was fixed in version 1.15, but with the following\nconsequence. Expressions where gamma appears in the denominator\nsuch as\n\n
gamma(u) * gamma(v) / (gamma(w) * gamma(x))
no longer evaluate to 0 if the numerator is well defined but there is a\npole in the denominator. Instead such expressions evaluate to NaN. We\nrecommend instead using the function
\n\nrgamma
for the reciprocal gamma\nfunction in such cases. The above expression could for instance be written\nas\n\n
gamma(u) * gamma(v) * (rgamma(w) * rgamma(x))
References
\n\n.. [dlmf] NIST Digital Library of Mathematical Functions\n https://dlmf.nist.gov/5.2#E1\n.. [isoc99] https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> from scipy.special import gamma, factorial\n
\n\n\n\n>>> gamma([0, 0.5, 1, 5])\narray([ inf, 1.77245385, 1. , 24. ])\n
\n\n\n\n>>> z = 2.5 + 1j\n>>> gamma(z)\n(0.77476210455108352+0.70763120437959293j)\n>>> gamma(z+1), z*gamma(z) # Recurrence property\n((1.2292740569981171+2.5438401155000685j),\n (1.2292740569981158+2.5438401155000658j))\n
\n\n\n\n>>> gamma(0.5)**2 # gamma(0.5) = sqrt(pi)\n3.1415926535897927\n
Plot gamma(x) for real x
\n\n\n\n\n\n>>> x = np.linspace(-3.5, 5.5, 2251)\n>>> y = gamma(x)\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gammaln": {"fullname": "pyerrors.special.gammaln", "modulename": "pyerrors.special", "qualname": "gammaln", "kind": "function", "doc": "\n>>> import matplotlib.pyplot as plt\n>>> plt.plot(x, y, 'b', alpha=0.6, label='gamma(x)')\n>>> k = np.arange(1, 7)\n>>> plt.plot(k, factorial(k-1), 'k*', alpha=0.6,\n... label='(x-1)!, x = 1, 2, ...')\n>>> plt.xlim(-3.5, 5.5)\n>>> plt.ylim(-10, 25)\n>>> plt.grid()\n>>> plt.xlabel('x')\n>>> plt.legend(loc='lower right')\n>>> plt.show()\n
gammaln(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ngammaln(x, out=None)
\n\nLogarithm of the absolute value of the gamma function.
\n\nDefined as
\n\n$$\\ln(\\lvert\\Gamma(x)\\rvert)$$
\n\nwhere \\( \\Gamma \\) is the gamma function. For more details on\nthe gamma function, see [dlmf]_.
\n\nParameters
\n\n\n
\n\n- x (array_like):\nReal argument
\n- out (ndarray, optional):\nOptional output array for the function results
\nReturns
\n\n\n
\n\n- scalar or ndarray: Values of the log of the absolute value of gamma
\nSee Also
\n\n\n\n
gammasgn
: sign of the gamma function
\nloggamma
: principal branch of the logarithm of the gamma functionNotes
\n\nIt is the same function as the Python standard library function\n
\n\nmath.lgamma()
.When used in conjunction with
\n\ngammasgn
, this function is useful\nfor working in logspace on the real axis without having to deal\nwith complex numbers via the relationexp(gammaln(x)) =\ngammasgn(x) * gamma(x)
.For complex-valued log-gamma, use
\n\nloggamma
instead ofgammaln
.References
\n\n.. [dlmf] NIST Digital Library of Mathematical Functions\n https://dlmf.nist.gov/5
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> import scipy.special as sc\n
It has two positive zeros.
\n\n\n\n\n\n>>> sc.gammaln([1, 2])\narray([0., 0.])\n
It has poles at nonpositive integers.
\n\n\n\n\n\n>>> sc.gammaln([0, -1, -2, -3, -4])\narray([inf, inf, inf, inf, inf])\n
It asymptotically approaches
\n\nx * log(x)
(Stirling's formula).\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gammainc": {"fullname": "pyerrors.special.gammainc", "modulename": "pyerrors.special", "qualname": "gammainc", "kind": "function", "doc": "\n>>> x = np.array([1e10, 1e20, 1e40, 1e80])\n>>> sc.gammaln(x)\narray([2.20258509e+11, 4.50517019e+21, 9.11034037e+41, 1.83206807e+82])\n>>> x * np.log(x)\narray([2.30258509e+11, 4.60517019e+21, 9.21034037e+41, 1.84206807e+82])\n
gammainc(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ngammainc(a, x, out=None)
\n\nRegularized lower incomplete gamma function.
\n\nIt is defined as
\n\n$$P(a, x) = \\frac{1}{\\Gamma(a)} \\int_0^x t^{a - 1}e^{-t} dt$$
\n\nfor \\( a > 0 \\) and \\( x \\geq 0 \\). See [dlmf]_ for details.
\n\nParameters
\n\n\n
\n\n- a (array_like):\nPositive parameter
\n- x (array_like):\nNonnegative argument
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: Values of the lower incomplete gamma function
\nSee Also
\n\n\n\n
gammaincc
: regularized upper incomplete gamma function
\ngammaincinv
: inverse of the regularized lower incomplete gamma function
\ngammainccinv
: inverse of the regularized upper incomplete gamma functionNotes
\n\nThe function satisfies the relation
\n\ngammainc(a, x) +\ngammaincc(a, x) = 1
wheregammaincc
is the regularized upper\nincomplete gamma function.The implementation largely follows that of [boost]_.
\n\nReferences
\n\n.. [dlmf] NIST Digital Library of Mathematical functions\n https://dlmf.nist.gov/8.2#E4\n.. [boost] Maddock et. al., \"Incomplete Gamma Functions\",\n https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html
\n\nExamples
\n\n\n\n\n\n>>> import scipy.special as sc\n
It is the CDF of the gamma distribution, so it starts at 0 and\nmonotonically increases to 1.
\n\n\n\n\n\n>>> sc.gammainc(0.5, [0, 1, 10, 100])\narray([0. , 0.84270079, 0.99999226, 1. ])\n
It is equal to one minus the upper incomplete gamma function.
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gammaincc": {"fullname": "pyerrors.special.gammaincc", "modulename": "pyerrors.special", "qualname": "gammaincc", "kind": "function", "doc": "\n>>> a, x = 0.5, 0.4\n>>> sc.gammainc(a, x)\n0.6289066304773024\n>>> 1 - sc.gammaincc(a, x)\n0.6289066304773024\n
gammaincc(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ngammaincc(a, x, out=None)
\n\nRegularized upper incomplete gamma function.
\n\nIt is defined as
\n\n$$Q(a, x) = \\frac{1}{\\Gamma(a)} \\int_x^\\infty t^{a - 1}e^{-t} dt$$
\n\nfor \\( a > 0 \\) and \\( x \\geq 0 \\). See [dlmf]_ for details.
\n\nParameters
\n\n\n
\n\n- a (array_like):\nPositive parameter
\n- x (array_like):\nNonnegative argument
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: Values of the upper incomplete gamma function
\nSee Also
\n\n\n\n
gammainc
: regularized lower incomplete gamma function
\ngammaincinv
: inverse of the regularized lower incomplete gamma function
\ngammainccinv
: inverse of the regularized upper incomplete gamma functionNotes
\n\nThe function satisfies the relation
\n\ngammainc(a, x) +\ngammaincc(a, x) = 1
wheregammainc
is the regularized lower\nincomplete gamma function.The implementation largely follows that of [boost]_.
\n\nReferences
\n\n.. [dlmf] NIST Digital Library of Mathematical functions\n https://dlmf.nist.gov/8.2#E4\n.. [boost] Maddock et. al., \"Incomplete Gamma Functions\",\n https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html
\n\nExamples
\n\n\n\n\n\n>>> import scipy.special as sc\n
It is the survival function of the gamma distribution, so it\nstarts at 1 and monotonically decreases to 0.
\n\n\n\n\n\n>>> sc.gammaincc(0.5, [0, 1, 10, 100, 1000])\narray([1.00000000e+00, 1.57299207e-01, 7.74421643e-06, 2.08848758e-45,\n 0.00000000e+00])\n
It is equal to one minus the lower incomplete gamma function.
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gammasgn": {"fullname": "pyerrors.special.gammasgn", "modulename": "pyerrors.special", "qualname": "gammasgn", "kind": "function", "doc": "\n>>> a, x = 0.5, 0.4\n>>> sc.gammaincc(a, x)\n0.37109336952269756\n>>> 1 - sc.gammainc(a, x)\n0.37109336952269756\n
gammasgn(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ngammasgn(x, out=None)
\n\nSign of the gamma function.
\n\nIt is defined as
\n\n$$\\text{gammasgn}(x) =\n\\begin{cases}\n +1 & \\Gamma(x) > 0 \\\n -1 & \\Gamma(x) < 0\n\\end{cases}$$
\n\nwhere \\( \\Gamma \\) is the gamma function; see
\n\ngamma
. This\ndefinition is complete since the gamma function is never zero;\nsee the discussion after [dlmf]_.Parameters
\n\n\n
\n\n- x (array_like):\nReal argument
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: Sign of the gamma function
\nSee Also
\n\n\n\n
gamma
: the gamma function
\ngammaln
: log of the absolute value of the gamma function
\nloggamma
: analytic continuation of the log of the gamma functionNotes
\n\nThe gamma function can be computed as
\n\ngammasgn(x) *\nnp.exp(gammaln(x))
.References
\n\n.. [dlmf] NIST Digital Library of Mathematical Functions\n https://dlmf.nist.gov/5.2#E1
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> import scipy.special as sc\n
It is 1 for
\n\nx > 0
.\n\n\n\n>>> sc.gammasgn([1, 2, 3, 4])\narray([1., 1., 1., 1.])\n
It alternates between -1 and 1 for negative integers.
\n\n\n\n\n\n>>> sc.gammasgn([-0.5, -1.5, -2.5, -3.5])\narray([-1., 1., -1., 1.])\n
It can be used to compute the gamma function.
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.rgamma": {"fullname": "pyerrors.special.rgamma", "modulename": "pyerrors.special", "qualname": "rgamma", "kind": "function", "doc": "\n>>> x = [1.5, 0.5, -0.5, -1.5]\n>>> sc.gammasgn(x) * np.exp(sc.gammaln(x))\narray([ 0.88622693, 1.77245385, -3.5449077 , 2.3632718 ])\n>>> sc.gamma(x)\narray([ 0.88622693, 1.77245385, -3.5449077 , 2.3632718 ])\n
rgamma(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nrgamma(z, out=None)
\n\nReciprocal of the gamma function.
\n\nDefined as \\( 1 / \\Gamma(z) \\), where \\( \\Gamma \\) is the\ngamma function. For more on the gamma function see
\n\ngamma
.Parameters
\n\n\n
\n\n- z (array_like):\nReal or complex valued input
\n- out (ndarray, optional):\nOptional output array for the function results
\nReturns
\n\n\n
\n\n- scalar or ndarray: Function results
\nSee Also
\n\n\n\n
gamma,
,gammaln,
,loggamma
Notes
\n\nThe gamma function has no zeros and has simple poles at\nnonpositive integers, so
\n\nrgamma
is an entire function with zeros\nat the nonpositive integers. See the discussion in [dlmf]_ for\nmore details.References
\n\n.. [dlmf] Nist, Digital Library of Mathematical functions,\n https://dlmf.nist.gov/5.2#i
\n\nExamples
\n\n\n\n\n\n>>> import scipy.special as sc\n
It is the reciprocal of the gamma function.
\n\n\n\n\n\n>>> sc.rgamma([1, 2, 3, 4])\narray([1. , 1. , 0.5 , 0.16666667])\n>>> 1 / sc.gamma([1, 2, 3, 4])\narray([1. , 1. , 0.5 , 0.16666667])\n
It is zero at nonpositive integers.
\n\n\n\n\n\n>>> sc.rgamma([0, -1, -2, -3])\narray([0., 0., 0., 0.])\n
It rapidly underflows to zero along the positive real axis.
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.multigammaln": {"fullname": "pyerrors.special.multigammaln", "modulename": "pyerrors.special", "qualname": "multigammaln", "kind": "function", "doc": "\n>>> sc.rgamma([10, 100, 179])\narray([2.75573192e-006, 1.07151029e-156, 0.00000000e+000])\n
Returns the log of multivariate gamma, also sometimes called the\ngeneralized gamma.
\n\nParameters
\n\n\n
\n\n- a (ndarray):\nThe multivariate gamma is computed for each item of
\na
.- d (int):\nThe dimension of the space of integration.
\nReturns
\n\n\n
\n\n- res (ndarray):\nThe values of the log multivariate gamma at the given points
\na
.Notes
\n\nThe formal definition of the multivariate gamma of dimension d for a real\n
\n\na
is$$\\Gamma_d(a) = \\int_{A>0} e^{-tr(A)} |A|^{a - (d+1)/2} dA$$
\n\nwith the condition \\( a > (d-1)/2 \\), and \\( A > 0 \\) being the set of\nall the positive definite matrices of dimension
\n\nd
. Note thata
is a\nscalar: the integrand only is multivariate, the argument is not (the\nfunction is defined over a subset of the real set).This can be proven to be equal to the much friendlier equation
\n\n$$\\Gamma_d(a) = \\pi^{d(d-1)/4} \\prod_{i=1}^{d} \\Gamma(a - (i-1)/2).$$
\n\nReferences
\n\nR. J. Muirhead, Aspects of multivariate statistical theory (Wiley Series in\nprobability and mathematical statistics).
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> from scipy.special import multigammaln, gammaln\n>>> a = 23.5\n>>> d = 10\n>>> multigammaln(a, d)\n454.1488605074416\n
Verify that the result agrees with the logarithm of the equation\nshown above:
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.kn": {"fullname": "pyerrors.special.kn", "modulename": "pyerrors.special", "qualname": "kn", "kind": "function", "doc": "\n>>> d*(d-1)/4*np.log(np.pi) + gammaln(a - 0.5*np.arange(0, d)).sum()\n454.1488605074416\n
Modified Bessel function of the second kind of integer order n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.j0": {"fullname": "pyerrors.special.j0", "modulename": "pyerrors.special", "qualname": "j0", "kind": "function", "doc": "j0(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nj0(x, out=None)
\n\nBessel function of the first kind of order 0.
\n\nParameters
\n\n\n
\n\n- x (array_like):\nArgument (float).
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- J (scalar or ndarray):\nValue of the Bessel function of the first kind of order 0 at
\nx
.See Also
\n\n\n\n
jv
: Bessel function of real order and complex argument.
\nspherical_jn
: spherical Bessel functions.Notes
\n\nThe domain is divided into the intervals [0, 5] and (5, infinity). In the\nfirst interval the following rational approximation is used:
\n\n$$J_0(x) \\approx (w - r_1^2)(w - r_2^2) \\frac{P_3(w)}{Q_8(w)},$$
\n\nwhere \\( w = x^2 \\) and \\( r_1 \\), \\( r_2 \\) are the zeros of\n\\( J_0 \\), and \\( P_3 \\) and \\( Q_8 \\) are polynomials of degrees 3\nand 8, respectively.
\n\nIn the second interval, the Hankel asymptotic expansion is employed with\ntwo rational functions of degree 6/6 and 7/7.
\n\nThis function is a wrapper for the Cephes 1 routine
\n\nj0
.\nIt should not be confused with the spherical Bessel functions (see\nspherical_jn
).References
\n\nExamples
\n\nCalculate the function at one point:
\n\n\n\n\n\n>>> from scipy.special import j0\n>>> j0(1.)\n0.7651976865579665\n
Calculate the function at several points:
\n\n\n\n\n\n>>> import numpy as np\n>>> j0(np.array([-2., 0., 4.]))\narray([ 0.22389078, 1. , -0.39714981])\n
Plot the function from -20 to 20.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-20., 20., 1000)\n>>> y = j0(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.y0": {"fullname": "pyerrors.special.y0", "modulename": "pyerrors.special", "qualname": "y0", "kind": "function", "doc": "
\n\n
\n- \n
\nCephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ ↩
\ny0(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ny0(x, out=None)
\n\nBessel function of the second kind of order 0.
\n\nParameters
\n\n\n
\n\n- x (array_like):\nArgument (float).
\n- out (ndarray, optional):\nOptional output array for the function results
\nReturns
\n\n\n
\n\n- Y (scalar or ndarray):\nValue of the Bessel function of the second kind of order 0 at
\nx
.See Also
\n\n\n\n
j0
: Bessel function of the first kind of order 0
\nyv
: Bessel function of the first kindNotes
\n\nThe domain is divided into the intervals [0, 5] and (5, infinity). In the\nfirst interval a rational approximation \\( R(x) \\) is employed to\ncompute,
\n\n$$Y_0(x) = R(x) + \\frac{2 \\log(x) J_0(x)}{\\pi},$$
\n\nwhere \\( J_0 \\) is the Bessel function of the first kind of order 0.
\n\nIn the second interval, the Hankel asymptotic expansion is employed with\ntwo rational functions of degree 6/6 and 7/7.
\n\nThis function is a wrapper for the Cephes 1 routine
\n\ny0
.References
\n\nExamples
\n\nCalculate the function at one point:
\n\n\n\n\n\n>>> from scipy.special import y0\n>>> y0(1.)\n0.08825696421567697\n
Calculate at several points:
\n\n\n\n\n\n>>> import numpy as np\n>>> y0(np.array([0.5, 2., 3.]))\narray([-0.44451873, 0.51037567, 0.37685001])\n
Plot the function from 0 to 10.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(0., 10., 1000)\n>>> y = y0(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.j1": {"fullname": "pyerrors.special.j1", "modulename": "pyerrors.special", "qualname": "j1", "kind": "function", "doc": "
\n\n
\n- \n
\nCephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ ↩
\nj1(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nj1(x, out=None)
\n\nBessel function of the first kind of order 1.
\n\nParameters
\n\n\n
\n\n- x (array_like):\nArgument (float).
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- J (scalar or ndarray):\nValue of the Bessel function of the first kind of order 1 at
\nx
.See Also
\n\n\n\n
jv
: Bessel function of the first kind
\nspherical_jn
: spherical Bessel functions.Notes
\n\nThe domain is divided into the intervals [0, 8] and (8, infinity). In the\nfirst interval a 24 term Chebyshev expansion is used. In the second, the\nasymptotic trigonometric representation is employed using two rational\nfunctions of degree 5/5.
\n\nThis function is a wrapper for the Cephes 1 routine
\n\nj1
.\nIt should not be confused with the spherical Bessel functions (see\nspherical_jn
).References
\n\nExamples
\n\nCalculate the function at one point:
\n\n\n\n\n\n>>> from scipy.special import j1\n>>> j1(1.)\n0.44005058574493355\n
Calculate the function at several points:
\n\n\n\n\n\n>>> import numpy as np\n>>> j1(np.array([-2., 0., 4.]))\narray([-0.57672481, 0. , -0.06604333])\n
Plot the function from -20 to 20.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-20., 20., 1000)\n>>> y = j1(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.y1": {"fullname": "pyerrors.special.y1", "modulename": "pyerrors.special", "qualname": "y1", "kind": "function", "doc": "
\n\n
\n- \n
\nCephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ ↩
\ny1(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ny1(x, out=None)
\n\nBessel function of the second kind of order 1.
\n\nParameters
\n\n\n
\n\n- x (array_like):\nArgument (float).
\n- out (ndarray, optional):\nOptional output array for the function results
\nReturns
\n\n\n
\n\n- Y (scalar or ndarray):\nValue of the Bessel function of the second kind of order 1 at
\nx
.See Also
\n\n\n\n
j1
: Bessel function of the first kind of order 1
\nyn
: Bessel function of the second kind
\nyv
: Bessel function of the second kindNotes
\n\nThe domain is divided into the intervals [0, 8] and (8, infinity). In the\nfirst interval a 25 term Chebyshev expansion is used, and computing\n\\( J_1 \\) (the Bessel function of the first kind) is required. In the\nsecond, the asymptotic trigonometric representation is employed using two\nrational functions of degree 5/5.
\n\nThis function is a wrapper for the Cephes 1 routine
\n\ny1
.References
\n\nExamples
\n\nCalculate the function at one point:
\n\n\n\n\n\n>>> from scipy.special import y1\n>>> y1(1.)\n-0.7812128213002888\n
Calculate at several points:
\n\n\n\n\n\n>>> import numpy as np\n>>> y1(np.array([0.5, 2., 3.]))\narray([-1.47147239, -0.10703243, 0.32467442])\n
Plot the function from 0 to 10.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(0., 10., 1000)\n>>> y = y1(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.jn": {"fullname": "pyerrors.special.jn", "modulename": "pyerrors.special", "qualname": "jn", "kind": "function", "doc": "
\n\n
\n- \n
\nCephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ ↩
\njv(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\njv(v, z, out=None)
\n\nBessel function of the first kind of real order and complex argument.
\n\nParameters
\n\n\n
\n\n- v (array_like):\nOrder (float).
\n- z (array_like):\nArgument (float or complex).
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- J (scalar or ndarray):\nValue of the Bessel function, \\( J_v(z) \\).
\nSee Also
\n\n\n\n
jve
: \\( J_v \\) with leading exponential behavior stripped off.
\nspherical_jn
: spherical Bessel functions.
\nj0
: faster version of this function for order 0.
\nj1
: faster version of this function for order 1.Notes
\n\nFor positive
\n\nv
values, the computation is carried out using the AMOS\n1zbesj
routine, which exploits the connection to the modified\nBessel function \\( I_v \\),$$J_v(z) = \\exp(v\\pi\\imath/2) I_v(-\\imath z)\\qquad (\\Im z > 0)
\n\nJ_v(z) = \\exp(-v\\pi\\imath/2) I_v(\\imath z)\\qquad (\\Im z < 0)$$
\n\nFor negative
\n\nv
values the formula,$$J_{-v}(z) = J_v(z) \\cos(\\pi v) - Y_v(z) \\sin(\\pi v)$$
\n\nis used, where \\( Y_v(z) \\) is the Bessel function of the second\nkind, computed using the AMOS routine
\n\nzbesy
. Note that the second\nterm is exactly zero for integerv
; to improve accuracy the second\nterm is explicitly omitted forv
values such thatv = floor(v)
.Not to be confused with the spherical Bessel functions (see
\n\nspherical_jn
).References
\n\nExamples
\n\nEvaluate the function of order 0 at one point.
\n\n\n\n\n\n>>> from scipy.special import jv\n>>> jv(0, 1.)\n0.7651976865579666\n
Evaluate the function at one point for different orders.
\n\n\n\n\n\n>>> jv(0, 1.), jv(1, 1.), jv(1.5, 1.)\n(0.7651976865579666, 0.44005058574493355, 0.24029783912342725)\n
The evaluation for different orders can be carried out in one call by\nproviding a list or NumPy array as argument for the
\n\nv
parameter:\n\n\n\n>>> jv([0, 1, 1.5], 1.)\narray([0.76519769, 0.44005059, 0.24029784])\n
Evaluate the function at several points for order 0 by providing an\narray for
\n\nz
.\n\n\n\n>>> import numpy as np\n>>> points = np.array([-2., 0., 3.])\n>>> jv(0, points)\narray([ 0.22389078, 1. , -0.26005195])\n
If
\n\nz
is an array, the order parameterv
must be broadcastable to\nthe correct shape if different orders shall be computed in one call.\nTo calculate the orders 0 and 1 for an 1D array:\n\n\n\n>>> orders = np.array([[0], [1]])\n>>> orders.shape\n(2, 1)\n
\n\n\n\n>>> jv(orders, points)\narray([[ 0.22389078, 1. , -0.26005195],\n [-0.57672481, 0. , 0.33905896]])\n
Plot the functions of order 0 to 3 from -10 to 10.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-10., 10., 1000)\n>>> for i in range(4):\n... ax.plot(x, jv(i, x), label=f'$J_{i!r}$')\n>>> ax.legend()\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.yn": {"fullname": "pyerrors.special.yn", "modulename": "pyerrors.special", "qualname": "yn", "kind": "function", "doc": "
\n\n
\n- \n
\nDonald E. Amos, \"AMOS, A Portable Package for Bessel Functions\nof a Complex Argument and Nonnegative Order\",\nhttp://netlib.org/amos/ ↩
\nyn(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nyn(n, x, out=None)
\n\nBessel function of the second kind of integer order and real argument.
\n\nParameters
\n\n\n
\n\n- n (array_like):\nOrder (integer).
\n- x (array_like):\nArgument (float).
\n- out (ndarray, optional):\nOptional output array for the function results
\nReturns
\n\n\n
\n\n- Y (scalar or ndarray):\nValue of the Bessel function, \\( Y_n(x) \\).
\nSee Also
\n\n\n\n
yv
: For real order and real or complex argument.
\ny0
: faster implementation of this function for order 0
\ny1
: faster implementation of this function for order 1Notes
\n\nWrapper for the Cephes 1 routine
\n\nyn
.The function is evaluated by forward recurrence on
\n\nn
, starting with\nvalues computed by the Cephes routinesy0
andy1
. Ifn = 0
or 1,\nthe routine fory0
ory1
is called directly.References
\n\nExamples
\n\nEvaluate the function of order 0 at one point.
\n\n\n\n\n\n>>> from scipy.special import yn\n>>> yn(0, 1.)\n0.08825696421567697\n
Evaluate the function at one point for different orders.
\n\n\n\n\n\n>>> yn(0, 1.), yn(1, 1.), yn(2, 1.)\n(0.08825696421567697, -0.7812128213002888, -1.6506826068162546)\n
The evaluation for different orders can be carried out in one call by\nproviding a list or NumPy array as argument for the
\n\nv
parameter:\n\n\n\n>>> yn([0, 1, 2], 1.)\narray([ 0.08825696, -0.78121282, -1.65068261])\n
Evaluate the function at several points for order 0 by providing an\narray for
\n\nz
.\n\n\n\n>>> import numpy as np\n>>> points = np.array([0.5, 3., 8.])\n>>> yn(0, points)\narray([-0.44451873, 0.37685001, 0.22352149])\n
If
\n\nz
is an array, the order parameterv
must be broadcastable to\nthe correct shape if different orders shall be computed in one call.\nTo calculate the orders 0 and 1 for an 1D array:\n\n\n\n>>> orders = np.array([[0], [1]])\n>>> orders.shape\n(2, 1)\n
\n\n\n\n>>> yn(orders, points)\narray([[-0.44451873, 0.37685001, 0.22352149],\n [-1.47147239, 0.32467442, -0.15806046]])\n
Plot the functions of order 0 to 3 from 0 to 10.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(0., 10., 1000)\n>>> for i in range(4):\n... ax.plot(x, yn(i, x), label=f'$Y_{i!r}$')\n>>> ax.set_ylim(-3, 1)\n>>> ax.legend()\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.i0": {"fullname": "pyerrors.special.i0", "modulename": "pyerrors.special", "qualname": "i0", "kind": "function", "doc": "
\n\n
\n- \n
\nCephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ ↩
\ni0(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ni0(x, out=None)
\n\nModified Bessel function of order 0.
\n\nDefined as,
\n\n$$I_0(x) = \\sum_{k=0}^\\infty \\frac{(x^2/4)^k}{(k!)^2} = J_0(\\imath x),$$
\n\nwhere \\( J_0 \\) is the Bessel function of the first kind of order 0.
\n\nParameters
\n\n\n
\n\n- x (array_like):\nArgument (float)
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- I (scalar or ndarray):\nValue of the modified Bessel function of order 0 at
\nx
.See Also
\n\n\n\n
iv
: Modified Bessel function of any order
\ni0e
: Exponentially scaled modified Bessel function of order 0Notes
\n\nThe range is partitioned into the two intervals [0, 8] and (8, infinity).\nChebyshev polynomial expansions are employed in each interval.
\n\nThis function is a wrapper for the Cephes 1 routine
\n\ni0
.References
\n\nExamples
\n\nCalculate the function at one point:
\n\n\n\n\n\n>>> from scipy.special import i0\n>>> i0(1.)\n1.2660658777520082\n
Calculate at several points:
\n\n\n\n\n\n>>> import numpy as np\n>>> i0(np.array([-2., 0., 3.5]))\narray([2.2795853 , 1. , 7.37820343])\n
Plot the function from -10 to 10.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-10., 10., 1000)\n>>> y = i0(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.i1": {"fullname": "pyerrors.special.i1", "modulename": "pyerrors.special", "qualname": "i1", "kind": "function", "doc": "
\n\n
\n- \n
\nCephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ ↩
\ni1(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ni1(x, out=None)
\n\nModified Bessel function of order 1.
\n\nDefined as,
\n\n$$I_1(x) = \\frac{1}{2}x \\sum_{k=0}^\\infty \\frac{(x^2/4)^k}{k! (k + 1)!}\n = -\\imath J_1(\\imath x),$$
\n\nwhere \\( J_1 \\) is the Bessel function of the first kind of order 1.
\n\nParameters
\n\n\n
\n\n- x (array_like):\nArgument (float)
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- I (scalar or ndarray):\nValue of the modified Bessel function of order 1 at
\nx
.See Also
\n\n\n\n
iv
: Modified Bessel function of the first kind
\ni1e
: Exponentially scaled modified Bessel function of order 1Notes
\n\nThe range is partitioned into the two intervals [0, 8] and (8, infinity).\nChebyshev polynomial expansions are employed in each interval.
\n\nThis function is a wrapper for the Cephes 1 routine
\n\ni1
.References
\n\nExamples
\n\nCalculate the function at one point:
\n\n\n\n\n\n>>> from scipy.special import i1\n>>> i1(1.)\n0.5651591039924851\n
Calculate the function at several points:
\n\n\n\n\n\n>>> import numpy as np\n>>> i1(np.array([-2., 0., 6.]))\narray([-1.59063685, 0. , 61.34193678])\n
Plot the function between -10 and 10.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-10., 10., 1000)\n>>> y = i1(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.iv": {"fullname": "pyerrors.special.iv", "modulename": "pyerrors.special", "qualname": "iv", "kind": "function", "doc": "
\n\n
\n- \n
\nCephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ ↩
\niv(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\niv(v, z, out=None)
\n\nModified Bessel function of the first kind of real order.
\n\nParameters
\n\n\n
\n\n- v (array_like):\nOrder. If
\nz
is of real type and negative,v
must be integer\nvalued.- z (array_like of float or complex):\nArgument.
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: Values of the modified Bessel function.
\nSee Also
\n\n\n\n
ive
: This function with leading exponential behavior stripped off.
\ni0
: Faster version of this function for order 0.
\ni1
: Faster version of this function for order 1.Notes
\n\nFor real
\n\nz
and \\( v \\in [-50, 50] \\), the evaluation is carried out\nusing Temme's method 1. For larger orders, uniform asymptotic\nexpansions are applied.For complex
\n\nz
and positivev
, the AMOS 2zbesi
routine is\ncalled. It uses a power series for smallz
, the asymptotic expansion\nfor largeabs(z)
, the Miller algorithm normalized by the Wronskian\nand a Neumann series for intermediate magnitudes, and the uniform\nasymptotic expansions for \\( I_v(z) \\) and \\( J_v(z) \\) for large\norders. Backward recurrence is used to generate sequences or reduce\norders when necessary.The calculations above are done in the right half plane and continued\ninto the left half plane by the formula,
\n\n$$I_v(z \\exp(\\pm\\imath\\pi)) = \\exp(\\pm\\pi v) I_v(z)$$
\n\n(valid when the real part of
\n\nz
is positive). For negativev
, the\nformula$$I_{-v}(z) = I_v(z) + \\frac{2}{\\pi} \\sin(\\pi v) K_v(z)$$
\n\nis used, where \\( K_v(z) \\) is the modified Bessel function of the\nsecond kind, evaluated using the AMOS routine
\n\nzbesk
.References
\n\nExamples
\n\nEvaluate the function of order 0 at one point.
\n\n\n\n\n\n>>> from scipy.special import iv\n>>> iv(0, 1.)\n1.2660658777520084\n
Evaluate the function at one point for different orders.
\n\n\n\n\n\n>>> iv(0, 1.), iv(1, 1.), iv(1.5, 1.)\n(1.2660658777520084, 0.565159103992485, 0.2935253263474798)\n
The evaluation for different orders can be carried out in one call by\nproviding a list or NumPy array as argument for the
\n\nv
parameter:\n\n\n\n>>> iv([0, 1, 1.5], 1.)\narray([1.26606588, 0.5651591 , 0.29352533])\n
Evaluate the function at several points for order 0 by providing an\narray for
\n\nz
.\n\n\n\n>>> import numpy as np\n>>> points = np.array([-2., 0., 3.])\n>>> iv(0, points)\narray([2.2795853 , 1. , 4.88079259])\n
If
\n\nz
is an array, the order parameterv
must be broadcastable to\nthe correct shape if different orders shall be computed in one call.\nTo calculate the orders 0 and 1 for an 1D array:\n\n\n\n>>> orders = np.array([[0], [1]])\n>>> orders.shape\n(2, 1)\n
\n\n\n\n>>> iv(orders, points)\narray([[ 2.2795853 , 1. , 4.88079259],\n [-1.59063685, 0. , 3.95337022]])\n
Plot the functions of order 0 to 3 from -5 to 5.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-5., 5., 1000)\n>>> for i in range(4):\n... ax.plot(x, iv(i, x), label=f'$I_{i!r}$')\n>>> ax.legend()\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.ive": {"fullname": "pyerrors.special.ive", "modulename": "pyerrors.special", "qualname": "ive", "kind": "function", "doc": "
\n\n
\n- \n
\n\nTemme, Journal of Computational Physics, vol 21, 343 (1976) ↩
\n- \n
\nDonald E. Amos, \"AMOS, A Portable Package for Bessel Functions\nof a Complex Argument and Nonnegative Order\",\nhttp://netlib.org/amos/ ↩
\nive(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nive(v, z, out=None)
\n\nExponentially scaled modified Bessel function of the first kind.
\n\nDefined as::
\n\n\n\nive(v, z) = iv(v, z) * exp(-abs(z.real))\n
For imaginary numbers without a real part, returns the unscaled\nBessel function of the first kind
\n\niv
.Parameters
\n\n\n
\n\n- v (array_like of float):\nOrder.
\n- z (array_like of float or complex):\nArgument.
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: Values of the exponentially scaled modified Bessel function.
\nSee Also
\n\n\n\n
iv
: Modified Bessel function of the first kind
\ni0e
: Faster implementation of this function for order 0
\ni1e
: Faster implementation of this function for order 1Notes
\n\nFor positive
\n\nv
, the AMOS 1zbesi
routine is called. It uses a\npower series for smallz
, the asymptotic expansion for large\nabs(z)
, the Miller algorithm normalized by the Wronskian and a\nNeumann series for intermediate magnitudes, and the uniform asymptotic\nexpansions for \\( I_v(z) \\) and \\( J_v(z) \\) for large orders.\nBackward recurrence is used to generate sequences or reduce orders when\nnecessary.The calculations above are done in the right half plane and continued\ninto the left half plane by the formula,
\n\n$$I_v(z \\exp(\\pm\\imath\\pi)) = \\exp(\\pm\\pi v) I_v(z)$$
\n\n(valid when the real part of
\n\nz
is positive). For negativev
, the\nformula$$I_{-v}(z) = I_v(z) + \\frac{2}{\\pi} \\sin(\\pi v) K_v(z)$$
\n\nis used, where \\( K_v(z) \\) is the modified Bessel function of the\nsecond kind, evaluated using the AMOS routine
\n\nzbesk
.\n\n
ive
is useful for large argumentsz
: for these,iv
easily overflows,\nwhileive
does not due to the exponential scaling.References
\n\nExamples
\n\nIn the following example
\n\niv
returns infinity whereasive
still returns\na finite number.\n\n\n\n>>> from scipy.special import iv, ive\n>>> import numpy as np\n>>> import matplotlib.pyplot as plt\n>>> iv(3, 1000.), ive(3, 1000.)\n(inf, 0.01256056218254712)\n
Evaluate the function at one point for different orders by\nproviding a list or NumPy array as argument for the
\n\nv
parameter:\n\n\n\n>>> ive([0, 1, 1.5], 1.)\narray([0.46575961, 0.20791042, 0.10798193])\n
Evaluate the function at several points for order 0 by providing an\narray for
\n\nz
.\n\n\n\n>>> points = np.array([-2., 0., 3.])\n>>> ive(0, points)\narray([0.30850832, 1. , 0.24300035])\n
Evaluate the function at several points for different orders by\nproviding arrays for both
\n\nv
forz
. Both arrays have to be\nbroadcastable to the correct shape. To calculate the orders 0, 1\nand 2 for a 1D array of points:\n\n\n\n>>> ive([[0], [1], [2]], points)\narray([[ 0.30850832, 1. , 0.24300035],\n [-0.21526929, 0. , 0.19682671],\n [ 0.09323903, 0. , 0.11178255]])\n
Plot the functions of order 0 to 3 from -5 to 5.
\n\n\n\n\n\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-5., 5., 1000)\n>>> for i in range(4):\n... ax.plot(x, ive(i, x), label=fr'$I_{i!r}(z)\\cdot e^{{-|z|}}$')\n>>> ax.legend()\n>>> ax.set_xlabel(r"$z$")\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.erf": {"fullname": "pyerrors.special.erf", "modulename": "pyerrors.special", "qualname": "erf", "kind": "function", "doc": "
\n\n
\n- \n
\nDonald E. Amos, \"AMOS, A Portable Package for Bessel Functions\nof a Complex Argument and Nonnegative Order\",\nhttp://netlib.org/amos/ ↩
\nerf(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nerf(z, out=None)
\n\nReturns the error function of complex argument.
\n\nIt is defined as
\n\n2/sqrt(pi)*integral(exp(-t**2), t=0..z)
.Parameters
\n\n\n
\n\n- x (ndarray):\nInput array.
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- res (scalar or ndarray):\nThe values of the error function at the given points
\nx
.See Also
\n\n\n\n
erfc,
,erfinv,
,erfcinv,
,wofz,
,erfcx,
,erfi
Notes
\n\nThe cumulative of the unit normal distribution is given by\n
\n\nPhi(z) = 1/2[1 + erf(z/sqrt(2))]
.References
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> from scipy import special\n>>> import matplotlib.pyplot as plt\n>>> x = np.linspace(-3, 3)\n>>> plt.plot(x, special.erf(x))\n>>> plt.xlabel('$x$')\n>>> plt.ylabel('$erf(x)$')\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.erfc": {"fullname": "pyerrors.special.erfc", "modulename": "pyerrors.special", "qualname": "erfc", "kind": "function", "doc": "
\n\n
\nerfc(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nerfc(x, out=None)
\n\nComplementary error function,
\n\n1 - erf(x)
.Parameters
\n\n\n
\n\n- x (array_like):\nReal or complex valued argument
\n- out (ndarray, optional):\nOptional output array for the function results
\nReturns
\n\n\n
\n\n- scalar or ndarray: Values of the complementary error function
\nSee Also
\n\n\n\n
erf,
,erfi,
,erfcx,
,dawsn,
,wofz
References
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> from scipy import special\n>>> import matplotlib.pyplot as plt\n>>> x = np.linspace(-3, 3)\n>>> plt.plot(x, special.erfc(x))\n>>> plt.xlabel('$x$')\n>>> plt.ylabel('$erfc(x)$')\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.erfinv": {"fullname": "pyerrors.special.erfinv", "modulename": "pyerrors.special", "qualname": "erfinv", "kind": "function", "doc": "
\n\n
\nerfinv(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nerfinv(y, out=None)
\n\nInverse of the error function.
\n\nComputes the inverse of the error function.
\n\nIn the complex domain, there is no unique complex number w satisfying\nerf(w)=z. This indicates a true inverse function would be multivalued.\nWhen the domain restricts to the real, -1 < x < 1, there is a unique real\nnumber satisfying erf(erfinv(x)) = x.
\n\nParameters
\n\n\n
\n\n- y (ndarray):\nArgument at which to evaluate. Domain: [-1, 1]
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- erfinv (scalar or ndarray):\nThe inverse of erf of y, element-wise
\nSee Also
\n\n\n\n
erf
: Error function of a complex argument
\nerfc
: Complementary error function,1 - erf(x)
\nerfcinv
: Inverse of the complementary error functionNotes
\n\nThis function wraps the
\n\nerf_inv
routine from the\nBoost Math C++ library 1.References
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> import matplotlib.pyplot as plt\n>>> from scipy.special import erfinv, erf\n
\n\n\n\n>>> erfinv(0.5)\n0.4769362762044699\n
\n\n\n\n>>> y = np.linspace(-1.0, 1.0, num=9)\n>>> x = erfinv(y)\n>>> x\narray([ -inf, -0.81341985, -0.47693628, -0.22531206, 0. ,\n 0.22531206, 0.47693628, 0.81341985, inf])\n
Verify that
\n\nerf(erfinv(y))
isy
.\n\n\n\n>>> erf(x)\narray([-1. , -0.75, -0.5 , -0.25, 0. , 0.25, 0.5 , 0.75, 1. ])\n
Plot the function:
\n\n\n\n\n\n>>> y = np.linspace(-1, 1, 200)\n>>> fig, ax = plt.subplots()\n>>> ax.plot(y, erfinv(y))\n>>> ax.grid(True)\n>>> ax.set_xlabel('y')\n>>> ax.set_title('erfinv(y)')\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.erfcinv": {"fullname": "pyerrors.special.erfcinv", "modulename": "pyerrors.special", "qualname": "erfcinv", "kind": "function", "doc": "
\n\n
\n- \n
\nThe Boost Developers. \"Boost C++ Libraries\". https://www.boost.org/. ↩
\nerfcinv(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nerfcinv(y, out=None)
\n\nInverse of the complementary error function.
\n\nComputes the inverse of the complementary error function.
\n\nIn the complex domain, there is no unique complex number w satisfying\nerfc(w)=z. This indicates a true inverse function would be multivalued.\nWhen the domain restricts to the real, 0 < x < 2, there is a unique real\nnumber satisfying erfc(erfcinv(x)) = erfcinv(erfc(x)).
\n\nIt is related to inverse of the error function by erfcinv(1-x) = erfinv(x)
\n\nParameters
\n\n\n
\n\n- y (ndarray):\nArgument at which to evaluate. Domain: [0, 2]
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- erfcinv (scalar or ndarray):\nThe inverse of erfc of y, element-wise
\nSee Also
\n\n\n\n
erf
: Error function of a complex argument
\nerfc
: Complementary error function,1 - erf(x)
\nerfinv
: Inverse of the error functionExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> import matplotlib.pyplot as plt\n>>> from scipy.special import erfcinv\n
\n\n\n\n>>> erfcinv(0.5)\n0.4769362762044699\n
\n\n\n\n>>> y = np.linspace(0.0, 2.0, num=11)\n>>> erfcinv(y)\narray([ inf, 0.9061938 , 0.59511608, 0.37080716, 0.17914345,\n -0. , -0.17914345, -0.37080716, -0.59511608, -0.9061938 ,\n -inf])\n
Plot the function:
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.logit": {"fullname": "pyerrors.special.logit", "modulename": "pyerrors.special", "qualname": "logit", "kind": "function", "doc": "\n>>> y = np.linspace(0, 2, 200)\n>>> fig, ax = plt.subplots()\n>>> ax.plot(y, erfcinv(y))\n>>> ax.grid(True)\n>>> ax.set_xlabel('y')\n>>> ax.set_title('erfcinv(y)')\n>>> plt.show()\n
logit(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nlogit(x, out=None)
\n\nLogit ufunc for ndarrays.
\n\nThe logit function is defined as logit(p) = log(p/(1-p)).\nNote that logit(0) = -inf, logit(1) = inf, and logit(p)\nfor p<0 or p>1 yields nan.
\n\nParameters
\n\n\n
\n\n- x (ndarray):\nThe ndarray to apply logit to element-wise.
\n- out (ndarray, optional):\nOptional output array for the function results
\nReturns
\n\n\n
\n\n- scalar or ndarray: An ndarray of the same shape as x. Its entries\nare logit of the corresponding entry of x.
\nSee Also
\n\n\n\n
expit
Notes
\n\nAs a ufunc logit takes a number of optional\nkeyword arguments. For more information\nsee ufuncs
\n\nNew in version 0.10.0.
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> from scipy.special import logit, expit\n
\n\n\n\n>>> logit([0, 0.25, 0.5, 0.75, 1])\narray([ -inf, -1.09861229, 0. , 1.09861229, inf])\n
\n\n
expit
is the inverse oflogit
:\n\n\n\n>>> expit(logit([0.1, 0.75, 0.999]))\narray([ 0.1 , 0.75 , 0.999])\n
Plot logit(x) for x in [0, 1]:
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.expit": {"fullname": "pyerrors.special.expit", "modulename": "pyerrors.special", "qualname": "expit", "kind": "function", "doc": "\n>>> import matplotlib.pyplot as plt\n>>> x = np.linspace(0, 1, 501)\n>>> y = logit(x)\n>>> plt.plot(x, y)\n>>> plt.grid()\n>>> plt.ylim(-6, 6)\n>>> plt.xlabel('x')\n>>> plt.title('logit(x)')\n>>> plt.show()\n
expit(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nexpit(x, out=None)
\n\nExpit (a.k.a. logistic sigmoid) ufunc for ndarrays.
\n\nThe expit function, also known as the logistic sigmoid function, is\ndefined as
\n\nexpit(x) = 1/(1+exp(-x))
. It is the inverse of the\nlogit function.Parameters
\n\n\n
\n\n- x (ndarray):\nThe ndarray to apply expit to element-wise.
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: An ndarray of the same shape as x. Its entries\nare
\nexpit
of the corresponding entry of x.See Also
\n\n\n\n
logit
Notes
\n\nAs a ufunc expit takes a number of optional\nkeyword arguments. For more information\nsee ufuncs
\n\nNew in version 0.10.0.
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> from scipy.special import expit, logit\n
\n\n\n\n>>> expit([-np.inf, -1.5, 0, 1.5, np.inf])\narray([ 0. , 0.18242552, 0.5 , 0.81757448, 1. ])\n
\n\n
logit
is the inverse ofexpit
:\n\n\n\n>>> logit(expit([-2.5, 0, 3.1, 5.0]))\narray([-2.5, 0. , 3.1, 5. ])\n
Plot expit(x) for x in [-6, 6]:
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.logsumexp": {"fullname": "pyerrors.special.logsumexp", "modulename": "pyerrors.special", "qualname": "logsumexp", "kind": "function", "doc": "\n>>> import matplotlib.pyplot as plt\n>>> x = np.linspace(-6, 6, 121)\n>>> y = expit(x)\n>>> plt.plot(x, y)\n>>> plt.grid()\n>>> plt.xlim(-6, 6)\n>>> plt.xlabel('x')\n>>> plt.title('expit(x)')\n>>> plt.show()\n
Compute the log of the sum of exponentials of input elements.
\n\nParameters
\n\n\n
\n\n- a (array_like):\nInput array.
\n- \n
axis (None or int or tuple of ints, optional):\nAxis or axes over which the sum is taken. By default
\n\naxis
is None,\nand all elements are summed.New in version 0.11.0.
- \n
b (array-like, optional):\nScaling factor for exp(
\n\na
) must be of the same shape asa
or\nbroadcastable toa
. These values may be negative in order to\nimplement subtraction.New in version 0.12.0.
- \n
keepdims (bool, optional):\nIf this is set to True, the axes which are reduced are left in the\nresult as dimensions with size one. With this option, the result\nwill broadcast correctly against the original array.
\n\nNew in version 0.15.0.
- \n
return_sign (bool, optional):\nIf this is set to True, the result will be a pair containing sign\ninformation; if False, results that are negative will be returned\nas NaN. Default is False (no sign information).
\n\nNew in version 0.16.0.
Returns
\n\n\n
\n\n- res (ndarray):\nThe result,
\nnp.log(np.sum(np.exp(a)))
calculated in a numerically\nmore stable way. Ifb
is given thennp.log(np.sum(b*np.exp(a)))
\nis returned. Ifreturn_sign
is True,res
contains the log of\nthe absolute value of the argument.- sgn (ndarray):\nIf
\nreturn_sign
is True, this will be an array of floating-point\nnumbers matching res containing +1, 0, -1 (for real-valued inputs)\nor a complex phase (for complex inputs). This gives the sign of the\nargument of the logarithm inres
.\nIfreturn_sign
is False, only one result is returned.See Also
\n\n\n\n
numpy.logaddexp,
,numpy.logaddexp2
Notes
\n\nNumPy has a logaddexp function which is very similar to
\n\nlogsumexp
, but\nonly handles two arguments.logaddexp.reduce
is similar to this\nfunction, but may be less stable.The logarithm is a multivalued function: for each \\( x \\) there is an\ninfinite number of \\( z \\) such that \\( exp(z) = x \\). The convention\nis to return the \\( z \\) whose imaginary part lies in \\( (-pi, pi] \\).
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> from scipy.special import logsumexp\n>>> a = np.arange(10)\n>>> logsumexp(a)\n9.4586297444267107\n>>> np.log(np.sum(np.exp(a)))\n9.4586297444267107\n
With weights
\n\n\n\n\n\n>>> a = np.arange(10)\n>>> b = np.arange(10, 0, -1)\n>>> logsumexp(a, b=b)\n9.9170178533034665\n>>> np.log(np.sum(b*np.exp(a)))\n9.9170178533034647\n
Returning a sign flag
\n\n\n\n\n\n>>> logsumexp([1,2],b=[1,-1],return_sign=True)\n(1.5413248546129181, -1.0)\n
Notice that
\n\nlogsumexp
does not directly support masked arrays. To use it\non a masked array, convert the mask into zero weights:\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.version": {"fullname": "pyerrors.version", "modulename": "pyerrors.version", "kind": "module", "doc": "\n"}}, "docInfo": {"pyerrors": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 8400}, "pyerrors.correlators": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 367}, "pyerrors.correlators.Corr.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 100}, "pyerrors.correlators.Corr.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.content": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.T": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prange": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.gm": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.projected": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 64}, "pyerrors.correlators.Corr.item": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.plottable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 31}, "pyerrors.correlators.Corr.symmetric": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.anti_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.trace": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 12}, "pyerrors.correlators.Corr.matrix_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.GEVP": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 58, "bases": 0, "doc": 417}, "pyerrors.correlators.Corr.Eigenvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 59}, "pyerrors.correlators.Corr.Hankel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 67}, "pyerrors.correlators.Corr.roll": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 26}, "pyerrors.correlators.Corr.reverse": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.thin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 43}, "pyerrors.correlators.Corr.correlate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 79}, "pyerrors.correlators.Corr.T_symmetry": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 51}, "pyerrors.correlators.Corr.deriv": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 47}, "pyerrors.correlators.Corr.second_deriv": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 126}, "pyerrors.correlators.Corr.m_eff": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 148}, "pyerrors.correlators.Corr.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 110}, "pyerrors.correlators.Corr.plateau": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 92}, "pyerrors.correlators.Corr.set_prange": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 11}, "pyerrors.correlators.Corr.show": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 161, "bases": 0, "doc": 263}, "pyerrors.correlators.Corr.spaghetti_plot": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 42}, "pyerrors.correlators.Corr.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 69}, "pyerrors.correlators.Corr.print": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prune": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 325}, "pyerrors.correlators.Corr.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 100}, "pyerrors.covobs.Covobs.name": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.errsq": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 12}, "pyerrors.covobs.Covobs.cov": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.grad": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaX": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaY": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaZ": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaT": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 210, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gamma5": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.identity": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.epsilon_tensor": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 40}, "pyerrors.dirac.epsilon_tensor_rank4": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 41}, "pyerrors.dirac.Grid_gamma": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 12, "bases": 0, "doc": 9}, "pyerrors.fits": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 75}, "pyerrors.fits.Fit_result.fit_parameters": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result.gamma_method": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 10}, "pyerrors.fits.Fit_result.gm": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 10}, "pyerrors.fits.least_squares": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 2714}, "pyerrors.fits.total_least_squares": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 478}, "pyerrors.fits.fit_lin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 110}, "pyerrors.fits.qqplot": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 39}, "pyerrors.fits.residual_plot": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 45}, "pyerrors.fits.error_band": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 48}, "pyerrors.fits.ks_test": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 52}, "pyerrors.input": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 81}, "pyerrors.input.bdio": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.bdio.read_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 122}, "pyerrors.input.bdio.write_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 126}, "pyerrors.input.bdio.read_mesons": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 211}, "pyerrors.input.bdio.read_dSdm": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 191}, "pyerrors.input.dobs": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.dobs.create_pobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 186}, "pyerrors.input.dobs.write_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 214}, "pyerrors.input.dobs.read_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 164}, "pyerrors.input.dobs.import_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 184}, "pyerrors.input.dobs.read_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 207}, "pyerrors.input.dobs.create_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 82, "bases": 0, "doc": 229}, "pyerrors.input.dobs.write_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 99, "bases": 0, "doc": 252}, "pyerrors.input.hadrons": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.hadrons.read_hd5": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 242}, "pyerrors.input.hadrons.read_meson_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 185}, "pyerrors.input.hadrons.extract_t0_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 73, "bases": 0, "doc": 157}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 106}, "pyerrors.input.hadrons.Npr_matrix": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 1093}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 30}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 99}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 99}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 60, "bases": 0, "doc": 112}, "pyerrors.input.json": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.json.create_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 138}, "pyerrors.input.json.dump_to_json": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 174}, "pyerrors.input.json.import_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 168}, "pyerrors.input.json.load_json": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 188}, "pyerrors.input.json.dump_dict_to_json": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 184}, "pyerrors.input.json.load_json_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 172}, "pyerrors.input.misc": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.misc.fit_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 250}, "pyerrors.input.misc.read_pbp": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 75}, "pyerrors.input.openQCD": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.openQCD.read_rwms": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 271}, "pyerrors.input.openQCD.extract_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 518}, "pyerrors.input.openQCD.extract_w0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 520}, "pyerrors.input.openQCD.read_qtop": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 53, "bases": 0, "doc": 383}, "pyerrors.input.openQCD.read_gf_coupling": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 345}, "pyerrors.input.openQCD.qtop_projection": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 72}, "pyerrors.input.openQCD.read_qtop_sector": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 363}, "pyerrors.input.openQCD.read_ms5_xsf": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 308}, "pyerrors.input.pandas": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.pandas.to_sql": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 54, "bases": 0, "doc": 113}, "pyerrors.input.pandas.read_sql": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 105}, "pyerrors.input.pandas.dump_df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 111}, "pyerrors.input.pandas.load_df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 115}, "pyerrors.input.sfcf": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.sfcf.sep": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.sfcf.read_sfcf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 139, "bases": 0, "doc": 421}, "pyerrors.input.sfcf.read_sfcf_multi": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 177, "bases": 0, "doc": 458}, "pyerrors.input.utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "pyerrors.input.utils.sort_names": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 81}, "pyerrors.input.utils.check_idl": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 70}, "pyerrors.input.utils.check_params": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 114}, "pyerrors.integrate": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.integrate.quad": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 374}, "pyerrors.linalg": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.linalg.matmul": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 54}, "pyerrors.linalg.jack_matmul": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 58}, "pyerrors.linalg.einsum": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 52}, "pyerrors.linalg.inv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.linalg.cholesky": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.linalg.det": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 8}, "pyerrors.linalg.eigh": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 20}, "pyerrors.linalg.eig": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 17}, "pyerrors.linalg.eigv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 18}, "pyerrors.linalg.pinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.linalg.svd": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.misc": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.misc.print_config": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 12}, "pyerrors.misc.errorbar": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 69}, "pyerrors.misc.dump_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "pyerrors.misc.load_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 42}, "pyerrors.misc.pseudo_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 105}, "pyerrors.misc.gen_correlated_data": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 127}, "pyerrors.mpm": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.mpm.matrix_pencil_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 165}, "pyerrors.obs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 238}, "pyerrors.obs.Obs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 62}, "pyerrors.obs.Obs.S_global": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.names": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.shape": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.r_values": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.deltas": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.idl": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.ddvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.dvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cov_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.mc_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_content": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.covobs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.gm": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.details": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 85}, "pyerrors.obs.Obs.is_zero_within_error": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 50}, "pyerrors.obs.Obs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.plot_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_rep_dist": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 14}, "pyerrors.obs.Obs.plot_history": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_piechart": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 47}, "pyerrors.obs.Obs.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 89}, "pyerrors.obs.Obs.export_jackknife": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 101}, "pyerrors.obs.Obs.export_bootstrap": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 185}, "pyerrors.obs.Obs.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_ddvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_drho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dtauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_dtauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_tauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_windowsize": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "pyerrors.obs.CObs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 14}, "pyerrors.obs.CObs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 15}, "pyerrors.obs.CObs.conjugate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.gamma_method": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 28}, "pyerrors.obs.gm": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 28}, "pyerrors.obs.derived_observable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 184}, "pyerrors.obs.reweight": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 99}, "pyerrors.obs.correlate": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 75}, "pyerrors.obs.covariance": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 374}, "pyerrors.obs.invert_corr_cov_cholesky": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 84}, "pyerrors.obs.sort_corr": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 630}, "pyerrors.obs.import_jackknife": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 61}, "pyerrors.obs.import_bootstrap": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 107}, "pyerrors.obs.merge_obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 56}, "pyerrors.obs.cov_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 90}, "pyerrors.roots": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.roots.find_root": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 189}, "pyerrors.special": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.special.beta": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 519}, "pyerrors.special.betainc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 913}, "pyerrors.special.betaln": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 476}, "pyerrors.special.polygamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 277}, "pyerrors.special.psi": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 534}, "pyerrors.special.digamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 534}, "pyerrors.special.gamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1217}, "pyerrors.special.gammaln": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 608}, "pyerrors.special.gammainc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 514}, "pyerrors.special.gammaincc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 531}, "pyerrors.special.gammasgn": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 620}, "pyerrors.special.rgamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 509}, "pyerrors.special.multigammaln": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 494}, "pyerrors.special.kn": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 13}, "pyerrors.special.j0": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 670}, "pyerrors.special.y0": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 628}, "pyerrors.special.j1": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 600}, "pyerrors.special.y1": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 609}, "pyerrors.special.jn": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1211}, "pyerrors.special.yn": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1096}, "pyerrors.special.i0": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 604}, "pyerrors.special.i1": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 612}, "pyerrors.special.iv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1281}, "pyerrors.special.ive": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1217}, "pyerrors.special.erf": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 419}, "pyerrors.special.erfc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 366}, "pyerrors.special.erfinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 784}, "pyerrors.special.erfcinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 658}, "pyerrors.special.logit": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 647}, "pyerrors.special.expit": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 683}, "pyerrors.special.logsumexp": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1124}, "pyerrors.version": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 288, "save": true}, "index": {"qualname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 57, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.name": {"tf": 1}, "pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 8}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"0": {"docs": {"pyerrors.special.i0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.identity": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}, "t": {"0": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "docs": {"pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {"pyerrors.special.psi": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 20}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.dirac.gamma5": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 8, "x": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.dirac.gammaY": {"tf": 1}}, "df": 1}, "z": {"docs": {"pyerrors.dirac.gammaZ": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.dirac.gammaT": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1, "c": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}}, "df": 6}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "s": {"5": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 4}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}, "p": {"docs": {"pyerrors.input.sfcf.sep": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}, "v": {"docs": {"pyerrors.linalg.eigv": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1, "c": {"docs": {"pyerrors.special.erfc": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erfcinv": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erfinv": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.digamma": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 7}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logit": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.name": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}, "n": {"docs": {"pyerrors.special.kn": {"tf": 1}}, "df": 1}}, "w": {"0": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"0": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.j1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 68, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}, "y": {"0": {"docs": {"pyerrors.special.y0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.y1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}}}}, "fullname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.name": {"tf": 1}, "pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.sep": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}, "pyerrors.version": {"tf": 1}}, "df": 288}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {"pyerrors.special.psi": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 57, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}}, "df": 56}}}, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.name": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.value": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.grad": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 9}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"0": {"docs": {"pyerrors.special.i0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.sep": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 56}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.identity": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}, "t": {"0": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "docs": {"pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 20}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.dirac.gamma5": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 8, "x": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.dirac.gammaY": {"tf": 1}}, "df": 1}, "z": {"docs": {"pyerrors.dirac.gammaZ": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.dirac.gammaT": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1, "c": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}}, "df": 6}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 10}}}, "s": {"5": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 4}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}, "p": {"docs": {"pyerrors.input.sfcf.sep": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 32}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.sep": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}, "v": {"docs": {"pyerrors.linalg.eigv": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1, "c": {"docs": {"pyerrors.special.erfc": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erfcinv": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erfinv": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 10}}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 11}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.digamma": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 8}}}, "f": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 12}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logit": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 12}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.name": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.version": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}, "n": {"docs": {"pyerrors.special.kn": {"tf": 1}}, "df": 1}}, "w": {"0": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"0": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.j1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 9}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.shape": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.r_values": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweighted": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tag": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.value": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cov_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.mc_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_content": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_drho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 87, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 4}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}, "y": {"0": {"docs": {"pyerrors.special.y0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.y1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"0": {"docs": {"pyerrors.dirac.gammaX": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaY": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaZ": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaT": {"tf": 5.291502622129181}, "pyerrors.dirac.gamma": {"tf": 10.583005244258363}, "pyerrors.dirac.gamma5": {"tf": 5.291502622129181}, "pyerrors.dirac.identity": {"tf": 5.291502622129181}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 10}, "1": {"docs": {"pyerrors.dirac.gammaX": {"tf": 2}, "pyerrors.dirac.gammaY": {"tf": 2}, "pyerrors.dirac.gammaZ": {"tf": 2}, "pyerrors.dirac.gammaT": {"tf": 2}, "pyerrors.dirac.gamma": {"tf": 4}, "pyerrors.dirac.gamma5": {"tf": 2}, "pyerrors.dirac.identity": {"tf": 2}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 8}, "2": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.dirac.gammaX": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaY": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaZ": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 4.123105625617661}, "pyerrors.dirac.gamma5": {"tf": 2.23606797749979}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.input.sfcf.sep": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 11, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}}, "df": 7}}}}}, "j": {"docs": {"pyerrors.dirac.gammaX": {"tf": 4}, "pyerrors.dirac.gammaY": {"tf": 4}, "pyerrors.dirac.gammaZ": {"tf": 4}, "pyerrors.dirac.gammaT": {"tf": 4}, "pyerrors.dirac.gamma": {"tf": 8}, "pyerrors.dirac.gamma5": {"tf": 4}, "pyerrors.dirac.identity": {"tf": 4}}, "df": 7}, "x": {"2": {"7": {"docs": {"pyerrors.input.sfcf.sep": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "signature": {"root": {"0": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 17, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "6": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "x": {"6": {"4": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"3": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 12, "e": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}, "2": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 3}, "3": {"9": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.8284271247461903}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.misc.errorbar": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}}, "df": 38}, "docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}, "5": {"0": {"0": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 4}, "docs": {"pyerrors.correlators.Corr.__init__": {"tf": 5.744562646538029}, "pyerrors.correlators.Corr.gamma_method": {"tf": 4}, "pyerrors.correlators.Corr.gm": {"tf": 4}, "pyerrors.correlators.Corr.projected": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.item": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.plottable": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.trace": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 6.782329983125268}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 6.782329983125268}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.roll": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reverse": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.thin": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.deriv": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.fit": {"tf": 6}, "pyerrors.correlators.Corr.plateau": {"tf": 6}, "pyerrors.correlators.Corr.set_prange": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.show": {"tf": 11.313708498984761}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.dump": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr.print": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.sqrt": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.log": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.exp": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.sin": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.cos": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.tan": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.sinh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.cosh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.tanh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arcsin": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arccos": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arctan": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arcsinh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arccosh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arctanh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.prune": {"tf": 6.164414002968976}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.656854249492381}, "pyerrors.covobs.Covobs.errsq": {"tf": 3.1622776601683795}, "pyerrors.dirac.epsilon_tensor": {"tf": 4.242640687119285}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 4.69041575982343}, "pyerrors.dirac.Grid_gamma": {"tf": 3.1622776601683795}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 4}, "pyerrors.fits.Fit_result.gm": {"tf": 4}, "pyerrors.fits.least_squares": {"tf": 6.324555320336759}, "pyerrors.fits.total_least_squares": {"tf": 5.656854249492381}, "pyerrors.fits.fit_lin": {"tf": 4.47213595499958}, "pyerrors.fits.qqplot": {"tf": 5.656854249492381}, "pyerrors.fits.residual_plot": {"tf": 5.656854249492381}, "pyerrors.fits.error_band": {"tf": 4.242640687119285}, "pyerrors.fits.ks_test": {"tf": 3.7416573867739413}, "pyerrors.input.bdio.read_ADerrors": {"tf": 5.0990195135927845}, "pyerrors.input.bdio.write_ADerrors": {"tf": 5.477225575051661}, "pyerrors.input.bdio.read_mesons": {"tf": 5.0990195135927845}, "pyerrors.input.bdio.read_dSdm": {"tf": 5.0990195135927845}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7.14142842854285}, "pyerrors.input.dobs.write_pobs": {"tf": 8.426149773176359}, "pyerrors.input.dobs.read_pobs": {"tf": 5.830951894845301}, "pyerrors.input.dobs.import_dobs_string": {"tf": 5.0990195135927845}, "pyerrors.input.dobs.read_dobs": {"tf": 5.830951894845301}, "pyerrors.input.dobs.create_dobs_string": {"tf": 8.12403840463596}, "pyerrors.input.dobs.write_dobs": {"tf": 8.94427190999916}, "pyerrors.input.hadrons.read_hd5": {"tf": 6.6332495807108}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 6.6332495807108}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 7.54983443527075}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 6}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 6.855654600401044}, "pyerrors.input.json.create_json_string": {"tf": 5.291502622129181}, "pyerrors.input.json.dump_to_json": {"tf": 6.324555320336759}, "pyerrors.input.json.import_json_string": {"tf": 5.0990195135927845}, "pyerrors.input.json.load_json": {"tf": 5.830951894845301}, "pyerrors.input.json.dump_dict_to_json": {"tf": 7.0710678118654755}, "pyerrors.input.json.load_json_dict": {"tf": 6.6332495807108}, "pyerrors.input.misc.fit_t0": {"tf": 5.656854249492381}, "pyerrors.input.misc.read_pbp": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.read_rwms": {"tf": 6.164414002968976}, "pyerrors.input.openQCD.extract_t0": {"tf": 8.18535277187245}, "pyerrors.input.openQCD.extract_w0": {"tf": 8.18535277187245}, "pyerrors.input.openQCD.read_qtop": {"tf": 6.48074069840786}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 6.324555320336759}, "pyerrors.input.openQCD.qtop_projection": {"tf": 4.242640687119285}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 5.656854249492381}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 6.164414002968976}, "pyerrors.input.pandas.to_sql": {"tf": 6.48074069840786}, "pyerrors.input.pandas.read_sql": {"tf": 5.291502622129181}, "pyerrors.input.pandas.dump_df": {"tf": 4.69041575982343}, "pyerrors.input.pandas.load_df": {"tf": 5.0990195135927845}, "pyerrors.input.sfcf.read_sfcf": {"tf": 10.44030650891055}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 11.74734012447073}, "pyerrors.input.utils.sort_names": {"tf": 3.1622776601683795}, "pyerrors.input.utils.check_idl": {"tf": 3.7416573867739413}, "pyerrors.input.utils.check_params": {"tf": 5.291502622129181}, "pyerrors.integrate.quad": {"tf": 5.291502622129181}, "pyerrors.linalg.matmul": {"tf": 3.4641016151377544}, "pyerrors.linalg.jack_matmul": {"tf": 3.4641016151377544}, "pyerrors.linalg.einsum": {"tf": 4}, "pyerrors.linalg.inv": {"tf": 3.1622776601683795}, "pyerrors.linalg.cholesky": {"tf": 3.1622776601683795}, "pyerrors.linalg.det": {"tf": 3.1622776601683795}, "pyerrors.linalg.eigh": {"tf": 4}, "pyerrors.linalg.eig": {"tf": 4}, "pyerrors.linalg.eigv": {"tf": 4}, "pyerrors.linalg.pinv": {"tf": 4}, "pyerrors.linalg.svd": {"tf": 4}, "pyerrors.misc.print_config": {"tf": 2.6457513110645907}, "pyerrors.misc.errorbar": {"tf": 6.855654600401044}, "pyerrors.misc.dump_object": {"tf": 4.47213595499958}, "pyerrors.misc.load_object": {"tf": 3.1622776601683795}, "pyerrors.misc.pseudo_Obs": {"tf": 5.0990195135927845}, "pyerrors.misc.gen_correlated_data": {"tf": 5.830951894845301}, "pyerrors.mpm.matrix_pencil_method": {"tf": 5.656854249492381}, "pyerrors.obs.Obs.__init__": {"tf": 5.0990195135927845}, "pyerrors.obs.Obs.gamma_method": {"tf": 4}, "pyerrors.obs.Obs.gm": {"tf": 4}, "pyerrors.obs.Obs.details": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.reweight": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.is_zero": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_tauint": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_rho": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_piechart": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.dump": {"tf": 6.324555320336759}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 5.830951894845301}, "pyerrors.obs.Obs.sqrt": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.log": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.exp": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sin": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.cos": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.tan": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arcsin": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arccos": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arctan": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sinh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.cosh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.tanh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arcsinh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arccosh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arctanh": {"tf": 3.1622776601683795}, "pyerrors.obs.CObs.__init__": {"tf": 4}, "pyerrors.obs.CObs.gamma_method": {"tf": 4}, "pyerrors.obs.CObs.is_zero": {"tf": 3.1622776601683795}, "pyerrors.obs.CObs.conjugate": {"tf": 3.1622776601683795}, "pyerrors.obs.gamma_method": {"tf": 4}, "pyerrors.obs.gm": {"tf": 4}, "pyerrors.obs.derived_observable": {"tf": 5.291502622129181}, "pyerrors.obs.reweight": {"tf": 4.47213595499958}, "pyerrors.obs.correlate": {"tf": 3.7416573867739413}, "pyerrors.obs.covariance": {"tf": 6.324555320336759}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 3.7416573867739413}, "pyerrors.obs.sort_corr": {"tf": 4.242640687119285}, "pyerrors.obs.import_jackknife": {"tf": 4.69041575982343}, "pyerrors.obs.import_bootstrap": {"tf": 4.242640687119285}, "pyerrors.obs.merge_obs": {"tf": 3.1622776601683795}, "pyerrors.obs.cov_Obs": {"tf": 5.0990195135927845}, "pyerrors.roots.find_root": {"tf": 5.291502622129181}, "pyerrors.special.beta": {"tf": 4.242640687119285}, "pyerrors.special.betainc": {"tf": 4.242640687119285}, "pyerrors.special.betaln": {"tf": 4.242640687119285}, "pyerrors.special.polygamma": {"tf": 4.242640687119285}, "pyerrors.special.psi": {"tf": 4.242640687119285}, "pyerrors.special.digamma": {"tf": 4.242640687119285}, "pyerrors.special.gamma": {"tf": 4.242640687119285}, "pyerrors.special.gammaln": {"tf": 4.242640687119285}, "pyerrors.special.gammainc": {"tf": 4.242640687119285}, "pyerrors.special.gammaincc": {"tf": 4.242640687119285}, "pyerrors.special.gammasgn": {"tf": 4.242640687119285}, "pyerrors.special.rgamma": {"tf": 4.242640687119285}, "pyerrors.special.multigammaln": {"tf": 4.242640687119285}, "pyerrors.special.kn": {"tf": 4.242640687119285}, "pyerrors.special.j0": {"tf": 4.242640687119285}, "pyerrors.special.y0": {"tf": 4.242640687119285}, "pyerrors.special.j1": {"tf": 4.242640687119285}, "pyerrors.special.y1": {"tf": 4.242640687119285}, "pyerrors.special.jn": {"tf": 4.242640687119285}, "pyerrors.special.yn": {"tf": 4.242640687119285}, "pyerrors.special.i0": {"tf": 4.242640687119285}, "pyerrors.special.i1": {"tf": 4.242640687119285}, "pyerrors.special.iv": {"tf": 4.242640687119285}, "pyerrors.special.ive": {"tf": 4.242640687119285}, "pyerrors.special.erf": {"tf": 4.242640687119285}, "pyerrors.special.erfc": {"tf": 4.242640687119285}, "pyerrors.special.erfinv": {"tf": 4.242640687119285}, "pyerrors.special.erfcinv": {"tf": 4.242640687119285}, "pyerrors.special.logit": {"tf": 4.242640687119285}, "pyerrors.special.expit": {"tf": 4.242640687119285}, "pyerrors.special.logsumexp": {"tf": 4.242640687119285}}, "df": 200, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7, "l": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 10}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 22}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 11}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "y": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 34}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 14, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 80}}, "p": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}}}}}}}, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 4}}}}}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 80}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}, "v": {"1": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.449489742783178}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 3}}}, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 21}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 8, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 17}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}, "u": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 12, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}, "j": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"3": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 13}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "v": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31}}}}, "x": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 13, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "v": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}}, "df": 7, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}, "c": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "doc": {"root": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "+": {"0": {"0": {"0": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "6": {"9": {"7": {"9": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"0": {"5": {"0": {"2": {"2": {"0": {"9": {"1": {"8": {"6": {"0": {"4": {"4": {"5": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 2}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"5": {"6": {"0": {"5": {"6": {"2": {"1": {"8": {"2": {"5": {"4": {"7": {"1": {"2": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"8": {"0": {"6": {"4": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"4": {"4": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"9": {"4": {"6": {"7": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"8": {"5": {"6": {"5": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"4": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"4": {"2": {"3": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"4": {"3": {"3": {"3": {"docs": {"pyerrors.special.j1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}, "7": {"1": {"5": {"1": {"0": {"2": {"9": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"6": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"docs": {"pyerrors.special.beta": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"2": {"5": {"6": {"9": {"6": {"4": {"2": {"1": {"5": {"6": {"7": {"6": {"9": {"7": {"docs": {"pyerrors.special.y0": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"7": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"2": {"3": {"9": {"0": {"3": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"3": {"4": {"4": {"5": {"6": {"2": {"2": {"2": {"2": {"1": {"docs": {"pyerrors.special.betaln": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"6": {"1": {"2": {"2": {"9": {"docs": {"pyerrors.special.logit": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.4641016151377544}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.gm": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2}, "pyerrors.obs.sort_corr": {"tf": 3.4641016151377544}, "pyerrors.special.beta": {"tf": 2.23606797749979}, "pyerrors.special.betainc": {"tf": 3.605551275463989}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.polygamma": {"tf": 2}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 3.605551275463989}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 3.4641016151377544}, "pyerrors.special.gammaincc": {"tf": 3.1622776601683795}, "pyerrors.special.gammasgn": {"tf": 2.8284271247461903}, "pyerrors.special.rgamma": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 3}, "pyerrors.special.y0": {"tf": 3.872983346207417}, "pyerrors.special.j1": {"tf": 2.449489742783178}, "pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.jn": {"tf": 5.196152422706632}, "pyerrors.special.yn": {"tf": 5.196152422706632}, "pyerrors.special.i0": {"tf": 3}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 4}, "pyerrors.special.ive": {"tf": 4.69041575982343}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 4.242640687119285}, "pyerrors.special.erfcinv": {"tf": 4.123105625617661}, "pyerrors.special.logit": {"tf": 4.123105625617661}, "pyerrors.special.expit": {"tf": 3.1622776601683795}, "pyerrors.special.logsumexp": {"tf": 3.3166247903554}}, "df": 60, "+": {"1": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"0": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}, "^": {"1": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "x": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}}, "df": 2}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}}}, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}}}}}}, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 2}}}}}}}}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.7320508075688772}}, "df": 15}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 3}, "4": {"7": {"2": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"3": {"2": {"4": {"3": {"docs": {"pyerrors.special.y1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"8": {"1": {"9": {"3": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"7": {"5": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 15}, "1": {"0": {"3": {"4": {"0": {"3": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"4": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"7": {"8": {"2": {"5": {"5": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"7": {"8": {"4": {"6": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "2": {"1": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "3": {"4": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "4": {"1": {"5": {"9": {"2": {"6": {"5": {"3": {"5": {"8": {"9": {"7": {"9": {"2": {"7": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"8": {"6": {"0": {"5": {"0": {"7": {"4": {"4": {"1": {"6": {"docs": {"pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 2}, "8": {"0": {"6": {"0": {"4": {"6": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}, "6": {"0": {"7": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 15}, "5": {"6": {"7": {"5": {"2": {"7": {"6": {"8": {"9": {"0": {"3": {"1": {"7": {"3": {"9": {"docs": {"pyerrors.special.beta": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"6": {"6": {"6": {"6": {"7": {"docs": {"pyerrors.special.rgamma": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}, "7": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"1": {"4": {"3": {"4": {"5": {"docs": {"pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}, "8": {"2": {"4": {"2": {"5": {"5": {"2": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"8": {"2": {"6": {"7": {"1": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"0": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.6457513110645907}, "pyerrors.special.beta": {"tf": 2.8284271247461903}, "pyerrors.special.betainc": {"tf": 4.69041575982343}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.449489742783178}, "pyerrors.special.digamma": {"tf": 2.449489742783178}, "pyerrors.special.gamma": {"tf": 4.242640687119285}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 2.23606797749979}, "pyerrors.special.gammaincc": {"tf": 2.449489742783178}, "pyerrors.special.gammasgn": {"tf": 4.358898943540674}, "pyerrors.special.rgamma": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 2}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.jn": {"tf": 4}, "pyerrors.special.yn": {"tf": 4.123105625617661}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 3.3166247903554}, "pyerrors.special.iv": {"tf": 4.47213595499958}, "pyerrors.special.ive": {"tf": 3}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 3.4641016151377544}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 3}, "pyerrors.special.expit": {"tf": 2.449489742783178}, "pyerrors.special.logsumexp": {"tf": 3.1622776601683795}}, "df": 55, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}, "e": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "+": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 6}, "*": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"2": {"docs": {}, "df": 0, "[": {"1": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}, "z": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}, "e": {"1": {"0": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"0": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"0": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"0": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "^": {"2": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "2": {"0": {"0": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 2}, "1": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "5": {"8": {"5": {"0": {"9": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"1": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "7": {"9": {"1": {"0": {"4": {"2": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.j1": {"tf": 2}}, "df": 3}, "1": {"0": {"3": {"4": {"0": {"3": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"4": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"6": {"9": {"2": {"9": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}, "2": {"3": {"5": {"2": {"1": {"4": {"9": {"docs": {"pyerrors.special.yn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"0": {"7": {"8": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "3": {"1": {"2": {"0": {"6": {"docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"2": {"7": {"4": {"0": {"5": {"6": {"9": {"9": {"8": {"1": {"1": {"5": {"8": {"docs": {}, "df": 0, "+": {"2": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "7": {"1": {"docs": {}, "df": 0, "+": {"2": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 3}, "4": {"0": {"2": {"9": {"7": {"8": {"3": {"9": {"1": {"2": {"3": {"4": {"2": {"7": {"2": {"5": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"0": {"0": {"0": {"3": {"5": {"docs": {"pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}}, "df": 2}, "5": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}}, "df": 7}, "6": {"0": {"0": {"5": {"1": {"9": {"5": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"6": {"5": {"8": {"7": {"7": {"7": {"5": {"2": {"0": {"0": {"8": {"2": {"docs": {"pyerrors.special.i0": {"tf": 1}}, "df": 1}, "4": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"1": {"8": {"6": {"6": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"5": {"8": {"5": {"3": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"7": {"7": {"6": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "9": {"3": {"5": {"2": {"5": {"3": {"2": {"6": {"3": {"4": {"7": {"4": {"7": {"9": {"8": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"9": {"7": {"0": {"3": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.23606797749979}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 2.23606797749979}, "pyerrors.special.betainc": {"tf": 2.449489742783178}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 2}, "pyerrors.special.rgamma": {"tf": 2}, "pyerrors.special.multigammaln": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 2}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 45, "x": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "f": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "#": {"docs": {}, "df": 0, "e": {"1": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 2}, "4": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "i": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}, "^": {"2": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}}}}}}, "3": {"0": {"2": {"5": {"8": {"5": {"0": {"9": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"1": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"5": {"2": {"0": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"5": {"1": {"7": {"6": {"4": {"1": {"4": {"6": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"5": {"0": {"8": {"3": {"2": {"docs": {"pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "1": {"4": {"9": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"7": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "4": {"6": {"7": {"4": {"4": {"2": {"docs": {"pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"9": {"0": {"5": {"8": {"9": {"6": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "4": {"1": {"9": {"3": {"6": {"7": {"8": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "9": {"7": {"6": {"8": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"3": {"2": {"7": {"1": {"8": {"docs": {"pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"0": {"8": {"0": {"7": {"1": {"6": {"docs": {"pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"0": {"9": {"3": {"3": {"6": {"9": {"5": {"2": {"2": {"6": {"9": {"7": {"5": {"6": {"docs": {"pyerrors.special.gammaincc": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"8": {"5": {"0": {"0": {"1": {"docs": {"pyerrors.special.y0": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"2": {"0": {"3": {"4": {"3": {"docs": {"pyerrors.special.i0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"4": {"9": {"3": {"4": {"0": {"7": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"4": {"9": {"8": {"1": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 7.745966692414834}, "pyerrors.fits.least_squares": {"tf": 4.242640687119285}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.8284271247461903}, "pyerrors.special.gamma": {"tf": 3.4641016151377544}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 2}, "pyerrors.special.erfc": {"tf": 2}, "pyerrors.special.erfinv": {"tf": 2}, "pyerrors.special.erfcinv": {"tf": 2}, "pyerrors.special.logit": {"tf": 2}, "pyerrors.special.expit": {"tf": 2}}, "df": 15}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.23606797749979}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 2}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 2}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 33, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "4": {"0": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}}, "df": 2}, "3": {"2": {"0": {"9": {"8": {"3": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "4": {"0": {"0": {"5": {"0": {"5": {"8": {"5": {"7": {"4": {"4": {"9": {"3": {"3": {"5": {"5": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"1": {"8": {"7": {"3": {"docs": {"pyerrors.special.y0": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"4": {"docs": {"pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"6": {"2": {"9": {"7": {"4": {"4": {"4": {"2": {"6": {"7": {"1": {"0": {"7": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}, "6": {"5": {"7": {"5": {"9": {"6": {"1": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"4": {"7": {"2": {"3": {"9": {"docs": {"pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"9": {"3": {"6": {"2": {"7": {"6": {"2": {"0": {"4": {"4": {"6": {"9": {"9": {"docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"3": {"9": {"6": {"3": {"8": {"8": {"0": {"7": {"6": {"1": {"9": {"4": {"4": {"6": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 2}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1}}, "df": 26, "x": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}}, "df": 2}, "5": {"1": {"7": {"0": {"1": {"9": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"2": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"0": {"3": {"7": {"5": {"6": {"7": {"docs": {"pyerrors.special.y0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"6": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"0": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "8": {"0": {"1": {"3": {"5": {"7": {"4": {"5": {"6": {"1": {"7": {"8": {"6": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"3": {"2": {"4": {"8": {"5": {"4": {"6": {"1": {"2": {"9": {"1": {"8": {"1": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"4": {"0": {"1": {"1": {"5": {"5": {"0": {"0": {"0": {"6": {"5": {"8": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "8": {"5": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"9": {"0": {"7": {"7": {"docs": {"pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"0": {"3": {"5": {"9": {"8": {"1": {"7": {"3": {"3": {"3": {"4": {"1": {"docs": {}, "df": 0, "+": {"1": {"docs": {"pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"5": {"1": {"5": {"9": {"1": {"0": {"3": {"9": {"9": {"2": {"4": {"8": {"5": {"1": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"6": {"5": {"9": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"9": {"9": {"2": {"0": {"7": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"2": {"4": {"8": {"1": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"6": {"3": {"6": {"8": {"5": {"docs": {"pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"1": {"6": {"0": {"8": {"docs": {"pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 3.4641016151377544}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 2.8284271247461903}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.449489742783178}, "pyerrors.special.ive": {"tf": 2.23606797749979}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 2.6457513110645907}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "/": {"5": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "6": {"0": {"5": {"1": {"7": {"0": {"1": {"9": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"2": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"3": {"7": {"9": {"1": {"2": {"4": {"3": {"4": {"1": {"0": {"0": {"5": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 3}, "2": {"8": {"9": {"0": {"6": {"6": {"3": {"0": {"4": {"7": {"7": {"3": {"0": {"2": {"4": {"docs": {"pyerrors.special.gammainc": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"4": {"9": {"3": {"4": {"0": {"7": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "5": {"0": {"6": {"8": {"2": {"6": {"0": {"6": {"8": {"1": {"6": {"2": {"5": {"4": {"6": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 2.449489742783178}}, "df": 7, "/": {"6": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"3": {"1": {"2": {"0": {"4": {"3": {"7": {"9": {"5": {"9": {"2": {"9": {"3": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"4": {"2": {"2": {"9": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"4": {"6": {"6": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"4": {"2": {"1": {"6": {"4": {"3": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"5": {"7": {"3": {"1": {"9": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.7320508075688772}}, "df": 2}, "6": {"5": {"1": {"9": {"7": {"6": {"8": {"6": {"5": {"5": {"7": {"9": {"6": {"6": {"5": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"4": {"5": {"3": {"8": {"5": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"1": {"0": {"1": {"0": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"7": {"6": {"2": {"1": {"0": {"4": {"5": {"5": {"1": {"0": {"8": {"3": {"5": {"2": {"docs": {}, "df": 0, "+": {"0": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"1": {"2": {"1": {"2": {"8": {"2": {"1": {"3": {"0": {"0": {"2": {"8": {"8": {"8": {"docs": {"pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"7": {"7": {"5": {"2": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}}, "df": 5, "/": {"7": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "8": {"0": {"4": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"3": {"4": {"1": {"9": {"8": {"5": {"docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"9": {"0": {"4": {"0": {"3": {"6": {"2": {"2": {"5": {"2": {"9": {"5": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "7": {"5": {"7": {"4": {"4": {"8": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"2": {"0": {"6": {"8": {"0": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"8": {"2": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"2": {"0": {"6": {"8": {"0": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"8": {"2": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"0": {"7": {"9": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"1": {"7": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 15}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"7": {"9": {"2": {"5": {"9": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"2": {"2": {"6": {"9": {"3": {"docs": {"pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}}, "df": 13}, "9": {"0": {"0": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}, "6": {"1": {"9": {"3": {"8": {"docs": {"pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"7": {"0": {"1": {"7": {"8": {"5": {"3": {"3": {"0": {"3": {"4": {"6": {"4": {"7": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"5": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"3": {"2": {"5": {"3": {"1": {"9": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"3": {"3": {"7": {"0": {"2": {"2": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"0": {"3": {"5": {"7": {"8": {"5": {"1": {"6": {"0": {"9": {"3": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"3": {"6": {"1": {"1": {"6": {"2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"1": {"9": {"8": {"8": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"0": {"0": {"7": {"1": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"3": {"6": {"5": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"9": {"9": {"2": {"2": {"6": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.logit": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 7}, "docs": {"pyerrors": {"tf": 64.62197768561404}, "pyerrors.correlators": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 12.449899597988733}, "pyerrors.correlators.Corr.__init__": {"tf": 5.196152422706632}, "pyerrors.correlators.Corr.tag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.content": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweighted": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gm": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.item": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.plottable": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.trace": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 11.74734012447073}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.roll": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.deriv": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.fit": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plateau": {"tf": 5}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 9}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.dump": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.print": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sqrt": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.log": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.exp": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.real": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.imag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 6.855654600401044}, "pyerrors.correlators.Corr.N": {"tf": 1.7320508075688772}, "pyerrors.covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.916079783099616}, "pyerrors.covobs.Covobs.name": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.value": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.grad": {"tf": 1.7320508075688772}, "pyerrors.dirac": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaX": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaY": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaZ": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaT": {"tf": 1.7320508075688772}, "pyerrors.dirac.gamma": {"tf": 1.7320508075688772}, "pyerrors.dirac.gamma5": {"tf": 1.7320508075688772}, "pyerrors.dirac.identity": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 4.123105625617661}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 4.123105625617661}, "pyerrors.dirac.Grid_gamma": {"tf": 1.7320508075688772}, "pyerrors.fits": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 5.656854249492381}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gm": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 38.13135192987524}, "pyerrors.fits.total_least_squares": {"tf": 15.748015748023622}, "pyerrors.fits.fit_lin": {"tf": 5.916079783099616}, "pyerrors.fits.qqplot": {"tf": 3.605551275463989}, "pyerrors.fits.residual_plot": {"tf": 3.872983346207417}, "pyerrors.fits.error_band": {"tf": 3.7416573867739413}, "pyerrors.fits.ks_test": {"tf": 5}, "pyerrors.input": {"tf": 4.69041575982343}, "pyerrors.input.bdio": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 6.164414002968976}, "pyerrors.input.bdio.write_ADerrors": {"tf": 6.164414002968976}, "pyerrors.input.bdio.read_mesons": {"tf": 8.12403840463596}, "pyerrors.input.bdio.read_dSdm": {"tf": 7.416198487095663}, "pyerrors.input.dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7.745966692414834}, "pyerrors.input.dobs.write_pobs": {"tf": 8.426149773176359}, "pyerrors.input.dobs.read_pobs": {"tf": 7.280109889280518}, "pyerrors.input.dobs.import_dobs_string": {"tf": 7.280109889280518}, "pyerrors.input.dobs.read_dobs": {"tf": 7.745966692414834}, "pyerrors.input.dobs.create_dobs_string": {"tf": 8.06225774829855}, "pyerrors.input.dobs.write_dobs": {"tf": 8.774964387392123}, "pyerrors.input.hadrons": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 10.198039027185569}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 7.3484692283495345}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 6.855654600401044}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 6.557438524302}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 21.307275752662516}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 6.324555320336759}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 6.324555320336759}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 6.782329983125268}, "pyerrors.input.json": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 6.082762530298219}, "pyerrors.input.json.dump_to_json": {"tf": 7}, "pyerrors.input.json.import_json_string": {"tf": 7.681145747868608}, "pyerrors.input.json.load_json": {"tf": 8.06225774829855}, "pyerrors.input.json.dump_dict_to_json": {"tf": 7.3484692283495345}, "pyerrors.input.json.load_json_dict": {"tf": 7.937253933193772}, "pyerrors.input.misc": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 7.14142842854285}, "pyerrors.input.misc.read_pbp": {"tf": 5.477225575051661}, "pyerrors.input.openQCD": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 8.54400374531753}, "pyerrors.input.openQCD.extract_t0": {"tf": 11}, "pyerrors.input.openQCD.extract_w0": {"tf": 11}, "pyerrors.input.openQCD.read_qtop": {"tf": 10.246950765959598}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 8.888194417315589}, "pyerrors.input.openQCD.qtop_projection": {"tf": 5.656854249492381}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 9.797958971132712}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 10.392304845413264}, "pyerrors.input.pandas": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.to_sql": {"tf": 7}, "pyerrors.input.pandas.read_sql": {"tf": 6.244997998398398}, "pyerrors.input.pandas.dump_df": {"tf": 6.324555320336759}, "pyerrors.input.pandas.load_df": {"tf": 6.244997998398398}, "pyerrors.input.sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.sep": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 11.090536506409418}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 11.313708498984761}, "pyerrors.input.utils": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 5.385164807134504}, "pyerrors.input.utils.check_idl": {"tf": 5.385164807134504}, "pyerrors.input.utils.check_params": {"tf": 6.4031242374328485}, "pyerrors.integrate": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 13.228756555322953}, "pyerrors.linalg": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 4.58257569495584}, "pyerrors.linalg.jack_matmul": {"tf": 4.47213595499958}, "pyerrors.linalg.einsum": {"tf": 4.47213595499958}, "pyerrors.linalg.inv": {"tf": 1.7320508075688772}, "pyerrors.linalg.cholesky": {"tf": 1.7320508075688772}, "pyerrors.linalg.det": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1.7320508075688772}, "pyerrors.linalg.eig": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigv": {"tf": 1.7320508075688772}, "pyerrors.linalg.pinv": {"tf": 1.7320508075688772}, "pyerrors.linalg.svd": {"tf": 1.7320508075688772}, "pyerrors.misc": {"tf": 1.7320508075688772}, "pyerrors.misc.print_config": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 5.0990195135927845}, "pyerrors.misc.dump_object": {"tf": 5.916079783099616}, "pyerrors.misc.load_object": {"tf": 5}, "pyerrors.misc.pseudo_Obs": {"tf": 6.557438524302}, "pyerrors.misc.gen_correlated_data": {"tf": 7.0710678118654755}, "pyerrors.mpm": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 6.324555320336759}, "pyerrors.obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 6.928203230275509}, "pyerrors.obs.Obs.__init__": {"tf": 4.898979485566356}, "pyerrors.obs.Obs.S_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.shape": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.r_values": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.deltas": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweighted": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.value": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cov_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.mc_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_content": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.covobs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.gm": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.details": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.reweight": {"tf": 4.58257569495584}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.47213595499958}, "pyerrors.obs.Obs.is_zero": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_tauint": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rho": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.plot_piechart": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.dump": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 6.164414002968976}, "pyerrors.obs.Obs.sqrt": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.log": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.exp": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_drho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_rho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.real": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.imag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.is_zero": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.conjugate": {"tf": 1.7320508075688772}, "pyerrors.obs.gamma_method": {"tf": 2.449489742783178}, "pyerrors.obs.gm": {"tf": 2.449489742783178}, "pyerrors.obs.derived_observable": {"tf": 6.4031242374328485}, "pyerrors.obs.reweight": {"tf": 5.196152422706632}, "pyerrors.obs.correlate": {"tf": 4.898979485566356}, "pyerrors.obs.covariance": {"tf": 6.6332495807108}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 5.291502622129181}, "pyerrors.obs.sort_corr": {"tf": 17.578395831246947}, "pyerrors.obs.import_jackknife": {"tf": 4.47213595499958}, "pyerrors.obs.import_bootstrap": {"tf": 5.0990195135927845}, "pyerrors.obs.merge_obs": {"tf": 4.123105625617661}, "pyerrors.obs.cov_Obs": {"tf": 5.385164807134504}, "pyerrors.roots": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 10.862780491200215}, "pyerrors.special": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 17.435595774162696}, "pyerrors.special.betainc": {"tf": 21.840329667841555}, "pyerrors.special.betaln": {"tf": 16.852299546352718}, "pyerrors.special.polygamma": {"tf": 13.152946437965905}, "pyerrors.special.psi": {"tf": 15.491933384829668}, "pyerrors.special.digamma": {"tf": 15.491933384829668}, "pyerrors.special.gamma": {"tf": 25.553864678361276}, "pyerrors.special.gammaln": {"tf": 18.35755975068582}, "pyerrors.special.gammainc": {"tf": 16.186414056238647}, "pyerrors.special.gammaincc": {"tf": 16.431676725154983}, "pyerrors.special.gammasgn": {"tf": 18.81488772222678}, "pyerrors.special.rgamma": {"tf": 17.08800749063506}, "pyerrors.special.multigammaln": {"tf": 15.905973720586866}, "pyerrors.special.kn": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 19.261360284258224}, "pyerrors.special.y0": {"tf": 18.81488772222678}, "pyerrors.special.j1": {"tf": 18.681541692269406}, "pyerrors.special.y1": {"tf": 18.601075237738275}, "pyerrors.special.jn": {"tf": 26}, "pyerrors.special.yn": {"tf": 25.768197453450252}, "pyerrors.special.i0": {"tf": 18.867962264113206}, "pyerrors.special.i1": {"tf": 18.973665961010276}, "pyerrors.special.iv": {"tf": 26.30589287593181}, "pyerrors.special.ive": {"tf": 25.278449319529077}, "pyerrors.special.erf": {"tf": 16.15549442140351}, "pyerrors.special.erfc": {"tf": 15.524174696260024}, "pyerrors.special.erfinv": {"tf": 21.563858652847824}, "pyerrors.special.erfcinv": {"tf": 19.44222209522358}, "pyerrors.special.logit": {"tf": 19.748417658131498}, "pyerrors.special.expit": {"tf": 20.566963801203133}, "pyerrors.special.logsumexp": {"tf": 24.758836806279895}, "pyerrors.version": {"tf": 1.7320508075688772}}, "df": 288, "w": {"0": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}}, "df": 2, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}}}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 2.23606797749979}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 7, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 50, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 19}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 12}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 48}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 6}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 52, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 9}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 13}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 4}}}, "f": {"docs": {}, "df": 0, "z": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}}, "df": 5, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 9}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 13}}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}}}, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "i": {"0": {"docs": {"pyerrors.special.i0": {"tf": 2.6457513110645907}, "pyerrors.special.iv": {"tf": 1}}, "df": 2, "e": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}, "1": {"docs": {"pyerrors.special.i1": {"tf": 2.6457513110645907}, "pyerrors.special.iv": {"tf": 1}}, "df": 2, "e": {"docs": {"pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 2.23606797749979}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 2.449489742783178}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 3}, "pyerrors.special.ive": {"tf": 3}}, "df": 20, "s": {"docs": {"pyerrors": {"tf": 8.12403840463596}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 3}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.4641016151377544}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 4}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.4641016151377544}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 2.23606797749979}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gamma": {"tf": 3.1622776601683795}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 2.23606797749979}, "pyerrors.special.rgamma": {"tf": 2}, "pyerrors.special.multigammaln": {"tf": 2.449489742783178}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 2.23606797749979}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 2.23606797749979}, "pyerrors.special.jn": {"tf": 2.449489742783178}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2.8284271247461903}, "pyerrors.special.ive": {"tf": 2.449489742783178}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 4}}, "df": 97, "o": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "c": {"9": {"9": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "t": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 2}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 38, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 12, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 8.366600265340756}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.242640687119285}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 2.6457513110645907}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 3}}, "df": 76, "t": {"1": {"6": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 47, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 6}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 2.449489742783178}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}}, "df": 8}}}}}, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 19}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 2.23606797749979}, "pyerrors.special.erfcinv": {"tf": 2.449489742783178}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 11}}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 3}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 11}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "x": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 2}, "pyerrors.special.gammaln": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 2}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 8, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 17}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 9}, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 22, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}}}, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 2.8284271247461903}, "pyerrors.special.gammaincc": {"tf": 2.8284271247461903}}, "df": 5}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}}}, "f": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.extract_w0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.23606797749979}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 2.6457513110645907}}, "df": 67}, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 3, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 45, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 6}}, "s": {"docs": {"pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 9}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1.4142135623730951}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "d": {"0": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 16, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}, "^": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "|": {"docs": {}, "df": 0, "^": {"2": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}}}}, "}": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 3.3166247903554}, "pyerrors.special.ive": {"tf": 2.6457513110645907}}, "df": 4, "e": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 3.4641016151377544}}, "df": 2}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.logit": {"tf": 2.23606797749979}}, "df": 9, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 6.928203230275509}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 2}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 8}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 7}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 18}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 10, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}}, "df": 15, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 137}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 30, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 5}}}, "y": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.7320508075688772}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 9, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 2}}, "df": 12}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 32, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}}, "df": 4}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 3}}}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.special.gamma": {"tf": 3}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 2.23606797749979}, "pyerrors.special.erfc": {"tf": 2.23606797749979}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 2.6457513110645907}, "pyerrors.special.expit": {"tf": 2.6457513110645907}}, "df": 18}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 9, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "^": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 6, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 8, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 8}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 5}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4}}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 18, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2.449489742783178}, "pyerrors.special.erf": {"tf": 1}}, "df": 20}}}}, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 15}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.polygamma": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {"pyerrors.special.gamma": {"tf": 2}}, "df": 1, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 5}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}}, "df": 1}}}}}}}}}}, "i": {"docs": {"pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 3.3166247903554}, "pyerrors.special.digamma": {"tf": 3.3166247903554}}, "df": 3}}, "[": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}, ">": {"1": {"docs": {"pyerrors.special.logit": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "a": {"docs": {"pyerrors": {"tf": 8.426149773176359}, "pyerrors.correlators.Corr": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 5.744562646538029}, "pyerrors.fits.total_least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.6457513110645907}, "pyerrors.input.pandas.dump_df": {"tf": 2.23606797749979}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 3}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 2}, "pyerrors.special.betainc": {"tf": 4.795831523312719}, "pyerrors.special.betaln": {"tf": 3.3166247903554}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 3.1622776601683795}, "pyerrors.special.gammaincc": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 4.123105625617661}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 2.8284271247461903}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 4.69041575982343}}, "df": 107, "n": {"docs": {"pyerrors": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 45, "d": {"docs": {"pyerrors": {"tf": 7.211102550927978}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 3.4641016151377544}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 2.6457513110645907}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 3}, "pyerrors.special.ive": {"tf": 2.449489742783178}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 93}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 11}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 2}}}}}}, "y": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}}, "df": 5}, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 6}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, ":": {"1": {"0": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"5": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"0": {"4": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 73}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 26, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 9}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 6.082762530298219}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 2}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 2.6457513110645907}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 2.449489742783178}, "pyerrors.special.rgamma": {"tf": 2.449489742783178}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 2}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 2}, "pyerrors.special.jn": {"tf": 3.4641016151377544}, "pyerrors.special.yn": {"tf": 3.4641016151377544}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 3.4641016151377544}, "pyerrors.special.ive": {"tf": 3.1622776601683795}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 2.6457513110645907}}, "df": 47, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 13}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 6}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 4}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 6}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 11}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 6}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}}, "df": 7, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 7}}}}}}}}, "s": {"docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 2.6457513110645907}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 2}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 2.23606797749979}, "pyerrors.special.expit": {"tf": 2.449489742783178}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 55, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 11}, "s": {"docs": {"pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 8, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 36}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 2, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 40, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 10, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 3}}}, "y": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 8}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 6}}}}}}, "x": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}}, "df": 4}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "i": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 6}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 42, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}}}, "s": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 2}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.jn": {"tf": 2}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 14}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 4, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 8}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 8}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erfinv": {"tf": 2.23606797749979}, "pyerrors.special.erfcinv": {"tf": 2.23606797749979}}, "df": 12, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 7}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 2}}}, "[": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 2}}}}}, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "+": {"1": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "b": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}, ">": {"0": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "|": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 3.7416573867739413}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 10, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 7.14142842854285}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 5.196152422706632}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 3}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.6457513110645907}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 3.605551275463989}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 3.872983346207417}, "pyerrors.special.yn": {"tf": 3.605551275463989}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 4.47213595499958}, "pyerrors.special.ive": {"tf": 4.795831523312719}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 2.23606797749979}, "pyerrors.special.expit": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 106, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "m": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 9, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 8, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}}, "df": 17, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 10}}}, "s": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 65}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 3, "{": {"1": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "+": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}}}}, "2": {"docs": {"pyerrors.special.y0": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}, "docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.6457513110645907}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 5.196152422706632}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}}, "df": 18, "s": {"docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 7}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}, "p": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 2}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.7320508075688772}}, "df": 33}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 10}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 2.23606797749979}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 2}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 44, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 3}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 18, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "g": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 12, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gamma": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 2.23606797749979}}, "df": 27}}, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 6}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 7, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2}, "pyerrors.special.beta": {"tf": 3.4641016151377544}, "pyerrors.special.betainc": {"tf": 4.242640687119285}, "pyerrors.special.betaln": {"tf": 2.449489742783178}, "pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 3}, "pyerrors.special.gammaln": {"tf": 3}, "pyerrors.special.gammainc": {"tf": 3}, "pyerrors.special.gammaincc": {"tf": 3.1622776601683795}, "pyerrors.special.gammasgn": {"tf": 3.1622776601683795}, "pyerrors.special.rgamma": {"tf": 2.8284271247461903}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 2.8284271247461903}, "pyerrors.special.y0": {"tf": 3}, "pyerrors.special.j1": {"tf": 2.8284271247461903}, "pyerrors.special.y1": {"tf": 3.1622776601683795}, "pyerrors.special.jn": {"tf": 3.1622776601683795}, "pyerrors.special.yn": {"tf": 3}, "pyerrors.special.i0": {"tf": 3}, "pyerrors.special.i1": {"tf": 3.1622776601683795}, "pyerrors.special.iv": {"tf": 3.1622776601683795}, "pyerrors.special.ive": {"tf": 3.3166247903554}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 3}, "pyerrors.special.erfcinv": {"tf": 3}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 50, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 29}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 15, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 28, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 5}}}}}, "w": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 6, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 20, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 2.23606797749979}, "pyerrors.special.erfcinv": {"tf": 2.449489742783178}}, "df": 20, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 6}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}, "f": {"docs": {"pyerrors.special.erf": {"tf": 2.23606797749979}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 3}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 4, "c": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 2}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 2.23606797749979}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 3.3166247903554}}, "df": 3}}}, "x": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}}, "df": 2}}, "i": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}}, "df": 2, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 3.1622776601683795}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 4}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 33, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 13, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}}, "df": 6}}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 3}}, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logit": {"tf": 2}, "pyerrors.special.expit": {"tf": 3.872983346207417}}, "df": 2}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 11}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.8284271247461903}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 5}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}}, "df": 5}}}}}}}}}, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}}, "df": 4}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 10}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"1": {"docs": {"pyerrors": {"tf": 3.4641016151377544}}, "df": 1, "|": {"docs": {}, "df": 0, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "2": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 34, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "r": {"0": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 14}}}, "y": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 15}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 7, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 10, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 22}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 14, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "q": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 6}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 3}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 5}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 6}}}}}}}, "t": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 3}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}}, "df": 17, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 5, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 9}, "s": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 9}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.y1": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 22}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}}, "df": 3}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "/": {"1": {"6": {"0": {"3": {"7": {"5": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 6}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 3}}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": null}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 31}}}, "s": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 17}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 7}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 6, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 21}}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 11}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"1": {"1": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.7320508075688772}}, "df": 1}, "2": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"1": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 6.6332495807108}, "pyerrors.correlators.Corr": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 3.4641016151377544}}, "df": 31, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 3, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 5}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 27, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.449489742783178}}, "df": 9, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 9, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 9}}}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}}, "df": 7}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.linalg.inv": {"tf": 1}}, "df": 7}}, "v": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 5, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 7}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 1}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 4, "/": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 11, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}}}}, "n": {"docs": {"pyerrors": {"tf": 5.744562646538029}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 42, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 27}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 6}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}}, "df": 2, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}, "f": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1}}, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "p": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}}, "df": 7}}}}}}, "o": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 10, "f": {"docs": {"pyerrors": {"tf": 10.44030650891055}, "pyerrors.correlators.Corr": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 5.0990195135927845}, "pyerrors.fits.total_least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_pobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.8284271247461903}, "pyerrors.input.dobs.write_dobs": {"tf": 2.8284271247461903}, "pyerrors.input.hadrons.read_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_to_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.8284271247461903}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 3}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.3166247903554}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.3166247903554}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 4.123105625617661}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.input.utils.check_params": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 3.1622776601683795}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1.4142135623730951}, "pyerrors.linalg.eig": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigv": {"tf": 1.4142135623730951}, "pyerrors.linalg.pinv": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2.6457513110645907}, "pyerrors.obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 2.449489742783178}, "pyerrors.obs.reweight": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 3.3166247903554}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 3.7416573867739413}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 2}, "pyerrors.special.betainc": {"tf": 3}, "pyerrors.special.betaln": {"tf": 2.449489742783178}, "pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 2.6457513110645907}, "pyerrors.special.digamma": {"tf": 2.6457513110645907}, "pyerrors.special.gamma": {"tf": 2.449489742783178}, "pyerrors.special.gammaln": {"tf": 3.1622776601683795}, "pyerrors.special.gammainc": {"tf": 2.449489742783178}, "pyerrors.special.gammaincc": {"tf": 2.449489742783178}, "pyerrors.special.gammasgn": {"tf": 2.6457513110645907}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 3.4641016151377544}, "pyerrors.special.kn": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 3}, "pyerrors.special.y0": {"tf": 3.3166247903554}, "pyerrors.special.j1": {"tf": 2.6457513110645907}, "pyerrors.special.y1": {"tf": 3.3166247903554}, "pyerrors.special.jn": {"tf": 3}, "pyerrors.special.yn": {"tf": 2.6457513110645907}, "pyerrors.special.i0": {"tf": 2.6457513110645907}, "pyerrors.special.i1": {"tf": 2.6457513110645907}, "pyerrors.special.iv": {"tf": 3.605551275463989}, "pyerrors.special.ive": {"tf": 3.605551275463989}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 2.449489742783178}, "pyerrors.special.erfcinv": {"tf": 2.6457513110645907}, "pyerrors.special.logit": {"tf": 2.23606797749979}, "pyerrors.special.expit": {"tf": 2.449489742783178}, "pyerrors.special.logsumexp": {"tf": 3.3166247903554}}, "df": 150, "f": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {"pyerrors": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 45, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 39, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 33}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 48}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}, "2": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 9.591663046625438}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.449489742783178}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 78, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 24, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 21}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3}}, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}, "j": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 22, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 11}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 2}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 2.23606797749979}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.23606797749979}}, "df": 76, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.23606797749979}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 2.23606797749979}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 2}, "pyerrors.special.jn": {"tf": 3.1622776601683795}, "pyerrors.special.yn": {"tf": 3.1622776601683795}, "pyerrors.special.i0": {"tf": 2.449489742783178}, "pyerrors.special.i1": {"tf": 2.23606797749979}, "pyerrors.special.iv": {"tf": 3.1622776601683795}, "pyerrors.special.ive": {"tf": 2.6457513110645907}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 39, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.special.jn": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 2.6457513110645907}, "pyerrors.special.iv": {"tf": 3.1622776601683795}, "pyerrors.special.ive": {"tf": 2.23606797749979}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}}, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 4, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"1": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"2": {"2": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "g": {"1": {"4": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "n": {"1": {"2": {"5": {"6": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"1": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 7}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 7, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 7, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 2.23606797749979}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}}, "df": 31, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 50, "s": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}, "m": {"docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.358898943540674}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 2.449489742783178}, "pyerrors.obs.sort_corr": {"tf": 2.8284271247461903}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 26}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 10}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 22}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}}, "df": 3, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 18}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "k": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 10}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "x": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 3}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.kn": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2}}, "df": 6}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 13}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 25, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.8284271247461903}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 10, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 10}}}}}}}}}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 1}}}}}, "y": {"docs": {"pyerrors": {"tf": 7.681145747868608}}, "df": 1}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.multigammaln": {"tf": 2.449489742783178}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"1": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}, "d": {"5": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}, "pyerrors.special.multigammaln": {"tf": 3.4641016151377544}}, "df": 4, "a": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "a": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.872983346207417}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 2.8284271247461903}, "pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.8284271247461903}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 3}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 40, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}}, "df": 4}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 2}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.erfc": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 7, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 5}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 4.242640687119285}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 24, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}}, "df": 11}}}}}}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}}, "df": 5}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.7320508075688772}}, "df": 5, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 6}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 11}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 6}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 18}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 7}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 5}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 8}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 36}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.gm": {"tf": 2}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 43, "s": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 10}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}}, "df": 6}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 5}}, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2}}}}}}}}}}}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 5, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 29}}}, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}}, "df": 7}}}, "+": {"1": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "b": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 2.8284271247461903}, "pyerrors.special.betainc": {"tf": 4.795831523312719}, "pyerrors.special.betaln": {"tf": 3.3166247903554}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 3.1622776601683795}}, "df": 10, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 13}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "{": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 5}}}}}}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 6.244997998398398}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.7416573867739413}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.6457513110645907}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.449489742783178}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 83, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 15}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.special.beta": {"tf": 3.4641016151377544}, "pyerrors.special.betainc": {"tf": 4}, "pyerrors.special.betaln": {"tf": 3.3166247903554}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.betaln": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 2.8284271247461903}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 2.23606797749979}, "pyerrors.special.y0": {"tf": 2.23606797749979}, "pyerrors.special.j1": {"tf": 2.23606797749979}, "pyerrors.special.y1": {"tf": 2.449489742783178}, "pyerrors.special.jn": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 2.23606797749979}, "pyerrors.special.i1": {"tf": 2.23606797749979}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2.449489742783178}}, "df": 11}}}}}, "y": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2.23606797749979}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 41, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 10}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.6457513110645907}}, "df": 7}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 4}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 44}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}}}}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 2.6457513110645907}, "pyerrors.obs.import_bootstrap": {"tf": 2}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.betainc": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 2}}, "df": 4}}}, "x": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2, "g": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}}, "df": 4}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "*": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 7, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "2": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.prune": {"tf": 4.47213595499958}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}}, "df": 20, "h": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 16.492422502470642}, "pyerrors.correlators.Corr": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 3}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gm": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 2}, "pyerrors.correlators.Corr.deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.plateau": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 4.795831523312719}, "pyerrors.covobs.Covobs.__init__": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 7.280109889280518}, "pyerrors.fits.total_least_squares": {"tf": 3.7416573867739413}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.7320508075688772}, "pyerrors.fits.residual_plot": {"tf": 2}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 3.605551275463989}, "pyerrors.input.dobs.write_pobs": {"tf": 3.872983346207417}, "pyerrors.input.dobs.read_pobs": {"tf": 3}, "pyerrors.input.dobs.import_dobs_string": {"tf": 3.3166247903554}, "pyerrors.input.dobs.read_dobs": {"tf": 3.3166247903554}, "pyerrors.input.dobs.create_dobs_string": {"tf": 4.58257569495584}, "pyerrors.input.dobs.write_dobs": {"tf": 4.58257569495584}, "pyerrors.input.hadrons.read_hd5": {"tf": 3.4641016151377544}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 3.1622776601683795}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.830951894845301}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 2.8284271247461903}, "pyerrors.input.json.dump_to_json": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 3}, "pyerrors.input.json.load_json": {"tf": 3}, "pyerrors.input.json.dump_dict_to_json": {"tf": 3.3166247903554}, "pyerrors.input.json.load_json_dict": {"tf": 2.6457513110645907}, "pyerrors.input.misc.fit_t0": {"tf": 4.58257569495584}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 3}, "pyerrors.input.openQCD.extract_t0": {"tf": 5.477225575051661}, "pyerrors.input.openQCD.extract_w0": {"tf": 5.477225575051661}, "pyerrors.input.openQCD.read_qtop": {"tf": 4.58257569495584}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 4.358898943540674}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 4.58257569495584}, "pyerrors.input.pandas.to_sql": {"tf": 2.23606797749979}, "pyerrors.input.pandas.read_sql": {"tf": 2.449489742783178}, "pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 2.449489742783178}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4.58257569495584}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 4.898979485566356}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 2.6457513110645907}, "pyerrors.integrate.quad": {"tf": 3.3166247903554}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.23606797749979}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.23606797749979}, "pyerrors.obs.Obs": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.gm": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.3166247903554}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 4.123105625617661}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2.8284271247461903}, "pyerrors.obs.reweight": {"tf": 2.23606797749979}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 5.291502622129181}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 2.449489742783178}, "pyerrors.obs.sort_corr": {"tf": 4.898979485566356}, "pyerrors.obs.import_jackknife": {"tf": 2}, "pyerrors.obs.import_bootstrap": {"tf": 3}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 2.449489742783178}, "pyerrors.special.beta": {"tf": 3.4641016151377544}, "pyerrors.special.betainc": {"tf": 5.196152422706632}, "pyerrors.special.betaln": {"tf": 3}, "pyerrors.special.polygamma": {"tf": 2}, "pyerrors.special.psi": {"tf": 4.58257569495584}, "pyerrors.special.digamma": {"tf": 4.58257569495584}, "pyerrors.special.gamma": {"tf": 5.196152422706632}, "pyerrors.special.gammaln": {"tf": 3.7416573867739413}, "pyerrors.special.gammainc": {"tf": 3.3166247903554}, "pyerrors.special.gammaincc": {"tf": 3.3166247903554}, "pyerrors.special.gammasgn": {"tf": 3.605551275463989}, "pyerrors.special.rgamma": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 4.58257569495584}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 4}, "pyerrors.special.y0": {"tf": 4}, "pyerrors.special.j1": {"tf": 3.872983346207417}, "pyerrors.special.y1": {"tf": 4.123105625617661}, "pyerrors.special.jn": {"tf": 4.795831523312719}, "pyerrors.special.yn": {"tf": 4}, "pyerrors.special.i0": {"tf": 3}, "pyerrors.special.i1": {"tf": 3.3166247903554}, "pyerrors.special.iv": {"tf": 5.196152422706632}, "pyerrors.special.ive": {"tf": 5.385164807134504}, "pyerrors.special.erf": {"tf": 2.6457513110645907}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 3.605551275463989}, "pyerrors.special.erfcinv": {"tf": 3.3166247903554}, "pyerrors.special.logit": {"tf": 2.449489742783178}, "pyerrors.special.expit": {"tf": 3}, "pyerrors.special.logsumexp": {"tf": 4.47213595499958}}, "df": 165, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 7, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 8}}, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 6}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}, "y": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 6.324555320336759}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 50}, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 53}, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1, "g": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 2}, "pyerrors.special.erfcinv": {"tf": 2}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 66}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 2}}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "o": {"docs": {"pyerrors": {"tf": 8.831760866327848}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 3}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.plateau": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4}, "pyerrors.fits.total_least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.7416573867739413}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 3}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 3.1622776601683795}, "pyerrors.input.pandas.to_sql": {"tf": 2.23606797749979}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3.3166247903554}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 3.3166247903554}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2.23606797749979}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2.23606797749979}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.8284271247461903}, "pyerrors.obs.sort_corr": {"tf": 2.449489742783178}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.23606797749979}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gamma": {"tf": 2.8284271247461903}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 2.6457513110645907}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 2.8284271247461903}}, "df": 130, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 3}}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 30}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 3}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 6, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 8}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 7}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 5}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 2}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "+": {"1": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}}, "df": 2}, "2": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}}, "df": 1}}, "/": {"2": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 6}}}}, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 4}, "z": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 16, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 3.1622776601683795}, "pyerrors.special.betainc": {"tf": 2.23606797749979}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 5.744562646538029}, "pyerrors.special.gammaln": {"tf": 3}, "pyerrors.special.gammainc": {"tf": 3}, "pyerrors.special.gammaincc": {"tf": 3}, "pyerrors.special.gammasgn": {"tf": 3.872983346207417}, "pyerrors.special.rgamma": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 2.8284271247461903}}, "df": 32, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 2.449489742783178}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 2.6457513110645907}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.gammainc": {"tf": 2.23606797749979}, "pyerrors.special.gammaincc": {"tf": 2}}, "df": 2, "c": {"docs": {"pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2.23606797749979}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "+": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "@": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 39}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {"pyerrors": {"tf": 8.306623862918075}, "pyerrors.fits.least_squares": {"tf": 11.357816691600547}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.3166247903554}, "pyerrors.obs.sort_corr": {"tf": 4.58257569495584}, "pyerrors.special.beta": {"tf": 4.242640687119285}, "pyerrors.special.betainc": {"tf": 4.58257569495584}, "pyerrors.special.betaln": {"tf": 4.898979485566356}, "pyerrors.special.polygamma": {"tf": 3.4641016151377544}, "pyerrors.special.psi": {"tf": 3.4641016151377544}, "pyerrors.special.digamma": {"tf": 3.4641016151377544}, "pyerrors.special.gamma": {"tf": 7.615773105863909}, "pyerrors.special.gammaln": {"tf": 4.58257569495584}, "pyerrors.special.gammainc": {"tf": 4}, "pyerrors.special.gammaincc": {"tf": 4}, "pyerrors.special.gammasgn": {"tf": 4.795831523312719}, "pyerrors.special.rgamma": {"tf": 3.872983346207417}, "pyerrors.special.multigammaln": {"tf": 4.47213595499958}, "pyerrors.special.j0": {"tf": 5.477225575051661}, "pyerrors.special.y0": {"tf": 5.477225575051661}, "pyerrors.special.j1": {"tf": 5.477225575051661}, "pyerrors.special.y1": {"tf": 5.477225575051661}, "pyerrors.special.jn": {"tf": 7}, "pyerrors.special.yn": {"tf": 7.14142842854285}, "pyerrors.special.i0": {"tf": 5.477225575051661}, "pyerrors.special.i1": {"tf": 5.477225575051661}, "pyerrors.special.iv": {"tf": 6.928203230275509}, "pyerrors.special.ive": {"tf": 6.48074069840786}, "pyerrors.special.erf": {"tf": 4.898979485566356}, "pyerrors.special.erfc": {"tf": 4.898979485566356}, "pyerrors.special.erfinv": {"tf": 6.708203932499369}, "pyerrors.special.erfcinv": {"tf": 6.244997998398398}, "pyerrors.special.logit": {"tf": 6.244997998398398}, "pyerrors.special.expit": {"tf": 6.244997998398398}, "pyerrors.special.logsumexp": {"tf": 6.244997998398398}}, "df": 34}, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 3}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 10, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}}, "df": 4}}, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 3}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 6}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "/": {"5": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 8}, "8": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}}, "z": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 16, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}}, "^": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "f": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "/": {"0": {"3": {"0": {"6": {"0": {"1": {"7": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"1": {"2": {"0": {"8": {"7": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}}, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 12, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 7}}}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.7320508075688772}}, "df": 6, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 5}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 8}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}}, "df": 6}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 17}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 2.449489742783178}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 3.1622776601683795}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.extract_w0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 3.3166247903554}, "pyerrors.input.utils.sort_names": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 2.449489742783178}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.449489742783178}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 56, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 10}, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 12}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 26}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 23}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}}, "df": 4}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 3}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 3, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}}, "df": 12}}}}, "q": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2}}, "df": 2}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 7}}, "t": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}}}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 3}}, "df": 11, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.logsumexp": {"tf": 2.6457513110645907}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 5, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"2": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logit": {"tf": 4.242640687119285}, "pyerrors.special.expit": {"tf": 2.23606797749979}}, "df": 2}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.load_object": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 4}}, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 2}}, "df": 6}}}, "c": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}}, "df": 7}, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}}, "df": 1}, "n": {"docs": {"pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 13, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 11, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}}, "df": 1, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 4}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 6}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.23606797749979}}, "df": 5}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 6, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 9}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 7}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}}}}}}, "b": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 27}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 12}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 6}}, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 4}, "k": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 2}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 10}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 3}}, "df": 4, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 27}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 14, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 2}}}}, "d": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.6457513110645907}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 2}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 61, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 19, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 9}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 14, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 11}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 10, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {"pyerrors.special.beta": {"tf": 2.8284271247461903}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 2.449489742783178}, "pyerrors.special.rgamma": {"tf": 2.23606797749979}}, "df": 7, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 3}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 28}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 35}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 4, "s": {"1": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 3.1622776601683795}, "pyerrors.obs.import_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 2.6457513110645907}}, "df": 11}}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 44}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 5}}}, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}}, "df": 5, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 2.23606797749979}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 17}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 2}}}}, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 40}, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 20, "s": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 6}}}}, "p": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}}, "df": 10}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}, "e": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 12}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 19}, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 12, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 2}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 4}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.j0": {"tf": 2}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.jn": {"tf": 2}}, "df": 3}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}}, "df": 6}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 12}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}}, "df": 14}}}, "w": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 18, "n": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 6}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 3}, "d": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 5, "{": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 3}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.fits.least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 2}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.yn": {"tf": 2.23606797749979}}, "df": 22, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 20, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 6, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 50}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}}}}}}}}}, "t": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 43, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 32}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}, "w": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 10}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 6}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 8}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 7}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 5, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 47}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 33, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 10}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.4641016151377544}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 2}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 4.358898943540674}}, "df": 34, "r": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.23606797749979}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 30, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 20, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}, "/": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 3}}}, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 3}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 2.23606797749979}, "pyerrors.special.expit": {"tf": 2.23606797749979}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 49, "s": {"docs": {"pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 2.449489742783178}, "pyerrors.special.digamma": {"tf": 2.449489742783178}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}}, "df": 11}}}}, "x": {"0": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 12}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 12}, "3": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 4.795831523312719}, "pyerrors.fits.total_least_squares": {"tf": 3}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 4}, "pyerrors.special.polygamma": {"tf": 2.449489742783178}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 3.7416573867739413}, "pyerrors.special.gammaln": {"tf": 3.605551275463989}, "pyerrors.special.gammainc": {"tf": 3}, "pyerrors.special.gammaincc": {"tf": 3}, "pyerrors.special.gammasgn": {"tf": 3.605551275463989}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 2.8284271247461903}, "pyerrors.special.y0": {"tf": 3.4641016151377544}, "pyerrors.special.j1": {"tf": 2.6457513110645907}, "pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 2.449489742783178}, "pyerrors.special.i0": {"tf": 3}, "pyerrors.special.i1": {"tf": 3}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 2.8284271247461903}, "pyerrors.special.erfc": {"tf": 3}, "pyerrors.special.erfinv": {"tf": 2.8284271247461903}, "pyerrors.special.erfcinv": {"tf": 2.6457513110645907}, "pyerrors.special.logit": {"tf": 3.4641016151377544}, "pyerrors.special.expit": {"tf": 3.7416573867739413}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 41, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}}, "df": 7}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}, "[": {"0": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "^": {"2": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1, "/": {"4": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 8}}}}}}, "y": {"0": {"docs": {"pyerrors.special.y0": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 1.7320508075688772}}, "df": 2}, "1": {"docs": {"pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 1.7320508075688772}}, "df": 2}, "docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.358898943540674}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 3}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 2}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 3.4641016151377544}, "pyerrors.special.erfcinv": {"tf": 3.1622776601683795}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 24, "o": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}}, "df": 3}}}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.8284271247461903}}, "df": 2}, "v": {"docs": {"pyerrors.special.y0": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 3.4641016151377544}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.logit": {"tf": 1}}, "df": 1}}}}}}, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 19, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.6457513110645907}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 23, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 17}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 2}}}}}}}}}}}, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2, "[": {"0": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 9, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.23606797749979}}, "df": 21, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 13}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "t": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 7}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}}}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 6}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 7}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 6, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 12}, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 6}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 2.23606797749979}, "pyerrors.special.gammaincc": {"tf": 2.23606797749979}}, "df": 5}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 15, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 99}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 10}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 6}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.reweight": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 27}}}}}, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 25, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}, "k": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 3}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 4}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 8}}}}, "v": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 2.449489742783178}}, "df": 2}}}}}}, "v": {"1": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "v": {"2": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 4.795831523312719}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 4.242640687119285}, "pyerrors.special.ive": {"tf": 4.242640687119285}}, "df": 8, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 38, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 32}, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 24}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 12}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.449489742783178}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.449489742783178}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 18}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 6}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 2}}}}}}}}}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "/": {"2": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}}}, "u": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 22, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 39}, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}}, "df": 16}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 3, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 2}}}}}}, "j": {"0": {"docs": {"pyerrors.special.j0": {"tf": 2.6457513110645907}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}, "1": {"docs": {"pyerrors.special.j1": {"tf": 2.6457513110645907}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2.8284271247461903}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 20, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 4, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2.23606797749979}, "pyerrors.input.json.dump_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 12}}}, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "}": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}, "^": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "v": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 3.3166247903554}}, "df": 3, "e": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 3}}, "k": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 2.23606797749979}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 31, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.6457513110645907}}, "df": 3}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.6457513110645907}}, "df": 2}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "\u2013": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"1": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 2.449489742783178}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2.23606797749979}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 28}}}, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}}, "df": 2, "c": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}}, "df": 2}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.input.hadrons.read_hd5": {"tf": 2.8284271247461903}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 23}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 29, "h": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 11}}}}, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 5}}}}}}}, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 7}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}}, "u": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"2": {"docs": {}, "df": 0, "f": {"1": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "z": {"docs": {"pyerrors.special.psi": {"tf": 3}, "pyerrors.special.digamma": {"tf": 3}, "pyerrors.special.gamma": {"tf": 4.123105625617661}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 3.872983346207417}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 4.242640687119285}, "pyerrors.special.ive": {"tf": 4.69041575982343}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 12, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 22, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 5}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}}, "df": 7}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 10}}}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "i": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}, "k": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"pyerrors": {"fullname": "pyerrors", "modulename": "pyerrors", "kind": "module", "doc": "\n>>> a = np.ma.array([np.log(2), 2, np.log(3)],\n... mask=[False, True, False])\n>>> b = (~a.mask).astype(int)\n>>> logsumexp(a.data, b=b), np.log(5)\n1.6094379124341005, 1.6094379124341005\n
What is pyerrors?
\n\n\n\n
pyerrors
is a python package for error computation and propagation of Markov chain Monte Carlo data.\nIt is based on the gamma method arXiv:hep-lat/0306017. Some of its features are:\n
\n\n- automatic differentiation for exact linear error propagation as suggested in arXiv:1809.01289 (partly based on the autograd package).
\n- treatment of slow modes in the simulation as suggested in arXiv:1009.5228.
\n- coherent error propagation for data from different Markov chains.
\n- non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in arXiv:1809.01289.
\n- real and complex matrix operations and their error propagation based on automatic differentiation (Matrix inverse, Cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...).
\nMore detailed examples can found in the GitHub repository
\n\n.
If you use
\n\npyerrors
for research that leads to a publication please consider citing:\n
\n\n- Fabian Joswig, Simon Kuberski, Justus T. Kuhlmann, Jan Neuendorf, pyerrors: a python framework for error analysis of Monte Carlo data. Comput.Phys.Commun. 288 (2023) 108750.
\n- Ulli Wolff, Monte Carlo errors with less errors. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
\n- Alberto Ramos, Automatic differentiation for error analysis of Monte Carlo data. Comput.Phys.Commun. 238 (2019) 19-35.
\nand
\n\n\n
\n\n- Stefan Schaefer, Rainer Sommer, Francesco Virotta, Critical slowing down and error analysis in lattice QCD simulations. Nucl.Phys.B 845 (2011) 93-119.
\nwhere applicable.
\n\nThere exist similar publicly available implementations of gamma method error analysis suites in Fortran, Julia and Python.
\n\nInstallation
\n\nInstall the most recent release using pip and pypi:
\n\n\n\n\n\npython -m pip install pyerrors # Fresh install\npython -m pip install -U pyerrors # Update\n
Install the most recent release using conda and conda-forge:
\n\n\n\n\n\nconda install -c conda-forge pyerrors # Fresh install\nconda update -c conda-forge pyerrors # Update\n
Install the current
\n\ndevelop
version:\n\n\n\npython -m pip install -U --no-deps --force-reinstall git+https://github.com/fjosw/pyerrors.git@develop\n
(Also works for any feature branch).
\n\nBasic example
\n\n\n\n\n\nimport numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name']) # Initialize an Obs object\nmy_new_obs = 2 * np.log(my_obs) / my_obs ** 2 # Construct derived Obs object\nmy_new_obs.gamma_method() # Estimate the statistical error\nprint(my_new_obs) # Print the result to stdout\n> 0.31498(72)\n
The
\n\nObs
class\n\n
pyerrors
introduces a new datatype,Obs
, which simplifies error propagation and estimation for auto- and cross-correlated data.\nAnObs
object can be initialized with two arguments, the first is a list containing the samples for an observable from a Monte Carlo chain.\nThe samples can either be provided as python list or as numpy array.\nThe second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble. It is crucial for the correct error propagation that observations from the same Monte Carlo history are labeled with the same name. See Multiple ensembles/replica for details.\n\n\n\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\n
Error propagation
\n\nWhen performing mathematical operations on
\n\nObs
objects the correct error propagation is intrinsically taken care of using a first order Taylor expansion\n$$\\delta_f^i=\\sum_\\alpha \\bar{f}_\\alpha \\delta_\\alpha^i\\,,\\quad \\delta_\\alpha^i=a_\\alpha^i-\\bar{a}_\\alpha\\,,$$\nas introduced in arXiv:hep-lat/0306017.\nThe required derivatives $\\bar{f}_\\alpha$ are evaluated up to machine precision via automatic differentiation as suggested in arXiv:1809.01289.The
\n\nObs
class is designed such that mathematical numpy functions can be used onObs
just as for regular floats.\n\n\n\nimport numpy as np\nimport pyerrors as pe\n\nmy_obs1 = pe.Obs([samples1], ['ensemble_name'])\nmy_obs2 = pe.Obs([samples2], ['ensemble_name'])\n\nmy_sum = my_obs1 + my_obs2\n\nmy_m_eff = np.log(my_obs1 / my_obs2)\n\niamzero = my_m_eff - my_m_eff\n# Check that value and fluctuations are zero within machine precision\nprint(iamzero == 0.0)\n> True\n
Error estimation
\n\nThe error estimation within
\n\npyerrors
is based on the gamma method introduced in arXiv:hep-lat/0306017.\nAfter having arrived at the derived quantity of interest thegamma_method
can be called as detailed in the following example.\n\n\n\nmy_sum.gamma_method()\nprint(my_sum)\n> 1.70(57)\nmy_sum.details()\n> Result 1.70000000e+00 +/- 5.72046658e-01 +/- 7.56746598e-02 (33.650%)\n> t_int 2.71422900e+00 +/- 6.40320983e-01 S = 2.00\n> 1000 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
The
\n\ngamma_method
is not automatically called after every intermediate step in order to prevent computational overhead.We use the following definition of the integrated autocorrelation time established in Madras & Sokal 1988\n$$\\tau_\\mathrm{int}=\\frac{1}{2}+\\sum_{t=1}^{W}\\rho(t)\\geq \\frac{1}{2}\\,.$$\nThe window $W$ is determined via the automatic windowing procedure described in arXiv:hep-lat/0306017.\nThe standard value for the parameter $S$ of this automatic windowing procedure is $S=2$. Other values for $S$ can be passed to the
\n\ngamma_method
as parameter.\n\n\n\nmy_sum.gamma_method(S=3.0)\nmy_sum.details()\n> Result 1.70000000e+00 +/- 6.30675201e-01 +/- 1.04585650e-01 (37.099%)\n> t_int 3.29909703e+00 +/- 9.77310102e-01 S = 3.00\n> 1000 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
The integrated autocorrelation time $\\tau_\\mathrm{int}$ and the autocorrelation function $\\rho(W)$ can be monitored via the methods
\n\npyerrors.obs.Obs.plot_tauint
andpyerrors.obs.Obs.plot_rho
.If the parameter $S$ is set to zero it is assumed that the dataset does not exhibit any autocorrelation and the window size is chosen to be zero.\nIn this case the error estimate is identical to the sample standard error.
\n\nExponential tails
\n\nSlow modes in the Monte Carlo history can be accounted for by attaching an exponential tail to the autocorrelation function $\\rho$ as suggested in arXiv:1009.5228. The longest autocorrelation time in the history, $\\tau_\\mathrm{exp}$, can be passed to the
\n\ngamma_method
as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.\n\n\n\nmy_sum.gamma_method(tau_exp=7.2)\nmy_sum.details()\n> Result 1.70000000e+00 +/- 6.28097762e-01 +/- 5.79077524e-02 (36.947%)\n> t_int 3.27218667e+00 +/- 7.99583654e-01 tau_exp = 7.20, N_sigma = 1\n> 1000 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
For the full API see
\n\npyerrors.obs.Obs.gamma_method
.Multiple ensembles/replica
\n\nError propagation for multiple ensembles (Markov chains with different simulation parameters) is handled automatically. Ensembles are uniquely identified by their
\n\nname
.\n\n\n\nobs1 = pe.Obs([samples1], ['ensemble1'])\nobs2 = pe.Obs([samples2], ['ensemble2'])\n\nmy_sum = obs1 + obs2\nmy_sum.details()\n> Result 2.00697958e+00\n> 1500 samples in 2 ensembles:\n> \u00b7 Ensemble 'ensemble1' : 1000 configurations (from 1 to 1000)\n> \u00b7 Ensemble 'ensemble2' : 500 configurations (from 1 to 500)\n
Observables from the same Monte Carlo chain have to be initialized with the same name for correct error propagation. If different names were used in this case the data would be treated as statistically independent resulting in loss of relevant information and a potential over or under estimate of the statistical error.
\n\n\n\n
pyerrors
identifies multiple replica (independent Markov chains with identical simulation parameters) by the vertical bar|
in the name of the data set.\n\n\n\nobs1 = pe.Obs([samples1], ['ensemble1|r01'])\nobs2 = pe.Obs([samples2], ['ensemble1|r02'])\n\n> my_sum = obs1 + obs2\n> my_sum.details()\n> Result 2.00697958e+00\n> 1500 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble1'\n> \u00b7 Replicum 'r01' : 1000 configurations (from 1 to 1000)\n> \u00b7 Replicum 'r02' : 500 configurations (from 1 to 500)\n
Error estimation for multiple ensembles
\n\nIn order to keep track of different error analysis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.
\n\n\n\n\n\npe.Obs.S_dict['ensemble1'] = 2.5\npe.Obs.tau_exp_dict['ensemble2'] = 8.0\npe.Obs.tau_exp_dict['ensemble3'] = 2.0\n
In case the
\n\ngamma_method
is called without any parameters it will use the values specified in the dictionaries for the respective ensembles.\nPassing arguments to thegamma_method
still dominates over the dictionaries.Irregular Monte Carlo chains
\n\n\n\n
Obs
objects defined on irregular Monte Carlo chains can be initialized with the parameteridl
.\n\n\n\n# Observable defined on configurations 20 to 519\nobs1 = pe.Obs([samples1], ['ensemble1'], idl=[range(20, 520)])\nobs1.details()\n> Result 9.98319881e-01\n> 500 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble1' : 500 configurations (from 20 to 519)\n\n# Observable defined on every second configuration between 5 and 1003\nobs2 = pe.Obs([samples2], ['ensemble1'], idl=[range(5, 1005, 2)])\nobs2.details()\n> Result 9.99100712e-01\n> 500 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble1' : 500 configurations (from 5 to 1003 in steps of 2)\n\n# Observable defined on configurations 2, 9, 28, 29 and 501\nobs3 = pe.Obs([samples3], ['ensemble1'], idl=[[2, 9, 28, 29, 501]])\nobs3.details()\n> Result 1.01718064e+00\n> 5 samples in 1 ensemble:\n> \u00b7 Ensemble 'ensemble1' : 5 configurations (irregular range)\n
\n\n
Obs
objects defined on regular and irregular histories of the same ensemble can be combined with each other and the correct error propagation and estimation is automatically taken care of.Warning: Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions.\nMake sure to check the autocorrelation time with e.g.
\n\npyerrors.obs.Obs.plot_rho
orpyerrors.obs.Obs.plot_tauint
.For the full API see
\n\npyerrors.obs.Obs
.Correlators
\n\nWhen one is not interested in single observables but correlation functions,
\n\npyerrors
offers theCorr
class which simplifies the corresponding error propagation and provides the user with a set of standard methods. In order to initialize aCorr
objects one needs to arrange the data as a list ofObs
\n\n\n\nmy_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3])\nprint(my_corr)\n> x0/a Corr(x0/a)\n> ------------------\n> 0 0.7957(80)\n> 1 0.5156(51)\n> 2 0.3227(33)\n> 3 0.2041(21)\n
In case the correlation functions are not defined on the outermost timeslices, for example because of fixed boundary conditions, a padding can be introduced.
\n\n\n\n\n\nmy_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3], padding=[1, 1])\nprint(my_corr)\n> x0/a Corr(x0/a)\n> ------------------\n> 0\n> 1 0.7957(80)\n> 2 0.5156(51)\n> 3 0.3227(33)\n> 4 0.2041(21)\n> 5\n
The individual entries of a correlator can be accessed via slicing
\n\n\n\n\n\nprint(my_corr[3])\n> 0.3227(33)\n
Error propagation with the
\n\nCorr
class works very similar toObs
objects. Mathematical operations are overloaded andCorr
objects can be computed together with otherCorr
objects,Obs
objects or real numbers and integers.\n\n\n\nmy_new_corr = 0.3 * my_corr[2] * my_corr * my_corr + 12 / my_corr\n
\n\n
pyerrors
provides the user with a set of regularly used methods for the manipulation of correlator objects:\n
\n\n- \n
Corr.gamma_method
applies the gamma method to all entries of the correlator.- \n
Corr.m_eff
to construct effective masses. Various variants for periodic and fixed temporal boundary conditions are available.- \n
Corr.deriv
returns the first derivative of the correlator asCorr
. Different discretizations of the numerical derivative are available.- \n
Corr.second_deriv
returns the second derivative of the correlator asCorr
. Different discretizations of the numerical derivative are available.- \n
Corr.symmetric
symmetrizes parity even correlations functions, assuming periodic boundary conditions.- \n
Corr.anti_symmetric
anti-symmetrizes parity odd correlations functions, assuming periodic boundary conditions.- \n
Corr.T_symmetry
averages a correlator with its time symmetry partner, assuming fixed boundary conditions.- \n
Corr.plateau
extracts a plateau value from the correlator in a given range.- \n
Corr.roll
periodically shifts the correlator.- \n
Corr.reverse
reverses the time ordering of the correlator.- \n
Corr.correlate
constructs a disconnected correlation function from the correlator and anotherCorr
orObs
object.- \n
Corr.reweight
reweights the correlator.\n\n
pyerrors
can also handle matrices of correlation functions and extract energy states from these matrices via a generalized eigenvalue problem (seepyerrors.correlators.Corr.GEVP
).For the full API see
\n\npyerrors.correlators.Corr
.Complex valued observables
\n\n\n\n
pyerrors
can handle complex valued observables via the classpyerrors.obs.CObs
.\nCObs
are initialized with a real and an imaginary part which both can beObs
valued.\n\n\n\nmy_real_part = pe.Obs([samples1], ['ensemble1'])\nmy_imag_part = pe.Obs([samples2], ['ensemble1'])\n\nmy_cobs = pe.CObs(my_real_part, my_imag_part)\nmy_cobs.gamma_method()\nprint(my_cobs)\n> (0.9959(91)+0.659(28)j)\n
Elementary mathematical operations are overloaded and samples are properly propagated as for the
\n\nObs
class.\n\n\n\nmy_derived_cobs = (my_cobs + my_cobs.conjugate()) / np.abs(my_cobs)\nmy_derived_cobs.gamma_method()\nprint(my_derived_cobs)\n> (1.668(23)+0.0j)\n
The
\n\nCovobs
classIn many projects, auxiliary data that is not based on Monte Carlo chains enters. Examples are experimentally determined mesons masses which are used to set the scale or renormalization constants. These numbers come with an error that has to be propagated through the analysis. The
\n\nCovobs
class allows to define such quantities inpyerrors
. Furthermore, external input might consist of correlated quantities. An example are the parameters of an interpolation formula, which are defined via mean values and a covariance matrix between all parameters. The contribution of the interpolation formula to the error of a derived quantity therefore might depend on the complete covariance matrix.This concept is built into the definition of
\n\nCovobs
. Inpyerrors
, external input is defined by $M$ mean values, a $M\\times M$ covariance matrix, where $M=1$ is permissible, and a name that uniquely identifies the covariance matrix. Below, we define the pion mass, based on its mean value and error, 134.9768(5). Note, that the square of the error enterscov_Obs
, since the second argument of this function is the covariance matrix of theCovobs
.\n\n\n\nimport pyerrors.obs as pe\n\nmpi = pe.cov_Obs(134.9768, 0.0005**2, 'pi^0 mass')\nmpi.gamma_method()\nmpi.details()\n> Result 1.34976800e+02 +/- 5.00000000e-04 +/- 0.00000000e+00 (0.000%)\n> pi^0 mass 5.00000000e-04\n> 0 samples in 1 ensemble:\n> \u00b7 Covobs 'pi^0 mass'\n
The resulting object
\n\nmpi
is anObs
that contains aCovobs
. In the following, it may be handled as any otherObs
. The contribution of the covariance matrix to the error of anObs
is determined from the $M \\times M$ covariance matrix $\\Sigma$ and the gradient of theObs
with respect to the external quantities, which is the $1\\times M$ Jacobian matrix $J$, via\n$$s = \\sqrt{J^T \\Sigma J}\\,,$$\nwhere the Jacobian is computed for each derived quantity via automatic differentiation.Correlated auxiliary data is defined similarly to above, e.g., via
\n\n\n\n\n\nRAP = pe.cov_Obs([16.7457, -19.0475], [[3.49591, -6.07560], [-6.07560, 10.5834]], 'R_AP, 1906.03445, (5.3a)')\nprint(RAP)\n> [Obs[16.7(1.9)], Obs[-19.0(3.3)]]\n
where
\n\nRAP
now is a list of twoObs
that contains the two correlated parameters.Since the gradient of a derived observable with respect to an external covariance matrix is propagated through the entire analysis, the
\n\nCovobs
class allows to quote the derivative of a result with respect to the external quantities. If these derivatives are published together with the result, small shifts in the definition of external quantities, e.g., the definition of the physical point, can be performed a posteriori based on the published information. This may help to compare results of different groups. The gradient of anObs
o
with respect to a covariance matrix with the identifying stringk
may be accessed via\n\n\n\no.covobs[k].grad\n
Error propagation in iterative algorithms
\n\n\n\n
pyerrors
supports exact linear error propagation for iterative algorithms like various variants of non-linear least squares fits or root finding. The derivatives required for the error propagation are calculated as described in arXiv:1809.01289.Least squares fits
\n\nStandard non-linear least square fits with errors on the dependent but not the independent variables can be performed with
\n\npyerrors.fits.least_squares
. As default solver the Levenberg-Marquardt algorithm implemented in scipy is used.Fit functions have to be of the following form
\n\n\n\n\n\nimport autograd.numpy as anp\n\ndef func(a, x):\n return a[1] * anp.exp(-a[0] * x)\n
It is important that numerical functions refer to
\n\nautograd.numpy
instead ofnumpy
for the automatic differentiation in iterative algorithms to work properly.Fits can then be performed via
\n\n\n\n\n\nfit_result = pe.fits.least_squares(x, y, func)\nprint("\\n", fit_result)\n> Fit with 2 parameters\n> Method: Levenberg-Marquardt\n> `ftol` termination condition is satisfied.\n> chisquare/d.o.f.: 0.9593035785160936\n\n> Goodness of fit:\n> \u03c7\u00b2/d.o.f. = 0.959304\n> p-value = 0.5673\n> Fit parameters:\n> 0 0.0548(28)\n> 1 1.933(64)\n
where x is a
\n\nlist
ornumpy.array
offloats
and y is alist
ornumpy.array
ofObs
.Data stored in
\n\nCorr
objects can be fitted directly using theCorr.fit
method.\n\n\n\nmy_corr = pe.Corr(y)\nfit_result = my_corr.fit(func, fitrange=[12, 25])\n
this can simplify working with absolute fit ranges and takes care of gaps in the data automatically.
\n\nFor fit functions with multiple independent variables the fit function can be of the form
\n\n\n\n\n\ndef func(a, x):\n (x1, x2) = x\n return a[0] * x1 ** 2 + a[1] * x2\n
\n\n
pyerrors
also supports correlated fits which can be triggered via the parametercorrelated_fit=True
.\nDetails about how the required covariance matrix is estimated can be found inpyerrors.obs.covariance
.\nDirect visualizations of the performed fits can be triggered viaresplot=True
orqqplot=True
.For all available options including combined fits to multiple datasets see
\n\npyerrors.fits.least_squares
.Total least squares fits
\n\n\n\n
pyerrors
can also fit data with errors on both the dependent and independent variables using the total least squares method also referred to as orthogonal distance regression as implemented in scipy, seepyerrors.fits.least_squares
. The syntax is identical to the standard least squares case, the only difference being thatx
also has to be alist
ornumpy.array
ofObs
.For the full API see
\n\npyerrors.fits
for fits andpyerrors.roots
for finding roots of functions.Matrix operations
\n\n\n\n
pyerrors
provides wrappers forObs
- andCObs
-valued matrix operations based onnumpy.linalg
. The supported functions include:\n
\n\n- \n
inv
for the matrix inverse.- \n
cholseky
for the Cholesky decomposition.- \n
det
for the matrix determinant.- \n
eigh
for eigenvalues and eigenvectors of hermitean matrices.- \n
eig
for eigenvalues of general matrices.- \n
pinv
for the Moore-Penrose pseudoinverse.- \n
svd
for the singular-value-decomposition.For the full API see
\n\npyerrors.linalg
.Export data
\n\n\n\nThe preferred exported file format within
\n\npyerrors
is json.gz. Files written to this format are valid JSON files that have been compressed using gzip. The structure of the content is inspired by the dobs format of the ALPHA collaboration. The aim of the format is to facilitate the storage of data in a self-contained way such that, even years after the creation of the file, it is possible to extract all necessary information:\n
\n\n- What observables are stored? Possibly: How exactly are they defined.
\n- How does each single ensemble or external quantity contribute to the error of the observable?
\n- Who did write the file when and on which machine?
\nThis can be achieved by storing all information in one single file. The export routines of
\n\npyerrors
are written such that as much information as possible is written automatically as described in the following example\n\n\n\nmy_obs = pe.Obs([samples], ["test_ensemble"])\nmy_obs.tag = "My observable"\n\npe.input.json.dump_to_json(my_obs, "test_output_file", description="This file contains a test observable")\n# For a single observable one can equivalently use the class method dump\nmy_obs.dump("test_output_file", description="This file contains a test observable")\n\ncheck = pe.input.json.load_json("test_output_file")\n\nprint(my_obs == check)\n> True\n
The format also allows to directly write out the content of
\n\nCorr
objects or lists and arrays ofObs
objects by passing the desired data topyerrors.input.json.dump_to_json
.json.gz format specification
\n\nThe first entries of the file provide optional auxiliary information:
\n\n\n
\n\n- \n
program
is a string that indicates which program was used to write the file.- \n
version
is a string that specifies the version of the format.- \n
who
is a string that specifies the user name of the creator of the file.- \n
date
is a string and contains the creation date of the file.- \n
host
is a string and contains the hostname of the machine where the file has been written.- \n
description
contains information on the content of the file. This field is not filled automatically inpyerrors
. The user is advised to provide as detailed information as possible in this field. Examples are: Input files of measurements or simulations, LaTeX formulae or references to publications to specify how the observables have been computed, details on the analysis strategy, ... This field may be any valid JSON type. Strings, arrays or objects (equivalent to dicts in python) are well suited to provide information.The only necessary entry of the file is the field\n-
\n\nobsdata
, an array that contains the actual data.Each entry of the array belongs to a single structure of observables. Currently, these structures can be either of
\n\nObs
,list
,numpy.ndarray
,Corr
. AllObs
inside a structure (with dimension > 0) have to be defined on the same set of configurations. Different structures, that are represented by entries of the arrayobsdata
, are treated independently. Each entry of the arrayobsdata
has the following required entries:\n
\n\n- \n
type
is a string that specifies the type of the structure. This allows to parse the content to the correct form after reading the file. It is always possible to interpret the content as list of Obs.- \n
value
is an array that contains the mean values of the Obs inside the structure.\nThe following entries are optional:- \n
layout
is a string that specifies the layout of multi-dimensional structures. Examples are \"2, 2\" for a 2x2 dimensional matrix or \"64, 4, 4\" for a Corr with $T=64$ and 4x4 matrices on each time slices. \"1\" denotes a single Obs. Multi-dimensional structures are stored in row-major format (see below).- \n
tag
is any JSON type. It contains additional information concerning the structure. Thetag
of anObs
inpyerrors
is written here.- \n
reweighted
is a Bool that may be used to specify, whether theObs
in the structure have been reweighted.- \n
data
is an array that contains the data from MC chains. We will define it below.- \n
cdata
is an array that contains the data from external quantities with an error (Covobs
inpyerrors
). We will define it below.The array
\n\ndata
contains the data from MC chains. Each entry of the array corresponds to one ensemble and contains:\n
\n\n- \n
id
, a string that contains the name of the ensemble- \n
replica
, an array that contains an entry per replica of the ensemble.Each entry of
\n\nreplica
contains\nname
, a string that contains the name of the replica\ndeltas
, an array that contains the actual data.Each entry in
\n\ndeltas
corresponds to one configuration of the replica and has $1+N$ many entries. The first entry is an integer that specifies the configuration number that, together with ensemble and replica name, may be used to uniquely identify the configuration on which the data has been obtained. The following N entries specify the deltas, i.e., the deviation of the observable from the mean value on this configuration, of eachObs
inside the structure. Multi-dimensional structures are stored in a row-major format. For primary observables, such as correlation functions, $value + delta_i$ matches the primary data obtained on the configuration.The array
\n\ncdata
contains information about the contribution of auxiliary observables, represented byCovobs
inpyerrors
, to the total error of the observables. Each entry of the array belongs to one auxiliary covariance matrix and contains:\n
\n\n- \n
id
, a string that identifies the covariance matrix- \n
layout
, a string that defines the dimensions of the $M\\times M$ covariance matrix (has to be \"M, M\" or \"1\").- \n
cov
, an array that contains the $M\\times M$ many entries of the covariance matrix, stored in row-major format.- \n
grad
, an array that contains N entries, one for eachObs
inside the structure. Each entry itself is an array, that contains the M gradients of the Nth observable with respect to the quantity that corresponds to the Mth diagonal entry of the covariance matrix.A JSON schema that may be used to verify the correctness of a file with respect to the format definition is stored in ./examples/json_schema.json. The schema is a self-descriptive format definition and contains an exemplary file.
\n\nJulia I/O routines for the json.gz format, compatible with ADerrors.jl, can be found here.
\n"}, "pyerrors.correlators": {"fullname": "pyerrors.correlators", "modulename": "pyerrors.correlators", "kind": "module", "doc": "\n"}, "pyerrors.correlators.Corr": {"fullname": "pyerrors.correlators.Corr", "modulename": "pyerrors.correlators", "qualname": "Corr", "kind": "class", "doc": "The class for a correlator (time dependent sequence of pe.Obs).
\n\nEverything, this class does, can be achieved using lists or arrays of Obs.\nBut it is simply more convenient to have a dedicated object for correlators.\nOne often wants to add or multiply correlators of the same length at every timeslice and it is inconvenient\nto iterate over all timeslices for every operation. This is especially true, when dealing with matrices.
\n\nThe correlator can have two types of content: An Obs at every timeslice OR a matrix at every timeslice.\nOther dependency (eg. spatial) are not supported.
\n\nThe Corr class can also deal with missing measurements or paddings for fixed boundary conditions.\nThe missing entries are represented via the
\n\nNone
object.Initialization
\n\nA simple correlator can be initialized with a list or a one-dimensional array of
\n\nObs
orCobs
\n\n\n\ncorr11 = pe.Corr([obs1, obs2])\ncorr11 = pe.Corr(np.array([obs1, obs2]))\n
A matrix-valued correlator can either be initialized via a two-dimensional array of
\n\nCorr
objects\n\n\n\nmatrix_corr = pe.Corr(np.array([[corr11, corr12], [corr21, corr22]]))\n
or alternatively via a three-dimensional array of
\n"}, "pyerrors.correlators.Corr.__init__": {"fullname": "pyerrors.correlators.Corr.__init__", "modulename": "pyerrors.correlators", "qualname": "Corr.__init__", "kind": "function", "doc": "Obs
orCObs
of shape (T, N, N) where T is\nthe temporal extent of the correlator and N is the dimension of the matrix.Initialize a Corr object.
\n\nParameters
\n\n\n
\n", "signature": "(data_input, padding=[0, 0], prange=None)"}, "pyerrors.correlators.Corr.tag": {"fullname": "pyerrors.correlators.Corr.tag", "modulename": "pyerrors.correlators", "qualname": "Corr.tag", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.content": {"fullname": "pyerrors.correlators.Corr.content", "modulename": "pyerrors.correlators", "qualname": "Corr.content", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.T": {"fullname": "pyerrors.correlators.Corr.T", "modulename": "pyerrors.correlators", "qualname": "Corr.T", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.prange": {"fullname": "pyerrors.correlators.Corr.prange", "modulename": "pyerrors.correlators", "qualname": "Corr.prange", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.reweighted": {"fullname": "pyerrors.correlators.Corr.reweighted", "modulename": "pyerrors.correlators", "qualname": "Corr.reweighted", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.gamma_method": {"fullname": "pyerrors.correlators.Corr.gamma_method", "modulename": "pyerrors.correlators", "qualname": "Corr.gamma_method", "kind": "function", "doc": "- data_input (list or array):\nlist of Obs or list of arrays of Obs or array of Corrs (see class docstring for details).
\n- padding (list, optional):\nList with two entries where the first labels the padding\nat the front of the correlator and the second the padding\nat the back.
\n- prange (list, optional):\nList containing the first and last timeslice of the plateau\nregion identified for this correlator.
\nApply the gamma method to the content of the Corr.
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.gm": {"fullname": "pyerrors.correlators.Corr.gm", "modulename": "pyerrors.correlators", "qualname": "Corr.gm", "kind": "function", "doc": "Apply the gamma method to the content of the Corr.
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.projected": {"fullname": "pyerrors.correlators.Corr.projected", "modulename": "pyerrors.correlators", "qualname": "Corr.projected", "kind": "function", "doc": "We need to project the Correlator with a Vector to get a single value at each timeslice.
\n\nThe method can use one or two vectors.\nIf two are specified it returns v1@G@v2 (the order might be very important.)\nBy default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to
\n", "signature": "(self, vector_l=None, vector_r=None, normalize=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.item": {"fullname": "pyerrors.correlators.Corr.item", "modulename": "pyerrors.correlators", "qualname": "Corr.item", "kind": "function", "doc": "Picks the element [i,j] from every matrix and returns a correlator containing one Obs per timeslice.
\n\nParameters
\n\n\n
\n", "signature": "(self, i, j):", "funcdef": "def"}, "pyerrors.correlators.Corr.plottable": {"fullname": "pyerrors.correlators.Corr.plottable", "modulename": "pyerrors.correlators", "qualname": "Corr.plottable", "kind": "function", "doc": "- i (int):\nFirst index to be picked.
\n- j (int):\nSecond index to be picked.
\nOutputs the correlator in a plotable format.
\n\nOutputs three lists containing the timeslice index, the value on each\ntimeslice and the error on each timeslice.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.symmetric": {"fullname": "pyerrors.correlators.Corr.symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.symmetric", "kind": "function", "doc": "Symmetrize the correlator around x0=0.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.anti_symmetric": {"fullname": "pyerrors.correlators.Corr.anti_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.anti_symmetric", "kind": "function", "doc": "Anti-symmetrize the correlator around x0=0.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.is_matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.is_matrix_symmetric", "kind": "function", "doc": "Checks whether a correlator matrices is symmetric on every timeslice.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.trace": {"fullname": "pyerrors.correlators.Corr.trace", "modulename": "pyerrors.correlators", "qualname": "Corr.trace", "kind": "function", "doc": "Calculates the per-timeslice trace of a correlator matrix.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.matrix_symmetric", "kind": "function", "doc": "Symmetrizes the correlator matrices on every timeslice.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.GEVP": {"fullname": "pyerrors.correlators.Corr.GEVP", "modulename": "pyerrors.correlators", "qualname": "Corr.GEVP", "kind": "function", "doc": "Solve the generalized eigenvalue problem on the correlator matrix and returns the corresponding eigenvectors.
\n\nThe eigenvectors are sorted according to the descending eigenvalues, the zeroth eigenvector(s) correspond to the\nlargest eigenvalue(s). The eigenvector(s) for the individual states can be accessed via slicing
\n\n\n\n\n\nC.GEVP(t0=2)[0] # Ground state vector(s)\nC.GEVP(t0=2)[:3] # Vectors for the lowest three states\n
Parameters
\n\n\n
\n\n- t0 (int):\nThe time t0 for the right hand side of the GEVP according to $G(t)v_i=\\lambda_i G(t_0)v_i$
\n- ts (int):\nfixed time $G(t_s)v_i=\\lambda_i G(t_0)v_i$ if sort=None.\nIf sort=\"Eigenvector\" it gives a reference point for the sorting method.
\n- sort (string):\nIf this argument is set, a list of self.T vectors per state is returned. If it is set to None, only one vector is returned.\n
\n\n
- \"Eigenvalue\": The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice. (default)
\n- \"Eigenvector\": Use the method described in arXiv:2004.10472 to find the set of v(t) belonging to the state.\nThe reference state is identified by its eigenvalue at $t=t_s$.
\n- None: The GEVP is solved only at ts, no sorting is necessary
\n- vector_obs (bool):\nIf True, uncertainties are propagated in the eigenvector computation (default False).
\nOther Parameters
\n\n\n
\n", "signature": "(self, t0, ts=None, sort='Eigenvalue', vector_obs=False, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.Eigenvalue": {"fullname": "pyerrors.correlators.Corr.Eigenvalue", "modulename": "pyerrors.correlators", "qualname": "Corr.Eigenvalue", "kind": "function", "doc": "- state (int):\nReturns only the vector(s) for a specified state. The lowest state is zero.
\n- method (str):\nMethod used to solve the GEVP.\n
\n\n
- \"eigh\": Use scipy.linalg.eigh to solve the GEVP. (default for vector_obs=False)
\n- \"cholesky\": Use manually implemented solution via the Cholesky decomposition. Automatically chosen if vector_obs==True.
\nDetermines the eigenvalue of the GEVP by solving and projecting the correlator
\n\nParameters
\n\n\n
\n", "signature": "(self, t0, ts=None, state=0, sort='Eigenvalue', **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.Hankel": {"fullname": "pyerrors.correlators.Corr.Hankel", "modulename": "pyerrors.correlators", "qualname": "Corr.Hankel", "kind": "function", "doc": "- state (int):\nThe state one is interested in ordered by energy. The lowest state is zero.
\n- All other parameters are identical to the ones of Corr.GEVP.
\nConstructs an NxN Hankel matrix
\n\nC(t) c(t+1) ... c(t+n-1)\nC(t+1) c(t+2) ... c(t+n)\n.................\nC(t+(n-1)) c(t+n) ... c(t+2(n-1))
\n\nParameters
\n\n\n
\n", "signature": "(self, N, periodic=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.roll": {"fullname": "pyerrors.correlators.Corr.roll", "modulename": "pyerrors.correlators", "qualname": "Corr.roll", "kind": "function", "doc": "- N (int):\nDimension of the Hankel matrix
\n- periodic (bool, optional):\ndetermines whether the matrix is extended periodically
\nPeriodically shift the correlator by dt timeslices
\n\nParameters
\n\n\n
\n", "signature": "(self, dt):", "funcdef": "def"}, "pyerrors.correlators.Corr.reverse": {"fullname": "pyerrors.correlators.Corr.reverse", "modulename": "pyerrors.correlators", "qualname": "Corr.reverse", "kind": "function", "doc": "- dt (int):\nnumber of timeslices
\nReverse the time ordering of the Corr
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.thin": {"fullname": "pyerrors.correlators.Corr.thin", "modulename": "pyerrors.correlators", "qualname": "Corr.thin", "kind": "function", "doc": "Thin out a correlator to suppress correlations
\n\nParameters
\n\n\n
\n", "signature": "(self, spacing=2, offset=0):", "funcdef": "def"}, "pyerrors.correlators.Corr.correlate": {"fullname": "pyerrors.correlators.Corr.correlate", "modulename": "pyerrors.correlators", "qualname": "Corr.correlate", "kind": "function", "doc": "- spacing (int):\nKeep only every 'spacing'th entry of the correlator
\n- offset (int):\nOffset the equal spacing
\nCorrelate the correlator with another correlator or Obs
\n\nParameters
\n\n\n
\n", "signature": "(self, partner):", "funcdef": "def"}, "pyerrors.correlators.Corr.reweight": {"fullname": "pyerrors.correlators.Corr.reweight", "modulename": "pyerrors.correlators", "qualname": "Corr.reweight", "kind": "function", "doc": "- partner (Obs or Corr):\npartner to correlate the correlator with.\nCan either be an Obs which is correlated with all entries of the\ncorrelator or a Corr of same length.
\nReweight the correlator.
\n\nParameters
\n\n\n
\n", "signature": "(self, weight, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.T_symmetry": {"fullname": "pyerrors.correlators.Corr.T_symmetry", "modulename": "pyerrors.correlators", "qualname": "Corr.T_symmetry", "kind": "function", "doc": "- weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
\n- all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
\nReturn the time symmetry average of the correlator and its partner
\n\nParameters
\n\n\n
\n", "signature": "(self, partner, parity=1):", "funcdef": "def"}, "pyerrors.correlators.Corr.deriv": {"fullname": "pyerrors.correlators.Corr.deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.deriv", "kind": "function", "doc": "- partner (Corr):\nTime symmetry partner of the Corr
\n- parity (int):\nParity quantum number of the correlator, can be +1 or -1
\nReturn the first derivative of the correlator with respect to x0.
\n\nParameters
\n\n\n
\n", "signature": "(self, variant='symmetric'):", "funcdef": "def"}, "pyerrors.correlators.Corr.second_deriv": {"fullname": "pyerrors.correlators.Corr.second_deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.second_deriv", "kind": "function", "doc": "- variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice: symmetric, forward, backward, improved, log, default: symmetric
\nReturn the second derivative of the correlator with respect to x0.
\n\nParameters
\n\n\n
\n", "signature": "(self, variant='symmetric'):", "funcdef": "def"}, "pyerrors.correlators.Corr.m_eff": {"fullname": "pyerrors.correlators.Corr.m_eff", "modulename": "pyerrors.correlators", "qualname": "Corr.m_eff", "kind": "function", "doc": "- variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice:\n - symmetric (default)\n $$\\tilde{\\partial}^2_0 f(x_0) = f(x_0+1)-2f(x_0)+f(x_0-1)$$\n - big_symmetric\n $$\\partial^2_0 f(x_0) = \\frac{f(x_0+2)-2f(x_0)+f(x_0-2)}{4}$$\n - improved\n $$\\partial^2_0 f(x_0) = \\frac{-f(x_0+2) + 16 * f(x_0+1) - 30 * f(x_0) + 16 * f(x_0-1) - f(x_0-2)}{12}$$\n - log\n $$f(x) = \\tilde{\\partial}^2_0 log(f(x_0))+(\\tilde{\\partial}_0 log(f(x_0)))^2$$
\nReturns the effective mass of the correlator as correlator object
\n\nParameters
\n\n\n
\n", "signature": "(self, variant='log', guess=1.0):", "funcdef": "def"}, "pyerrors.correlators.Corr.fit": {"fullname": "pyerrors.correlators.Corr.fit", "modulename": "pyerrors.correlators", "qualname": "Corr.fit", "kind": "function", "doc": "- variant (str):\nlog : uses the standard effective mass log(C(t) / C(t+1))\ncosh, periodic : Use periodicity of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.\nsinh : Use anti-periodicity of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.\nSee, e.g., arXiv:1205.5380\narccosh : Uses the explicit form of the symmetrized correlator (not recommended)\nlogsym: uses the symmetric effective mass log(C(t-1) / C(t+1))/2
\n- guess (float):\nguess for the root finder, only relevant for the root variant
\nFits function to the data
\n\nParameters
\n\n\n
\n", "signature": "(self, function, fitrange=None, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.plateau": {"fullname": "pyerrors.correlators.Corr.plateau", "modulename": "pyerrors.correlators", "qualname": "Corr.plateau", "kind": "function", "doc": "- function (obj):\nfunction to fit to the data. See fits.least_squares for details.
\n- fitrange (list):\nTwo element list containing the timeslices on which the fit is supposed to start and stop.\nCaution: This range is inclusive as opposed to standard python indexing.\n
\nfitrange=[4, 6]
corresponds to the three entries 4, 5 and 6.\nIf not specified, self.prange or all timeslices are used.- silent (bool):\nDecides whether output is printed to the standard output.
\nExtract a plateau value from a Corr object
\n\nParameters
\n\n\n
\n", "signature": "(self, plateau_range=None, method='fit', auto_gamma=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.set_prange": {"fullname": "pyerrors.correlators.Corr.set_prange", "modulename": "pyerrors.correlators", "qualname": "Corr.set_prange", "kind": "function", "doc": "- plateau_range (list):\nlist with two entries, indicating the first and the last timeslice\nof the plateau region.
\n- method (str):\nmethod to extract the plateau.\n 'fit' fits a constant to the plateau region\n 'avg', 'average' or 'mean' just average over the given timeslices.
\n- auto_gamma (bool):\napply gamma_method with default parameters to the Corr. Defaults to None
\nSets the attribute prange of the Corr object.
\n", "signature": "(self, prange):", "funcdef": "def"}, "pyerrors.correlators.Corr.show": {"fullname": "pyerrors.correlators.Corr.show", "modulename": "pyerrors.correlators", "qualname": "Corr.show", "kind": "function", "doc": "Plots the correlator using the tag of the correlator as label if available.
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tx_range=None,\tcomp=None,\ty_range=None,\tlogscale=False,\tplateau=None,\tfit_res=None,\tfit_key=None,\tylabel=None,\tsave=None,\tauto_gamma=False,\thide_sigma=None,\treferences=None,\ttitle=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.spaghetti_plot": {"fullname": "pyerrors.correlators.Corr.spaghetti_plot", "modulename": "pyerrors.correlators", "qualname": "Corr.spaghetti_plot", "kind": "function", "doc": "- x_range (list):\nlist of two values, determining the range of the x-axis e.g. [4, 8].
\n- comp (Corr or list of Corr):\nCorrelator or list of correlators which are plotted for comparison.\nThe tags of these correlators are used as labels if available.
\n- logscale (bool):\nSets y-axis to logscale.
\n- plateau (Obs):\nPlateau value to be visualized in the figure.
\n- fit_res (Fit_result):\nFit_result object to be visualized.
\n- fit_key (str):\nKey for the fit function in Fit_result.fit_function (for combined fits).
\n- ylabel (str):\nLabel for the y-axis.
\n- save (str):\npath to file in which the figure should be saved.
\n- auto_gamma (bool):\nApply the gamma method with standard parameters to all correlators and plateau values before plotting.
\n- hide_sigma (float):\nHides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors.
\n- references (list):\nList of floating point values that are displayed as horizontal lines for reference.
\n- title (string):\nOptional title of the figure.
\nProduces a spaghetti plot of the correlator suited to monitor exceptional configurations.
\n\nParameters
\n\n\n
\n", "signature": "(self, logscale=True):", "funcdef": "def"}, "pyerrors.correlators.Corr.dump": {"fullname": "pyerrors.correlators.Corr.dump", "modulename": "pyerrors.correlators", "qualname": "Corr.dump", "kind": "function", "doc": "- logscale (bool):\nDetermines whether the scale of the y-axis is logarithmic or standard.
\nDumps the Corr into a file of chosen type
\n\nParameters
\n\n\n
\n", "signature": "(self, filename, datatype='json.gz', **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.print": {"fullname": "pyerrors.correlators.Corr.print", "modulename": "pyerrors.correlators", "qualname": "Corr.print", "kind": "function", "doc": "\n", "signature": "(self, print_range=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.sqrt": {"fullname": "pyerrors.correlators.Corr.sqrt", "modulename": "pyerrors.correlators", "qualname": "Corr.sqrt", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.log": {"fullname": "pyerrors.correlators.Corr.log", "modulename": "pyerrors.correlators", "qualname": "Corr.log", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.exp": {"fullname": "pyerrors.correlators.Corr.exp", "modulename": "pyerrors.correlators", "qualname": "Corr.exp", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.sin": {"fullname": "pyerrors.correlators.Corr.sin", "modulename": "pyerrors.correlators", "qualname": "Corr.sin", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.cos": {"fullname": "pyerrors.correlators.Corr.cos", "modulename": "pyerrors.correlators", "qualname": "Corr.cos", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.tan": {"fullname": "pyerrors.correlators.Corr.tan", "modulename": "pyerrors.correlators", "qualname": "Corr.tan", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.sinh": {"fullname": "pyerrors.correlators.Corr.sinh", "modulename": "pyerrors.correlators", "qualname": "Corr.sinh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.cosh": {"fullname": "pyerrors.correlators.Corr.cosh", "modulename": "pyerrors.correlators", "qualname": "Corr.cosh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.tanh": {"fullname": "pyerrors.correlators.Corr.tanh", "modulename": "pyerrors.correlators", "qualname": "Corr.tanh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsin": {"fullname": "pyerrors.correlators.Corr.arcsin", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsin", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arccos": {"fullname": "pyerrors.correlators.Corr.arccos", "modulename": "pyerrors.correlators", "qualname": "Corr.arccos", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arctan": {"fullname": "pyerrors.correlators.Corr.arctan", "modulename": "pyerrors.correlators", "qualname": "Corr.arctan", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsinh": {"fullname": "pyerrors.correlators.Corr.arcsinh", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsinh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arccosh": {"fullname": "pyerrors.correlators.Corr.arccosh", "modulename": "pyerrors.correlators", "qualname": "Corr.arccosh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arctanh": {"fullname": "pyerrors.correlators.Corr.arctanh", "modulename": "pyerrors.correlators", "qualname": "Corr.arctanh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.real": {"fullname": "pyerrors.correlators.Corr.real", "modulename": "pyerrors.correlators", "qualname": "Corr.real", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.imag": {"fullname": "pyerrors.correlators.Corr.imag", "modulename": "pyerrors.correlators", "qualname": "Corr.imag", "kind": "variable", "doc": "\n"}, "pyerrors.correlators.Corr.prune": {"fullname": "pyerrors.correlators.Corr.prune", "modulename": "pyerrors.correlators", "qualname": "Corr.prune", "kind": "function", "doc": "- filename (str):\nName of the file to be saved.
\n- datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
\n- path (str):\nspecifies a custom path for the file (default '.')
\nProject large correlation matrix to lowest states
\n\nThis method can be used to reduce the size of an (N x N) correlation matrix\nto (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise\nis still small.
\n\nParameters
\n\n\n
\n\n- Ntrunc (int):\nRank of the target matrix.
\n- tproj (int):\nTime where the eigenvectors are evaluated, corresponds to ts in the GEVP method.\nThe default value is 3.
\n- t0proj (int):\nTime where the correlation matrix is inverted. Choosing t0proj=1 is strongly\ndiscouraged for O(a) improved theories, since the correctness of the procedure\ncannot be granted in this case. The default value is 2.
\n- basematrix (Corr):\nCorrelation matrix that is used to determine the eigenvectors of the\nlowest states based on a GEVP. basematrix is taken to be the Corr itself if\nis is not specified.
\nNotes
\n\nWe have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving\nthe GEVP $$C(t) v_n(t, t_0) = \\lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \\equiv t_\\mathrm{proj}$\nand $t_0 \\equiv t_{0, \\mathrm{proj}}$. The target matrix is projected onto the subspace of the\nresulting eigenvectors $v_n, n=1,\\dots,N_\\mathrm{trunc}$ via\n$$G^\\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large\ncorrelation matrix and to remove some noise that is added by irrelevant operators.\nThis may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated\nbound $t_0 \\leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$.
\n", "signature": "(self, Ntrunc, tproj=3, t0proj=2, basematrix=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.N": {"fullname": "pyerrors.correlators.Corr.N", "modulename": "pyerrors.correlators", "qualname": "Corr.N", "kind": "variable", "doc": "\n"}, "pyerrors.covobs": {"fullname": "pyerrors.covobs", "modulename": "pyerrors.covobs", "kind": "module", "doc": "\n"}, "pyerrors.covobs.Covobs": {"fullname": "pyerrors.covobs.Covobs", "modulename": "pyerrors.covobs", "qualname": "Covobs", "kind": "class", "doc": "\n"}, "pyerrors.covobs.Covobs.__init__": {"fullname": "pyerrors.covobs.Covobs.__init__", "modulename": "pyerrors.covobs", "qualname": "Covobs.__init__", "kind": "function", "doc": "Initialize Covobs object.
\n\nParameters
\n\n\n
\n", "signature": "(mean, cov, name, pos=None, grad=None)"}, "pyerrors.covobs.Covobs.name": {"fullname": "pyerrors.covobs.Covobs.name", "modulename": "pyerrors.covobs", "qualname": "Covobs.name", "kind": "variable", "doc": "\n"}, "pyerrors.covobs.Covobs.value": {"fullname": "pyerrors.covobs.Covobs.value", "modulename": "pyerrors.covobs", "qualname": "Covobs.value", "kind": "variable", "doc": "\n"}, "pyerrors.covobs.Covobs.errsq": {"fullname": "pyerrors.covobs.Covobs.errsq", "modulename": "pyerrors.covobs", "qualname": "Covobs.errsq", "kind": "function", "doc": "- mean (float):\nMean value of the new Obs
\n- cov (list or array):\n2d Covariance matrix or 1d diagonal entries
\n- name (str):\nidentifier for the covariance matrix
\n- pos (int):\nPosition of the variance belonging to mean in cov.\nIs taken to be 1 if cov is 0-dimensional
\n- grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
\nReturn the variance (= square of the error) of the Covobs
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.covobs.Covobs.cov": {"fullname": "pyerrors.covobs.Covobs.cov", "modulename": "pyerrors.covobs", "qualname": "Covobs.cov", "kind": "variable", "doc": "\n"}, "pyerrors.covobs.Covobs.grad": {"fullname": "pyerrors.covobs.Covobs.grad", "modulename": "pyerrors.covobs", "qualname": "Covobs.grad", "kind": "variable", "doc": "\n"}, "pyerrors.dirac": {"fullname": "pyerrors.dirac", "modulename": "pyerrors.dirac", "kind": "module", "doc": "\n"}, "pyerrors.dirac.gammaX": {"fullname": "pyerrors.dirac.gammaX", "modulename": "pyerrors.dirac", "qualname": "gammaX", "kind": "variable", "doc": "\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j],\n [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, -0.-1.j, 0.+0.j, 0.+0.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaY": {"fullname": "pyerrors.dirac.gammaY", "modulename": "pyerrors.dirac", "qualname": "gammaY", "kind": "variable", "doc": "\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],\n [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaZ": {"fullname": "pyerrors.dirac.gammaZ", "modulename": "pyerrors.dirac", "qualname": "gammaZ", "kind": "variable", "doc": "\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaT": {"fullname": "pyerrors.dirac.gammaT", "modulename": "pyerrors.dirac", "qualname": "gammaT", "kind": "variable", "doc": "\n", "default_value": "array([[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n [1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gamma": {"fullname": "pyerrors.dirac.gamma", "modulename": "pyerrors.dirac", "qualname": "gamma", "kind": "variable", "doc": "\n", "default_value": "array([[[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j],\n [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, -0.-1.j, 0.+0.j, 0.+0.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],\n [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n [ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]])"}, "pyerrors.dirac.gamma5": {"fullname": "pyerrors.dirac.gamma5", "modulename": "pyerrors.dirac", "qualname": "gamma5", "kind": "variable", "doc": "\n", "default_value": "array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j]])"}, "pyerrors.dirac.identity": {"fullname": "pyerrors.dirac.identity", "modulename": "pyerrors.dirac", "qualname": "identity", "kind": "variable", "doc": "\n", "default_value": "array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])"}, "pyerrors.dirac.epsilon_tensor": {"fullname": "pyerrors.dirac.epsilon_tensor", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor", "kind": "function", "doc": "Rank-3 epsilon tensor
\n\nBased on https://codegolf.stackexchange.com/a/160375
\n\nReturns
\n\n\n
\n", "signature": "(i, j, k):", "funcdef": "def"}, "pyerrors.dirac.epsilon_tensor_rank4": {"fullname": "pyerrors.dirac.epsilon_tensor_rank4", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor_rank4", "kind": "function", "doc": "- elem (int):\nElement (i,j,k) of the epsilon tensor of rank 3
\nRank-4 epsilon tensor
\n\nExtension of https://codegolf.stackexchange.com/a/160375
\n\nReturns
\n\n\n
\n", "signature": "(i, j, k, o):", "funcdef": "def"}, "pyerrors.dirac.Grid_gamma": {"fullname": "pyerrors.dirac.Grid_gamma", "modulename": "pyerrors.dirac", "qualname": "Grid_gamma", "kind": "function", "doc": "- elem (int):\nElement (i,j,k,o) of the epsilon tensor of rank 4
\nReturns gamma matrix in Grid labeling.
\n", "signature": "(gamma_tag):", "funcdef": "def"}, "pyerrors.fits": {"fullname": "pyerrors.fits", "modulename": "pyerrors.fits", "kind": "module", "doc": "\n"}, "pyerrors.fits.Fit_result": {"fullname": "pyerrors.fits.Fit_result", "modulename": "pyerrors.fits", "qualname": "Fit_result", "kind": "class", "doc": "Represents fit results.
\n\nAttributes
\n\n\n
\n", "bases": "collections.abc.Sequence"}, "pyerrors.fits.Fit_result.fit_parameters": {"fullname": "pyerrors.fits.Fit_result.fit_parameters", "modulename": "pyerrors.fits", "qualname": "Fit_result.fit_parameters", "kind": "variable", "doc": "\n"}, "pyerrors.fits.Fit_result.gamma_method": {"fullname": "pyerrors.fits.Fit_result.gamma_method", "modulename": "pyerrors.fits", "qualname": "Fit_result.gamma_method", "kind": "function", "doc": "- fit_parameters (list):\nresults for the individual fit parameters,\nalso accessible via indices.
\n- chisquare_by_dof (float):\nreduced chisquare.
\n- p_value (float):\np-value of the fit
\n- t2_p_value (float):\nHotelling t-squared p-value for correlated fits.
\nApply the gamma method to all fit parameters
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.fits.Fit_result.gm": {"fullname": "pyerrors.fits.Fit_result.gm", "modulename": "pyerrors.fits", "qualname": "Fit_result.gm", "kind": "function", "doc": "Apply the gamma method to all fit parameters
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.fits.least_squares": {"fullname": "pyerrors.fits.least_squares", "modulename": "pyerrors.fits", "qualname": "least_squares", "kind": "function", "doc": "Performs a non-linear fit to y = func(x).\n ```
\n\nParameters
\n\n\n
\n\n- For an uncombined fit:
\n- x (list):\nlist of floats.
\n- y (list):\nlist of Obs.
\n- \n
func (object):\nfit function, has to be of the form
\n\n\n\n\n\nimport autograd.numpy as anp\n\ndef func(a, x):\n return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
For multiple x values func can be of the form
\n\n\n\n\n\ndef func(a, x):\n (x1, x2) = x\n return a[0] * x1 ** 2 + a[1] * x2\n
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.
- OR For a combined fit:
\n- x (dict):\ndict of lists.
\n- y (dict):\ndict of lists of Obs.
\n- \n
funcs (dict):\ndict of objects\nfit functions have to be of the form (here a[0] is the common fit parameter)\n```python\nimport autograd.numpy as anp\nfuncs = {\"a\": func_a,\n \"b\": func_b}
\n\ndef func_a(a, x):\n return a[1] * anp.exp(-a[0] * x)
\n\ndef func_b(a, x):\n return a[2] * anp.exp(-a[0] * x)
\n\nIt is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.
- priors (dict or list, optional):\npriors can either be a dictionary with integer keys and the corresponding priors as values or\na list with an entry for every parameter in the fit. The entries can either be\nObs (e.g. results from a previous fit) or strings containing a value and an error formatted like\n0.548(23), 500(40) or 0.5(0.4)
\n- silent (bool, optional):\nIf true all output to the console is omitted (default False).
\n- initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for\nnon-linear fits with many parameters. In case of correlated fits the guess is used to perform\nan uncorrelated fit which then serves as guess for the correlated fit.
\n- method (str, optional):\ncan be used to choose an alternative method for the minimization of chisquare.\nThe possible methods are the ones which can be used for scipy.optimize.minimize and\nmigrad of iminuit. If no method is specified, Levenberg-Marquard is used.\nReliable alternatives are migrad, Powell and Nelder-Mead.
\n- tol (float, optional):\ncan be used (only for combined fits and methods other than Levenberg-Marquard) to set the tolerance for convergence\nto a different value to either speed up convergence at the cost of a larger error on the fitted parameters (and possibly\ninvalid estimates for parameter uncertainties) or smaller values to get more accurate parameter values\nThe stopping criterion depends on the method, e.g. migrad: edm_max = 0.002 * tol * errordef (EDM criterion: edm < edm_max)
\n- correlated_fit (bool):\nIf True, use the full inverse covariance matrix in the definition of the chisquare cost function.\nFor details about how the covariance matrix is estimated see
\npyerrors.obs.covariance
.\nIn practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix).\nThis procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning).- inv_chol_cov_matrix [array,list], optional: array: shape = (no of y values) X (no of y values)\nlist: for an uncombined fit: [\"\"]\nfor a combined fit: list of keys belonging to the corr_matrix saved in the array, must be the same as the keys of the y dict in alphabetical order\nIf correlated_fit=True is set as well, can provide an inverse covariance matrix (y errors, dy_f included!) of your own choosing for a correlated fit.\nThe matrix must be a lower triangular matrix constructed from a Cholesky decomposition: The function invert_corr_cov_cholesky(corr, inverrdiag) can be\nused to construct it from a correlation matrix (corr) and the errors dy_f of the data points (inverrdiag = np.diag(1 / np.asarray(dy_f))). For the correct\nordering the correlation matrix (corr) can be sorted via the function sort_corr(corr, kl, yd) where kl is the list of keys and yd the y dict.
\n- expected_chisquare (bool):\nIf True estimates the expected chisquare which is\ncorrected by effects caused by correlated input data (default False).
\n- resplot (bool):\nIf True, a plot which displays fit, data and residuals is generated (default False).
\n- qqplot (bool):\nIf True, a quantile-quantile plot of the fit result is generated (default False).
\n- num_grad (bool):\nUse numerical differentation instead of automatic differentiation to perform the error propagation (default False).
\nReturns
\n\n\n
\n\n- output (Fit_result):\nParameters and information on the fitted result.
\nExamples
\n\n\n\n", "signature": "(x, y, func, priors=None, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.fits.total_least_squares": {"fullname": "pyerrors.fits.total_least_squares", "modulename": "pyerrors.fits", "qualname": "total_least_squares", "kind": "function", "doc": "\n>>> # Example of a correlated (correlated_fit = True, inv_chol_cov_matrix handed over) combined fit, based on a randomly generated data set\n>>> import numpy as np\n>>> from scipy.stats import norm\n>>> from scipy.linalg import cholesky\n>>> import pyerrors as pe\n>>> # generating the random data set\n>>> num_samples = 400\n>>> N = 3\n>>> x = np.arange(N)\n>>> x1 = norm.rvs(size=(N, num_samples)) # generate random numbers\n>>> x2 = norm.rvs(size=(N, num_samples)) # generate random numbers\n>>> r = r1 = r2 = np.zeros((N, N))\n>>> y = {}\n>>> for i in range(N):\n>>> for j in range(N):\n>>> r[i, j] = np.exp(-0.8 * np.fabs(i - j)) # element in correlation matrix\n>>> errl = np.sqrt([3.4, 2.5, 3.6]) # set y errors\n>>> for i in range(N):\n>>> for j in range(N):\n>>> r[i, j] *= errl[i] * errl[j] # element in covariance matrix\n>>> c = cholesky(r, lower=True)\n>>> y = {'a': np.dot(c, x1), 'b': np.dot(c, x2)} # generate y data with the covariance matrix defined\n>>> # random data set has been generated, now the dictionaries and the inverse covariance matrix to be handed over are built\n>>> x_dict = {}\n>>> y_dict = {}\n>>> chol_inv_dict = {}\n>>> data = []\n>>> for key in y.keys():\n>>> x_dict[key] = x\n>>> for i in range(N):\n>>> data.append(pe.Obs([[i + 1 + o for o in y[key][i]]], ['ens'])) # generate y Obs from the y data\n>>> [o.gamma_method() for o in data]\n>>> corr = pe.covariance(data, correlation=True)\n>>> inverrdiag = np.diag(1 / np.asarray([o.dvalue for o in data]))\n>>> chol_inv = pe.obs.invert_corr_cov_cholesky(corr, inverrdiag) # gives form of the inverse covariance matrix needed for the combined correlated fit below\n>>> y_dict = {'a': data[:3], 'b': data[3:]}\n>>> # common fit parameter p[0] in combined fit\n>>> def fit1(p, x):\n>>> return p[0] + p[1] * x\n>>> def fit2(p, x):\n>>> return p[0] + p[2] * x\n>>> fitf_dict = {'a': fit1, 'b':fit2}\n>>> fitp_inv_cov_combined_fit = pe.least_squares(x_dict,y_dict, fitf_dict, correlated_fit = True, inv_chol_cov_matrix = [chol_inv,['a','b']])\nFit with 3 parameters\nMethod: Levenberg-Marquardt\n`ftol` termination condition is satisfied.\nchisquare/d.o.f.: 0.5388013574561786 # random\nfit parameters [1.11897846 0.96361162 0.92325319] # random\n
Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.
\n\nParameters
\n\n\n
\n\n- x (list):\nlist of Obs, or a tuple of lists of Obs
\n- y (list):\nlist of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
\n- \n
func (object):\nfunc has to be of the form
\n\n\n\n\n\nimport autograd.numpy as anp\n\ndef func(a, x):\n return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
For multiple x values func can be of the form
\n\n\n\n\n\ndef func(a, x):\n (x1, x2) = x\n return a[0] * x1 ** 2 + a[1] * x2\n
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.
- silent (bool, optional):\nIf true all output to the console is omitted (default False).
\n- initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for non-linear\nfits with many parameters.
\n- expected_chisquare (bool):\nIf true prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
\n- num_grad (bool):\nUse numerical differentation instead of automatic differentiation to perform the error propagation (default False).
\nNotes
\n\nBased on the orthogonal distance regression module of scipy.
\n\nReturns
\n\n\n
\n", "signature": "(x, y, func, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.fits.fit_lin": {"fullname": "pyerrors.fits.fit_lin", "modulename": "pyerrors.fits", "qualname": "fit_lin", "kind": "function", "doc": "- output (Fit_result):\nParameters and information on the fitted result.
\nPerforms a linear fit to y = n + m * x and returns two Obs n, m.
\n\nParameters
\n\n\n
\n\n- x (list):\nCan either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.
\n- y (list):\nList of Obs, the dvalues of the Obs are used as yerror for the fit.
\nReturns
\n\n\n
\n", "signature": "(x, y, **kwargs):", "funcdef": "def"}, "pyerrors.fits.qqplot": {"fullname": "pyerrors.fits.qqplot", "modulename": "pyerrors.fits", "qualname": "qqplot", "kind": "function", "doc": "- fit_parameters (list[Obs]):\nLIist of fitted observables.
\nGenerates a quantile-quantile plot of the fit result which can be used to\n check if the residuals of the fit are gaussian distributed.
\n\nReturns
\n\n\n
\n", "signature": "(x, o_y, func, p, title=''):", "funcdef": "def"}, "pyerrors.fits.residual_plot": {"fullname": "pyerrors.fits.residual_plot", "modulename": "pyerrors.fits", "qualname": "residual_plot", "kind": "function", "doc": "- None
\nGenerates a plot which compares the fit to the data and displays the corresponding residuals
\n\nFor uncorrelated data the residuals are expected to be distributed ~N(0,1).
\n\nReturns
\n\n\n
\n", "signature": "(x, y, func, fit_res, title=''):", "funcdef": "def"}, "pyerrors.fits.error_band": {"fullname": "pyerrors.fits.error_band", "modulename": "pyerrors.fits", "qualname": "error_band", "kind": "function", "doc": "- None
\nCalculate the error band for an array of sample values x, for given fit function func with optimized parameters beta.
\n\nReturns
\n\n\n
\n", "signature": "(x, func, beta):", "funcdef": "def"}, "pyerrors.fits.ks_test": {"fullname": "pyerrors.fits.ks_test", "modulename": "pyerrors.fits", "qualname": "ks_test", "kind": "function", "doc": "- err (np.array(Obs)):\nError band for an array of sample values x
\nPerforms a Kolmogorov\u2013Smirnov test for the p-values of all fit object.
\n\nParameters
\n\n\n
\n\n- objects (list):\nList of fit results to include in the analysis (optional).
\nReturns
\n\n\n
\n", "signature": "(objects=None):", "funcdef": "def"}, "pyerrors.input": {"fullname": "pyerrors.input", "modulename": "pyerrors.input", "kind": "module", "doc": "- None
\n\n\n
pyerrors
includes aninput
submodule in which input routines and parsers for the output of various numerical programs are contained.Jackknife samples
\n\nFor comparison with other analysis workflows
\n"}, "pyerrors.input.bdio": {"fullname": "pyerrors.input.bdio", "modulename": "pyerrors.input.bdio", "kind": "module", "doc": "\n"}, "pyerrors.input.bdio.read_ADerrors": {"fullname": "pyerrors.input.bdio.read_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "read_ADerrors", "kind": "function", "doc": "pyerrors
can also generate jackknife samples from anObs
object or import jackknife samples into anObs
object.\nSeepyerrors.obs.Obs.export_jackknife
andpyerrors.obs.import_jackknife
for details.Extract generic MCMC data from a bdio file
\n\nread_ADerrors requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n\n- file_path -- path to the bdio file
\n- bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
\nReturns
\n\n\n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.write_ADerrors": {"fullname": "pyerrors.input.bdio.write_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "write_ADerrors", "kind": "function", "doc": "- data (List[Obs]):\nExtracted data
\nWrite Obs to a bdio file according to ADerrors conventions
\n\nread_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n\n- file_path -- path to the bdio file
\n- bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
\nReturns
\n\n\n
\n", "signature": "(obs_list, file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.read_mesons": {"fullname": "pyerrors.input.bdio.read_mesons", "modulename": "pyerrors.input.bdio", "qualname": "read_mesons", "kind": "function", "doc": "- success (int):\nreturns 0 is successful
\nExtract mesons data from a bdio file and return it as a dictionary
\n\nThe dictionary can be accessed with a tuple consisting of (type, source_position, kappa1, kappa2)
\n\nread_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n\n- file_path (str):\npath to the bdio file
\n- bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
\n- start (int):\nThe first configuration to be read (default 1)
\n- stop (int):\nThe last configuration to be read (default None)
\n- step (int):\nFixed step size between two measurements (default 1)
\n- alternative_ensemble_name (str):\nManually overwrite ensemble name
\nReturns
\n\n\n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.read_dSdm": {"fullname": "pyerrors.input.bdio.read_dSdm", "modulename": "pyerrors.input.bdio", "qualname": "read_dSdm", "kind": "function", "doc": "- data (dict):\nExtracted meson data
\nExtract dSdm data from a bdio file and return it as a dictionary
\n\nThe dictionary can be accessed with a tuple consisting of (type, kappa)
\n\nread_dSdm requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to
\n\nall: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/
\n\nParameters
\n\n\n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.dobs": {"fullname": "pyerrors.input.dobs", "modulename": "pyerrors.input.dobs", "kind": "module", "doc": "\n"}, "pyerrors.input.dobs.create_pobs_string": {"fullname": "pyerrors.input.dobs.create_pobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_pobs_string", "kind": "function", "doc": "- file_path (str):\npath to the bdio file
\n- bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
\n- start (int):\nThe first configuration to be read (default 1)
\n- stop (int):\nThe last configuration to be read (default None)
\n- step (int):\nFixed step size between two measurements (default 1)
\n- alternative_ensemble_name (str):\nManually overwrite ensemble name
\nExport a list of Obs or structures containing Obs to an xml string\naccording to the Zeuthen pobs format.
\n\nTags are not written or recovered automatically. The separator | is removed from the replica names.
\n\nParameters
\n\n\n
\n\n- obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
\n- name (str):\nThe name of the observable.
\n- spec (str):\nOptional string that describes the contents of the file.
\n- origin (str):\nSpecify where the data has its origin.
\n- symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
\n- enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
\nReturns
\n\n\n
\n", "signature": "(obsl, name, spec='', origin='', symbol=[], enstag=None):", "funcdef": "def"}, "pyerrors.input.dobs.write_pobs": {"fullname": "pyerrors.input.dobs.write_pobs", "modulename": "pyerrors.input.dobs", "qualname": "write_pobs", "kind": "function", "doc": "- xml_str (str):\nXML formatted string of the input data
\nExport a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen pobs format.
\n\nTags are not written or recovered automatically. The separator | is removed from the replica names.
\n\nParameters
\n\n\n
\n\n- obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
\n- fname (str):\nFilename of the output file.
\n- name (str):\nThe name of the observable.
\n- spec (str):\nOptional string that describes the contents of the file.
\n- origin (str):\nSpecify where the data has its origin.
\n- symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
\n- enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
\n- gz (bool):\nIf True, the output is a gzipped xml. If False, the output is an xml file.
\nReturns
\n\n\n
\n", "signature": "(\tobsl,\tfname,\tname,\tspec='',\torigin='',\tsymbol=[],\tenstag=None,\tgz=True):", "funcdef": "def"}, "pyerrors.input.dobs.read_pobs": {"fullname": "pyerrors.input.dobs.read_pobs", "modulename": "pyerrors.input.dobs", "qualname": "read_pobs", "kind": "function", "doc": "- None
\nImport a list of Obs from an xml.gz file in the Zeuthen pobs format.
\n\nTags are not written or recovered automatically.
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
\n- separatior_insertion (str or int):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nNone (default): Replica names remain unchanged.
\nReturns
\n\n\n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=None):", "funcdef": "def"}, "pyerrors.input.dobs.import_dobs_string": {"fullname": "pyerrors.input.dobs.import_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "import_dobs_string", "kind": "function", "doc": "- res (list[Obs]):\nImported data
\n- or
\n- res (dict):\nImported data and meta-data
\nImport a list of Obs from a string in the Zeuthen dobs format.
\n\nTags are not written or recovered automatically.
\n\nParameters
\n\n\n
\n\n- content (str):\nXML string containing the data
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
\n- separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
\nReturns
\n\n\n
\n", "signature": "(content, full_output=False, separator_insertion=True):", "funcdef": "def"}, "pyerrors.input.dobs.read_dobs": {"fullname": "pyerrors.input.dobs.read_dobs", "modulename": "pyerrors.input.dobs", "qualname": "read_dobs", "kind": "function", "doc": "- res (list[Obs]):\nImported data
\n- or
\n- res (dict):\nImported data and meta-data
\nImport a list of Obs from an xml.gz file in the Zeuthen dobs format.
\n\nTags are not written or recovered automatically.
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
\n- gz (bool):\nIf True, assumes that data is gzipped. If False, assumes XML file.
\n- separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
\nReturns
\n\n\n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=True):", "funcdef": "def"}, "pyerrors.input.dobs.create_dobs_string": {"fullname": "pyerrors.input.dobs.create_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_dobs_string", "kind": "function", "doc": "- res (list[Obs]):\nImported data
\n- or
\n- res (dict):\nImported data and meta-data
\nGenerate the string for the export of a list of Obs or structures containing Obs\nto a .xml.gz file according to the Zeuthen dobs format.
\n\nTags are not written or recovered automatically. The separator |is removed from the replica names.
\n\nParameters
\n\n\n
\n\n- obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
\n- name (str):\nThe name of the observable.
\n- spec (str):\nOptional string that describes the contents of the file.
\n- origin (str):\nSpecify where the data has its origin.
\n- symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
\n- who (str):\nProvide the name of the person that exports the data.
\n- enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
\nReturns
\n\n\n
\n", "signature": "(\tobsl,\tname,\tspec='dobs v1.0',\torigin='',\tsymbol=[],\twho=None,\tenstags=None):", "funcdef": "def"}, "pyerrors.input.dobs.write_dobs": {"fullname": "pyerrors.input.dobs.write_dobs", "modulename": "pyerrors.input.dobs", "qualname": "write_dobs", "kind": "function", "doc": "- xml_str (str):\nXML string generated from the data
\nExport a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen dobs format.
\n\nTags are not written or recovered automatically. The separator | is removed from the replica names.
\n\nParameters
\n\n\n
\n\n- obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
\n- fname (str):\nFilename of the output file.
\n- name (str):\nThe name of the observable.
\n- spec (str):\nOptional string that describes the contents of the file.
\n- origin (str):\nSpecify where the data has its origin.
\n- symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
\n- who (str):\nProvide the name of the person that exports the data.
\n- enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
\n- gz (bool):\nIf True, the output is a gzipped XML. If False, the output is a XML file.
\nReturns
\n\n\n
\n", "signature": "(\tobsl,\tfname,\tname,\tspec='dobs v1.0',\torigin='',\tsymbol=[],\twho=None,\tenstags=None,\tgz=True):", "funcdef": "def"}, "pyerrors.input.hadrons": {"fullname": "pyerrors.input.hadrons", "modulename": "pyerrors.input.hadrons", "kind": "module", "doc": "\n"}, "pyerrors.input.hadrons.read_hd5": {"fullname": "pyerrors.input.hadrons.read_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_hd5", "kind": "function", "doc": "- None
\nRead hadrons hdf5 file and extract entry based on attributes.
\n\nParameters
\n\n\n
\n\n- filestem (str):\nFull namestem of the files to read, including the full path.
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- group (str):\nlabel of the group to be extracted.
\n- \n
attrs (dict or int):\nDictionary containing the attributes. For example
\n\n\n\n\n\nattrs = {"gamma_snk": "Gamma5",\n "gamma_src": "Gamma5"}\n
Alternatively an integer can be specified to identify the sub group.\nThis is discouraged as the order in the file is not guaranteed.
- idl (range):\nIf specified only configurations in the given range are read in.
\n- part (str):\nstring specifying whether to extract the real part ('real'),\nthe imaginary part ('imag') or a complex correlator ('complex').\nDefault 'real'.
\nReturns
\n\n\n
\n", "signature": "(filestem, ens_id, group, attrs=None, idl=None, part='real'):", "funcdef": "def"}, "pyerrors.input.hadrons.read_meson_hd5": {"fullname": "pyerrors.input.hadrons.read_meson_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_meson_hd5", "kind": "function", "doc": "- corr (Corr):\nCorrelator of the source sink combination in question.
\nRead hadrons meson hdf5 file and extract the meson labeled 'meson'
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- meson (str):\nlabel of the meson to be extracted, standard value meson_0 which\ncorresponds to the pseudoscalar pseudoscalar two-point function.
\n- gammas (tuple of strings):\nInstrad of a meson label one can also provide a tuple of two strings\nindicating the gamma matrices at sink and source (gamma_snk, gamma_src).\n(\"Gamma5\", \"Gamma5\") corresponds to the pseudoscalar pseudoscalar\ntwo-point function. The gammas argument dominateds over meson.
\n- idl (range):\nIf specified only configurations in the given range are read in.
\nReturns
\n\n\n
\n", "signature": "(path, filestem, ens_id, meson='meson_0', idl=None, gammas=None):", "funcdef": "def"}, "pyerrors.input.hadrons.extract_t0_hd5": {"fullname": "pyerrors.input.hadrons.extract_t0_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "extract_t0_hd5", "kind": "function", "doc": "- corr (Corr):\nCorrelator of the source sink combination in question.
\nRead hadrons FlowObservables hdf5 file and extract t0
\n\nParameters
\n\n\n
\n", "signature": "(\tpath,\tfilestem,\tens_id,\tobs='Clover energy density',\tfit_range=5,\tidl=None,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"fullname": "pyerrors.input.hadrons.read_DistillationContraction_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_DistillationContraction_hd5", "kind": "function", "doc": "- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- obs (str):\nlabel of the observable from which t0 should be extracted.\nOptions: 'Clover energy density' and 'Plaquette energy density'
\n- fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
\n- idl (range):\nIf specified only configurations in the given range are read in.
\n- plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
\nRead hadrons DistillationContraction hdf5 files in given directory structure
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the directories to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- diagrams (list):\nList of strings of the diagrams to extract, e.g. [\"direct\", \"box\", \"cross\"].
\n- idl (range):\nIf specified only configurations in the given range are read in.
\nReturns
\n\n\n
\n", "signature": "(path, ens_id, diagrams=['direct'], idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.Npr_matrix": {"fullname": "pyerrors.input.hadrons.Npr_matrix", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix", "kind": "class", "doc": "- result (dict):\nextracted DistillationContration data
\nndarray(shape, dtype=float, buffer=None, offset=0,\n strides=None, order=None)
\n\nAn array object represents a multidimensional, homogeneous array\nof fixed-size items. An associated data-type object describes the\nformat of each element in the array (its byte-order, how many bytes it\noccupies in memory, whether it is an integer, a floating point number,\nor something else, etc.)
\n\nArrays should be constructed using
\n\narray
,zeros
orempty
(refer\nto the See Also section below). The parameters given here refer to\na low-level method (ndarray(...)
) for instantiating an array.For more information, refer to the
\n\nnumpy
module and examine the\nmethods and attributes of an array.Parameters
\n\n\n
\n\n- (for the __new__ method; see Notes below)
\n- shape (tuple of ints):\nShape of created array.
\n- dtype (data-type, optional):\nAny object that can be interpreted as a numpy data type.
\n- buffer (object exposing buffer interface, optional):\nUsed to fill the array with data.
\n- offset (int, optional):\nOffset of array data in buffer.
\n- strides (tuple of ints, optional):\nStrides of data in memory.
\n- order ({'C', 'F'}, optional):\nRow-major (C-style) or column-major (Fortran-style) order.
\nAttributes
\n\n\n
\n\n- T (ndarray):\nTranspose of the array.
\n- data (buffer):\nThe array's elements, in memory.
\n- dtype (dtype object):\nDescribes the format of the elements in the array.
\n- flags (dict):\nDictionary containing information related to memory use, e.g.,\n'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
\n- flat (numpy.flatiter object):\nFlattened version of the array as an iterator. The iterator\nallows assignments, e.g.,
\nx.flat = 3
(Seendarray.flat
for\nassignment examples; TODO).- imag (ndarray):\nImaginary part of the array.
\n- real (ndarray):\nReal part of the array.
\n- size (int):\nNumber of elements in the array.
\n- itemsize (int):\nThe memory use of each array element in bytes.
\n- nbytes (int):\nThe total number of bytes required to store the array data,\ni.e.,
\nitemsize * size
.- ndim (int):\nThe array's number of dimensions.
\n- shape (tuple of ints):\nShape of the array.
\n- strides (tuple of ints):\nThe step-size required to move from one element to the next in\nmemory. For example, a contiguous
\n(3, 4)
array of type\nint16
in C-order has strides(8, 2)
. This implies that\nto move from element to element in memory requires jumps of 2 bytes.\nTo move from row-to-row, one needs to jump 8 bytes at a time\n(2 * 4
).- ctypes (ctypes object):\nClass containing properties of the array needed for interaction\nwith ctypes.
\n- base (ndarray):\nIf the array is a view into another array, that array is its
\nbase
\n(unless that array is also a view). Thebase
array is where the\narray data is actually stored.See Also
\n\n\n\n
array
: Construct an array.
\nzeros
: Create an array, each element of which is zero.
\nempty
: Create an array, but leave its allocated memory unchanged (i.e.,\nit contains \"garbage\").
\ndtype
: Create a data-type.
\nnumpy.typing.NDArray
: An ndarray alias :term:generic <generic type>
\nw.r.t. itsdtype.type <numpy.dtype.type>
.Notes
\n\nThere are two modes of creating an array using
\n\n__new__
:\n
\n\n- If
\nbuffer
is None, then onlyshape
,dtype
, andorder
\nare used.- If
\nbuffer
is an object exposing the buffer interface, then\nall keywords are interpreted.No
\n\n__init__
method is needed because the array is fully initialized\nafter the__new__
method.Examples
\n\nThese examples illustrate the low-level
\n\nndarray
constructor. Refer\nto theSee Also
section above for easier ways of constructing an\nndarray.First mode,
\n\nbuffer
is None:\n\n\n\n>>> import numpy as np\n>>> np.ndarray(shape=(2,2), dtype=float, order='F')\narray([[0.0e+000, 0.0e+000], # random\n [ nan, 2.5e-323]])\n
Second mode:
\n\n\n\n", "bases": "numpy.ndarray"}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"fullname": "pyerrors.input.hadrons.Npr_matrix.g5H", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix.g5H", "kind": "variable", "doc": "\n>>> np.ndarray((2,), buffer=np.array([1,2,3]),\n... offset=np.int_().itemsize,\n... dtype=int) # offset = 1*itemsize, i.e. skip first element\narray([2, 3])\n
Gamma_5 hermitean conjugate
\n\nUses the fact that the propagator is gamma5 hermitean, so just the\nin and out momenta of the propagator are exchanged.
\n"}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"fullname": "pyerrors.input.hadrons.read_ExternalLeg_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_ExternalLeg_hd5", "kind": "function", "doc": "Read hadrons ExternalLeg hdf5 file and output an array of CObs
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- idl (range):\nIf specified only configurations in the given range are read in.
\nReturns
\n\n\n
\n", "signature": "(path, filestem, ens_id, idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"fullname": "pyerrors.input.hadrons.read_Bilinear_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Bilinear_hd5", "kind": "function", "doc": "- result (Npr_matrix):\nread Cobs-matrix
\nRead hadrons Bilinear hdf5 file and output an array of CObs
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- idl (range):\nIf specified only configurations in the given range are read in.
\nReturns
\n\n\n
\n", "signature": "(path, filestem, ens_id, idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"fullname": "pyerrors.input.hadrons.read_Fourquark_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Fourquark_hd5", "kind": "function", "doc": "- result_dict (dict[Npr_matrix]):\nextracted Bilinears
\nRead hadrons FourquarkFullyConnected hdf5 file and output an array of CObs
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the files to read
\n- filestem (str):\nnamestem of the files to read
\n- ens_id (str):\nname of the ensemble, required for internal bookkeeping
\n- idl (range):\nIf specified only configurations in the given range are read in.
\n- vertices (list):\nVertex functions to be extracted.
\nReturns
\n\n\n
\n", "signature": "(path, filestem, ens_id, idl=None, vertices=['VA', 'AV']):", "funcdef": "def"}, "pyerrors.input.json": {"fullname": "pyerrors.input.json", "modulename": "pyerrors.input.json", "kind": "module", "doc": "\n"}, "pyerrors.input.json.create_json_string": {"fullname": "pyerrors.input.json.create_json_string", "modulename": "pyerrors.input.json", "qualname": "create_json_string", "kind": "function", "doc": "- result_dict (dict):\nextracted fourquark matrizes
\nGenerate the string for the export of a list of Obs or structures containing Obs\nto a .json(.gz) file
\n\nParameters
\n\n\n
\n\n- ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
\n- description (str):\nOptional string that describes the contents of the json file.
\n- indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
\nReturns
\n\n\n
\n", "signature": "(ol, description='', indent=1):", "funcdef": "def"}, "pyerrors.input.json.dump_to_json": {"fullname": "pyerrors.input.json.dump_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_to_json", "kind": "function", "doc": "- json_string (str):\nString for export to .json(.gz) file
\nExport a list of Obs or structures containing Obs to a .json(.gz) file.\nDict keys that are not JSON-serializable such as floats are converted to strings.
\n\nParameters
\n\n\n
\n\n- ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
\n- fname (str):\nFilename of the output file.
\n- description (str):\nOptional string that describes the contents of the json file.
\n- indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
\n- gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
\nReturns
\n\n\n
\n", "signature": "(ol, fname, description='', indent=1, gz=True):", "funcdef": "def"}, "pyerrors.input.json.import_json_string": {"fullname": "pyerrors.input.json.import_json_string", "modulename": "pyerrors.input.json", "qualname": "import_json_string", "kind": "function", "doc": "- Null
\nReconstruct a list of Obs or structures containing Obs from a json string.
\n\nThe following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.
\n\nParameters
\n\n\n
\n\n- json_string (str):\njson string containing the data.
\n- verbose (bool):\nPrint additional information that was written to the file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
\nReturns
\n\n\n
\n", "signature": "(json_string, verbose=True, full_output=False):", "funcdef": "def"}, "pyerrors.input.json.load_json": {"fullname": "pyerrors.input.json.load_json", "modulename": "pyerrors.input.json", "qualname": "load_json", "kind": "function", "doc": "- result (list[Obs]):\nreconstructed list of observables from the json string
\n- or
\n- result (Obs):\nonly one observable if the list only has one entry
\n- or
\n- result (dict):\nif full_output=True
\nImport a list of Obs or structures containing Obs from a .json(.gz) file.
\n\nThe following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- verbose (bool):\nPrint additional information that was written to the file.
\n- gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
\nReturns
\n\n\n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False):", "funcdef": "def"}, "pyerrors.input.json.dump_dict_to_json": {"fullname": "pyerrors.input.json.dump_dict_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_dict_to_json", "kind": "function", "doc": "- result (list[Obs]):\nreconstructed list of observables from the json string
\n- or
\n- result (Obs):\nonly one observable if the list only has one entry
\n- or
\n- result (dict):\nif full_output=True
\nExport a dict of Obs or structures containing Obs to a .json(.gz) file
\n\nParameters
\n\n\n
\n\n- od (dict):\nDict of JSON valid structures and objects that will be exported.\nAt the moment, these objects can be either of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
\n- fname (str):\nFilename of the output file.
\n- description (str):\nOptional string that describes the contents of the json file.
\n- indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
\n- reps (str):\nSpecify the structure of the placeholder in exported dict to be reps[0-9]+.
\n- gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
\nReturns
\n\n\n
\n", "signature": "(od, fname, description='', indent=1, reps='DICTOBS', gz=True):", "funcdef": "def"}, "pyerrors.input.json.load_json_dict": {"fullname": "pyerrors.input.json.load_json_dict", "modulename": "pyerrors.input.json", "qualname": "load_json_dict", "kind": "function", "doc": "- None
\nImport a dict of Obs or structures containing Obs from a .json(.gz) file.
\n\nThe following structures are supported: Obs, list, numpy.ndarray, Corr
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- verbose (bool):\nPrint additional information that was written to the file.
\n- gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
\n- full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
\n- reps (str):\nSpecify the structure of the placeholder in imported dict to be reps[0-9]+.
\nReturns
\n\n\n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False, reps='DICTOBS'):", "funcdef": "def"}, "pyerrors.input.misc": {"fullname": "pyerrors.input.misc", "modulename": "pyerrors.input.misc", "kind": "module", "doc": "\n"}, "pyerrors.input.misc.fit_t0": {"fullname": "pyerrors.input.misc.fit_t0", "modulename": "pyerrors.input.misc", "qualname": "fit_t0", "kind": "function", "doc": "- data (Obs / list / Corr):\nRead data
\n- or
\n- data (dict):\nRead data and meta-data
\nCompute the root of (flow-based) data based on a dictionary that contains\nthe necessary information in key-value pairs a la (flow time: observable at flow time).
\n\nIt is assumed that the data is monotonically increasing and passes zero from below.\nNo exception is thrown if this is not the case (several roots, no monotonic increase).\nAn exception is thrown if no root can be found in the data.
\n\nA linear fit in the vicinity of the root is performed to exctract the root from the\ntwo fit parameters.
\n\nParameters
\n\n\n
\n\n- t2E_dict (dict):\nDictionary with pairs of (flow time: observable at flow time) where the flow times\nare of type float and the observables of type Obs.
\n- fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit.
\n- plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data. (Default: False)
\n- observable (str):\nKeyword to identify the observable to print the correct ylabel (if plot_fit is True)\nfor the observables 't0' and 'w0'. No y label is printed otherwise. (Default: 't0')
\nReturns
\n\n\n
\n", "signature": "(t2E_dict, fit_range, plot_fit=False, observable='t0'):", "funcdef": "def"}, "pyerrors.input.misc.read_pbp": {"fullname": "pyerrors.input.misc.read_pbp", "modulename": "pyerrors.input.misc", "qualname": "read_pbp", "kind": "function", "doc": "- root (Obs):\nThe root of the data series.
\nRead pbp format from given folder structure.
\n\nParameters
\n\n\n
\n\n- r_start (list):\nlist which contains the first config to be read for each replicum
\n- r_stop (list):\nlist which contains the last config to be read for each replicum
\nReturns
\n\n\n
\n", "signature": "(path, prefix, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD": {"fullname": "pyerrors.input.openQCD", "modulename": "pyerrors.input.openQCD", "kind": "module", "doc": "\n"}, "pyerrors.input.openQCD.read_rwms": {"fullname": "pyerrors.input.openQCD.read_rwms", "modulename": "pyerrors.input.openQCD", "qualname": "read_rwms", "kind": "function", "doc": "- result (list[Obs]):\nlist of observables read
\nRead rwms format from given folder structure. Returns a list of length nrw
\n\nParameters
\n\n\n
\n\n- path (str):\npath that contains the data files
\n- prefix (str):\nall files in path that start with prefix are considered as input files.\nMay be used together postfix to consider only special file endings.\nPrefix is ignored, if the keyword 'files' is used.
\n- version (str):\nversion of openQCD, default 2.0
\n- names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
\n- r_start (list):\nlist which contains the first config to be read for each replicum
\n- r_stop (list):\nlist which contains the last config to be read for each replicum
\n- r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
\n- postfix (str):\npostfix of the file to read, e.g. '.ms1' for openQCD-files
\n- files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
\n- print_err (bool):\nPrint additional information that is useful for debugging.
\nReturns
\n\n\n
\n", "signature": "(path, prefix, version='2.0', names=None, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.extract_t0": {"fullname": "pyerrors.input.openQCD.extract_t0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_t0", "kind": "function", "doc": "- rwms (Obs):\nReweighting factors read
\nExtract t0/a^2 from given .ms.dat files. Returns t0 as Obs.
\n\nIt is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t^2
\n\n- c (where c=0.3 by default)\nis fitted with a linear function\nfrom which the exact root is extracted. It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.
\n\nParameters
\n\n\n
\n\n- path (str):\nPath to .ms.dat files
\n- prefix (str):\nEnsemble prefix
\n- dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
\n- xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
\n- spatial_extent (int):\nspatial extent of the lattice, required for normalization.
\n- fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
\n- postfix (str):\nPostfix of measurement file (Default: ms)
\n- c (float):\nConstant that defines the flow scale. Default 0.3 for t_0, choose 2./3 for t_1.
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
\n- plaquette (bool):\nIf true extract the plaquette estimate of t0 instead.
\n- names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
\n- files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
\n- plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
\n- assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
\nReturns
\n\n\n
\n", "signature": "(\tpath,\tprefix,\tdtr_read,\txmin,\tspatial_extent,\tfit_range=5,\tpostfix='ms',\tc=0.3,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.extract_w0": {"fullname": "pyerrors.input.openQCD.extract_w0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_w0", "kind": "function", "doc": "- t0 (Obs):\nExtracted t0
\nExtract w0/a from given .ms.dat files. Returns w0 as Obs.
\n\nIt is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t d(t^2
\n\n)/dt - (where c=0.3 by default)\nis fitted with a linear function\nfrom which the exact root is extracted. It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.
\n\nParameters
\n\n\n
\n\n- path (str):\nPath to .ms.dat files
\n- prefix (str):\nEnsemble prefix
\n- dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
\n- xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
\n- spatial_extent (int):\nspatial extent of the lattice, required for normalization.
\n- fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
\n- postfix (str):\nPostfix of measurement file (Default: ms)
\n- c (float):\nConstant that defines the flow scale. Default 0.3 for w_0, choose 2./3 for w_1.
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
\n- plaquette (bool):\nIf true extract the plaquette estimate of w0 instead.
\n- names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
\n- files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
\n- plot_fit (bool):\nIf true, the fit for the extraction of w0 is shown together with the data.
\n- assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
\nReturns
\n\n\n
\n", "signature": "(\tpath,\tprefix,\tdtr_read,\txmin,\tspatial_extent,\tfit_range=5,\tpostfix='ms',\tc=0.3,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop": {"fullname": "pyerrors.input.openQCD.read_qtop", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop", "kind": "function", "doc": "- w0 (Obs):\nExtracted w0
\nRead the topologial charge based on openQCD gradient flow measurements.
\n\nParameters
\n\n\n
\n\n- path (str):\npath of the measurement files
\n- prefix (str):\nprefix of the measurement files, e.g.
\n_id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files. - c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
\n- dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
\n- steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
\n- version (str):\nEither openQCD or sfqcd, depending on the data.
\n- L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
\n- postfix (str):\npostfix of the file to read, e.g. '.gfms.dat' for openQCD-files
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
\n- Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
\n- integer_charge (bool):\nIf True, the charge is rounded towards the nearest integer on each config.
\nReturns
\n\n\n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, version='openQCD', **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_gf_coupling": {"fullname": "pyerrors.input.openQCD.read_gf_coupling", "modulename": "pyerrors.input.openQCD", "qualname": "read_gf_coupling", "kind": "function", "doc": "- result (Obs):\nRead topological charge
\nRead the gradient flow coupling based on sfqcd gradient flow measurements. See 1607.06423 for details.
\n\nNote: The current implementation only works for c=0.3 and T=L. The definition of the coupling in 1607.06423 requires projection to topological charge zero which is not done within this function but has to be performed in a separate step.
\n\nParameters
\n\n\n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, Zeuthen_flow=True, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.qtop_projection": {"fullname": "pyerrors.input.openQCD.qtop_projection", "modulename": "pyerrors.input.openQCD", "qualname": "qtop_projection", "kind": "function", "doc": "- path (str):\npath of the measurement files
\n- prefix (str):\nprefix of the measurement files, e.g.
\n_id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files. - c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
\n- dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
\n- steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
\n- r_start (list):\nlist which contains the first config to be read for each replicum.
\n- r_stop (list):\nlist which contains the last config to be read for each replicum.
\n- files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
\n- postfix (str):\npostfix of the file to read, e.g. '.gfms.dat' for openQCD-files
\n- Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for the coupling. If False, the Wilson flow is used.
\nReturns the projection to the topological charge sector defined by target.
\n\nParameters
\n\n\n
\n\n- path (Obs):\nTopological charge.
\n- target (int):\nSpecifies the topological sector to be reweighted to (default 0)
\nReturns
\n\n\n
\n", "signature": "(qtop, target=0):", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop_sector": {"fullname": "pyerrors.input.openQCD.read_qtop_sector", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop_sector", "kind": "function", "doc": "- reto (Obs):\nprojection to the topological charge sector defined by target
\nConstructs reweighting factors to a specified topological sector.
\n\nParameters
\n\n\n
\n\n- path (str):\npath of the measurement files
\n- prefix (str):\nprefix of the measurement files, e.g.
\n_id0_r0.ms.dat - c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L
\n- target (int):\nSpecifies the topological sector to be reweighted to (default 0)
\n- dtr_cnfg (int):\n(optional) parameter that specifies the number of trajectories\nbetween two configs.\nif it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
\n- steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
\n- version (str):\nversion string of the openQCD (sfqcd) version used to create\nthe ensemble. Default is 2.0. May also be set to sfqcd.
\n- L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
\n- r_start (list):\noffset of the first ensemble, making it easier to match\nlater on with other Obs
\n- r_stop (list):\nlast configurations that need to be read (per replicum)
\n- files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
\n- Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
\nReturns
\n\n\n
\n", "signature": "(path, prefix, c, target=0, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_ms5_xsf": {"fullname": "pyerrors.input.openQCD.read_ms5_xsf", "modulename": "pyerrors.input.openQCD", "qualname": "read_ms5_xsf", "kind": "function", "doc": "- reto (Obs):\nprojection to the topological charge sector defined by target
\nRead data from files in the specified directory with the specified prefix and quark combination extension, and return a
\n\nCorr
object containing the data.Parameters
\n\n\n
\n\n- path (str):\nThe directory to search for the files in.
\n- prefix (str):\nThe prefix to match the files against.
\n- qc (str):\nThe quark combination extension to match the files against.
\n- corr (str):\nThe correlator to extract data for.
\n- sep (str, optional):\nThe separator to use when parsing the replika names.
\n- \n
**kwargs: Additional keyword arguments. The following keyword arguments are recognized:
\n\n\n
- names (List[str]): A list of names to use for the replicas.
\n- files (List[str]): A list of files to read data from.
\n- idl (List[List[int]]): A list of idls per replicum, resticting data to the idls given.
\nReturns
\n\n\n
\n\n- Corr: A complex valued
\nCorr
object containing the data read from the files. In case of boudary to bulk correlators.- or
\n- CObs: A complex valued
\nCObs
object containing the data read from the files. In case of boudary to boundary correlators.Raises
\n\n\n
\n", "signature": "(path, prefix, qc, corr, sep='r', **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas": {"fullname": "pyerrors.input.pandas", "modulename": "pyerrors.input.pandas", "kind": "module", "doc": "\n"}, "pyerrors.input.pandas.to_sql": {"fullname": "pyerrors.input.pandas.to_sql", "modulename": "pyerrors.input.pandas", "qualname": "to_sql", "kind": "function", "doc": "- FileNotFoundError: If no files matching the specified prefix and quark combination extension are found in the specified directory.
\n- IOError: If there is an error reading a file.
\n- struct.error: If there is an error unpacking binary data.
\nWrite DataFrame including Obs or Corr valued columns to sqlite database.
\n\nParameters
\n\n\n
\n\n- df (pandas.DataFrame):\nDataframe to be written to the database.
\n- table_name (str):\nName of the table in the database.
\n- db (str):\nPath to the sqlite database.
\n- if exists (str):\nHow to behave if table already exists. Options 'fail', 'replace', 'append'.
\n- gz (bool):\nIf True the json strings are gzipped.
\nReturns
\n\n\n
\n", "signature": "(df, table_name, db, if_exists='fail', gz=True, **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas.read_sql": {"fullname": "pyerrors.input.pandas.read_sql", "modulename": "pyerrors.input.pandas", "qualname": "read_sql", "kind": "function", "doc": "- None
\nExecute SQL query on sqlite database and obtain DataFrame including Obs or Corr valued columns.
\n\nParameters
\n\n\n
\n\n- sql (str):\nSQL query to be executed.
\n- db (str):\nPath to the sqlite database.
\n- auto_gamma (bool):\nIf True applies the gamma_method to all imported Obs objects with the default parameters for\nthe error analysis. Default False.
\nReturns
\n\n\n
\n", "signature": "(sql, db, auto_gamma=False, **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas.dump_df": {"fullname": "pyerrors.input.pandas.dump_df", "modulename": "pyerrors.input.pandas", "qualname": "dump_df", "kind": "function", "doc": "- data (pandas.DataFrame):\nDataframe with the content of the sqlite database.
\nExports a pandas DataFrame containing Obs valued columns to a (gzipped) csv file.
\n\nBefore making use of pandas to_csv functionality Obs objects are serialized via the standardized\njson format of pyerrors.
\n\nParameters
\n\n\n
\n\n- df (pandas.DataFrame):\nDataframe to be dumped to a file.
\n- fname (str):\nFilename of the output file.
\n- gz (bool):\nIf True, the output is a gzipped csv file. If False, the output is a csv file.
\nReturns
\n\n\n
\n", "signature": "(df, fname, gz=True):", "funcdef": "def"}, "pyerrors.input.pandas.load_df": {"fullname": "pyerrors.input.pandas.load_df", "modulename": "pyerrors.input.pandas", "qualname": "load_df", "kind": "function", "doc": "- None
\nImports a pandas DataFrame from a csv.(gz) file in which Obs objects are serialized as json strings.
\n\nParameters
\n\n\n
\n\n- fname (str):\nFilename of the input file.
\n- auto_gamma (bool):\nIf True applies the gamma_method to all imported Obs objects with the default parameters for\nthe error analysis. Default False.
\n- gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
\nReturns
\n\n\n
\n", "signature": "(fname, auto_gamma=False, gz=True):", "funcdef": "def"}, "pyerrors.input.sfcf": {"fullname": "pyerrors.input.sfcf", "modulename": "pyerrors.input.sfcf", "kind": "module", "doc": "\n"}, "pyerrors.input.sfcf.sep": {"fullname": "pyerrors.input.sfcf.sep", "modulename": "pyerrors.input.sfcf", "qualname": "sep", "kind": "variable", "doc": "\n", "default_value": "'/'"}, "pyerrors.input.sfcf.read_sfcf": {"fullname": "pyerrors.input.sfcf.read_sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf", "kind": "function", "doc": "- data (pandas.DataFrame):\nDataframe with the content of the sqlite database.
\nRead sfcf files from given folder structure.
\n\nParameters
\n\n\n
\n\n- path (str):\nPath to the sfcf files.
\n- prefix (str):\nPrefix of the sfcf files.
\n- name (str):\nName of the correlation function to read.
\n- quarks (str):\nLabel of the quarks used in the sfcf input file. e.g. \"quark quark\"\nfor version 0.0 this does NOT need to be given with the typical \" - \"\nthat is present in the output file,\nthis is done automatically for this version
\n- corr_type (str):\nType of correlation function to read. Can be\n
\n\n
- 'bi' for boundary-inner
\n- 'bb' for boundary-boundary
\n- 'bib' for boundary-inner-boundary
\n- noffset (int):\nOffset of the source (only relevant when wavefunctions are used)
\n- wf (int):\nID of wave function
\n- wf2 (int):\nID of the second wavefunction\n(only relevant for boundary-to-boundary correlation functions)
\n- im (bool):\nif True, read imaginary instead of real part\nof the correlation function.
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
\n- ens_name (str):\nreplaces the name of the ensemble
\n- version (str):\nversion of SFCF, with which the measurement was done.\nif the compact output option (-c) was specified,\nappend a \"c\" to the version (e.g. \"1.0c\")\nif the append output option (-a) was specified,\nappend an \"a\" to the version
\n- cfg_separator (str):\nString that separates the ensemble identifier from the configuration number (default 'n').
\n- replica (list):\nlist of replica to be read, default is all
\n- files (list):\nlist of files to be read per replica, default is all.\nfor non-compact output format, hand the folders to be read here.
\n- check_configs (list[list[int]]):\nlist of list of supposed configs, eg. [range(1,1000)]\nfor one replicum with 1000 configs
\nReturns
\n\n\n
\n", "signature": "(\tpath,\tprefix,\tname,\tquarks='.*',\tcorr_type='bi',\tnoffset=0,\twf=0,\twf2=0,\tversion='1.0c',\tcfg_separator='n',\tsilent=False,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.sfcf.read_sfcf_multi": {"fullname": "pyerrors.input.sfcf.read_sfcf_multi", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf_multi", "kind": "function", "doc": "- result (list[Obs]):\nlist of Observables with length T, observable per timeslice.\nbb-type correlators have length 1.
\nRead sfcf files from given folder structure.
\n\nParameters
\n\n\n
\n\n- path (str):\nPath to the sfcf files.
\n- prefix (str):\nPrefix of the sfcf files.
\n- name (str):\nName of the correlation function to read.
\n- quarks_list (list[str]):\nLabel of the quarks used in the sfcf input file. e.g. \"quark quark\"\nfor version 0.0 this does NOT need to be given with the typical \" - \"\nthat is present in the output file,\nthis is done automatically for this version
\n- corr_type_list (list[str]):\nType of correlation function to read. Can be\n
\n\n
- 'bi' for boundary-inner
\n- 'bb' for boundary-boundary
\n- 'bib' for boundary-inner-boundary
\n- noffset_list (list[int]):\nOffset of the source (only relevant when wavefunctions are used)
\n- wf_list (int):\nID of wave function
\n- wf2_list (list[int]):\nID of the second wavefunction\n(only relevant for boundary-to-boundary correlation functions)
\n- im (bool):\nif True, read imaginary instead of real part\nof the correlation function.
\n- names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
\n- ens_name (str):\nreplaces the name of the ensemble
\n- version (str):\nversion of SFCF, with which the measurement was done.\nif the compact output option (-c) was specified,\nappend a \"c\" to the version (e.g. \"1.0c\")\nif the append output option (-a) was specified,\nappend an \"a\" to the version
\n- cfg_separator (str):\nString that separates the ensemble identifier from the configuration number (default 'n').
\n- replica (list):\nlist of replica to be read, default is all
\n- files (list[list[int]]):\nlist of files to be read per replica, default is all.\nfor non-compact output format, hand the folders to be read here.
\n- check_configs (list[list[int]]):\nlist of list of supposed configs, eg. [range(1,1000)]\nfor one replicum with 1000 configs
\n- rep_string (str):\nSeparator of ensemble name and replicum. Example: In \"ensAr0\", \"r\" would be the separator string.
\nReturns
\n\n\n
\n", "signature": "(\tpath,\tprefix,\tname_list,\tquarks_list=['.*'],\tcorr_type_list=['bi'],\tnoffset_list=[0],\twf_list=[0],\twf2_list=[0],\tversion='1.0c',\tcfg_separator='n',\tsilent=False,\tkeyed_out=False,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.utils": {"fullname": "pyerrors.input.utils", "modulename": "pyerrors.input.utils", "kind": "module", "doc": "- result (dict[list[Obs]]):\ndict with one of the following properties:\nif keyed_out:\n dict[key] = list[Obs]\n where key has the form name/quarks/offset/wf/wf2\nif not keyed_out:\n dict[name][quarks][offset][wf][wf2] = list[Obs]
\nUtilities for the input
\n"}, "pyerrors.input.utils.sort_names": {"fullname": "pyerrors.input.utils.sort_names", "modulename": "pyerrors.input.utils", "qualname": "sort_names", "kind": "function", "doc": "Sorts a list of names of replika with searches for
\n\nr
andid
in the replikum string.\nIf this search fails, a fallback method is used,\nwhere the strings are simply compared and the first diffeing numeral is used for differentiation.Parameters
\n\n\n
\n\n- ll (list):\nlist to sort
\nReturns
\n\n\n
\n", "signature": "(ll):", "funcdef": "def"}, "pyerrors.input.utils.check_idl": {"fullname": "pyerrors.input.utils.check_idl", "modulename": "pyerrors.input.utils", "qualname": "check_idl", "kind": "function", "doc": "- ll (list):\nsorted list
\nChecks if list of configurations is contained in an idl
\n\nParameters
\n\n\n
\n\n- idl (range or list):\nidl of the current replicum
\n- che (list):\nlist of configurations to be checked against
\nReturns
\n\n\n
\n", "signature": "(idl, che):", "funcdef": "def"}, "pyerrors.input.utils.check_params": {"fullname": "pyerrors.input.utils.check_params", "modulename": "pyerrors.input.utils", "qualname": "check_params", "kind": "function", "doc": "- miss_str (str):\nstring with integers of which idls are missing
\nCheck if, for sfcf, the parameter hashes at the end of the parameter files are in fact the expected one.
\n\nParameters
\n\n\n
\n\n- path (str):\nmeasurement path, same as for sfcf read method
\n- param_hash (str):\nexpected parameter hash
\n- prefix (str):\ndata prefix to find the appropriate replicum folders in path
\n- param_prefix (str):\nprefix of the parameter file. Defaults to 'parameters_'
\nReturns
\n\n\n
\n", "signature": "(path, param_hash, prefix, param_prefix='parameters_'):", "funcdef": "def"}, "pyerrors.integrate": {"fullname": "pyerrors.integrate", "modulename": "pyerrors.integrate", "kind": "module", "doc": "\n"}, "pyerrors.integrate.quad": {"fullname": "pyerrors.integrate.quad", "modulename": "pyerrors.integrate", "qualname": "quad", "kind": "function", "doc": "- nums (dict):\ndictionary of faulty parameter files sorted by the replica paths
\nPerforms a (one-dimensional) numeric integration of f(p, x) from a to b.
\n\nThe integration is performed using scipy.integrate.quad().\nAll parameters that can be passed to scipy.integrate.quad may also be passed to this function.\nThe output is the same as for scipy.integrate.quad, the first element being an Obs.
\n\nParameters
\n\n\n
\n\n- \n
func (object):\nfunction to integrate, has to be of the form
\n\n\n\n\n\nimport autograd.numpy as anp\n\ndef func(p, x):\n return p[0] + p[1] * x + p[2] * anp.sinh(x)\n
where x is the integration variable.
- p (list of floats or Obs):\nparameters of the function func.
\n- a (float or Obs):\nLower limit of integration (use -numpy.inf for -infinity).
\n- b (float or Obs):\nUpper limit of integration (use -numpy.inf for -infinity).
\n- All parameters of scipy.integrate.quad
\nReturns
\n\n\n
\n", "signature": "(func, p, a, b, **kwargs):", "funcdef": "def"}, "pyerrors.linalg": {"fullname": "pyerrors.linalg", "modulename": "pyerrors.linalg", "kind": "module", "doc": "\n"}, "pyerrors.linalg.matmul": {"fullname": "pyerrors.linalg.matmul", "modulename": "pyerrors.linalg", "qualname": "matmul", "kind": "function", "doc": "- y (Obs):\nThe integral of func from
\na
tob
.- abserr (float):\nAn estimate of the absolute error in the result.
\n- infodict (dict):\nA dictionary containing additional information.\nRun scipy.integrate.quad_explain() for more information.
\n- message: A convergence message.
\n- explain: Appended only with 'cos' or 'sin' weighting and infinite\nintegration limits, it contains an explanation of the codes in\ninfodict['ierlst']
\nMatrix multiply all operands.
\n\nParameters
\n\n\n
\n", "signature": "(*operands):", "funcdef": "def"}, "pyerrors.linalg.jack_matmul": {"fullname": "pyerrors.linalg.jack_matmul", "modulename": "pyerrors.linalg", "qualname": "jack_matmul", "kind": "function", "doc": "- operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
\n- This implementation is faster compared to standard multiplication via the @ operator.
\nMatrix multiply both operands making use of the jackknife approximation.
\n\nParameters
\n\n\n
\n", "signature": "(*operands):", "funcdef": "def"}, "pyerrors.linalg.einsum": {"fullname": "pyerrors.linalg.einsum", "modulename": "pyerrors.linalg", "qualname": "einsum", "kind": "function", "doc": "- operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
\n- For large matrices this is considerably faster compared to matmul.
\nWrapper for numpy.einsum
\n\nParameters
\n\n\n
\n", "signature": "(subscripts, *operands):", "funcdef": "def"}, "pyerrors.linalg.inv": {"fullname": "pyerrors.linalg.inv", "modulename": "pyerrors.linalg", "qualname": "inv", "kind": "function", "doc": "- subscripts (str):\nSubscripts for summation (see numpy documentation for details)
\n- operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
\nInverse of Obs or CObs valued matrices.
\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.cholesky": {"fullname": "pyerrors.linalg.cholesky", "modulename": "pyerrors.linalg", "qualname": "cholesky", "kind": "function", "doc": "Cholesky decomposition of Obs valued matrices.
\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.det": {"fullname": "pyerrors.linalg.det", "modulename": "pyerrors.linalg", "qualname": "det", "kind": "function", "doc": "Determinant of Obs valued matrices.
\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.eigh": {"fullname": "pyerrors.linalg.eigh", "modulename": "pyerrors.linalg", "qualname": "eigh", "kind": "function", "doc": "Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.eig": {"fullname": "pyerrors.linalg.eig", "modulename": "pyerrors.linalg", "qualname": "eig", "kind": "function", "doc": "Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.eigv": {"fullname": "pyerrors.linalg.eigv", "modulename": "pyerrors.linalg", "qualname": "eigv", "kind": "function", "doc": "Computes the eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.pinv": {"fullname": "pyerrors.linalg.pinv", "modulename": "pyerrors.linalg", "qualname": "pinv", "kind": "function", "doc": "Computes the Moore-Penrose pseudoinverse of a matrix of Obs.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.svd": {"fullname": "pyerrors.linalg.svd", "modulename": "pyerrors.linalg", "qualname": "svd", "kind": "function", "doc": "Computes the singular value decomposition of a matrix of Obs.
\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.misc": {"fullname": "pyerrors.misc", "modulename": "pyerrors.misc", "kind": "module", "doc": "\n"}, "pyerrors.misc.print_config": {"fullname": "pyerrors.misc.print_config", "modulename": "pyerrors.misc", "qualname": "print_config", "kind": "function", "doc": "Print information about version of python, pyerrors and dependencies.
\n", "signature": "():", "funcdef": "def"}, "pyerrors.misc.errorbar": {"fullname": "pyerrors.misc.errorbar", "modulename": "pyerrors.misc", "qualname": "errorbar", "kind": "function", "doc": "pyerrors wrapper for the errorbars method of matplotlib
\n\nParameters
\n\n\n
\n", "signature": "(\tx,\ty,\taxes=<module 'matplotlib.pyplot' from '/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/matplotlib/pyplot.py'>,\t**kwargs):", "funcdef": "def"}, "pyerrors.misc.dump_object": {"fullname": "pyerrors.misc.dump_object", "modulename": "pyerrors.misc", "qualname": "dump_object", "kind": "function", "doc": "- x (list):\nA list of x-values which can be Obs.
\n- y (list):\nA list of y-values which can be Obs.
\n- axes ((matplotlib.pyplot.axes)):\nThe axes to plot on. default is plt.
\nDump object into pickle file.
\n\nParameters
\n\n\n
\n\n- obj (object):\nobject to be saved in the pickle file
\n- name (str):\nname of the file
\n- path (str):\nspecifies a custom path for the file (default '.')
\nReturns
\n\n\n
\n", "signature": "(obj, name, **kwargs):", "funcdef": "def"}, "pyerrors.misc.load_object": {"fullname": "pyerrors.misc.load_object", "modulename": "pyerrors.misc", "qualname": "load_object", "kind": "function", "doc": "- None
\nLoad object from pickle file.
\n\nParameters
\n\n\n
\n\n- path (str):\npath to the file
\nReturns
\n\n\n
\n", "signature": "(path):", "funcdef": "def"}, "pyerrors.misc.pseudo_Obs": {"fullname": "pyerrors.misc.pseudo_Obs", "modulename": "pyerrors.misc", "qualname": "pseudo_Obs", "kind": "function", "doc": "- object (Obs):\nLoaded Object
\nGenerate an Obs object with given value, dvalue and name for test purposes
\n\nParameters
\n\n\n
\n\n- value (float):\ncentral value of the Obs to be generated.
\n- dvalue (float):\nerror of the Obs to be generated.
\n- name (str):\nname of the ensemble for which the Obs is to be generated.
\n- samples (int):\nnumber of samples for the Obs (default 1000).
\nReturns
\n\n\n
\n", "signature": "(value, dvalue, name, samples=1000):", "funcdef": "def"}, "pyerrors.misc.gen_correlated_data": {"fullname": "pyerrors.misc.gen_correlated_data", "modulename": "pyerrors.misc", "qualname": "gen_correlated_data", "kind": "function", "doc": "- res (Obs):\nGenerated Observable
\nGenerate observables with given covariance and autocorrelation times.
\n\nParameters
\n\n\n
\n\n- means (list):\nlist containing the mean value of each observable.
\n- cov (numpy.ndarray):\ncovariance matrix for the data to be generated.
\n- name (str):\nensemble name for the data to be geneated.
\n- tau (float or list):\ncan either be a real number or a list with an entry for\nevery dataset.
\n- samples (int):\nnumber of samples to be generated for each observable.
\nReturns
\n\n\n
\n", "signature": "(means, cov, name, tau=0.5, samples=1000):", "funcdef": "def"}, "pyerrors.mpm": {"fullname": "pyerrors.mpm", "modulename": "pyerrors.mpm", "kind": "module", "doc": "\n"}, "pyerrors.mpm.matrix_pencil_method": {"fullname": "pyerrors.mpm.matrix_pencil_method", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method", "kind": "function", "doc": "- corr_obs (list[Obs]):\nGenerated observable list
\nMatrix pencil method to extract k energy levels from data
\n\nImplementation of the matrix pencil method based on\neq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)
\n\nParameters
\n\n\n
\n\n- data (list):\ncan be a list of Obs for the analysis of a single correlator, or a list of lists\nof Obs if several correlators are to analyzed at once.
\n- k (int):\nNumber of states to extract (default 1).
\n- p (int):\nmatrix pencil parameter which filters noise. The optimal value is expected between\nlen(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is\nto len(data)/2 but could possibly suppress more noise (default len(data)//2).
\nReturns
\n\n\n
\n", "signature": "(corrs, k=1, p=None, **kwargs):", "funcdef": "def"}, "pyerrors.obs": {"fullname": "pyerrors.obs", "modulename": "pyerrors.obs", "kind": "module", "doc": "\n"}, "pyerrors.obs.Obs": {"fullname": "pyerrors.obs.Obs", "modulename": "pyerrors.obs", "qualname": "Obs", "kind": "class", "doc": "- energy_levels (list[Obs]):\nExtracted energy levels
\nClass for a general observable.
\n\nInstances of Obs are the basic objects of a pyerrors error analysis.\nThey are initialized with a list which contains arrays of samples for\ndifferent ensembles/replica and another list of same length which contains\nthe names of the ensembles/replica. Mathematical operations can be\nperformed on instances. The result is another instance of Obs. The error of\nan instance can be computed with the gamma_method. Also contains additional\nmethods for output and visualization of the error calculation.
\n\nAttributes
\n\n\n
\n"}, "pyerrors.obs.Obs.__init__": {"fullname": "pyerrors.obs.Obs.__init__", "modulename": "pyerrors.obs", "qualname": "Obs.__init__", "kind": "function", "doc": "- S_global (float):\nStandard value for S (default 2.0)
\n- S_dict (dict):\nDictionary for S values. If an entry for a given ensemble\nexists this overwrites the standard value for that ensemble.
\n- tau_exp_global (float):\nStandard value for tau_exp (default 0.0)
\n- tau_exp_dict (dict):\nDictionary for tau_exp values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
\n- N_sigma_global (float):\nStandard value for N_sigma (default 1.0)
\n- N_sigma_dict (dict):\nDictionary for N_sigma values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
\nInitialize Obs object.
\n\nParameters
\n\n\n
\n", "signature": "(samples, names, idl=None, **kwargs)"}, "pyerrors.obs.Obs.S_global": {"fullname": "pyerrors.obs.Obs.S_global", "modulename": "pyerrors.obs", "qualname": "Obs.S_global", "kind": "variable", "doc": "\n", "default_value": "2.0"}, "pyerrors.obs.Obs.S_dict": {"fullname": "pyerrors.obs.Obs.S_dict", "modulename": "pyerrors.obs", "qualname": "Obs.S_dict", "kind": "variable", "doc": "\n", "default_value": "{}"}, "pyerrors.obs.Obs.tau_exp_global": {"fullname": "pyerrors.obs.Obs.tau_exp_global", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_global", "kind": "variable", "doc": "\n", "default_value": "0.0"}, "pyerrors.obs.Obs.tau_exp_dict": {"fullname": "pyerrors.obs.Obs.tau_exp_dict", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_dict", "kind": "variable", "doc": "\n", "default_value": "{}"}, "pyerrors.obs.Obs.N_sigma_global": {"fullname": "pyerrors.obs.Obs.N_sigma_global", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_global", "kind": "variable", "doc": "\n", "default_value": "1.0"}, "pyerrors.obs.Obs.N_sigma_dict": {"fullname": "pyerrors.obs.Obs.N_sigma_dict", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_dict", "kind": "variable", "doc": "\n", "default_value": "{}"}, "pyerrors.obs.Obs.names": {"fullname": "pyerrors.obs.Obs.names", "modulename": "pyerrors.obs", "qualname": "Obs.names", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.shape": {"fullname": "pyerrors.obs.Obs.shape", "modulename": "pyerrors.obs", "qualname": "Obs.shape", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.r_values": {"fullname": "pyerrors.obs.Obs.r_values", "modulename": "pyerrors.obs", "qualname": "Obs.r_values", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.deltas": {"fullname": "pyerrors.obs.Obs.deltas", "modulename": "pyerrors.obs", "qualname": "Obs.deltas", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.N": {"fullname": "pyerrors.obs.Obs.N", "modulename": "pyerrors.obs", "qualname": "Obs.N", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.idl": {"fullname": "pyerrors.obs.Obs.idl", "modulename": "pyerrors.obs", "qualname": "Obs.idl", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.ddvalue": {"fullname": "pyerrors.obs.Obs.ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.ddvalue", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.reweighted": {"fullname": "pyerrors.obs.Obs.reweighted", "modulename": "pyerrors.obs", "qualname": "Obs.reweighted", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.tag": {"fullname": "pyerrors.obs.Obs.tag", "modulename": "pyerrors.obs", "qualname": "Obs.tag", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.value": {"fullname": "pyerrors.obs.Obs.value", "modulename": "pyerrors.obs", "qualname": "Obs.value", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.dvalue": {"fullname": "pyerrors.obs.Obs.dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.dvalue", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_names": {"fullname": "pyerrors.obs.Obs.e_names", "modulename": "pyerrors.obs", "qualname": "Obs.e_names", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.cov_names": {"fullname": "pyerrors.obs.Obs.cov_names", "modulename": "pyerrors.obs", "qualname": "Obs.cov_names", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.mc_names": {"fullname": "pyerrors.obs.Obs.mc_names", "modulename": "pyerrors.obs", "qualname": "Obs.mc_names", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_content": {"fullname": "pyerrors.obs.Obs.e_content", "modulename": "pyerrors.obs", "qualname": "Obs.e_content", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.covobs": {"fullname": "pyerrors.obs.Obs.covobs", "modulename": "pyerrors.obs", "qualname": "Obs.covobs", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.gamma_method": {"fullname": "pyerrors.obs.Obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "Obs.gamma_method", "kind": "function", "doc": "- samples (list):\nlist of numpy arrays containing the Monte Carlo samples
\n- names (list):\nlist of strings labeling the individual samples
\n- idl (list, optional):\nlist of ranges or lists on which the samples are defined
\nEstimate the error and related properties of the Obs.
\n\nParameters
\n\n\n
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.gm": {"fullname": "pyerrors.obs.Obs.gm", "modulename": "pyerrors.obs", "qualname": "Obs.gm", "kind": "function", "doc": "- S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
\n- tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
\n- N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
\n- fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
\nEstimate the error and related properties of the Obs.
\n\nParameters
\n\n\n
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.details": {"fullname": "pyerrors.obs.Obs.details", "modulename": "pyerrors.obs", "qualname": "Obs.details", "kind": "function", "doc": "- S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
\n- tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
\n- N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
\n- fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
\nOutput detailed properties of the Obs.
\n\nParameters
\n\n\n
\n", "signature": "(self, ens_content=True):", "funcdef": "def"}, "pyerrors.obs.Obs.reweight": {"fullname": "pyerrors.obs.Obs.reweight", "modulename": "pyerrors.obs", "qualname": "Obs.reweight", "kind": "function", "doc": "- ens_content (bool):\nprint details about the ensembles and replica if true.
\nReweight the obs with given rewighting factors.
\n\nParameters
\n\n\n
\n", "signature": "(self, weight):", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero_within_error": {"fullname": "pyerrors.obs.Obs.is_zero_within_error", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero_within_error", "kind": "function", "doc": "- weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
\n- all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl. Default False.
\nChecks whether the observable is zero within 'sigma' standard errors.
\n\nParameters
\n\n\n
\n", "signature": "(self, sigma=1):", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero": {"fullname": "pyerrors.obs.Obs.is_zero", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero", "kind": "function", "doc": "- sigma (int):\nNumber of standard errors used for the check.
\n- Works only properly when the gamma method was run.
\nChecks whether the observable is zero within a given tolerance.
\n\nParameters
\n\n\n
\n", "signature": "(self, atol=1e-10):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_tauint": {"fullname": "pyerrors.obs.Obs.plot_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.plot_tauint", "kind": "function", "doc": "- atol (float):\nAbsolute tolerance (for details see numpy documentation).
\nPlot integrated autocorrelation time for each ensemble.
\n\nParameters
\n\n\n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rho": {"fullname": "pyerrors.obs.Obs.plot_rho", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rho", "kind": "function", "doc": "- save (str):\nsaves the figure to a file named 'save' if.
\nPlot normalized autocorrelation function time for each ensemble.
\n\nParameters
\n\n\n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rep_dist": {"fullname": "pyerrors.obs.Obs.plot_rep_dist", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rep_dist", "kind": "function", "doc": "- save (str):\nsaves the figure to a file named 'save' if.
\nPlot replica distribution for each ensemble with more than one replicum.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_history": {"fullname": "pyerrors.obs.Obs.plot_history", "modulename": "pyerrors.obs", "qualname": "Obs.plot_history", "kind": "function", "doc": "Plot derived Monte Carlo history for each ensemble
\n\nParameters
\n\n\n
\n", "signature": "(self, expand=True):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_piechart": {"fullname": "pyerrors.obs.Obs.plot_piechart", "modulename": "pyerrors.obs", "qualname": "Obs.plot_piechart", "kind": "function", "doc": "- expand (bool):\nshow expanded history for irregular Monte Carlo chains (default: True).
\nPlot piechart which shows the fractional contribution of each\nensemble to the error and returns a dictionary containing the fractions.
\n\nParameters
\n\n\n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.dump": {"fullname": "pyerrors.obs.Obs.dump", "modulename": "pyerrors.obs", "qualname": "Obs.dump", "kind": "function", "doc": "- save (str):\nsaves the figure to a file named 'save' if.
\nDump the Obs to a file 'name' of chosen format.
\n\nParameters
\n\n\n
\n", "signature": "(self, filename, datatype='json.gz', description='', **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.export_jackknife": {"fullname": "pyerrors.obs.Obs.export_jackknife", "modulename": "pyerrors.obs", "qualname": "Obs.export_jackknife", "kind": "function", "doc": "- filename (str):\nname of the file to be saved.
\n- datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
\n- description (str):\nDescription for output file, only relevant for json.gz format.
\n- path (str):\nspecifies a custom path for the file (default '.')
\nExport jackknife samples from the Obs
\n\nReturns
\n\n\n
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.export_bootstrap": {"fullname": "pyerrors.obs.Obs.export_bootstrap", "modulename": "pyerrors.obs", "qualname": "Obs.export_bootstrap", "kind": "function", "doc": "- numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N jackknife samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived jackknife samples\nshould agree with samples from a full jackknife analysis up to O(1/N).
\nExport bootstrap samples from the Obs
\n\nParameters
\n\n\n
\n\n- samples (int):\nNumber of bootstrap samples to generate.
\n- random_numbers (np.ndarray):\nArray of shape (samples, length) containing the random numbers to generate the bootstrap samples.\nIf not provided the bootstrap samples are generated bashed on the md5 hash of the enesmble name.
\n- save_rng (str):\nSave the random numbers to a file if a path is specified.
\nReturns
\n\n\n
\n", "signature": "(self, samples=500, random_numbers=None, save_rng=None):", "funcdef": "def"}, "pyerrors.obs.Obs.sqrt": {"fullname": "pyerrors.obs.Obs.sqrt", "modulename": "pyerrors.obs", "qualname": "Obs.sqrt", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.log": {"fullname": "pyerrors.obs.Obs.log", "modulename": "pyerrors.obs", "qualname": "Obs.log", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.exp": {"fullname": "pyerrors.obs.Obs.exp", "modulename": "pyerrors.obs", "qualname": "Obs.exp", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sin": {"fullname": "pyerrors.obs.Obs.sin", "modulename": "pyerrors.obs", "qualname": "Obs.sin", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.cos": {"fullname": "pyerrors.obs.Obs.cos", "modulename": "pyerrors.obs", "qualname": "Obs.cos", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.tan": {"fullname": "pyerrors.obs.Obs.tan", "modulename": "pyerrors.obs", "qualname": "Obs.tan", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arcsin": {"fullname": "pyerrors.obs.Obs.arcsin", "modulename": "pyerrors.obs", "qualname": "Obs.arcsin", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arccos": {"fullname": "pyerrors.obs.Obs.arccos", "modulename": "pyerrors.obs", "qualname": "Obs.arccos", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arctan": {"fullname": "pyerrors.obs.Obs.arctan", "modulename": "pyerrors.obs", "qualname": "Obs.arctan", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sinh": {"fullname": "pyerrors.obs.Obs.sinh", "modulename": "pyerrors.obs", "qualname": "Obs.sinh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.cosh": {"fullname": "pyerrors.obs.Obs.cosh", "modulename": "pyerrors.obs", "qualname": "Obs.cosh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.tanh": {"fullname": "pyerrors.obs.Obs.tanh", "modulename": "pyerrors.obs", "qualname": "Obs.tanh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arcsinh": {"fullname": "pyerrors.obs.Obs.arcsinh", "modulename": "pyerrors.obs", "qualname": "Obs.arcsinh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arccosh": {"fullname": "pyerrors.obs.Obs.arccosh", "modulename": "pyerrors.obs", "qualname": "Obs.arccosh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arctanh": {"fullname": "pyerrors.obs.Obs.arctanh", "modulename": "pyerrors.obs", "qualname": "Obs.arctanh", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.N_sigma": {"fullname": "pyerrors.obs.Obs.N_sigma", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.S": {"fullname": "pyerrors.obs.Obs.S", "modulename": "pyerrors.obs", "qualname": "Obs.S", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_ddvalue": {"fullname": "pyerrors.obs.Obs.e_ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_ddvalue", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_drho": {"fullname": "pyerrors.obs.Obs.e_drho", "modulename": "pyerrors.obs", "qualname": "Obs.e_drho", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_dtauint": {"fullname": "pyerrors.obs.Obs.e_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_dtauint", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_dvalue": {"fullname": "pyerrors.obs.Obs.e_dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_dvalue", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_n_dtauint": {"fullname": "pyerrors.obs.Obs.e_n_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_dtauint", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_n_tauint": {"fullname": "pyerrors.obs.Obs.e_n_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_tauint", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_rho": {"fullname": "pyerrors.obs.Obs.e_rho", "modulename": "pyerrors.obs", "qualname": "Obs.e_rho", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_tauint": {"fullname": "pyerrors.obs.Obs.e_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_tauint", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.e_windowsize": {"fullname": "pyerrors.obs.Obs.e_windowsize", "modulename": "pyerrors.obs", "qualname": "Obs.e_windowsize", "kind": "variable", "doc": "\n"}, "pyerrors.obs.Obs.tau_exp": {"fullname": "pyerrors.obs.Obs.tau_exp", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp", "kind": "variable", "doc": "\n"}, "pyerrors.obs.CObs": {"fullname": "pyerrors.obs.CObs", "modulename": "pyerrors.obs", "qualname": "CObs", "kind": "class", "doc": "- numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N import_bootstrap samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived bootstrap samples\nshould agree with samples from a full bootstrap analysis up to O(1/N).
\nClass for a complex valued observable.
\n"}, "pyerrors.obs.CObs.__init__": {"fullname": "pyerrors.obs.CObs.__init__", "modulename": "pyerrors.obs", "qualname": "CObs.__init__", "kind": "function", "doc": "\n", "signature": "(real, imag=0.0)"}, "pyerrors.obs.CObs.tag": {"fullname": "pyerrors.obs.CObs.tag", "modulename": "pyerrors.obs", "qualname": "CObs.tag", "kind": "variable", "doc": "\n"}, "pyerrors.obs.CObs.real": {"fullname": "pyerrors.obs.CObs.real", "modulename": "pyerrors.obs", "qualname": "CObs.real", "kind": "variable", "doc": "\n"}, "pyerrors.obs.CObs.imag": {"fullname": "pyerrors.obs.CObs.imag", "modulename": "pyerrors.obs", "qualname": "CObs.imag", "kind": "variable", "doc": "\n"}, "pyerrors.obs.CObs.gamma_method": {"fullname": "pyerrors.obs.CObs.gamma_method", "modulename": "pyerrors.obs", "qualname": "CObs.gamma_method", "kind": "function", "doc": "Executes the gamma_method for the real and the imaginary part.
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.CObs.is_zero": {"fullname": "pyerrors.obs.CObs.is_zero", "modulename": "pyerrors.obs", "qualname": "CObs.is_zero", "kind": "function", "doc": "Checks whether both real and imaginary part are zero within machine precision.
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.CObs.conjugate": {"fullname": "pyerrors.obs.CObs.conjugate", "modulename": "pyerrors.obs", "qualname": "CObs.conjugate", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.gamma_method": {"fullname": "pyerrors.obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "gamma_method", "kind": "function", "doc": "Vectorized version of the gamma_method applicable to lists or arrays of Obs.
\n\nSee docstring of pe.Obs.gamma_method for details.
\n", "signature": "(x, **kwargs):", "funcdef": "def"}, "pyerrors.obs.gm": {"fullname": "pyerrors.obs.gm", "modulename": "pyerrors.obs", "qualname": "gm", "kind": "function", "doc": "Vectorized version of the gamma_method applicable to lists or arrays of Obs.
\n\nSee docstring of pe.Obs.gamma_method for details.
\n", "signature": "(x, **kwargs):", "funcdef": "def"}, "pyerrors.obs.derived_observable": {"fullname": "pyerrors.obs.derived_observable", "modulename": "pyerrors.obs", "qualname": "derived_observable", "kind": "function", "doc": "Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.
\n\nParameters
\n\n\n
\n\n- func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
\n- data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
\n- num_grad (bool):\nif True, numerical derivatives are used instead of autograd\n(default False). To control the numerical differentiation the\nkwargs of numdifftools.step_generators.MaxStepGenerator\ncan be used.
\n- man_grad (list):\nmanually supply a list or an array which contains the jacobian\nof func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
\nNotes
\n\nFor simple mathematical operations it can be practical to use anonymous\nfunctions. For the ratio of two observables one can e.g. use
\n\nnew_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])
\n", "signature": "(func, data, array_mode=False, **kwargs):", "funcdef": "def"}, "pyerrors.obs.reweight": {"fullname": "pyerrors.obs.reweight", "modulename": "pyerrors.obs", "qualname": "reweight", "kind": "function", "doc": "Reweight a list of observables.
\n\nParameters
\n\n\n
\n", "signature": "(weight, obs, **kwargs):", "funcdef": "def"}, "pyerrors.obs.correlate": {"fullname": "pyerrors.obs.correlate", "modulename": "pyerrors.obs", "qualname": "correlate", "kind": "function", "doc": "- weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
\n- obs (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
\n- all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl. Default False.
\nCorrelate two observables.
\n\nParameters
\n\n\n
\n\n- obs_a (Obs):\nFirst observable
\n- obs_b (Obs):\nSecond observable
\nNotes
\n\nKeep in mind to only correlate primary observables which have not been reweighted\nyet. The reweighting has to be applied after correlating the observables.\nOnly works if a single ensemble is present in the Obs.\nCurrently only works if ensemble content is identical (this is not strictly necessary).
\n", "signature": "(obs_a, obs_b):", "funcdef": "def"}, "pyerrors.obs.covariance": {"fullname": "pyerrors.obs.covariance", "modulename": "pyerrors.obs", "qualname": "covariance", "kind": "function", "doc": "Calculates the error covariance matrix of a set of observables.
\n\nWARNING: This function should be used with care, especially for observables with support on multiple\n ensembles with differing autocorrelations. See the notes below for details.
\n\nThe gamma method has to be applied first to all observables.
\n\nParameters
\n\n\n
\n\n- obs (list or numpy.ndarray):\nList or one dimensional array of Obs
\n- visualize (bool):\nIf True plots the corresponding normalized correlation matrix (default False).
\n- correlation (bool):\nIf True the correlation matrix instead of the error covariance matrix is returned (default False).
\n- smooth (None or int):\nIf smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue\nsmoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the\nlargest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely\nsmall ones.
\nNotes
\n\nThe error covariance is defined such that it agrees with the squared standard error for two identical observables\n$$\\operatorname{cov}(a,a)=\\sum_{s=1}^N\\delta_a^s\\delta_a^s/N^2=\\Gamma_{aa}(0)/N=\\operatorname{var}(a)/N=\\sigma_a^2$$\nin the absence of autocorrelation.\nThe error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite\n$$\\sum_{i,j}v_i\\Gamma_{ij}(0)v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i,j}v_i\\delta_i^s\\delta_j^s v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i}|v_i\\delta_i^s|^2\\geq 0\\,,$$ for every $v\\in\\mathbb{R}^M$, while such an identity does not hold for larger windows/lags.\nFor observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements.\n$$\\tau_{\\mathrm{int}, ij}=\\sqrt{\\tau_{\\mathrm{int}, i}\\times \\tau_{\\mathrm{int}, j}}$$\nThis construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors).
\n", "signature": "(obs, visualize=False, correlation=False, smooth=None, **kwargs):", "funcdef": "def"}, "pyerrors.obs.invert_corr_cov_cholesky": {"fullname": "pyerrors.obs.invert_corr_cov_cholesky", "modulename": "pyerrors.obs", "qualname": "invert_corr_cov_cholesky", "kind": "function", "doc": "Constructs a lower triangular matrix
\n\nchol
via the Cholesky decomposition of the correlation matrixcorr
\n and then returns the inverse covariance matrixchol_inv
as a lower triangular matrix by solvingchol * x = inverrdiag
.Parameters
\n\n\n
\n", "signature": "(corr, inverrdiag):", "funcdef": "def"}, "pyerrors.obs.sort_corr": {"fullname": "pyerrors.obs.sort_corr", "modulename": "pyerrors.obs", "qualname": "sort_corr", "kind": "function", "doc": "- corr (np.ndarray):\ncorrelation matrix
\n- inverrdiag (np.ndarray):\ndiagonal matrix, the entries are the inverse errors of the data points considered
\nReorders a correlation matrix to match the alphabetical order of its underlying y data.
\n\nThe ordering of the input correlation matrix
\n\ncorr
is given by the list of keyskl
.\nThe input dictionaryyd
(with the same keyskl
) must contain the corresponding y data\nthat the correlation matrix is based on.\nThis function sorts the list of keyskl
alphabetically and sorts the matrixcorr
\naccording to this alphabetical order such that the sorted matrixcorr_sorted
corresponds\nto the y datayd
when arranged in an alphabetical order by its keys.Parameters
\n\n\n
\n\n- corr (np.ndarray):\nA square correlation matrix constructed using the order of the y data specified by
\nkl
.\nThe dimensions ofcorr
should match the total number of y data points inyd
combined.- kl (list of str):\nA list of keys that denotes the order in which the y data from
\nyd
was used to build the\ninput correlation matrixcorr
.- yd (dict of list):\nA dictionary where each key corresponds to a unique identifier, and its value is a list of\ny data points. The total number of y data points across all keys must match the dimensions\nof
\ncorr
. The lists in the dictionary can be lists of Obs.Returns
\n\n\n
\n\n- np.ndarray: A new, sorted correlation matrix that corresponds to the y data from
\nyd
when arranged alphabetically by its keys.Example
\n\n\n\n", "signature": "(corr, kl, yd):", "funcdef": "def"}, "pyerrors.obs.import_jackknife": {"fullname": "pyerrors.obs.import_jackknife", "modulename": "pyerrors.obs", "qualname": "import_jackknife", "kind": "function", "doc": "\n>>> import numpy as np\n>>> import pyerrors as pe\n>>> corr = np.array([[1, 0.2, 0.3], [0.2, 1, 0.4], [0.3, 0.4, 1]])\n>>> kl = ['b', 'a']\n>>> yd = {'a': [1, 2], 'b': [3]}\n>>> sorted_corr = pe.obs.sort_corr(corr, kl, yd)\n>>> print(sorted_corr)\narray([[1. , 0.3, 0.4],\n [0.3, 1. , 0.2],\n [0.4, 0.2, 1. ]])\n
Imports jackknife samples and returns an Obs
\n\nParameters
\n\n\n
\n", "signature": "(jacks, name, idl=None):", "funcdef": "def"}, "pyerrors.obs.import_bootstrap": {"fullname": "pyerrors.obs.import_bootstrap", "modulename": "pyerrors.obs", "qualname": "import_bootstrap", "kind": "function", "doc": "- jacks (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N jackknife samples as first to Nth entry.
\n- name (str):\nname of the ensemble the samples are defined on.
\nImports bootstrap samples and returns an Obs
\n\nParameters
\n\n\n
\n", "signature": "(boots, name, random_numbers):", "funcdef": "def"}, "pyerrors.obs.merge_obs": {"fullname": "pyerrors.obs.merge_obs", "modulename": "pyerrors.obs", "qualname": "merge_obs", "kind": "function", "doc": "- boots (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N bootstrap samples as first to Nth entry.
\n- name (str):\nname of the ensemble the samples are defined on.
\n- random_numbers (np.ndarray):\nArray of shape (samples, length) containing the random numbers to generate the bootstrap samples,\nwhere samples is the number of bootstrap samples and length is the length of the original Monte Carlo\nchain to be reconstructed.
\nCombine all observables in list_of_obs into one new observable.\nThis allows to merge Obs that have been computed on multiple replica\nof the same ensemble.\nIf you like to merge Obs that are based on several ensembles, please\naverage them yourself.
\n\nParameters
\n\n\n
\n\n- list_of_obs (list):\nlist of the Obs object to be combined
\nNotes
\n\nIt is not possible to combine obs which are based on the same replicum
\n", "signature": "(list_of_obs):", "funcdef": "def"}, "pyerrors.obs.cov_Obs": {"fullname": "pyerrors.obs.cov_Obs", "modulename": "pyerrors.obs", "qualname": "cov_Obs", "kind": "function", "doc": "Create an Obs based on mean(s) and a covariance matrix
\n\nParameters
\n\n\n
\n", "signature": "(means, cov, name, grad=None):", "funcdef": "def"}, "pyerrors.roots": {"fullname": "pyerrors.roots", "modulename": "pyerrors.roots", "kind": "module", "doc": "\n"}, "pyerrors.roots.find_root": {"fullname": "pyerrors.roots.find_root", "modulename": "pyerrors.roots", "qualname": "find_root", "kind": "function", "doc": "- mean (list of floats or float):\nN mean value(s) of the new Obs
\n- cov (list or array):\n2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance
\n- name (str):\nidentifier for the covariance matrix
\n- grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
\nFinds the root of the function func(x, d) where d is an
\n\nObs
.Parameters
\n\n\n
\n\n- d (Obs):\nObs passed to the function.
\n- \n
func (object):\nFunction to be minimized. Any numpy functions have to use the autograd.numpy wrapper.\nExample:
\n\n\n\nimport autograd.numpy as anp\ndef root_func(x, d):\n return anp.exp(-x ** 2) - d\n
- \n
guess (float):\nInitial guess for the minimization.
Returns
\n\n\n
\n", "signature": "(d, func, guess=1.0, **kwargs):", "funcdef": "def"}, "pyerrors.special": {"fullname": "pyerrors.special", "modulename": "pyerrors.special", "kind": "module", "doc": "\n"}, "pyerrors.special.beta": {"fullname": "pyerrors.special.beta", "modulename": "pyerrors.special", "qualname": "beta", "kind": "function", "doc": "- res (Obs):\n
\nObs
valued root of the function.beta(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nbeta(a, b, out=None)
\n\nBeta function.
\n\nThis function is defined in 1 as
\n\n$$B(a, b) = \\int_0^1 t^{a-1}(1-t)^{b-1}dt\n = \\frac{\\Gamma(a)\\Gamma(b)}{\\Gamma(a+b)},$$
\n\nwhere \\( \\Gamma \\) is the gamma function.
\n\nParameters
\n\n\n
\n\n- a, b (array_like):\nReal-valued arguments
\n- out (ndarray, optional):\nOptional output array for the function result
\nReturns
\n\n\n
\n\n- scalar or ndarray: Value of the beta function
\nSee Also
\n\n\n\n
gamma
: the gamma function
\nbetainc
: the regularized incomplete beta function
\nbetaln
: the natural logarithm of the absolute\nvalue of the beta functionReferences
\n\nExamples
\n\n\n\n\n\n>>> import scipy.special as sc\n
The beta function relates to the gamma function by the\ndefinition given above:
\n\n\n\n\n\n>>> sc.beta(2, 3)\n0.08333333333333333\n>>> sc.gamma(2)*sc.gamma(3)/sc.gamma(2 + 3)\n0.08333333333333333\n
As this relationship demonstrates, the beta function\nis symmetric:
\n\n\n\n\n\n>>> sc.beta(1.7, 2.4)\n0.16567527689031739\n>>> sc.beta(2.4, 1.7)\n0.16567527689031739\n
This function satisfies \\( B(1, b) = 1/b \\):
\n\n\n\n\n\n>>> sc.beta(1, 4)\n0.25\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.betainc": {"fullname": "pyerrors.special.betainc", "modulename": "pyerrors.special", "qualname": "betainc", "kind": "function", "doc": "
\n\n
\n- \n
\nNIST Digital Library of Mathematical Functions,\nEq. 5.12.1. https://dlmf.nist.gov/5.12 ↩
\nbetainc(x1, x2, x3, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nbetainc(a, b, x, out=None)
\n\nRegularized incomplete beta function.
\n\nComputes the regularized incomplete beta function, defined as 1:
\n\n$$I_x(a, b) = \\frac{\\Gamma(a+b)}{\\Gamma(a)\\Gamma(b)} \\int_0^x\nt^{a-1}(1-t)^{b-1}dt,$$
\n\nfor \\( 0 \\leq x \\leq 1 \\).
\n\nThis function is the cumulative distribution function for the beta\ndistribution; its range is [0, 1].
\n\nParameters
\n\n\n
\n\n- a, b (array_like):\nPositive, real-valued parameters
\n- x (array_like):\nReal-valued such that \\( 0 \\leq x \\leq 1 \\),\nthe upper limit of integration
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: Value of the regularized incomplete beta function
\nSee Also
\n\n\n\n
beta
: beta function
\nbetaincinv
: inverse of the regularized incomplete beta function
\nbetaincc
: complement of the regularized incomplete beta function
\nscipy.stats.beta
: beta distributionNotes
\n\nThe term regularized in the name of this function refers to the\nscaling of the function by the gamma function terms shown in the\nformula. When not qualified as regularized, the name incomplete\nbeta function often refers to just the integral expression,\nwithout the gamma terms. One can use the function
\n\nbeta
from\nscipy.special
to get this \"nonregularized\" incomplete beta\nfunction by multiplying the result ofbetainc(a, b, x)
by\nbeta(a, b)
.This function wraps the
\n\nibeta
routine from the\nBoost Math C++ library 2.References
\n\nExamples
\n\nLet \\( B(a, b) \\) be the
\n\nbeta
function.\n\n\n\n>>> import scipy.special as sc\n
The coefficient in terms of
\n\ngamma
is equal to\n\\( 1/B(a, b) \\). Also, when \\( x=1 \\)\nthe integral is equal to \\( B(a, b) \\).\nTherefore, \\( I_{x=1}(a, b) = 1 \\) for any \\( a, b \\).\n\n\n\n>>> sc.betainc(0.2, 3.5, 1.0)\n1.0\n
It satisfies\n\\( I_x(a, b) = x^a F(a, 1-b, a+1, x)/ (aB(a, b)) \\),\nwhere \\( F \\) is the hypergeometric function
\n\nhyp2f1
:\n\n\n\n>>> a, b, x = 1.4, 3.1, 0.5\n>>> x**a * sc.hyp2f1(a, 1 - b, a + 1, x)/(a * sc.beta(a, b))\n0.8148904036225295\n>>> sc.betainc(a, b, x)\n0.8148904036225296\n
This functions satisfies the relationship\n\\( I_x(a, b) = 1 - I_{1-x}(b, a) \\):
\n\n\n\n\n\n>>> sc.betainc(2.2, 3.1, 0.4)\n0.49339638807619446\n>>> 1 - sc.betainc(3.1, 2.2, 1 - 0.4)\n0.49339638807619446\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.betaln": {"fullname": "pyerrors.special.betaln", "modulename": "pyerrors.special", "qualname": "betaln", "kind": "function", "doc": "
\n\n
\n- \n
\n\nNIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/8.17 ↩
\n- \n
\nThe Boost Developers. \"Boost C++ Libraries\". https://www.boost.org/. ↩
\nbetaln(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nbetaln(a, b, out=None)
\n\nNatural logarithm of absolute value of beta function.
\n\nComputes
\n\nln(abs(beta(a, b)))
.Parameters
\n\n\n
\n\n- a, b (array_like):\nPositive, real-valued parameters
\n- out (ndarray, optional):\nOptional output array for function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: Value of the betaln function
\nSee Also
\n\n\n\n
gamma
: the gamma function
\nbetainc
: the regularized incomplete beta function
\nbeta
: the beta functionExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> from scipy.special import betaln, beta\n
Verify that, for moderate values of
\n\na
andb
,betaln(a, b)
\nis the same aslog(beta(a, b))
:\n\n\n\n>>> betaln(3, 4)\n-4.0943445622221\n
\n\n\n\n>>> np.log(beta(3, 4))\n-4.0943445622221\n
In the following
\n\nbeta(a, b)
underflows to 0, so we can't compute\nthe logarithm of the actual value.\n\n\n\n>>> a = 400\n>>> b = 900\n>>> beta(a, b)\n0.0\n
We can compute the logarithm of
\n\nbeta(a, b)
by usingbetaln
:\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.polygamma": {"fullname": "pyerrors.special.polygamma", "modulename": "pyerrors.special", "qualname": "polygamma", "kind": "function", "doc": "\n>>> betaln(a, b)\n-804.3069951764146\n
Polygamma functions.
\n\nDefined as \\( \\psi^{(n)}(x) \\) where \\( \\psi \\) is the\n
\n\ndigamma
function. See [dlmf]_ for details.Parameters
\n\n\n
\n\n- n (array_like):\nThe order of the derivative of the digamma function; must be\nintegral
\n- x (array_like):\nReal valued input
\nReturns
\n\n\n
\n\n- ndarray: Function results
\nSee Also
\n\n\n\n
digamma
References
\n\n.. [dlmf] NIST, Digital Library of Mathematical Functions,\n https://dlmf.nist.gov/5.15
\n\nExamples
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.psi": {"fullname": "pyerrors.special.psi", "modulename": "pyerrors.special", "qualname": "psi", "kind": "function", "doc": "\n>>> from scipy import special\n>>> x = [2, 3, 25.5]\n>>> special.polygamma(1, x)\narray([ 0.64493407, 0.39493407, 0.03999467])\n>>> special.polygamma(0, x) == special.psi(x)\narray([ True, True, True], dtype=bool)\n
psi(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\npsi(z, out=None)
\n\nThe digamma function.
\n\nThe logarithmic derivative of the gamma function evaluated at
\n\nz
.Parameters
\n\n\n
\n\n- z (array_like):\nReal or complex argument.
\n- out (ndarray, optional):\nArray for the computed values of
\npsi
.Returns
\n\n\n
\n\n- digamma (scalar or ndarray):\nComputed values of
\npsi
.Notes
\n\nFor large values not close to the negative real axis,
\n\npsi
is\ncomputed using the asymptotic series (5.11.2) from 1. For small\narguments not close to the negative real axis, the recurrence\nrelation (5.5.2) from 2 is used until the argument is large\nenough to use the asymptotic series. For values close to the\nnegative real axis, the reflection formula (5.5.4) from 3 is\nused first. Note thatpsi
has a family of zeros on the\nnegative real axis which occur between the poles at nonpositive\nintegers. Around the zeros the reflection formula suffers from\ncancellation and the implementation loses precision. The sole\npositive zero and the first negative zero, however, are handled\nseparately by precomputing series expansions using 4, so the\nfunction should maintain full accuracy around the origin.References
\n\nExamples
\n\n\n\n\n\n>>> from scipy.special import psi\n>>> z = 3 + 4j\n>>> psi(z)\n(1.55035981733341+1.0105022091860445j)\n
Verify psi(z) = psi(z + 1) - 1/z:
\n\n\n\n\n\n>>> psi(z + 1) - 1/z\n(1.55035981733341+1.0105022091860445j)\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.digamma": {"fullname": "pyerrors.special.digamma", "modulename": "pyerrors.special", "qualname": "digamma", "kind": "function", "doc": "
\n\n
\n- \n
\n\nNIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 ↩
\n- \n
\n\nNIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 ↩
\n- \n
\n\nNIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 ↩
\n- \n
\nFredrik Johansson and others.\n\"mpmath: a Python library for arbitrary-precision floating-point arithmetic\"\n(Version 0.19) http://mpmath.org/ ↩
\npsi(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\npsi(z, out=None)
\n\nThe digamma function.
\n\nThe logarithmic derivative of the gamma function evaluated at
\n\nz
.Parameters
\n\n\n
\n\n- z (array_like):\nReal or complex argument.
\n- out (ndarray, optional):\nArray for the computed values of
\npsi
.Returns
\n\n\n
\n\n- digamma (scalar or ndarray):\nComputed values of
\npsi
.Notes
\n\nFor large values not close to the negative real axis,
\n\npsi
is\ncomputed using the asymptotic series (5.11.2) from 1. For small\narguments not close to the negative real axis, the recurrence\nrelation (5.5.2) from 2 is used until the argument is large\nenough to use the asymptotic series. For values close to the\nnegative real axis, the reflection formula (5.5.4) from 3 is\nused first. Note thatpsi
has a family of zeros on the\nnegative real axis which occur between the poles at nonpositive\nintegers. Around the zeros the reflection formula suffers from\ncancellation and the implementation loses precision. The sole\npositive zero and the first negative zero, however, are handled\nseparately by precomputing series expansions using 4, so the\nfunction should maintain full accuracy around the origin.References
\n\nExamples
\n\n\n\n\n\n>>> from scipy.special import psi\n>>> z = 3 + 4j\n>>> psi(z)\n(1.55035981733341+1.0105022091860445j)\n
Verify psi(z) = psi(z + 1) - 1/z:
\n\n\n\n\n\n>>> psi(z + 1) - 1/z\n(1.55035981733341+1.0105022091860445j)\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gamma": {"fullname": "pyerrors.special.gamma", "modulename": "pyerrors.special", "qualname": "gamma", "kind": "function", "doc": "
\n\n
\n- \n
\n\nNIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 ↩
\n- \n
\n\nNIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 ↩
\n- \n
\n\nNIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 ↩
\n- \n
\nFredrik Johansson and others.\n\"mpmath: a Python library for arbitrary-precision floating-point arithmetic\"\n(Version 0.19) http://mpmath.org/ ↩
\ngamma(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ngamma(z, out=None)
\n\ngamma function.
\n\nThe gamma function is defined as
\n\n$$\\Gamma(z) = \\int_0^\\infty t^{z-1} e^{-t} dt$$
\n\nfor \\( \\Re(z) > 0 \\) and is extended to the rest of the complex\nplane by analytic continuation. See [dlmf]_ for more details.
\n\nParameters
\n\n\n
\n\n- z (array_like):\nReal or complex valued argument
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: Values of the gamma function
\nNotes
\n\nThe gamma function is often referred to as the generalized\nfactorial since \\( \\Gamma(n + 1) = n! \\) for natural numbers\n\\( n \\). More generally it satisfies the recurrence relation\n\\( \\Gamma(z + 1) = z \\cdot \\Gamma(z) \\) for complex \\( z \\),\nwhich, combined with the fact that \\( \\Gamma(1) = 1 \\), implies\nthe above identity for \\( z = n \\).
\n\nThe gamma function has poles at non-negative integers and the sign\nof infinity as z approaches each pole depends upon the direction in\nwhich the pole is approached. For this reason, the consistent thing\nis for gamma(z) to return NaN at negative integers, and to return\n-inf when x = -0.0 and +inf when x = 0.0, using the signbit of zero\nto signify the direction in which the origin is being approached. This\nis for instance what is recommended for the gamma function in annex F\nentry 9.5.4 of the Iso C 99 standard [isoc99]_.
\n\nPrior to SciPy version 1.15,
\n\nscipy.special.gamma(z)
returned+inf
\nat each pole. This was fixed in version 1.15, but with the following\nconsequence. Expressions where gamma appears in the denominator\nsuch as\n\n
gamma(u) * gamma(v) / (gamma(w) * gamma(x))
no longer evaluate to 0 if the numerator is well defined but there is a\npole in the denominator. Instead such expressions evaluate to NaN. We\nrecommend instead using the function
\n\nrgamma
for the reciprocal gamma\nfunction in such cases. The above expression could for instance be written\nas\n\n
gamma(u) * gamma(v) * (rgamma(w) * rgamma(x))
References
\n\n.. [dlmf] NIST Digital Library of Mathematical Functions\n https://dlmf.nist.gov/5.2#E1\n.. [isoc99] https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> from scipy.special import gamma, factorial\n
\n\n\n\n>>> gamma([0, 0.5, 1, 5])\narray([ inf, 1.77245385, 1. , 24. ])\n
\n\n\n\n>>> z = 2.5 + 1j\n>>> gamma(z)\n(0.77476210455108352+0.70763120437959293j)\n>>> gamma(z+1), z*gamma(z) # Recurrence property\n((1.2292740569981171+2.5438401155000685j),\n (1.2292740569981158+2.5438401155000658j))\n
\n\n\n\n>>> gamma(0.5)**2 # gamma(0.5) = sqrt(pi)\n3.1415926535897927\n
Plot gamma(x) for real x
\n\n\n\n\n\n>>> x = np.linspace(-3.5, 5.5, 2251)\n>>> y = gamma(x)\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gammaln": {"fullname": "pyerrors.special.gammaln", "modulename": "pyerrors.special", "qualname": "gammaln", "kind": "function", "doc": "\n>>> import matplotlib.pyplot as plt\n>>> plt.plot(x, y, 'b', alpha=0.6, label='gamma(x)')\n>>> k = np.arange(1, 7)\n>>> plt.plot(k, factorial(k-1), 'k*', alpha=0.6,\n... label='(x-1)!, x = 1, 2, ...')\n>>> plt.xlim(-3.5, 5.5)\n>>> plt.ylim(-10, 25)\n>>> plt.grid()\n>>> plt.xlabel('x')\n>>> plt.legend(loc='lower right')\n>>> plt.show()\n
gammaln(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ngammaln(x, out=None)
\n\nLogarithm of the absolute value of the gamma function.
\n\nDefined as
\n\n$$\\ln(\\lvert\\Gamma(x)\\rvert)$$
\n\nwhere \\( \\Gamma \\) is the gamma function. For more details on\nthe gamma function, see [dlmf]_.
\n\nParameters
\n\n\n
\n\n- x (array_like):\nReal argument
\n- out (ndarray, optional):\nOptional output array for the function results
\nReturns
\n\n\n
\n\n- scalar or ndarray: Values of the log of the absolute value of gamma
\nSee Also
\n\n\n\n
gammasgn
: sign of the gamma function
\nloggamma
: principal branch of the logarithm of the gamma functionNotes
\n\nIt is the same function as the Python standard library function\n
\n\nmath.lgamma()
.When used in conjunction with
\n\ngammasgn
, this function is useful\nfor working in logspace on the real axis without having to deal\nwith complex numbers via the relationexp(gammaln(x)) =\ngammasgn(x) * gamma(x)
.For complex-valued log-gamma, use
\n\nloggamma
instead ofgammaln
.References
\n\n.. [dlmf] NIST Digital Library of Mathematical Functions\n https://dlmf.nist.gov/5
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> import scipy.special as sc\n
It has two positive zeros.
\n\n\n\n\n\n>>> sc.gammaln([1, 2])\narray([0., 0.])\n
It has poles at nonpositive integers.
\n\n\n\n\n\n>>> sc.gammaln([0, -1, -2, -3, -4])\narray([inf, inf, inf, inf, inf])\n
It asymptotically approaches
\n\nx * log(x)
(Stirling's formula).\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gammainc": {"fullname": "pyerrors.special.gammainc", "modulename": "pyerrors.special", "qualname": "gammainc", "kind": "function", "doc": "\n>>> x = np.array([1e10, 1e20, 1e40, 1e80])\n>>> sc.gammaln(x)\narray([2.20258509e+11, 4.50517019e+21, 9.11034037e+41, 1.83206807e+82])\n>>> x * np.log(x)\narray([2.30258509e+11, 4.60517019e+21, 9.21034037e+41, 1.84206807e+82])\n
gammainc(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ngammainc(a, x, out=None)
\n\nRegularized lower incomplete gamma function.
\n\nIt is defined as
\n\n$$P(a, x) = \\frac{1}{\\Gamma(a)} \\int_0^x t^{a - 1}e^{-t} dt$$
\n\nfor \\( a > 0 \\) and \\( x \\geq 0 \\). See [dlmf]_ for details.
\n\nParameters
\n\n\n
\n\n- a (array_like):\nPositive parameter
\n- x (array_like):\nNonnegative argument
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: Values of the lower incomplete gamma function
\nSee Also
\n\n\n\n
gammaincc
: regularized upper incomplete gamma function
\ngammaincinv
: inverse of the regularized lower incomplete gamma function
\ngammainccinv
: inverse of the regularized upper incomplete gamma functionNotes
\n\nThe function satisfies the relation
\n\ngammainc(a, x) +\ngammaincc(a, x) = 1
wheregammaincc
is the regularized upper\nincomplete gamma function.The implementation largely follows that of [boost]_.
\n\nReferences
\n\n.. [dlmf] NIST Digital Library of Mathematical functions\n https://dlmf.nist.gov/8.2#E4\n.. [boost] Maddock et. al., \"Incomplete Gamma Functions\",\n https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html
\n\nExamples
\n\n\n\n\n\n>>> import scipy.special as sc\n
It is the CDF of the gamma distribution, so it starts at 0 and\nmonotonically increases to 1.
\n\n\n\n\n\n>>> sc.gammainc(0.5, [0, 1, 10, 100])\narray([0. , 0.84270079, 0.99999226, 1. ])\n
It is equal to one minus the upper incomplete gamma function.
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gammaincc": {"fullname": "pyerrors.special.gammaincc", "modulename": "pyerrors.special", "qualname": "gammaincc", "kind": "function", "doc": "\n>>> a, x = 0.5, 0.4\n>>> sc.gammainc(a, x)\n0.6289066304773024\n>>> 1 - sc.gammaincc(a, x)\n0.6289066304773024\n
gammaincc(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ngammaincc(a, x, out=None)
\n\nRegularized upper incomplete gamma function.
\n\nIt is defined as
\n\n$$Q(a, x) = \\frac{1}{\\Gamma(a)} \\int_x^\\infty t^{a - 1}e^{-t} dt$$
\n\nfor \\( a > 0 \\) and \\( x \\geq 0 \\). See [dlmf]_ for details.
\n\nParameters
\n\n\n
\n\n- a (array_like):\nPositive parameter
\n- x (array_like):\nNonnegative argument
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: Values of the upper incomplete gamma function
\nSee Also
\n\n\n\n
gammainc
: regularized lower incomplete gamma function
\ngammaincinv
: inverse of the regularized lower incomplete gamma function
\ngammainccinv
: inverse of the regularized upper incomplete gamma functionNotes
\n\nThe function satisfies the relation
\n\ngammainc(a, x) +\ngammaincc(a, x) = 1
wheregammainc
is the regularized lower\nincomplete gamma function.The implementation largely follows that of [boost]_.
\n\nReferences
\n\n.. [dlmf] NIST Digital Library of Mathematical functions\n https://dlmf.nist.gov/8.2#E4\n.. [boost] Maddock et. al., \"Incomplete Gamma Functions\",\n https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html
\n\nExamples
\n\n\n\n\n\n>>> import scipy.special as sc\n
It is the survival function of the gamma distribution, so it\nstarts at 1 and monotonically decreases to 0.
\n\n\n\n\n\n>>> sc.gammaincc(0.5, [0, 1, 10, 100, 1000])\narray([1.00000000e+00, 1.57299207e-01, 7.74421643e-06, 2.08848758e-45,\n 0.00000000e+00])\n
It is equal to one minus the lower incomplete gamma function.
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gammasgn": {"fullname": "pyerrors.special.gammasgn", "modulename": "pyerrors.special", "qualname": "gammasgn", "kind": "function", "doc": "\n>>> a, x = 0.5, 0.4\n>>> sc.gammaincc(a, x)\n0.37109336952269756\n>>> 1 - sc.gammainc(a, x)\n0.37109336952269756\n
gammasgn(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ngammasgn(x, out=None)
\n\nSign of the gamma function.
\n\nIt is defined as
\n\n$$\\text{gammasgn}(x) =\n\\begin{cases}\n +1 & \\Gamma(x) > 0 \\\n -1 & \\Gamma(x) < 0\n\\end{cases}$$
\n\nwhere \\( \\Gamma \\) is the gamma function; see
\n\ngamma
. This\ndefinition is complete since the gamma function is never zero;\nsee the discussion after [dlmf]_.Parameters
\n\n\n
\n\n- x (array_like):\nReal argument
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: Sign of the gamma function
\nSee Also
\n\n\n\n
gamma
: the gamma function
\ngammaln
: log of the absolute value of the gamma function
\nloggamma
: analytic continuation of the log of the gamma functionNotes
\n\nThe gamma function can be computed as
\n\ngammasgn(x) *\nnp.exp(gammaln(x))
.References
\n\n.. [dlmf] NIST Digital Library of Mathematical Functions\n https://dlmf.nist.gov/5.2#E1
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> import scipy.special as sc\n
It is 1 for
\n\nx > 0
.\n\n\n\n>>> sc.gammasgn([1, 2, 3, 4])\narray([1., 1., 1., 1.])\n
It alternates between -1 and 1 for negative integers.
\n\n\n\n\n\n>>> sc.gammasgn([-0.5, -1.5, -2.5, -3.5])\narray([-1., 1., -1., 1.])\n
It can be used to compute the gamma function.
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.rgamma": {"fullname": "pyerrors.special.rgamma", "modulename": "pyerrors.special", "qualname": "rgamma", "kind": "function", "doc": "\n>>> x = [1.5, 0.5, -0.5, -1.5]\n>>> sc.gammasgn(x) * np.exp(sc.gammaln(x))\narray([ 0.88622693, 1.77245385, -3.5449077 , 2.3632718 ])\n>>> sc.gamma(x)\narray([ 0.88622693, 1.77245385, -3.5449077 , 2.3632718 ])\n
rgamma(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nrgamma(z, out=None)
\n\nReciprocal of the gamma function.
\n\nDefined as \\( 1 / \\Gamma(z) \\), where \\( \\Gamma \\) is the\ngamma function. For more on the gamma function see
\n\ngamma
.Parameters
\n\n\n
\n\n- z (array_like):\nReal or complex valued input
\n- out (ndarray, optional):\nOptional output array for the function results
\nReturns
\n\n\n
\n\n- scalar or ndarray: Function results
\nSee Also
\n\n\n\n
gamma,
,gammaln,
,loggamma
Notes
\n\nThe gamma function has no zeros and has simple poles at\nnonpositive integers, so
\n\nrgamma
is an entire function with zeros\nat the nonpositive integers. See the discussion in [dlmf]_ for\nmore details.References
\n\n.. [dlmf] Nist, Digital Library of Mathematical functions,\n https://dlmf.nist.gov/5.2#i
\n\nExamples
\n\n\n\n\n\n>>> import scipy.special as sc\n
It is the reciprocal of the gamma function.
\n\n\n\n\n\n>>> sc.rgamma([1, 2, 3, 4])\narray([1. , 1. , 0.5 , 0.16666667])\n>>> 1 / sc.gamma([1, 2, 3, 4])\narray([1. , 1. , 0.5 , 0.16666667])\n
It is zero at nonpositive integers.
\n\n\n\n\n\n>>> sc.rgamma([0, -1, -2, -3])\narray([0., 0., 0., 0.])\n
It rapidly underflows to zero along the positive real axis.
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.multigammaln": {"fullname": "pyerrors.special.multigammaln", "modulename": "pyerrors.special", "qualname": "multigammaln", "kind": "function", "doc": "\n>>> sc.rgamma([10, 100, 179])\narray([2.75573192e-006, 1.07151029e-156, 0.00000000e+000])\n
Returns the log of multivariate gamma, also sometimes called the\ngeneralized gamma.
\n\nParameters
\n\n\n
\n\n- a (ndarray):\nThe multivariate gamma is computed for each item of
\na
.- d (int):\nThe dimension of the space of integration.
\nReturns
\n\n\n
\n\n- res (ndarray):\nThe values of the log multivariate gamma at the given points
\na
.Notes
\n\nThe formal definition of the multivariate gamma of dimension d for a real\n
\n\na
is$$\\Gamma_d(a) = \\int_{A>0} e^{-tr(A)} |A|^{a - (d+1)/2} dA$$
\n\nwith the condition \\( a > (d-1)/2 \\), and \\( A > 0 \\) being the set of\nall the positive definite matrices of dimension
\n\nd
. Note thata
is a\nscalar: the integrand only is multivariate, the argument is not (the\nfunction is defined over a subset of the real set).This can be proven to be equal to the much friendlier equation
\n\n$$\\Gamma_d(a) = \\pi^{d(d-1)/4} \\prod_{i=1}^{d} \\Gamma(a - (i-1)/2).$$
\n\nReferences
\n\nR. J. Muirhead, Aspects of multivariate statistical theory (Wiley Series in\nprobability and mathematical statistics).
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> from scipy.special import multigammaln, gammaln\n>>> a = 23.5\n>>> d = 10\n>>> multigammaln(a, d)\n454.1488605074416\n
Verify that the result agrees with the logarithm of the equation\nshown above:
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.kn": {"fullname": "pyerrors.special.kn", "modulename": "pyerrors.special", "qualname": "kn", "kind": "function", "doc": "\n>>> d*(d-1)/4*np.log(np.pi) + gammaln(a - 0.5*np.arange(0, d)).sum()\n454.1488605074416\n
Modified Bessel function of the second kind of integer order n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.j0": {"fullname": "pyerrors.special.j0", "modulename": "pyerrors.special", "qualname": "j0", "kind": "function", "doc": "j0(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nj0(x, out=None)
\n\nBessel function of the first kind of order 0.
\n\nParameters
\n\n\n
\n\n- x (array_like):\nArgument (float).
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- J (scalar or ndarray):\nValue of the Bessel function of the first kind of order 0 at
\nx
.See Also
\n\n\n\n
jv
: Bessel function of real order and complex argument.
\nspherical_jn
: spherical Bessel functions.Notes
\n\nThe domain is divided into the intervals [0, 5] and (5, infinity). In the\nfirst interval the following rational approximation is used:
\n\n$$J_0(x) \\approx (w - r_1^2)(w - r_2^2) \\frac{P_3(w)}{Q_8(w)},$$
\n\nwhere \\( w = x^2 \\) and \\( r_1 \\), \\( r_2 \\) are the zeros of\n\\( J_0 \\), and \\( P_3 \\) and \\( Q_8 \\) are polynomials of degrees 3\nand 8, respectively.
\n\nIn the second interval, the Hankel asymptotic expansion is employed with\ntwo rational functions of degree 6/6 and 7/7.
\n\nThis function is a wrapper for the Cephes 1 routine
\n\nj0
.\nIt should not be confused with the spherical Bessel functions (see\nspherical_jn
).References
\n\nExamples
\n\nCalculate the function at one point:
\n\n\n\n\n\n>>> from scipy.special import j0\n>>> j0(1.)\n0.7651976865579665\n
Calculate the function at several points:
\n\n\n\n\n\n>>> import numpy as np\n>>> j0(np.array([-2., 0., 4.]))\narray([ 0.22389078, 1. , -0.39714981])\n
Plot the function from -20 to 20.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-20., 20., 1000)\n>>> y = j0(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.y0": {"fullname": "pyerrors.special.y0", "modulename": "pyerrors.special", "qualname": "y0", "kind": "function", "doc": "
\n\n
\n- \n
\nCephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ ↩
\ny0(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ny0(x, out=None)
\n\nBessel function of the second kind of order 0.
\n\nParameters
\n\n\n
\n\n- x (array_like):\nArgument (float).
\n- out (ndarray, optional):\nOptional output array for the function results
\nReturns
\n\n\n
\n\n- Y (scalar or ndarray):\nValue of the Bessel function of the second kind of order 0 at
\nx
.See Also
\n\n\n\n
j0
: Bessel function of the first kind of order 0
\nyv
: Bessel function of the first kindNotes
\n\nThe domain is divided into the intervals [0, 5] and (5, infinity). In the\nfirst interval a rational approximation \\( R(x) \\) is employed to\ncompute,
\n\n$$Y_0(x) = R(x) + \\frac{2 \\log(x) J_0(x)}{\\pi},$$
\n\nwhere \\( J_0 \\) is the Bessel function of the first kind of order 0.
\n\nIn the second interval, the Hankel asymptotic expansion is employed with\ntwo rational functions of degree 6/6 and 7/7.
\n\nThis function is a wrapper for the Cephes 1 routine
\n\ny0
.References
\n\nExamples
\n\nCalculate the function at one point:
\n\n\n\n\n\n>>> from scipy.special import y0\n>>> y0(1.)\n0.08825696421567697\n
Calculate at several points:
\n\n\n\n\n\n>>> import numpy as np\n>>> y0(np.array([0.5, 2., 3.]))\narray([-0.44451873, 0.51037567, 0.37685001])\n
Plot the function from 0 to 10.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(0., 10., 1000)\n>>> y = y0(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.j1": {"fullname": "pyerrors.special.j1", "modulename": "pyerrors.special", "qualname": "j1", "kind": "function", "doc": "
\n\n
\n- \n
\nCephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ ↩
\nj1(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nj1(x, out=None)
\n\nBessel function of the first kind of order 1.
\n\nParameters
\n\n\n
\n\n- x (array_like):\nArgument (float).
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- J (scalar or ndarray):\nValue of the Bessel function of the first kind of order 1 at
\nx
.See Also
\n\n\n\n
jv
: Bessel function of the first kind
\nspherical_jn
: spherical Bessel functions.Notes
\n\nThe domain is divided into the intervals [0, 8] and (8, infinity). In the\nfirst interval a 24 term Chebyshev expansion is used. In the second, the\nasymptotic trigonometric representation is employed using two rational\nfunctions of degree 5/5.
\n\nThis function is a wrapper for the Cephes 1 routine
\n\nj1
.\nIt should not be confused with the spherical Bessel functions (see\nspherical_jn
).References
\n\nExamples
\n\nCalculate the function at one point:
\n\n\n\n\n\n>>> from scipy.special import j1\n>>> j1(1.)\n0.44005058574493355\n
Calculate the function at several points:
\n\n\n\n\n\n>>> import numpy as np\n>>> j1(np.array([-2., 0., 4.]))\narray([-0.57672481, 0. , -0.06604333])\n
Plot the function from -20 to 20.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-20., 20., 1000)\n>>> y = j1(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.y1": {"fullname": "pyerrors.special.y1", "modulename": "pyerrors.special", "qualname": "y1", "kind": "function", "doc": "
\n\n
\n- \n
\nCephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ ↩
\ny1(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ny1(x, out=None)
\n\nBessel function of the second kind of order 1.
\n\nParameters
\n\n\n
\n\n- x (array_like):\nArgument (float).
\n- out (ndarray, optional):\nOptional output array for the function results
\nReturns
\n\n\n
\n\n- Y (scalar or ndarray):\nValue of the Bessel function of the second kind of order 1 at
\nx
.See Also
\n\n\n\n
j1
: Bessel function of the first kind of order 1
\nyn
: Bessel function of the second kind
\nyv
: Bessel function of the second kindNotes
\n\nThe domain is divided into the intervals [0, 8] and (8, infinity). In the\nfirst interval a 25 term Chebyshev expansion is used, and computing\n\\( J_1 \\) (the Bessel function of the first kind) is required. In the\nsecond, the asymptotic trigonometric representation is employed using two\nrational functions of degree 5/5.
\n\nThis function is a wrapper for the Cephes 1 routine
\n\ny1
.References
\n\nExamples
\n\nCalculate the function at one point:
\n\n\n\n\n\n>>> from scipy.special import y1\n>>> y1(1.)\n-0.7812128213002888\n
Calculate at several points:
\n\n\n\n\n\n>>> import numpy as np\n>>> y1(np.array([0.5, 2., 3.]))\narray([-1.47147239, -0.10703243, 0.32467442])\n
Plot the function from 0 to 10.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(0., 10., 1000)\n>>> y = y1(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.jn": {"fullname": "pyerrors.special.jn", "modulename": "pyerrors.special", "qualname": "jn", "kind": "function", "doc": "
\n\n
\n- \n
\nCephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ ↩
\njv(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\njv(v, z, out=None)
\n\nBessel function of the first kind of real order and complex argument.
\n\nParameters
\n\n\n
\n\n- v (array_like):\nOrder (float).
\n- z (array_like):\nArgument (float or complex).
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- J (scalar or ndarray):\nValue of the Bessel function, \\( J_v(z) \\).
\nSee Also
\n\n\n\n
jve
: \\( J_v \\) with leading exponential behavior stripped off.
\nspherical_jn
: spherical Bessel functions.
\nj0
: faster version of this function for order 0.
\nj1
: faster version of this function for order 1.Notes
\n\nFor positive
\n\nv
values, the computation is carried out using the AMOS\n1zbesj
routine, which exploits the connection to the modified\nBessel function \\( I_v \\),$$J_v(z) = \\exp(v\\pi\\imath/2) I_v(-\\imath z)\\qquad (\\Im z > 0)
\n\nJ_v(z) = \\exp(-v\\pi\\imath/2) I_v(\\imath z)\\qquad (\\Im z < 0)$$
\n\nFor negative
\n\nv
values the formula,$$J_{-v}(z) = J_v(z) \\cos(\\pi v) - Y_v(z) \\sin(\\pi v)$$
\n\nis used, where \\( Y_v(z) \\) is the Bessel function of the second\nkind, computed using the AMOS routine
\n\nzbesy
. Note that the second\nterm is exactly zero for integerv
; to improve accuracy the second\nterm is explicitly omitted forv
values such thatv = floor(v)
.Not to be confused with the spherical Bessel functions (see
\n\nspherical_jn
).References
\n\nExamples
\n\nEvaluate the function of order 0 at one point.
\n\n\n\n\n\n>>> from scipy.special import jv\n>>> jv(0, 1.)\n0.7651976865579666\n
Evaluate the function at one point for different orders.
\n\n\n\n\n\n>>> jv(0, 1.), jv(1, 1.), jv(1.5, 1.)\n(0.7651976865579666, 0.44005058574493355, 0.24029783912342725)\n
The evaluation for different orders can be carried out in one call by\nproviding a list or NumPy array as argument for the
\n\nv
parameter:\n\n\n\n>>> jv([0, 1, 1.5], 1.)\narray([0.76519769, 0.44005059, 0.24029784])\n
Evaluate the function at several points for order 0 by providing an\narray for
\n\nz
.\n\n\n\n>>> import numpy as np\n>>> points = np.array([-2., 0., 3.])\n>>> jv(0, points)\narray([ 0.22389078, 1. , -0.26005195])\n
If
\n\nz
is an array, the order parameterv
must be broadcastable to\nthe correct shape if different orders shall be computed in one call.\nTo calculate the orders 0 and 1 for an 1D array:\n\n\n\n>>> orders = np.array([[0], [1]])\n>>> orders.shape\n(2, 1)\n
\n\n\n\n>>> jv(orders, points)\narray([[ 0.22389078, 1. , -0.26005195],\n [-0.57672481, 0. , 0.33905896]])\n
Plot the functions of order 0 to 3 from -10 to 10.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-10., 10., 1000)\n>>> for i in range(4):\n... ax.plot(x, jv(i, x), label=f'$J_{i!r}$')\n>>> ax.legend()\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.yn": {"fullname": "pyerrors.special.yn", "modulename": "pyerrors.special", "qualname": "yn", "kind": "function", "doc": "
\n\n
\n- \n
\nDonald E. Amos, \"AMOS, A Portable Package for Bessel Functions\nof a Complex Argument and Nonnegative Order\",\nhttp://netlib.org/amos/ ↩
\nyn(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nyn(n, x, out=None)
\n\nBessel function of the second kind of integer order and real argument.
\n\nParameters
\n\n\n
\n\n- n (array_like):\nOrder (integer).
\n- x (array_like):\nArgument (float).
\n- out (ndarray, optional):\nOptional output array for the function results
\nReturns
\n\n\n
\n\n- Y (scalar or ndarray):\nValue of the Bessel function, \\( Y_n(x) \\).
\nSee Also
\n\n\n\n
yv
: For real order and real or complex argument.
\ny0
: faster implementation of this function for order 0
\ny1
: faster implementation of this function for order 1Notes
\n\nWrapper for the Cephes 1 routine
\n\nyn
.The function is evaluated by forward recurrence on
\n\nn
, starting with\nvalues computed by the Cephes routinesy0
andy1
. Ifn = 0
or 1,\nthe routine fory0
ory1
is called directly.References
\n\nExamples
\n\nEvaluate the function of order 0 at one point.
\n\n\n\n\n\n>>> from scipy.special import yn\n>>> yn(0, 1.)\n0.08825696421567697\n
Evaluate the function at one point for different orders.
\n\n\n\n\n\n>>> yn(0, 1.), yn(1, 1.), yn(2, 1.)\n(0.08825696421567697, -0.7812128213002888, -1.6506826068162546)\n
The evaluation for different orders can be carried out in one call by\nproviding a list or NumPy array as argument for the
\n\nv
parameter:\n\n\n\n>>> yn([0, 1, 2], 1.)\narray([ 0.08825696, -0.78121282, -1.65068261])\n
Evaluate the function at several points for order 0 by providing an\narray for
\n\nz
.\n\n\n\n>>> import numpy as np\n>>> points = np.array([0.5, 3., 8.])\n>>> yn(0, points)\narray([-0.44451873, 0.37685001, 0.22352149])\n
If
\n\nz
is an array, the order parameterv
must be broadcastable to\nthe correct shape if different orders shall be computed in one call.\nTo calculate the orders 0 and 1 for an 1D array:\n\n\n\n>>> orders = np.array([[0], [1]])\n>>> orders.shape\n(2, 1)\n
\n\n\n\n>>> yn(orders, points)\narray([[-0.44451873, 0.37685001, 0.22352149],\n [-1.47147239, 0.32467442, -0.15806046]])\n
Plot the functions of order 0 to 3 from 0 to 10.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(0., 10., 1000)\n>>> for i in range(4):\n... ax.plot(x, yn(i, x), label=f'$Y_{i!r}$')\n>>> ax.set_ylim(-3, 1)\n>>> ax.legend()\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.i0": {"fullname": "pyerrors.special.i0", "modulename": "pyerrors.special", "qualname": "i0", "kind": "function", "doc": "
\n\n
\n- \n
\nCephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ ↩
\ni0(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ni0(x, out=None)
\n\nModified Bessel function of order 0.
\n\nDefined as,
\n\n$$I_0(x) = \\sum_{k=0}^\\infty \\frac{(x^2/4)^k}{(k!)^2} = J_0(\\imath x),$$
\n\nwhere \\( J_0 \\) is the Bessel function of the first kind of order 0.
\n\nParameters
\n\n\n
\n\n- x (array_like):\nArgument (float)
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- I (scalar or ndarray):\nValue of the modified Bessel function of order 0 at
\nx
.See Also
\n\n\n\n
iv
: Modified Bessel function of any order
\ni0e
: Exponentially scaled modified Bessel function of order 0Notes
\n\nThe range is partitioned into the two intervals [0, 8] and (8, infinity).\nChebyshev polynomial expansions are employed in each interval.
\n\nThis function is a wrapper for the Cephes 1 routine
\n\ni0
.References
\n\nExamples
\n\nCalculate the function at one point:
\n\n\n\n\n\n>>> from scipy.special import i0\n>>> i0(1.)\n1.2660658777520082\n
Calculate at several points:
\n\n\n\n\n\n>>> import numpy as np\n>>> i0(np.array([-2., 0., 3.5]))\narray([2.2795853 , 1. , 7.37820343])\n
Plot the function from -10 to 10.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-10., 10., 1000)\n>>> y = i0(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.i1": {"fullname": "pyerrors.special.i1", "modulename": "pyerrors.special", "qualname": "i1", "kind": "function", "doc": "
\n\n
\n- \n
\nCephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ ↩
\ni1(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\ni1(x, out=None)
\n\nModified Bessel function of order 1.
\n\nDefined as,
\n\n$$I_1(x) = \\frac{1}{2}x \\sum_{k=0}^\\infty \\frac{(x^2/4)^k}{k! (k + 1)!}\n = -\\imath J_1(\\imath x),$$
\n\nwhere \\( J_1 \\) is the Bessel function of the first kind of order 1.
\n\nParameters
\n\n\n
\n\n- x (array_like):\nArgument (float)
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- I (scalar or ndarray):\nValue of the modified Bessel function of order 1 at
\nx
.See Also
\n\n\n\n
iv
: Modified Bessel function of the first kind
\ni1e
: Exponentially scaled modified Bessel function of order 1Notes
\n\nThe range is partitioned into the two intervals [0, 8] and (8, infinity).\nChebyshev polynomial expansions are employed in each interval.
\n\nThis function is a wrapper for the Cephes 1 routine
\n\ni1
.References
\n\nExamples
\n\nCalculate the function at one point:
\n\n\n\n\n\n>>> from scipy.special import i1\n>>> i1(1.)\n0.5651591039924851\n
Calculate the function at several points:
\n\n\n\n\n\n>>> import numpy as np\n>>> i1(np.array([-2., 0., 6.]))\narray([-1.59063685, 0. , 61.34193678])\n
Plot the function between -10 and 10.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-10., 10., 1000)\n>>> y = i1(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.iv": {"fullname": "pyerrors.special.iv", "modulename": "pyerrors.special", "qualname": "iv", "kind": "function", "doc": "
\n\n
\n- \n
\nCephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ ↩
\niv(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\niv(v, z, out=None)
\n\nModified Bessel function of the first kind of real order.
\n\nParameters
\n\n\n
\n\n- v (array_like):\nOrder. If
\nz
is of real type and negative,v
must be integer\nvalued.- z (array_like of float or complex):\nArgument.
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: Values of the modified Bessel function.
\nSee Also
\n\n\n\n
ive
: This function with leading exponential behavior stripped off.
\ni0
: Faster version of this function for order 0.
\ni1
: Faster version of this function for order 1.Notes
\n\nFor real
\n\nz
and \\( v \\in [-50, 50] \\), the evaluation is carried out\nusing Temme's method 1. For larger orders, uniform asymptotic\nexpansions are applied.For complex
\n\nz
and positivev
, the AMOS 2zbesi
routine is\ncalled. It uses a power series for smallz
, the asymptotic expansion\nfor largeabs(z)
, the Miller algorithm normalized by the Wronskian\nand a Neumann series for intermediate magnitudes, and the uniform\nasymptotic expansions for \\( I_v(z) \\) and \\( J_v(z) \\) for large\norders. Backward recurrence is used to generate sequences or reduce\norders when necessary.The calculations above are done in the right half plane and continued\ninto the left half plane by the formula,
\n\n$$I_v(z \\exp(\\pm\\imath\\pi)) = \\exp(\\pm\\pi v) I_v(z)$$
\n\n(valid when the real part of
\n\nz
is positive). For negativev
, the\nformula$$I_{-v}(z) = I_v(z) + \\frac{2}{\\pi} \\sin(\\pi v) K_v(z)$$
\n\nis used, where \\( K_v(z) \\) is the modified Bessel function of the\nsecond kind, evaluated using the AMOS routine
\n\nzbesk
.References
\n\nExamples
\n\nEvaluate the function of order 0 at one point.
\n\n\n\n\n\n>>> from scipy.special import iv\n>>> iv(0, 1.)\n1.2660658777520084\n
Evaluate the function at one point for different orders.
\n\n\n\n\n\n>>> iv(0, 1.), iv(1, 1.), iv(1.5, 1.)\n(1.2660658777520084, 0.565159103992485, 0.2935253263474798)\n
The evaluation for different orders can be carried out in one call by\nproviding a list or NumPy array as argument for the
\n\nv
parameter:\n\n\n\n>>> iv([0, 1, 1.5], 1.)\narray([1.26606588, 0.5651591 , 0.29352533])\n
Evaluate the function at several points for order 0 by providing an\narray for
\n\nz
.\n\n\n\n>>> import numpy as np\n>>> points = np.array([-2., 0., 3.])\n>>> iv(0, points)\narray([2.2795853 , 1. , 4.88079259])\n
If
\n\nz
is an array, the order parameterv
must be broadcastable to\nthe correct shape if different orders shall be computed in one call.\nTo calculate the orders 0 and 1 for an 1D array:\n\n\n\n>>> orders = np.array([[0], [1]])\n>>> orders.shape\n(2, 1)\n
\n\n\n\n>>> iv(orders, points)\narray([[ 2.2795853 , 1. , 4.88079259],\n [-1.59063685, 0. , 3.95337022]])\n
Plot the functions of order 0 to 3 from -5 to 5.
\n\n\n\n\n\n>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-5., 5., 1000)\n>>> for i in range(4):\n... ax.plot(x, iv(i, x), label=f'$I_{i!r}$')\n>>> ax.legend()\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.ive": {"fullname": "pyerrors.special.ive", "modulename": "pyerrors.special", "qualname": "ive", "kind": "function", "doc": "
\n\n
\n- \n
\n\nTemme, Journal of Computational Physics, vol 21, 343 (1976) ↩
\n- \n
\nDonald E. Amos, \"AMOS, A Portable Package for Bessel Functions\nof a Complex Argument and Nonnegative Order\",\nhttp://netlib.org/amos/ ↩
\nive(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nive(v, z, out=None)
\n\nExponentially scaled modified Bessel function of the first kind.
\n\nDefined as::
\n\n\n\nive(v, z) = iv(v, z) * exp(-abs(z.real))\n
For imaginary numbers without a real part, returns the unscaled\nBessel function of the first kind
\n\niv
.Parameters
\n\n\n
\n\n- v (array_like of float):\nOrder.
\n- z (array_like of float or complex):\nArgument.
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: Values of the exponentially scaled modified Bessel function.
\nSee Also
\n\n\n\n
iv
: Modified Bessel function of the first kind
\ni0e
: Faster implementation of this function for order 0
\ni1e
: Faster implementation of this function for order 1Notes
\n\nFor positive
\n\nv
, the AMOS 1zbesi
routine is called. It uses a\npower series for smallz
, the asymptotic expansion for large\nabs(z)
, the Miller algorithm normalized by the Wronskian and a\nNeumann series for intermediate magnitudes, and the uniform asymptotic\nexpansions for \\( I_v(z) \\) and \\( J_v(z) \\) for large orders.\nBackward recurrence is used to generate sequences or reduce orders when\nnecessary.The calculations above are done in the right half plane and continued\ninto the left half plane by the formula,
\n\n$$I_v(z \\exp(\\pm\\imath\\pi)) = \\exp(\\pm\\pi v) I_v(z)$$
\n\n(valid when the real part of
\n\nz
is positive). For negativev
, the\nformula$$I_{-v}(z) = I_v(z) + \\frac{2}{\\pi} \\sin(\\pi v) K_v(z)$$
\n\nis used, where \\( K_v(z) \\) is the modified Bessel function of the\nsecond kind, evaluated using the AMOS routine
\n\nzbesk
.\n\n
ive
is useful for large argumentsz
: for these,iv
easily overflows,\nwhileive
does not due to the exponential scaling.References
\n\nExamples
\n\nIn the following example
\n\niv
returns infinity whereasive
still returns\na finite number.\n\n\n\n>>> from scipy.special import iv, ive\n>>> import numpy as np\n>>> import matplotlib.pyplot as plt\n>>> iv(3, 1000.), ive(3, 1000.)\n(inf, 0.01256056218254712)\n
Evaluate the function at one point for different orders by\nproviding a list or NumPy array as argument for the
\n\nv
parameter:\n\n\n\n>>> ive([0, 1, 1.5], 1.)\narray([0.46575961, 0.20791042, 0.10798193])\n
Evaluate the function at several points for order 0 by providing an\narray for
\n\nz
.\n\n\n\n>>> points = np.array([-2., 0., 3.])\n>>> ive(0, points)\narray([0.30850832, 1. , 0.24300035])\n
Evaluate the function at several points for different orders by\nproviding arrays for both
\n\nv
forz
. Both arrays have to be\nbroadcastable to the correct shape. To calculate the orders 0, 1\nand 2 for a 1D array of points:\n\n\n\n>>> ive([[0], [1], [2]], points)\narray([[ 0.30850832, 1. , 0.24300035],\n [-0.21526929, 0. , 0.19682671],\n [ 0.09323903, 0. , 0.11178255]])\n
Plot the functions of order 0 to 3 from -5 to 5.
\n\n\n\n\n\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-5., 5., 1000)\n>>> for i in range(4):\n... ax.plot(x, ive(i, x), label=fr'$I_{i!r}(z)\\cdot e^{{-|z|}}$')\n>>> ax.legend()\n>>> ax.set_xlabel(r"$z$")\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.erf": {"fullname": "pyerrors.special.erf", "modulename": "pyerrors.special", "qualname": "erf", "kind": "function", "doc": "
\n\n
\n- \n
\nDonald E. Amos, \"AMOS, A Portable Package for Bessel Functions\nof a Complex Argument and Nonnegative Order\",\nhttp://netlib.org/amos/ ↩
\nerf(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nerf(z, out=None)
\n\nReturns the error function of complex argument.
\n\nIt is defined as
\n\n2/sqrt(pi)*integral(exp(-t**2), t=0..z)
.Parameters
\n\n\n
\n\n- x (ndarray):\nInput array.
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- res (scalar or ndarray):\nThe values of the error function at the given points
\nx
.See Also
\n\n\n\n
erfc,
,erfinv,
,erfcinv,
,wofz,
,erfcx,
,erfi
Notes
\n\nThe cumulative of the unit normal distribution is given by\n
\n\nPhi(z) = 1/2[1 + erf(z/sqrt(2))]
.References
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> from scipy import special\n>>> import matplotlib.pyplot as plt\n>>> x = np.linspace(-3, 3)\n>>> plt.plot(x, special.erf(x))\n>>> plt.xlabel('$x$')\n>>> plt.ylabel('$erf(x)$')\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.erfc": {"fullname": "pyerrors.special.erfc", "modulename": "pyerrors.special", "qualname": "erfc", "kind": "function", "doc": "
\n\n
\nerfc(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nerfc(x, out=None)
\n\nComplementary error function,
\n\n1 - erf(x)
.Parameters
\n\n\n
\n\n- x (array_like):\nReal or complex valued argument
\n- out (ndarray, optional):\nOptional output array for the function results
\nReturns
\n\n\n
\n\n- scalar or ndarray: Values of the complementary error function
\nSee Also
\n\n\n\n
erf,
,erfi,
,erfcx,
,dawsn,
,wofz
References
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> from scipy import special\n>>> import matplotlib.pyplot as plt\n>>> x = np.linspace(-3, 3)\n>>> plt.plot(x, special.erfc(x))\n>>> plt.xlabel('$x$')\n>>> plt.ylabel('$erfc(x)$')\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.erfinv": {"fullname": "pyerrors.special.erfinv", "modulename": "pyerrors.special", "qualname": "erfinv", "kind": "function", "doc": "
\n\n
\nerfinv(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nerfinv(y, out=None)
\n\nInverse of the error function.
\n\nComputes the inverse of the error function.
\n\nIn the complex domain, there is no unique complex number w satisfying\nerf(w)=z. This indicates a true inverse function would be multivalued.\nWhen the domain restricts to the real, -1 < x < 1, there is a unique real\nnumber satisfying erf(erfinv(x)) = x.
\n\nParameters
\n\n\n
\n\n- y (ndarray):\nArgument at which to evaluate. Domain: [-1, 1]
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- erfinv (scalar or ndarray):\nThe inverse of erf of y, element-wise
\nSee Also
\n\n\n\n
erf
: Error function of a complex argument
\nerfc
: Complementary error function,1 - erf(x)
\nerfcinv
: Inverse of the complementary error functionNotes
\n\nThis function wraps the
\n\nerf_inv
routine from the\nBoost Math C++ library 1.References
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> import matplotlib.pyplot as plt\n>>> from scipy.special import erfinv, erf\n
\n\n\n\n>>> erfinv(0.5)\n0.4769362762044699\n
\n\n\n\n>>> y = np.linspace(-1.0, 1.0, num=9)\n>>> x = erfinv(y)\n>>> x\narray([ -inf, -0.81341985, -0.47693628, -0.22531206, 0. ,\n 0.22531206, 0.47693628, 0.81341985, inf])\n
Verify that
\n\nerf(erfinv(y))
isy
.\n\n\n\n>>> erf(x)\narray([-1. , -0.75, -0.5 , -0.25, 0. , 0.25, 0.5 , 0.75, 1. ])\n
Plot the function:
\n\n\n\n\n\n>>> y = np.linspace(-1, 1, 200)\n>>> fig, ax = plt.subplots()\n>>> ax.plot(y, erfinv(y))\n>>> ax.grid(True)\n>>> ax.set_xlabel('y')\n>>> ax.set_title('erfinv(y)')\n>>> plt.show()\n
\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.erfcinv": {"fullname": "pyerrors.special.erfcinv", "modulename": "pyerrors.special", "qualname": "erfcinv", "kind": "function", "doc": "
\n\n
\n- \n
\nThe Boost Developers. \"Boost C++ Libraries\". https://www.boost.org/. ↩
\nerfcinv(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nerfcinv(y, out=None)
\n\nInverse of the complementary error function.
\n\nComputes the inverse of the complementary error function.
\n\nIn the complex domain, there is no unique complex number w satisfying\nerfc(w)=z. This indicates a true inverse function would be multivalued.\nWhen the domain restricts to the real, 0 < x < 2, there is a unique real\nnumber satisfying erfc(erfcinv(x)) = erfcinv(erfc(x)).
\n\nIt is related to inverse of the error function by erfcinv(1-x) = erfinv(x)
\n\nParameters
\n\n\n
\n\n- y (ndarray):\nArgument at which to evaluate. Domain: [0, 2]
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- erfcinv (scalar or ndarray):\nThe inverse of erfc of y, element-wise
\nSee Also
\n\n\n\n
erf
: Error function of a complex argument
\nerfc
: Complementary error function,1 - erf(x)
\nerfinv
: Inverse of the error functionExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> import matplotlib.pyplot as plt\n>>> from scipy.special import erfcinv\n
\n\n\n\n>>> erfcinv(0.5)\n0.4769362762044699\n
\n\n\n\n>>> y = np.linspace(0.0, 2.0, num=11)\n>>> erfcinv(y)\narray([ inf, 0.9061938 , 0.59511608, 0.37080716, 0.17914345,\n -0. , -0.17914345, -0.37080716, -0.59511608, -0.9061938 ,\n -inf])\n
Plot the function:
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.logit": {"fullname": "pyerrors.special.logit", "modulename": "pyerrors.special", "qualname": "logit", "kind": "function", "doc": "\n>>> y = np.linspace(0, 2, 200)\n>>> fig, ax = plt.subplots()\n>>> ax.plot(y, erfcinv(y))\n>>> ax.grid(True)\n>>> ax.set_xlabel('y')\n>>> ax.set_title('erfcinv(y)')\n>>> plt.show()\n
logit(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nlogit(x, out=None)
\n\nLogit ufunc for ndarrays.
\n\nThe logit function is defined as logit(p) = log(p/(1-p)).\nNote that logit(0) = -inf, logit(1) = inf, and logit(p)\nfor p<0 or p>1 yields nan.
\n\nParameters
\n\n\n
\n\n- x (ndarray):\nThe ndarray to apply logit to element-wise.
\n- out (ndarray, optional):\nOptional output array for the function results
\nReturns
\n\n\n
\n\n- scalar or ndarray: An ndarray of the same shape as x. Its entries\nare logit of the corresponding entry of x.
\nSee Also
\n\n\n\n
expit
Notes
\n\nAs a ufunc logit takes a number of optional\nkeyword arguments. For more information\nsee ufuncs
\n\nNew in version 0.10.0.
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> from scipy.special import logit, expit\n
\n\n\n\n>>> logit([0, 0.25, 0.5, 0.75, 1])\narray([ -inf, -1.09861229, 0. , 1.09861229, inf])\n
\n\n
expit
is the inverse oflogit
:\n\n\n\n>>> expit(logit([0.1, 0.75, 0.999]))\narray([ 0.1 , 0.75 , 0.999])\n
Plot logit(x) for x in [0, 1]:
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.expit": {"fullname": "pyerrors.special.expit", "modulename": "pyerrors.special", "qualname": "expit", "kind": "function", "doc": "\n>>> import matplotlib.pyplot as plt\n>>> x = np.linspace(0, 1, 501)\n>>> y = logit(x)\n>>> plt.plot(x, y)\n>>> plt.grid()\n>>> plt.ylim(-6, 6)\n>>> plt.xlabel('x')\n>>> plt.title('logit(x)')\n>>> plt.show()\n
expit(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
\n\nexpit(x, out=None)
\n\nExpit (a.k.a. logistic sigmoid) ufunc for ndarrays.
\n\nThe expit function, also known as the logistic sigmoid function, is\ndefined as
\n\nexpit(x) = 1/(1+exp(-x))
. It is the inverse of the\nlogit function.Parameters
\n\n\n
\n\n- x (ndarray):\nThe ndarray to apply expit to element-wise.
\n- out (ndarray, optional):\nOptional output array for the function values
\nReturns
\n\n\n
\n\n- scalar or ndarray: An ndarray of the same shape as x. Its entries\nare
\nexpit
of the corresponding entry of x.See Also
\n\n\n\n
logit
Notes
\n\nAs a ufunc expit takes a number of optional\nkeyword arguments. For more information\nsee ufuncs
\n\nNew in version 0.10.0.
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> from scipy.special import expit, logit\n
\n\n\n\n>>> expit([-np.inf, -1.5, 0, 1.5, np.inf])\narray([ 0. , 0.18242552, 0.5 , 0.81757448, 1. ])\n
\n\n
logit
is the inverse ofexpit
:\n\n\n\n>>> logit(expit([-2.5, 0, 3.1, 5.0]))\narray([-2.5, 0. , 3.1, 5. ])\n
Plot expit(x) for x in [-6, 6]:
\n\n\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.logsumexp": {"fullname": "pyerrors.special.logsumexp", "modulename": "pyerrors.special", "qualname": "logsumexp", "kind": "function", "doc": "\n>>> import matplotlib.pyplot as plt\n>>> x = np.linspace(-6, 6, 121)\n>>> y = expit(x)\n>>> plt.plot(x, y)\n>>> plt.grid()\n>>> plt.xlim(-6, 6)\n>>> plt.xlabel('x')\n>>> plt.title('expit(x)')\n>>> plt.show()\n
Compute the log of the sum of exponentials of input elements.
\n\nParameters
\n\n\n
\n\n- a (array_like):\nInput array.
\n- \n
axis (None or int or tuple of ints, optional):\nAxis or axes over which the sum is taken. By default
\n\naxis
is None,\nand all elements are summed.New in version 0.11.0.
- \n
b (array-like, optional):\nScaling factor for exp(
\n\na
) must be of the same shape asa
or\nbroadcastable toa
. These values may be negative in order to\nimplement subtraction.New in version 0.12.0.
- \n
keepdims (bool, optional):\nIf this is set to True, the axes which are reduced are left in the\nresult as dimensions with size one. With this option, the result\nwill broadcast correctly against the original array.
\n\nNew in version 0.15.0.
- \n
return_sign (bool, optional):\nIf this is set to True, the result will be a pair containing sign\ninformation; if False, results that are negative will be returned\nas NaN. Default is False (no sign information).
\n\nNew in version 0.16.0.
Returns
\n\n\n
\n\n- res (ndarray):\nThe result,
\nnp.log(np.sum(np.exp(a)))
calculated in a numerically\nmore stable way. Ifb
is given thennp.log(np.sum(b*np.exp(a)))
\nis returned. Ifreturn_sign
is True,res
contains the log of\nthe absolute value of the argument.- sgn (ndarray):\nIf
\nreturn_sign
is True, this will be an array of floating-point\nnumbers matching res containing +1, 0, -1 (for real-valued inputs)\nor a complex phase (for complex inputs). This gives the sign of the\nargument of the logarithm inres
.\nIfreturn_sign
is False, only one result is returned.See Also
\n\n\n\n
numpy.logaddexp,
,numpy.logaddexp2
Notes
\n\nNumPy has a logaddexp function which is very similar to
\n\nlogsumexp
, but\nonly handles two arguments.logaddexp.reduce
is similar to this\nfunction, but may be less stable.The logarithm is a multivalued function: for each \\( x \\) there is an\ninfinite number of \\( z \\) such that \\( exp(z) = x \\). The convention\nis to return the \\( z \\) whose imaginary part lies in \\( (-pi, pi] \\).
\n\nExamples
\n\n\n\n\n\n>>> import numpy as np\n>>> from scipy.special import logsumexp\n>>> a = np.arange(10)\n>>> logsumexp(a)\n9.4586297444267107\n>>> np.log(np.sum(np.exp(a)))\n9.4586297444267107\n
With weights
\n\n\n\n\n\n>>> a = np.arange(10)\n>>> b = np.arange(10, 0, -1)\n>>> logsumexp(a, b=b)\n9.9170178533034665\n>>> np.log(np.sum(b*np.exp(a)))\n9.9170178533034647\n
Returning a sign flag
\n\n\n\n\n\n>>> logsumexp([1,2],b=[1,-1],return_sign=True)\n(1.5413248546129181, -1.0)\n
Notice that
\n\nlogsumexp
does not directly support masked arrays. To use it\non a masked array, convert the mask into zero weights:\n\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.version": {"fullname": "pyerrors.version", "modulename": "pyerrors.version", "kind": "module", "doc": "\n"}}, "docInfo": {"pyerrors": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 8400}, "pyerrors.correlators": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 367}, "pyerrors.correlators.Corr.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 100}, "pyerrors.correlators.Corr.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.content": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.T": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prange": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.gm": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.projected": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 64}, "pyerrors.correlators.Corr.item": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.plottable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 31}, "pyerrors.correlators.Corr.symmetric": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.anti_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.trace": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 12}, "pyerrors.correlators.Corr.matrix_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.GEVP": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 58, "bases": 0, "doc": 417}, "pyerrors.correlators.Corr.Eigenvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 59}, "pyerrors.correlators.Corr.Hankel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 67}, "pyerrors.correlators.Corr.roll": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 26}, "pyerrors.correlators.Corr.reverse": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.thin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 43}, "pyerrors.correlators.Corr.correlate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 79}, "pyerrors.correlators.Corr.T_symmetry": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 51}, "pyerrors.correlators.Corr.deriv": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 47}, "pyerrors.correlators.Corr.second_deriv": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 126}, "pyerrors.correlators.Corr.m_eff": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 148}, "pyerrors.correlators.Corr.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 110}, "pyerrors.correlators.Corr.plateau": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 92}, "pyerrors.correlators.Corr.set_prange": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 11}, "pyerrors.correlators.Corr.show": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 161, "bases": 0, "doc": 263}, "pyerrors.correlators.Corr.spaghetti_plot": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 42}, "pyerrors.correlators.Corr.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 69}, "pyerrors.correlators.Corr.print": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prune": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 325}, "pyerrors.correlators.Corr.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 100}, "pyerrors.covobs.Covobs.name": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.errsq": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 12}, "pyerrors.covobs.Covobs.cov": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.grad": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaX": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaY": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaZ": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaT": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 210, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gamma5": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.identity": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.epsilon_tensor": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 40}, "pyerrors.dirac.epsilon_tensor_rank4": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 41}, "pyerrors.dirac.Grid_gamma": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 12, "bases": 0, "doc": 9}, "pyerrors.fits": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 75}, "pyerrors.fits.Fit_result.fit_parameters": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result.gamma_method": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 10}, "pyerrors.fits.Fit_result.gm": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 10}, "pyerrors.fits.least_squares": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 2714}, "pyerrors.fits.total_least_squares": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 478}, "pyerrors.fits.fit_lin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 110}, "pyerrors.fits.qqplot": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 39}, "pyerrors.fits.residual_plot": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 45}, "pyerrors.fits.error_band": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 48}, "pyerrors.fits.ks_test": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 52}, "pyerrors.input": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 81}, "pyerrors.input.bdio": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.bdio.read_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 122}, "pyerrors.input.bdio.write_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 126}, "pyerrors.input.bdio.read_mesons": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 211}, "pyerrors.input.bdio.read_dSdm": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 191}, "pyerrors.input.dobs": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.dobs.create_pobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 186}, "pyerrors.input.dobs.write_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 214}, "pyerrors.input.dobs.read_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 164}, "pyerrors.input.dobs.import_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 184}, "pyerrors.input.dobs.read_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 207}, "pyerrors.input.dobs.create_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 82, "bases": 0, "doc": 229}, "pyerrors.input.dobs.write_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 99, "bases": 0, "doc": 252}, "pyerrors.input.hadrons": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.hadrons.read_hd5": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 242}, "pyerrors.input.hadrons.read_meson_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 185}, "pyerrors.input.hadrons.extract_t0_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 73, "bases": 0, "doc": 157}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 106}, "pyerrors.input.hadrons.Npr_matrix": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 1093}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 30}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 99}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 99}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 60, "bases": 0, "doc": 112}, "pyerrors.input.json": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.json.create_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 138}, "pyerrors.input.json.dump_to_json": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 174}, "pyerrors.input.json.import_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 168}, "pyerrors.input.json.load_json": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 188}, "pyerrors.input.json.dump_dict_to_json": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 184}, "pyerrors.input.json.load_json_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 172}, "pyerrors.input.misc": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.misc.fit_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 250}, "pyerrors.input.misc.read_pbp": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 75}, "pyerrors.input.openQCD": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.openQCD.read_rwms": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 271}, "pyerrors.input.openQCD.extract_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 518}, "pyerrors.input.openQCD.extract_w0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 520}, "pyerrors.input.openQCD.read_qtop": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 53, "bases": 0, "doc": 383}, "pyerrors.input.openQCD.read_gf_coupling": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 345}, "pyerrors.input.openQCD.qtop_projection": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 72}, "pyerrors.input.openQCD.read_qtop_sector": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 363}, "pyerrors.input.openQCD.read_ms5_xsf": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 308}, "pyerrors.input.pandas": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.pandas.to_sql": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 54, "bases": 0, "doc": 113}, "pyerrors.input.pandas.read_sql": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 105}, "pyerrors.input.pandas.dump_df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 111}, "pyerrors.input.pandas.load_df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 115}, "pyerrors.input.sfcf": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.sfcf.sep": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.sfcf.read_sfcf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 139, "bases": 0, "doc": 421}, "pyerrors.input.sfcf.read_sfcf_multi": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 177, "bases": 0, "doc": 458}, "pyerrors.input.utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "pyerrors.input.utils.sort_names": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 81}, "pyerrors.input.utils.check_idl": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 70}, "pyerrors.input.utils.check_params": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 114}, "pyerrors.integrate": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.integrate.quad": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 374}, "pyerrors.linalg": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.linalg.matmul": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 54}, "pyerrors.linalg.jack_matmul": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 58}, "pyerrors.linalg.einsum": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 52}, "pyerrors.linalg.inv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.linalg.cholesky": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.linalg.det": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 8}, "pyerrors.linalg.eigh": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 20}, "pyerrors.linalg.eig": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 17}, "pyerrors.linalg.eigv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 18}, "pyerrors.linalg.pinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.linalg.svd": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.misc": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.misc.print_config": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 12}, "pyerrors.misc.errorbar": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 69}, "pyerrors.misc.dump_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "pyerrors.misc.load_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 42}, "pyerrors.misc.pseudo_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 105}, "pyerrors.misc.gen_correlated_data": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 127}, "pyerrors.mpm": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.mpm.matrix_pencil_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 165}, "pyerrors.obs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 238}, "pyerrors.obs.Obs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 62}, "pyerrors.obs.Obs.S_global": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.names": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.shape": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.r_values": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.deltas": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.idl": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.ddvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.dvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cov_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.mc_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_content": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.covobs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.gm": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.details": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 85}, "pyerrors.obs.Obs.is_zero_within_error": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 50}, "pyerrors.obs.Obs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.plot_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_rep_dist": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 14}, "pyerrors.obs.Obs.plot_history": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_piechart": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 47}, "pyerrors.obs.Obs.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 89}, "pyerrors.obs.Obs.export_jackknife": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 101}, "pyerrors.obs.Obs.export_bootstrap": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 185}, "pyerrors.obs.Obs.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_ddvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_drho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dtauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_dtauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_tauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_windowsize": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "pyerrors.obs.CObs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 14}, "pyerrors.obs.CObs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 15}, "pyerrors.obs.CObs.conjugate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.gamma_method": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 28}, "pyerrors.obs.gm": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 28}, "pyerrors.obs.derived_observable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 184}, "pyerrors.obs.reweight": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 99}, "pyerrors.obs.correlate": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 87}, "pyerrors.obs.covariance": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 374}, "pyerrors.obs.invert_corr_cov_cholesky": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 84}, "pyerrors.obs.sort_corr": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 630}, "pyerrors.obs.import_jackknife": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 61}, "pyerrors.obs.import_bootstrap": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 107}, "pyerrors.obs.merge_obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 89}, "pyerrors.obs.cov_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 90}, "pyerrors.roots": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.roots.find_root": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 189}, "pyerrors.special": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.special.beta": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 519}, "pyerrors.special.betainc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 913}, "pyerrors.special.betaln": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 476}, "pyerrors.special.polygamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 277}, "pyerrors.special.psi": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 534}, "pyerrors.special.digamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 534}, "pyerrors.special.gamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1217}, "pyerrors.special.gammaln": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 608}, "pyerrors.special.gammainc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 514}, "pyerrors.special.gammaincc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 531}, "pyerrors.special.gammasgn": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 620}, "pyerrors.special.rgamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 509}, "pyerrors.special.multigammaln": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 494}, "pyerrors.special.kn": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 13}, "pyerrors.special.j0": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 670}, "pyerrors.special.y0": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 628}, "pyerrors.special.j1": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 600}, "pyerrors.special.y1": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 609}, "pyerrors.special.jn": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1211}, "pyerrors.special.yn": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1096}, "pyerrors.special.i0": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 604}, "pyerrors.special.i1": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 612}, "pyerrors.special.iv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1281}, "pyerrors.special.ive": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1217}, "pyerrors.special.erf": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 419}, "pyerrors.special.erfc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 366}, "pyerrors.special.erfinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 784}, "pyerrors.special.erfcinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 658}, "pyerrors.special.logit": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 647}, "pyerrors.special.expit": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 683}, "pyerrors.special.logsumexp": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1124}, "pyerrors.version": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 288, "save": true}, "index": {"qualname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 57, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.name": {"tf": 1}, "pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 8}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"0": {"docs": {"pyerrors.special.i0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.identity": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}, "t": {"0": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "docs": {"pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {"pyerrors.special.psi": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 20}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.dirac.gamma5": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 8, "x": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.dirac.gammaY": {"tf": 1}}, "df": 1}, "z": {"docs": {"pyerrors.dirac.gammaZ": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.dirac.gammaT": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1, "c": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}}, "df": 6}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "s": {"5": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 4}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}, "p": {"docs": {"pyerrors.input.sfcf.sep": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}, "v": {"docs": {"pyerrors.linalg.eigv": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1, "c": {"docs": {"pyerrors.special.erfc": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erfcinv": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erfinv": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.digamma": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 7}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logit": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.name": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}, "n": {"docs": {"pyerrors.special.kn": {"tf": 1}}, "df": 1}}, "w": {"0": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"0": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.j1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 68, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}, "y": {"0": {"docs": {"pyerrors.special.y0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.y1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}}}}, "fullname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.name": {"tf": 1}, "pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.sep": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}, "pyerrors.version": {"tf": 1}}, "df": 288}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {"pyerrors.special.psi": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 57, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}}, "df": 56}}}, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.name": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.value": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.grad": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 9}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"0": {"docs": {"pyerrors.special.i0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.sep": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 56}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.identity": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}, "t": {"0": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "docs": {"pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 20}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.dirac.gamma5": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 8, "x": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.dirac.gammaY": {"tf": 1}}, "df": 1}, "z": {"docs": {"pyerrors.dirac.gammaZ": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.dirac.gammaT": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1, "c": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}}, "df": 6}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 10}}}, "s": {"5": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 4}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}, "p": {"docs": {"pyerrors.input.sfcf.sep": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 32}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.sep": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}, "v": {"docs": {"pyerrors.linalg.eigv": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1, "c": {"docs": {"pyerrors.special.erfc": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erfcinv": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erfinv": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 10}}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 11}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.digamma": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 8}}}, "f": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 12}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logit": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 12}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.name": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.version": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}, "n": {"docs": {"pyerrors.special.kn": {"tf": 1}}, "df": 1}}, "w": {"0": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"0": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.j1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 9}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.shape": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.r_values": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweighted": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tag": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.value": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cov_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.mc_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_content": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_drho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 87, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 4}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}, "y": {"0": {"docs": {"pyerrors.special.y0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.y1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"0": {"docs": {"pyerrors.dirac.gammaX": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaY": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaZ": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaT": {"tf": 5.291502622129181}, "pyerrors.dirac.gamma": {"tf": 10.583005244258363}, "pyerrors.dirac.gamma5": {"tf": 5.291502622129181}, "pyerrors.dirac.identity": {"tf": 5.291502622129181}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 10}, "1": {"docs": {"pyerrors.dirac.gammaX": {"tf": 2}, "pyerrors.dirac.gammaY": {"tf": 2}, "pyerrors.dirac.gammaZ": {"tf": 2}, "pyerrors.dirac.gammaT": {"tf": 2}, "pyerrors.dirac.gamma": {"tf": 4}, "pyerrors.dirac.gamma5": {"tf": 2}, "pyerrors.dirac.identity": {"tf": 2}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 8}, "2": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.dirac.gammaX": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaY": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaZ": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 4.123105625617661}, "pyerrors.dirac.gamma5": {"tf": 2.23606797749979}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.input.sfcf.sep": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 11, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}}, "df": 7}}}}}, "j": {"docs": {"pyerrors.dirac.gammaX": {"tf": 4}, "pyerrors.dirac.gammaY": {"tf": 4}, "pyerrors.dirac.gammaZ": {"tf": 4}, "pyerrors.dirac.gammaT": {"tf": 4}, "pyerrors.dirac.gamma": {"tf": 8}, "pyerrors.dirac.gamma5": {"tf": 4}, "pyerrors.dirac.identity": {"tf": 4}}, "df": 7}, "x": {"2": {"7": {"docs": {"pyerrors.input.sfcf.sep": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "signature": {"root": {"0": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 17, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "6": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "x": {"6": {"4": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"3": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 12, "e": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}, "2": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 3}, "3": {"9": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.8284271247461903}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.misc.errorbar": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}}, "df": 38}, "docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}, "5": {"0": {"0": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 4}, "docs": {"pyerrors.correlators.Corr.__init__": {"tf": 5.744562646538029}, "pyerrors.correlators.Corr.gamma_method": {"tf": 4}, "pyerrors.correlators.Corr.gm": {"tf": 4}, "pyerrors.correlators.Corr.projected": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.item": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.plottable": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.trace": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 6.782329983125268}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 6.782329983125268}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.roll": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reverse": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.thin": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.deriv": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.fit": {"tf": 6}, "pyerrors.correlators.Corr.plateau": {"tf": 6}, "pyerrors.correlators.Corr.set_prange": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.show": {"tf": 11.313708498984761}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.dump": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr.print": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.sqrt": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.log": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.exp": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.sin": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.cos": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.tan": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.sinh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.cosh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.tanh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arcsin": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arccos": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arctan": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arcsinh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arccosh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arctanh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.prune": {"tf": 6.164414002968976}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.656854249492381}, "pyerrors.covobs.Covobs.errsq": {"tf": 3.1622776601683795}, "pyerrors.dirac.epsilon_tensor": {"tf": 4.242640687119285}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 4.69041575982343}, "pyerrors.dirac.Grid_gamma": {"tf": 3.1622776601683795}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 4}, "pyerrors.fits.Fit_result.gm": {"tf": 4}, "pyerrors.fits.least_squares": {"tf": 6.324555320336759}, "pyerrors.fits.total_least_squares": {"tf": 5.656854249492381}, "pyerrors.fits.fit_lin": {"tf": 4.47213595499958}, "pyerrors.fits.qqplot": {"tf": 5.656854249492381}, "pyerrors.fits.residual_plot": {"tf": 5.656854249492381}, "pyerrors.fits.error_band": {"tf": 4.242640687119285}, "pyerrors.fits.ks_test": {"tf": 3.7416573867739413}, "pyerrors.input.bdio.read_ADerrors": {"tf": 5.0990195135927845}, "pyerrors.input.bdio.write_ADerrors": {"tf": 5.477225575051661}, "pyerrors.input.bdio.read_mesons": {"tf": 5.0990195135927845}, "pyerrors.input.bdio.read_dSdm": {"tf": 5.0990195135927845}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7.14142842854285}, "pyerrors.input.dobs.write_pobs": {"tf": 8.426149773176359}, "pyerrors.input.dobs.read_pobs": {"tf": 5.830951894845301}, "pyerrors.input.dobs.import_dobs_string": {"tf": 5.0990195135927845}, "pyerrors.input.dobs.read_dobs": {"tf": 5.830951894845301}, "pyerrors.input.dobs.create_dobs_string": {"tf": 8.12403840463596}, "pyerrors.input.dobs.write_dobs": {"tf": 8.94427190999916}, "pyerrors.input.hadrons.read_hd5": {"tf": 6.6332495807108}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 6.6332495807108}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 7.54983443527075}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 6}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 6.855654600401044}, "pyerrors.input.json.create_json_string": {"tf": 5.291502622129181}, "pyerrors.input.json.dump_to_json": {"tf": 6.324555320336759}, "pyerrors.input.json.import_json_string": {"tf": 5.0990195135927845}, "pyerrors.input.json.load_json": {"tf": 5.830951894845301}, "pyerrors.input.json.dump_dict_to_json": {"tf": 7.0710678118654755}, "pyerrors.input.json.load_json_dict": {"tf": 6.6332495807108}, "pyerrors.input.misc.fit_t0": {"tf": 5.656854249492381}, "pyerrors.input.misc.read_pbp": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.read_rwms": {"tf": 6.164414002968976}, "pyerrors.input.openQCD.extract_t0": {"tf": 8.18535277187245}, "pyerrors.input.openQCD.extract_w0": {"tf": 8.18535277187245}, "pyerrors.input.openQCD.read_qtop": {"tf": 6.48074069840786}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 6.324555320336759}, "pyerrors.input.openQCD.qtop_projection": {"tf": 4.242640687119285}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 5.656854249492381}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 6.164414002968976}, "pyerrors.input.pandas.to_sql": {"tf": 6.48074069840786}, "pyerrors.input.pandas.read_sql": {"tf": 5.291502622129181}, "pyerrors.input.pandas.dump_df": {"tf": 4.69041575982343}, "pyerrors.input.pandas.load_df": {"tf": 5.0990195135927845}, "pyerrors.input.sfcf.read_sfcf": {"tf": 10.44030650891055}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 11.74734012447073}, "pyerrors.input.utils.sort_names": {"tf": 3.1622776601683795}, "pyerrors.input.utils.check_idl": {"tf": 3.7416573867739413}, "pyerrors.input.utils.check_params": {"tf": 5.291502622129181}, "pyerrors.integrate.quad": {"tf": 5.291502622129181}, "pyerrors.linalg.matmul": {"tf": 3.4641016151377544}, "pyerrors.linalg.jack_matmul": {"tf": 3.4641016151377544}, "pyerrors.linalg.einsum": {"tf": 4}, "pyerrors.linalg.inv": {"tf": 3.1622776601683795}, "pyerrors.linalg.cholesky": {"tf": 3.1622776601683795}, "pyerrors.linalg.det": {"tf": 3.1622776601683795}, "pyerrors.linalg.eigh": {"tf": 4}, "pyerrors.linalg.eig": {"tf": 4}, "pyerrors.linalg.eigv": {"tf": 4}, "pyerrors.linalg.pinv": {"tf": 4}, "pyerrors.linalg.svd": {"tf": 4}, "pyerrors.misc.print_config": {"tf": 2.6457513110645907}, "pyerrors.misc.errorbar": {"tf": 6.855654600401044}, "pyerrors.misc.dump_object": {"tf": 4.47213595499958}, "pyerrors.misc.load_object": {"tf": 3.1622776601683795}, "pyerrors.misc.pseudo_Obs": {"tf": 5.0990195135927845}, "pyerrors.misc.gen_correlated_data": {"tf": 5.830951894845301}, "pyerrors.mpm.matrix_pencil_method": {"tf": 5.656854249492381}, "pyerrors.obs.Obs.__init__": {"tf": 5.0990195135927845}, "pyerrors.obs.Obs.gamma_method": {"tf": 4}, "pyerrors.obs.Obs.gm": {"tf": 4}, "pyerrors.obs.Obs.details": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.reweight": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.is_zero": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_tauint": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_rho": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_piechart": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.dump": {"tf": 6.324555320336759}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 5.830951894845301}, "pyerrors.obs.Obs.sqrt": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.log": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.exp": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sin": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.cos": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.tan": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arcsin": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arccos": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arctan": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sinh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.cosh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.tanh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arcsinh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arccosh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arctanh": {"tf": 3.1622776601683795}, "pyerrors.obs.CObs.__init__": {"tf": 4}, "pyerrors.obs.CObs.gamma_method": {"tf": 4}, "pyerrors.obs.CObs.is_zero": {"tf": 3.1622776601683795}, "pyerrors.obs.CObs.conjugate": {"tf": 3.1622776601683795}, "pyerrors.obs.gamma_method": {"tf": 4}, "pyerrors.obs.gm": {"tf": 4}, "pyerrors.obs.derived_observable": {"tf": 5.291502622129181}, "pyerrors.obs.reweight": {"tf": 4.47213595499958}, "pyerrors.obs.correlate": {"tf": 3.7416573867739413}, "pyerrors.obs.covariance": {"tf": 6.324555320336759}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 3.7416573867739413}, "pyerrors.obs.sort_corr": {"tf": 4.242640687119285}, "pyerrors.obs.import_jackknife": {"tf": 4.69041575982343}, "pyerrors.obs.import_bootstrap": {"tf": 4.242640687119285}, "pyerrors.obs.merge_obs": {"tf": 3.1622776601683795}, "pyerrors.obs.cov_Obs": {"tf": 5.0990195135927845}, "pyerrors.roots.find_root": {"tf": 5.291502622129181}, "pyerrors.special.beta": {"tf": 4.242640687119285}, "pyerrors.special.betainc": {"tf": 4.242640687119285}, "pyerrors.special.betaln": {"tf": 4.242640687119285}, "pyerrors.special.polygamma": {"tf": 4.242640687119285}, "pyerrors.special.psi": {"tf": 4.242640687119285}, "pyerrors.special.digamma": {"tf": 4.242640687119285}, "pyerrors.special.gamma": {"tf": 4.242640687119285}, "pyerrors.special.gammaln": {"tf": 4.242640687119285}, "pyerrors.special.gammainc": {"tf": 4.242640687119285}, "pyerrors.special.gammaincc": {"tf": 4.242640687119285}, "pyerrors.special.gammasgn": {"tf": 4.242640687119285}, "pyerrors.special.rgamma": {"tf": 4.242640687119285}, "pyerrors.special.multigammaln": {"tf": 4.242640687119285}, "pyerrors.special.kn": {"tf": 4.242640687119285}, "pyerrors.special.j0": {"tf": 4.242640687119285}, "pyerrors.special.y0": {"tf": 4.242640687119285}, "pyerrors.special.j1": {"tf": 4.242640687119285}, "pyerrors.special.y1": {"tf": 4.242640687119285}, "pyerrors.special.jn": {"tf": 4.242640687119285}, "pyerrors.special.yn": {"tf": 4.242640687119285}, "pyerrors.special.i0": {"tf": 4.242640687119285}, "pyerrors.special.i1": {"tf": 4.242640687119285}, "pyerrors.special.iv": {"tf": 4.242640687119285}, "pyerrors.special.ive": {"tf": 4.242640687119285}, "pyerrors.special.erf": {"tf": 4.242640687119285}, "pyerrors.special.erfc": {"tf": 4.242640687119285}, "pyerrors.special.erfinv": {"tf": 4.242640687119285}, "pyerrors.special.erfcinv": {"tf": 4.242640687119285}, "pyerrors.special.logit": {"tf": 4.242640687119285}, "pyerrors.special.expit": {"tf": 4.242640687119285}, "pyerrors.special.logsumexp": {"tf": 4.242640687119285}}, "df": 200, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7, "l": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 10}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 22}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 11}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "y": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 34}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 14, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 80}}, "p": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}}}}}}}, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 4}}}}}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 80}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}, "v": {"1": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.449489742783178}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 3}}}, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 21}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 8, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 17}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}, "u": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 12, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}, "j": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"3": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 13}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "v": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31}}}}, "x": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 13, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "v": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}}, "df": 7, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}, "c": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "doc": {"root": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "+": {"0": {"0": {"0": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "6": {"9": {"7": {"9": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"0": {"5": {"0": {"2": {"2": {"0": {"9": {"1": {"8": {"6": {"0": {"4": {"4": {"5": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 2}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"5": {"6": {"0": {"5": {"6": {"2": {"1": {"8": {"2": {"5": {"4": {"7": {"1": {"2": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"8": {"0": {"6": {"4": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"4": {"4": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"9": {"4": {"6": {"7": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"8": {"5": {"6": {"5": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"4": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"4": {"2": {"3": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"4": {"3": {"3": {"3": {"docs": {"pyerrors.special.j1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}, "7": {"1": {"5": {"1": {"0": {"2": {"9": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"6": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"docs": {"pyerrors.special.beta": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"2": {"5": {"6": {"9": {"6": {"4": {"2": {"1": {"5": {"6": {"7": {"6": {"9": {"7": {"docs": {"pyerrors.special.y0": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"7": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"2": {"3": {"9": {"0": {"3": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"3": {"4": {"4": {"5": {"6": {"2": {"2": {"2": {"2": {"1": {"docs": {"pyerrors.special.betaln": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"6": {"1": {"2": {"2": {"9": {"docs": {"pyerrors.special.logit": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.4641016151377544}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.gm": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2}, "pyerrors.obs.sort_corr": {"tf": 3.4641016151377544}, "pyerrors.special.beta": {"tf": 2.23606797749979}, "pyerrors.special.betainc": {"tf": 3.605551275463989}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.polygamma": {"tf": 2}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 3.605551275463989}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 3.4641016151377544}, "pyerrors.special.gammaincc": {"tf": 3.1622776601683795}, "pyerrors.special.gammasgn": {"tf": 2.8284271247461903}, "pyerrors.special.rgamma": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 3}, "pyerrors.special.y0": {"tf": 3.872983346207417}, "pyerrors.special.j1": {"tf": 2.449489742783178}, "pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.jn": {"tf": 5.196152422706632}, "pyerrors.special.yn": {"tf": 5.196152422706632}, "pyerrors.special.i0": {"tf": 3}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 4}, "pyerrors.special.ive": {"tf": 4.69041575982343}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 4.242640687119285}, "pyerrors.special.erfcinv": {"tf": 4.123105625617661}, "pyerrors.special.logit": {"tf": 4.123105625617661}, "pyerrors.special.expit": {"tf": 3.1622776601683795}, "pyerrors.special.logsumexp": {"tf": 3.3166247903554}}, "df": 60, "+": {"1": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"0": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}, "^": {"1": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "x": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}}, "df": 2}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}}}, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}}}}}}, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 2}}}}}}}}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.7320508075688772}}, "df": 15}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 3}, "4": {"7": {"2": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"3": {"2": {"4": {"3": {"docs": {"pyerrors.special.y1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"8": {"1": {"9": {"3": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"7": {"5": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 15}, "1": {"0": {"3": {"4": {"0": {"3": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"4": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"7": {"8": {"2": {"5": {"5": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"7": {"8": {"4": {"6": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "2": {"1": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "3": {"4": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "4": {"1": {"5": {"9": {"2": {"6": {"5": {"3": {"5": {"8": {"9": {"7": {"9": {"2": {"7": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"8": {"6": {"0": {"5": {"0": {"7": {"4": {"4": {"1": {"6": {"docs": {"pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 2}, "8": {"0": {"6": {"0": {"4": {"6": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}, "6": {"0": {"7": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 15}, "5": {"6": {"7": {"5": {"2": {"7": {"6": {"8": {"9": {"0": {"3": {"1": {"7": {"3": {"9": {"docs": {"pyerrors.special.beta": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"6": {"6": {"6": {"6": {"7": {"docs": {"pyerrors.special.rgamma": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}, "7": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"1": {"4": {"3": {"4": {"5": {"docs": {"pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}, "8": {"2": {"4": {"2": {"5": {"5": {"2": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"8": {"2": {"6": {"7": {"1": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"0": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.6457513110645907}, "pyerrors.special.beta": {"tf": 2.8284271247461903}, "pyerrors.special.betainc": {"tf": 4.69041575982343}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.449489742783178}, "pyerrors.special.digamma": {"tf": 2.449489742783178}, "pyerrors.special.gamma": {"tf": 4.242640687119285}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 2.23606797749979}, "pyerrors.special.gammaincc": {"tf": 2.449489742783178}, "pyerrors.special.gammasgn": {"tf": 4.358898943540674}, "pyerrors.special.rgamma": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 2}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.jn": {"tf": 4}, "pyerrors.special.yn": {"tf": 4.123105625617661}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 3.3166247903554}, "pyerrors.special.iv": {"tf": 4.47213595499958}, "pyerrors.special.ive": {"tf": 3}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 3.4641016151377544}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 3}, "pyerrors.special.expit": {"tf": 2.449489742783178}, "pyerrors.special.logsumexp": {"tf": 3.1622776601683795}}, "df": 55, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}, "e": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "+": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 6}, "*": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"2": {"docs": {}, "df": 0, "[": {"1": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}, "z": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}, "e": {"1": {"0": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"0": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"0": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"0": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "^": {"2": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "2": {"0": {"0": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 2}, "1": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "5": {"8": {"5": {"0": {"9": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"1": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "7": {"9": {"1": {"0": {"4": {"2": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.j1": {"tf": 2}}, "df": 3}, "1": {"0": {"3": {"4": {"0": {"3": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"4": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"6": {"9": {"2": {"9": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}, "2": {"3": {"5": {"2": {"1": {"4": {"9": {"docs": {"pyerrors.special.yn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"0": {"7": {"8": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "3": {"1": {"2": {"0": {"6": {"docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"2": {"7": {"4": {"0": {"5": {"6": {"9": {"9": {"8": {"1": {"1": {"5": {"8": {"docs": {}, "df": 0, "+": {"2": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "7": {"1": {"docs": {}, "df": 0, "+": {"2": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 3}, "4": {"0": {"2": {"9": {"7": {"8": {"3": {"9": {"1": {"2": {"3": {"4": {"2": {"7": {"2": {"5": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"0": {"0": {"0": {"3": {"5": {"docs": {"pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}}, "df": 2}, "5": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}}, "df": 7}, "6": {"0": {"0": {"5": {"1": {"9": {"5": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"6": {"5": {"8": {"7": {"7": {"7": {"5": {"2": {"0": {"0": {"8": {"2": {"docs": {"pyerrors.special.i0": {"tf": 1}}, "df": 1}, "4": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"1": {"8": {"6": {"6": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"5": {"8": {"5": {"3": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"7": {"7": {"6": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "9": {"3": {"5": {"2": {"5": {"3": {"2": {"6": {"3": {"4": {"7": {"4": {"7": {"9": {"8": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"9": {"7": {"0": {"3": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.23606797749979}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 2.23606797749979}, "pyerrors.special.betainc": {"tf": 2.449489742783178}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 2}, "pyerrors.special.rgamma": {"tf": 2}, "pyerrors.special.multigammaln": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 2}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 45, "x": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "f": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "#": {"docs": {}, "df": 0, "e": {"1": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 2}, "4": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "i": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}, "^": {"2": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}}}}}}, "3": {"0": {"2": {"5": {"8": {"5": {"0": {"9": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"1": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"5": {"2": {"0": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"5": {"1": {"7": {"6": {"4": {"1": {"4": {"6": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"5": {"0": {"8": {"3": {"2": {"docs": {"pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "1": {"4": {"9": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"7": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "4": {"6": {"7": {"4": {"4": {"2": {"docs": {"pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"9": {"0": {"5": {"8": {"9": {"6": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "4": {"1": {"9": {"3": {"6": {"7": {"8": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "9": {"7": {"6": {"8": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"3": {"2": {"7": {"1": {"8": {"docs": {"pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"0": {"8": {"0": {"7": {"1": {"6": {"docs": {"pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"0": {"9": {"3": {"3": {"6": {"9": {"5": {"2": {"2": {"6": {"9": {"7": {"5": {"6": {"docs": {"pyerrors.special.gammaincc": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"8": {"5": {"0": {"0": {"1": {"docs": {"pyerrors.special.y0": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"2": {"0": {"3": {"4": {"3": {"docs": {"pyerrors.special.i0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"4": {"9": {"3": {"4": {"0": {"7": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"4": {"9": {"8": {"1": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 7.745966692414834}, "pyerrors.fits.least_squares": {"tf": 4.242640687119285}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.8284271247461903}, "pyerrors.special.gamma": {"tf": 3.4641016151377544}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 2}, "pyerrors.special.erfc": {"tf": 2}, "pyerrors.special.erfinv": {"tf": 2}, "pyerrors.special.erfcinv": {"tf": 2}, "pyerrors.special.logit": {"tf": 2}, "pyerrors.special.expit": {"tf": 2}}, "df": 15}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.23606797749979}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 2}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 2}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 33, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "4": {"0": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}}, "df": 2}, "3": {"2": {"0": {"9": {"8": {"3": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "4": {"0": {"0": {"5": {"0": {"5": {"8": {"5": {"7": {"4": {"4": {"9": {"3": {"3": {"5": {"5": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"1": {"8": {"7": {"3": {"docs": {"pyerrors.special.y0": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"4": {"docs": {"pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"6": {"2": {"9": {"7": {"4": {"4": {"4": {"2": {"6": {"7": {"1": {"0": {"7": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}, "6": {"5": {"7": {"5": {"9": {"6": {"1": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"4": {"7": {"2": {"3": {"9": {"docs": {"pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"9": {"3": {"6": {"2": {"7": {"6": {"2": {"0": {"4": {"4": {"6": {"9": {"9": {"docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"3": {"9": {"6": {"3": {"8": {"8": {"0": {"7": {"6": {"1": {"9": {"4": {"4": {"6": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 2}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1}}, "df": 26, "x": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}}, "df": 2}, "5": {"1": {"7": {"0": {"1": {"9": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"2": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"0": {"3": {"7": {"5": {"6": {"7": {"docs": {"pyerrors.special.y0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"6": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"0": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "8": {"0": {"1": {"3": {"5": {"7": {"4": {"5": {"6": {"1": {"7": {"8": {"6": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"3": {"2": {"4": {"8": {"5": {"4": {"6": {"1": {"2": {"9": {"1": {"8": {"1": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"4": {"0": {"1": {"1": {"5": {"5": {"0": {"0": {"0": {"6": {"5": {"8": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "8": {"5": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"9": {"0": {"7": {"7": {"docs": {"pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"0": {"3": {"5": {"9": {"8": {"1": {"7": {"3": {"3": {"3": {"4": {"1": {"docs": {}, "df": 0, "+": {"1": {"docs": {"pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"5": {"1": {"5": {"9": {"1": {"0": {"3": {"9": {"9": {"2": {"4": {"8": {"5": {"1": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"6": {"5": {"9": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"9": {"9": {"2": {"0": {"7": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"2": {"4": {"8": {"1": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"6": {"3": {"6": {"8": {"5": {"docs": {"pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"1": {"6": {"0": {"8": {"docs": {"pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 3.4641016151377544}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 2.8284271247461903}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.449489742783178}, "pyerrors.special.ive": {"tf": 2.23606797749979}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 2.6457513110645907}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "/": {"5": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "6": {"0": {"5": {"1": {"7": {"0": {"1": {"9": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"2": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"3": {"7": {"9": {"1": {"2": {"4": {"3": {"4": {"1": {"0": {"0": {"5": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 3}, "2": {"8": {"9": {"0": {"6": {"6": {"3": {"0": {"4": {"7": {"7": {"3": {"0": {"2": {"4": {"docs": {"pyerrors.special.gammainc": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"4": {"9": {"3": {"4": {"0": {"7": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "5": {"0": {"6": {"8": {"2": {"6": {"0": {"6": {"8": {"1": {"6": {"2": {"5": {"4": {"6": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 2.449489742783178}}, "df": 7, "/": {"6": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"3": {"1": {"2": {"0": {"4": {"3": {"7": {"9": {"5": {"9": {"2": {"9": {"3": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"4": {"2": {"2": {"9": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"4": {"6": {"6": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"4": {"2": {"1": {"6": {"4": {"3": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"5": {"7": {"3": {"1": {"9": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.7320508075688772}}, "df": 2}, "6": {"5": {"1": {"9": {"7": {"6": {"8": {"6": {"5": {"5": {"7": {"9": {"6": {"6": {"5": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"4": {"5": {"3": {"8": {"5": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"1": {"0": {"1": {"0": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"7": {"6": {"2": {"1": {"0": {"4": {"5": {"5": {"1": {"0": {"8": {"3": {"5": {"2": {"docs": {}, "df": 0, "+": {"0": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"1": {"2": {"1": {"2": {"8": {"2": {"1": {"3": {"0": {"0": {"2": {"8": {"8": {"8": {"docs": {"pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"7": {"7": {"5": {"2": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}}, "df": 5, "/": {"7": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "8": {"0": {"4": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"3": {"4": {"1": {"9": {"8": {"5": {"docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"9": {"0": {"4": {"0": {"3": {"6": {"2": {"2": {"5": {"2": {"9": {"5": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "7": {"5": {"7": {"4": {"4": {"8": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"2": {"0": {"6": {"8": {"0": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"8": {"2": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"2": {"0": {"6": {"8": {"0": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"8": {"2": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"0": {"7": {"9": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"1": {"7": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 15}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"7": {"9": {"2": {"5": {"9": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"2": {"2": {"6": {"9": {"3": {"docs": {"pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}}, "df": 13}, "9": {"0": {"0": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}, "6": {"1": {"9": {"3": {"8": {"docs": {"pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"7": {"0": {"1": {"7": {"8": {"5": {"3": {"3": {"0": {"3": {"4": {"6": {"4": {"7": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"5": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"3": {"2": {"5": {"3": {"1": {"9": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"3": {"3": {"7": {"0": {"2": {"2": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"0": {"3": {"5": {"7": {"8": {"5": {"1": {"6": {"0": {"9": {"3": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"3": {"6": {"1": {"1": {"6": {"2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"1": {"9": {"8": {"8": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"0": {"0": {"7": {"1": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"3": {"6": {"5": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"9": {"9": {"2": {"2": {"6": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.logit": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 7}, "docs": {"pyerrors": {"tf": 64.62197768561404}, "pyerrors.correlators": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 12.449899597988733}, "pyerrors.correlators.Corr.__init__": {"tf": 5.196152422706632}, "pyerrors.correlators.Corr.tag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.content": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweighted": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gm": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.item": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.plottable": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.trace": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 11.74734012447073}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.roll": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.deriv": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.fit": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plateau": {"tf": 5}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 9}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.dump": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.print": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sqrt": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.log": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.exp": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.real": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.imag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 6.855654600401044}, "pyerrors.correlators.Corr.N": {"tf": 1.7320508075688772}, "pyerrors.covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.916079783099616}, "pyerrors.covobs.Covobs.name": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.value": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.grad": {"tf": 1.7320508075688772}, "pyerrors.dirac": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaX": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaY": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaZ": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaT": {"tf": 1.7320508075688772}, "pyerrors.dirac.gamma": {"tf": 1.7320508075688772}, "pyerrors.dirac.gamma5": {"tf": 1.7320508075688772}, "pyerrors.dirac.identity": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 4.123105625617661}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 4.123105625617661}, "pyerrors.dirac.Grid_gamma": {"tf": 1.7320508075688772}, "pyerrors.fits": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 5.656854249492381}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gm": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 38.13135192987524}, "pyerrors.fits.total_least_squares": {"tf": 15.748015748023622}, "pyerrors.fits.fit_lin": {"tf": 5.916079783099616}, "pyerrors.fits.qqplot": {"tf": 3.605551275463989}, "pyerrors.fits.residual_plot": {"tf": 3.872983346207417}, "pyerrors.fits.error_band": {"tf": 3.7416573867739413}, "pyerrors.fits.ks_test": {"tf": 5}, "pyerrors.input": {"tf": 4.69041575982343}, "pyerrors.input.bdio": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 6.164414002968976}, "pyerrors.input.bdio.write_ADerrors": {"tf": 6.164414002968976}, "pyerrors.input.bdio.read_mesons": {"tf": 8.12403840463596}, "pyerrors.input.bdio.read_dSdm": {"tf": 7.416198487095663}, "pyerrors.input.dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7.745966692414834}, "pyerrors.input.dobs.write_pobs": {"tf": 8.426149773176359}, "pyerrors.input.dobs.read_pobs": {"tf": 7.280109889280518}, "pyerrors.input.dobs.import_dobs_string": {"tf": 7.280109889280518}, "pyerrors.input.dobs.read_dobs": {"tf": 7.745966692414834}, "pyerrors.input.dobs.create_dobs_string": {"tf": 8.06225774829855}, "pyerrors.input.dobs.write_dobs": {"tf": 8.774964387392123}, "pyerrors.input.hadrons": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 10.198039027185569}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 7.3484692283495345}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 6.855654600401044}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 6.557438524302}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 21.307275752662516}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 6.324555320336759}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 6.324555320336759}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 6.782329983125268}, "pyerrors.input.json": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 6.082762530298219}, "pyerrors.input.json.dump_to_json": {"tf": 7}, "pyerrors.input.json.import_json_string": {"tf": 7.681145747868608}, "pyerrors.input.json.load_json": {"tf": 8.06225774829855}, "pyerrors.input.json.dump_dict_to_json": {"tf": 7.3484692283495345}, "pyerrors.input.json.load_json_dict": {"tf": 7.937253933193772}, "pyerrors.input.misc": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 7.14142842854285}, "pyerrors.input.misc.read_pbp": {"tf": 5.477225575051661}, "pyerrors.input.openQCD": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 8.54400374531753}, "pyerrors.input.openQCD.extract_t0": {"tf": 11}, "pyerrors.input.openQCD.extract_w0": {"tf": 11}, "pyerrors.input.openQCD.read_qtop": {"tf": 10.246950765959598}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 8.888194417315589}, "pyerrors.input.openQCD.qtop_projection": {"tf": 5.656854249492381}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 9.797958971132712}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 10.392304845413264}, "pyerrors.input.pandas": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.to_sql": {"tf": 7}, "pyerrors.input.pandas.read_sql": {"tf": 6.244997998398398}, "pyerrors.input.pandas.dump_df": {"tf": 6.324555320336759}, "pyerrors.input.pandas.load_df": {"tf": 6.244997998398398}, "pyerrors.input.sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.sep": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 11.090536506409418}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 11.313708498984761}, "pyerrors.input.utils": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 5.385164807134504}, "pyerrors.input.utils.check_idl": {"tf": 5.385164807134504}, "pyerrors.input.utils.check_params": {"tf": 6.4031242374328485}, "pyerrors.integrate": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 13.228756555322953}, "pyerrors.linalg": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 4.58257569495584}, "pyerrors.linalg.jack_matmul": {"tf": 4.47213595499958}, "pyerrors.linalg.einsum": {"tf": 4.47213595499958}, "pyerrors.linalg.inv": {"tf": 1.7320508075688772}, "pyerrors.linalg.cholesky": {"tf": 1.7320508075688772}, "pyerrors.linalg.det": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1.7320508075688772}, "pyerrors.linalg.eig": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigv": {"tf": 1.7320508075688772}, "pyerrors.linalg.pinv": {"tf": 1.7320508075688772}, "pyerrors.linalg.svd": {"tf": 1.7320508075688772}, "pyerrors.misc": {"tf": 1.7320508075688772}, "pyerrors.misc.print_config": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 5.0990195135927845}, "pyerrors.misc.dump_object": {"tf": 5.916079783099616}, "pyerrors.misc.load_object": {"tf": 5}, "pyerrors.misc.pseudo_Obs": {"tf": 6.557438524302}, "pyerrors.misc.gen_correlated_data": {"tf": 7.0710678118654755}, "pyerrors.mpm": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 6.324555320336759}, "pyerrors.obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 6.928203230275509}, "pyerrors.obs.Obs.__init__": {"tf": 4.898979485566356}, "pyerrors.obs.Obs.S_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.shape": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.r_values": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.deltas": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweighted": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.value": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cov_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.mc_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_content": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.covobs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.gm": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.details": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.reweight": {"tf": 4.58257569495584}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.47213595499958}, "pyerrors.obs.Obs.is_zero": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_tauint": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rho": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.plot_piechart": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.dump": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 6.164414002968976}, "pyerrors.obs.Obs.sqrt": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.log": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.exp": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_drho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_rho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.real": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.imag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.is_zero": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.conjugate": {"tf": 1.7320508075688772}, "pyerrors.obs.gamma_method": {"tf": 2.449489742783178}, "pyerrors.obs.gm": {"tf": 2.449489742783178}, "pyerrors.obs.derived_observable": {"tf": 6.4031242374328485}, "pyerrors.obs.reweight": {"tf": 5.196152422706632}, "pyerrors.obs.correlate": {"tf": 4.898979485566356}, "pyerrors.obs.covariance": {"tf": 6.6332495807108}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 5.291502622129181}, "pyerrors.obs.sort_corr": {"tf": 17.578395831246947}, "pyerrors.obs.import_jackknife": {"tf": 4.47213595499958}, "pyerrors.obs.import_bootstrap": {"tf": 5.0990195135927845}, "pyerrors.obs.merge_obs": {"tf": 4.242640687119285}, "pyerrors.obs.cov_Obs": {"tf": 5.385164807134504}, "pyerrors.roots": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 10.862780491200215}, "pyerrors.special": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 17.435595774162696}, "pyerrors.special.betainc": {"tf": 21.840329667841555}, "pyerrors.special.betaln": {"tf": 16.852299546352718}, "pyerrors.special.polygamma": {"tf": 13.152946437965905}, "pyerrors.special.psi": {"tf": 15.491933384829668}, "pyerrors.special.digamma": {"tf": 15.491933384829668}, "pyerrors.special.gamma": {"tf": 25.553864678361276}, "pyerrors.special.gammaln": {"tf": 18.35755975068582}, "pyerrors.special.gammainc": {"tf": 16.186414056238647}, "pyerrors.special.gammaincc": {"tf": 16.431676725154983}, "pyerrors.special.gammasgn": {"tf": 18.81488772222678}, "pyerrors.special.rgamma": {"tf": 17.08800749063506}, "pyerrors.special.multigammaln": {"tf": 15.905973720586866}, "pyerrors.special.kn": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 19.261360284258224}, "pyerrors.special.y0": {"tf": 18.81488772222678}, "pyerrors.special.j1": {"tf": 18.681541692269406}, "pyerrors.special.y1": {"tf": 18.601075237738275}, "pyerrors.special.jn": {"tf": 26}, "pyerrors.special.yn": {"tf": 25.768197453450252}, "pyerrors.special.i0": {"tf": 18.867962264113206}, "pyerrors.special.i1": {"tf": 18.973665961010276}, "pyerrors.special.iv": {"tf": 26.30589287593181}, "pyerrors.special.ive": {"tf": 25.278449319529077}, "pyerrors.special.erf": {"tf": 16.15549442140351}, "pyerrors.special.erfc": {"tf": 15.524174696260024}, "pyerrors.special.erfinv": {"tf": 21.563858652847824}, "pyerrors.special.erfcinv": {"tf": 19.44222209522358}, "pyerrors.special.logit": {"tf": 19.748417658131498}, "pyerrors.special.expit": {"tf": 20.566963801203133}, "pyerrors.special.logsumexp": {"tf": 24.758836806279895}, "pyerrors.version": {"tf": 1.7320508075688772}}, "df": 288, "w": {"0": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}}, "df": 2, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}}}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 2.23606797749979}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 7, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 50, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 19}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 12}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 48}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 6}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 52, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 9}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 13}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 4}}}, "f": {"docs": {}, "df": 0, "z": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}}, "df": 5, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 9}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 13}}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}}}, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "i": {"0": {"docs": {"pyerrors.special.i0": {"tf": 2.6457513110645907}, "pyerrors.special.iv": {"tf": 1}}, "df": 2, "e": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}, "1": {"docs": {"pyerrors.special.i1": {"tf": 2.6457513110645907}, "pyerrors.special.iv": {"tf": 1}}, "df": 2, "e": {"docs": {"pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 2.23606797749979}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 2.449489742783178}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 3}, "pyerrors.special.ive": {"tf": 3}}, "df": 20, "s": {"docs": {"pyerrors": {"tf": 8.12403840463596}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 3}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.4641016151377544}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 4}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.4641016151377544}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 2.23606797749979}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gamma": {"tf": 3.1622776601683795}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 2.23606797749979}, "pyerrors.special.rgamma": {"tf": 2}, "pyerrors.special.multigammaln": {"tf": 2.449489742783178}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 2.23606797749979}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 2.23606797749979}, "pyerrors.special.jn": {"tf": 2.449489742783178}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2.8284271247461903}, "pyerrors.special.ive": {"tf": 2.449489742783178}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 4}}, "df": 97, "o": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "c": {"9": {"9": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "t": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 2}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 38, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 12, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 8.366600265340756}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.242640687119285}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 2.6457513110645907}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 3}}, "df": 76, "t": {"1": {"6": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 47, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 6}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 2.449489742783178}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}}, "df": 8}}}}}, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 19}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 2.23606797749979}, "pyerrors.special.erfcinv": {"tf": 2.449489742783178}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 11}}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 3}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 11}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "x": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 2}, "pyerrors.special.gammaln": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 2}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 8, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 17}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 9}, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 22, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}}}, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 2.8284271247461903}, "pyerrors.special.gammaincc": {"tf": 2.8284271247461903}}, "df": 5}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}}}, "f": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.extract_w0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.23606797749979}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 2.6457513110645907}}, "df": 68}, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 3, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 45, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 6}}, "s": {"docs": {"pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 9}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1.4142135623730951}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "d": {"0": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 16, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}, "^": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "|": {"docs": {}, "df": 0, "^": {"2": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}}}}, "}": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 3.3166247903554}, "pyerrors.special.ive": {"tf": 2.6457513110645907}}, "df": 4, "e": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 3.4641016151377544}}, "df": 2}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.logit": {"tf": 2.23606797749979}}, "df": 9, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 6.928203230275509}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 2}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 8}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 7}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 18}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 10, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}}, "df": 15, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 137}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 30, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 5}}}, "y": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.7320508075688772}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 9, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 2}}, "df": 12}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 32, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}}, "df": 4}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 3}}}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.special.gamma": {"tf": 3}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 2.23606797749979}, "pyerrors.special.erfc": {"tf": 2.23606797749979}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 2.6457513110645907}, "pyerrors.special.expit": {"tf": 2.6457513110645907}}, "df": 18}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 9, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "^": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 6, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 8, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 8}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 5}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4}}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 18, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2.449489742783178}, "pyerrors.special.erf": {"tf": 1}}, "df": 20}}}}, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 15}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.polygamma": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {"pyerrors.special.gamma": {"tf": 2}}, "df": 1, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 5}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}}, "df": 1}}}}}}}}}}, "i": {"docs": {"pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 3.3166247903554}, "pyerrors.special.digamma": {"tf": 3.3166247903554}}, "df": 3}}, "[": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}, ">": {"1": {"docs": {"pyerrors.special.logit": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "a": {"docs": {"pyerrors": {"tf": 8.426149773176359}, "pyerrors.correlators.Corr": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 5.744562646538029}, "pyerrors.fits.total_least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.6457513110645907}, "pyerrors.input.pandas.dump_df": {"tf": 2.23606797749979}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 3}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 2}, "pyerrors.special.betainc": {"tf": 4.795831523312719}, "pyerrors.special.betaln": {"tf": 3.3166247903554}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 3.1622776601683795}, "pyerrors.special.gammaincc": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 4.123105625617661}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 2.8284271247461903}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 4.69041575982343}}, "df": 107, "n": {"docs": {"pyerrors": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 45, "d": {"docs": {"pyerrors": {"tf": 7.211102550927978}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 3.4641016151377544}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 2.6457513110645907}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 3}, "pyerrors.special.ive": {"tf": 2.449489742783178}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 93}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 11}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 2}}}}}}, "y": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}}, "df": 5}, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 6}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, ":": {"1": {"0": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"5": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"0": {"4": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 72}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 26, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 9}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 6.082762530298219}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 2}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 2.6457513110645907}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 2.449489742783178}, "pyerrors.special.rgamma": {"tf": 2.449489742783178}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 2}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 2}, "pyerrors.special.jn": {"tf": 3.4641016151377544}, "pyerrors.special.yn": {"tf": 3.4641016151377544}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 3.4641016151377544}, "pyerrors.special.ive": {"tf": 3.1622776601683795}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 2.6457513110645907}}, "df": 47, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 13}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 6}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 4}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 6}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 11}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 6}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}}, "df": 7, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 7}}}}}}}}, "s": {"docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 2.6457513110645907}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 2}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 2.23606797749979}, "pyerrors.special.expit": {"tf": 2.449489742783178}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 55, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 11}, "s": {"docs": {"pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 8, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 36}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 2, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 40, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 4}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 10, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 3}}}, "y": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 8}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 6}}}}}}, "x": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}}, "df": 4}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "i": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 6}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 42, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}}}, "s": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 2}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.jn": {"tf": 2}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 14}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 4, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 8}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 8}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erfinv": {"tf": 2.23606797749979}, "pyerrors.special.erfcinv": {"tf": 2.23606797749979}}, "df": 12, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 7}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 2}}}, "[": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 2}}}}}, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "+": {"1": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "b": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}, ">": {"0": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "|": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 3.7416573867739413}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 10, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 7.14142842854285}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 5.196152422706632}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 3}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.6457513110645907}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 3.605551275463989}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 3.872983346207417}, "pyerrors.special.yn": {"tf": 3.605551275463989}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 4.47213595499958}, "pyerrors.special.ive": {"tf": 4.795831523312719}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 2.23606797749979}, "pyerrors.special.expit": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 106, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "m": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 9, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 8, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}}, "df": 17, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 10}}}, "s": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 65}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 3, "{": {"1": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "+": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}}}}, "2": {"docs": {"pyerrors.special.y0": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}, "docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.6457513110645907}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 5.196152422706632}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}}, "df": 18, "s": {"docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 7}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}, "p": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 2}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.7320508075688772}}, "df": 33}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 10}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 2.23606797749979}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 2}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 44, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 3}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 18, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "g": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 12, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gamma": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 2.23606797749979}}, "df": 27}}, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 6}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 7, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2}, "pyerrors.special.beta": {"tf": 3.4641016151377544}, "pyerrors.special.betainc": {"tf": 4.242640687119285}, "pyerrors.special.betaln": {"tf": 2.449489742783178}, "pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 3}, "pyerrors.special.gammaln": {"tf": 3}, "pyerrors.special.gammainc": {"tf": 3}, "pyerrors.special.gammaincc": {"tf": 3.1622776601683795}, "pyerrors.special.gammasgn": {"tf": 3.1622776601683795}, "pyerrors.special.rgamma": {"tf": 2.8284271247461903}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 2.8284271247461903}, "pyerrors.special.y0": {"tf": 3}, "pyerrors.special.j1": {"tf": 2.8284271247461903}, "pyerrors.special.y1": {"tf": 3.1622776601683795}, "pyerrors.special.jn": {"tf": 3.1622776601683795}, "pyerrors.special.yn": {"tf": 3}, "pyerrors.special.i0": {"tf": 3}, "pyerrors.special.i1": {"tf": 3.1622776601683795}, "pyerrors.special.iv": {"tf": 3.1622776601683795}, "pyerrors.special.ive": {"tf": 3.3166247903554}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 3}, "pyerrors.special.erfcinv": {"tf": 3}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 50, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 29}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 15, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 28, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 5}}}}}, "w": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 6, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 20, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 2.23606797749979}, "pyerrors.special.erfcinv": {"tf": 2.449489742783178}}, "df": 20, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 6}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}, "f": {"docs": {"pyerrors.special.erf": {"tf": 2.23606797749979}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 3}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 4, "c": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 2}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 2.23606797749979}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 3.3166247903554}}, "df": 3}}}, "x": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}}, "df": 2}}, "i": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}}, "df": 2, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 3.1622776601683795}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 4}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 33, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 13, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}}, "df": 6}}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 3}}, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logit": {"tf": 2}, "pyerrors.special.expit": {"tf": 3.872983346207417}}, "df": 2}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 11}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.8284271247461903}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 5}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}}, "df": 5}}}}}}}}}, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}}, "df": 4}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 10}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"1": {"docs": {"pyerrors": {"tf": 3.4641016151377544}}, "df": 1, "|": {"docs": {}, "df": 0, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "2": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 36, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 6, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "r": {"0": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 14}}}, "y": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 15}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 7, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 10, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 22}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 14, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "q": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 6}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 3}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 5}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 6}}}}}}}, "t": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 3}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}}, "df": 17, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 5, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 10}, "s": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 9}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.y1": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 22}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}}, "df": 3}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "/": {"1": {"6": {"0": {"3": {"7": {"5": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 6}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 3}}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": null}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 31}}}, "s": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 17}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 7}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 6, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 21}}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 11}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"1": {"1": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.7320508075688772}}, "df": 1}, "2": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"1": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 6.6332495807108}, "pyerrors.correlators.Corr": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 3.4641016151377544}}, "df": 31, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 3, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 5}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 27, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.449489742783178}}, "df": 9, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 9, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 9}}}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}}, "df": 7}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.linalg.inv": {"tf": 1}}, "df": 7}}, "v": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 5, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 7}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 1}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 4, "/": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 11, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}}}}, "n": {"docs": {"pyerrors": {"tf": 5.744562646538029}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 42, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 27}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 6}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}}, "df": 2, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}, "f": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1}}, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "p": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}}, "df": 7}}}}}}, "o": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 10, "f": {"docs": {"pyerrors": {"tf": 10.44030650891055}, "pyerrors.correlators.Corr": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 5.0990195135927845}, "pyerrors.fits.total_least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_pobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.8284271247461903}, "pyerrors.input.dobs.write_dobs": {"tf": 2.8284271247461903}, "pyerrors.input.hadrons.read_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_to_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.8284271247461903}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 3}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.3166247903554}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.3166247903554}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 4.123105625617661}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.input.utils.check_params": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 3.1622776601683795}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1.4142135623730951}, "pyerrors.linalg.eig": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigv": {"tf": 1.4142135623730951}, "pyerrors.linalg.pinv": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2.6457513110645907}, "pyerrors.obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 2.449489742783178}, "pyerrors.obs.reweight": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 3.3166247903554}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 3.7416573867739413}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 2}, "pyerrors.special.betainc": {"tf": 3}, "pyerrors.special.betaln": {"tf": 2.449489742783178}, "pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 2.6457513110645907}, "pyerrors.special.digamma": {"tf": 2.6457513110645907}, "pyerrors.special.gamma": {"tf": 2.449489742783178}, "pyerrors.special.gammaln": {"tf": 3.1622776601683795}, "pyerrors.special.gammainc": {"tf": 2.449489742783178}, "pyerrors.special.gammaincc": {"tf": 2.449489742783178}, "pyerrors.special.gammasgn": {"tf": 2.6457513110645907}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 3.4641016151377544}, "pyerrors.special.kn": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 3}, "pyerrors.special.y0": {"tf": 3.3166247903554}, "pyerrors.special.j1": {"tf": 2.6457513110645907}, "pyerrors.special.y1": {"tf": 3.3166247903554}, "pyerrors.special.jn": {"tf": 3}, "pyerrors.special.yn": {"tf": 2.6457513110645907}, "pyerrors.special.i0": {"tf": 2.6457513110645907}, "pyerrors.special.i1": {"tf": 2.6457513110645907}, "pyerrors.special.iv": {"tf": 3.605551275463989}, "pyerrors.special.ive": {"tf": 3.605551275463989}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 2.449489742783178}, "pyerrors.special.erfcinv": {"tf": 2.6457513110645907}, "pyerrors.special.logit": {"tf": 2.23606797749979}, "pyerrors.special.expit": {"tf": 2.449489742783178}, "pyerrors.special.logsumexp": {"tf": 3.3166247903554}}, "df": 150, "f": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {"pyerrors": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 45, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 39, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 33}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 48}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}, "2": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 9.591663046625438}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.449489742783178}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 2.449489742783178}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 78, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 24, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 21}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3}}, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}, "j": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 22, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 11}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 2}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 2.23606797749979}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.23606797749979}}, "df": 76, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.23606797749979}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 2.23606797749979}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 2}, "pyerrors.special.jn": {"tf": 3.1622776601683795}, "pyerrors.special.yn": {"tf": 3.1622776601683795}, "pyerrors.special.i0": {"tf": 2.449489742783178}, "pyerrors.special.i1": {"tf": 2.23606797749979}, "pyerrors.special.iv": {"tf": 3.1622776601683795}, "pyerrors.special.ive": {"tf": 2.6457513110645907}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 39, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.special.jn": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 2.6457513110645907}, "pyerrors.special.iv": {"tf": 3.1622776601683795}, "pyerrors.special.ive": {"tf": 2.23606797749979}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}}, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 4, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"1": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"2": {"2": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "g": {"1": {"4": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "n": {"1": {"2": {"5": {"6": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"1": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 7}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 7, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 7, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 2.23606797749979}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}}, "df": 31, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 50, "s": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}, "m": {"docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.358898943540674}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 2.449489742783178}, "pyerrors.obs.sort_corr": {"tf": 2.8284271247461903}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 26}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 10}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 22}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}}, "df": 3, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 18}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "k": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 10}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "x": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 3}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.kn": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2}}, "df": 6}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 13}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 25, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.8284271247461903}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 10, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 10}}}}}}}}}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 7.681145747868608}}, "df": 1}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.multigammaln": {"tf": 2.449489742783178}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"1": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}, "d": {"5": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}, "pyerrors.special.multigammaln": {"tf": 3.4641016151377544}}, "df": 4, "a": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "a": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.872983346207417}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 2.8284271247461903}, "pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.8284271247461903}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 3}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 40, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}}, "df": 4}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 2}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.erfc": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 7, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 5}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 4.242640687119285}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 24, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}}, "df": 11}}}}}}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}}, "df": 5}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.7320508075688772}}, "df": 5, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 6}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 11}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 6}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 18}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 7}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 5}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 8}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 36}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.gm": {"tf": 2}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 43, "s": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 10}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}}, "df": 6}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 5}}, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2}}}}}}}}}}}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 5, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 29}}}, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}}, "df": 7}}}, "+": {"1": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "b": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 2.8284271247461903}, "pyerrors.special.betainc": {"tf": 4.795831523312719}, "pyerrors.special.betaln": {"tf": 3.3166247903554}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 3.1622776601683795}}, "df": 10, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 13}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "{": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 5}}}}}}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 6.244997998398398}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.7416573867739413}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.6457513110645907}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.449489742783178}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 83, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 15}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.special.beta": {"tf": 3.4641016151377544}, "pyerrors.special.betainc": {"tf": 4}, "pyerrors.special.betaln": {"tf": 3.3166247903554}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.betaln": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 2.8284271247461903}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 4}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 2.23606797749979}, "pyerrors.special.y0": {"tf": 2.23606797749979}, "pyerrors.special.j1": {"tf": 2.23606797749979}, "pyerrors.special.y1": {"tf": 2.449489742783178}, "pyerrors.special.jn": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 2.23606797749979}, "pyerrors.special.i1": {"tf": 2.23606797749979}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2.449489742783178}}, "df": 11}}}}}, "y": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2.23606797749979}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 41, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 10}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.6457513110645907}}, "df": 7}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 4}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 44}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}}}}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 2.6457513110645907}, "pyerrors.obs.import_bootstrap": {"tf": 2}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.betainc": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 2}}, "df": 4}}}, "x": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2, "g": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}}, "df": 4}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "*": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 7, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "2": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.prune": {"tf": 4.47213595499958}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}}, "df": 20, "h": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 16.492422502470642}, "pyerrors.correlators.Corr": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 3}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gm": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 2}, "pyerrors.correlators.Corr.deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.plateau": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 4.795831523312719}, "pyerrors.covobs.Covobs.__init__": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 7.280109889280518}, "pyerrors.fits.total_least_squares": {"tf": 3.7416573867739413}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.7320508075688772}, "pyerrors.fits.residual_plot": {"tf": 2}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 3.605551275463989}, "pyerrors.input.dobs.write_pobs": {"tf": 3.872983346207417}, "pyerrors.input.dobs.read_pobs": {"tf": 3}, "pyerrors.input.dobs.import_dobs_string": {"tf": 3.3166247903554}, "pyerrors.input.dobs.read_dobs": {"tf": 3.3166247903554}, "pyerrors.input.dobs.create_dobs_string": {"tf": 4.58257569495584}, "pyerrors.input.dobs.write_dobs": {"tf": 4.58257569495584}, "pyerrors.input.hadrons.read_hd5": {"tf": 3.4641016151377544}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 3.1622776601683795}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.830951894845301}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 2.8284271247461903}, "pyerrors.input.json.dump_to_json": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 3}, "pyerrors.input.json.load_json": {"tf": 3}, "pyerrors.input.json.dump_dict_to_json": {"tf": 3.3166247903554}, "pyerrors.input.json.load_json_dict": {"tf": 2.6457513110645907}, "pyerrors.input.misc.fit_t0": {"tf": 4.58257569495584}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 3}, "pyerrors.input.openQCD.extract_t0": {"tf": 5.477225575051661}, "pyerrors.input.openQCD.extract_w0": {"tf": 5.477225575051661}, "pyerrors.input.openQCD.read_qtop": {"tf": 4.58257569495584}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 4.358898943540674}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 4.58257569495584}, "pyerrors.input.pandas.to_sql": {"tf": 2.23606797749979}, "pyerrors.input.pandas.read_sql": {"tf": 2.449489742783178}, "pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 2.449489742783178}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4.58257569495584}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 4.898979485566356}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 2.6457513110645907}, "pyerrors.integrate.quad": {"tf": 3.3166247903554}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.23606797749979}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.23606797749979}, "pyerrors.obs.Obs": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.gm": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.3166247903554}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 4.123105625617661}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2.8284271247461903}, "pyerrors.obs.reweight": {"tf": 2.23606797749979}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 5.291502622129181}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 2.449489742783178}, "pyerrors.obs.sort_corr": {"tf": 4.898979485566356}, "pyerrors.obs.import_jackknife": {"tf": 2}, "pyerrors.obs.import_bootstrap": {"tf": 3}, "pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 2.449489742783178}, "pyerrors.special.beta": {"tf": 3.4641016151377544}, "pyerrors.special.betainc": {"tf": 5.196152422706632}, "pyerrors.special.betaln": {"tf": 3}, "pyerrors.special.polygamma": {"tf": 2}, "pyerrors.special.psi": {"tf": 4.58257569495584}, "pyerrors.special.digamma": {"tf": 4.58257569495584}, "pyerrors.special.gamma": {"tf": 5.196152422706632}, "pyerrors.special.gammaln": {"tf": 3.7416573867739413}, "pyerrors.special.gammainc": {"tf": 3.3166247903554}, "pyerrors.special.gammaincc": {"tf": 3.3166247903554}, "pyerrors.special.gammasgn": {"tf": 3.605551275463989}, "pyerrors.special.rgamma": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 4.58257569495584}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 4}, "pyerrors.special.y0": {"tf": 4}, "pyerrors.special.j1": {"tf": 3.872983346207417}, "pyerrors.special.y1": {"tf": 4.123105625617661}, "pyerrors.special.jn": {"tf": 4.795831523312719}, "pyerrors.special.yn": {"tf": 4}, "pyerrors.special.i0": {"tf": 3}, "pyerrors.special.i1": {"tf": 3.3166247903554}, "pyerrors.special.iv": {"tf": 5.196152422706632}, "pyerrors.special.ive": {"tf": 5.385164807134504}, "pyerrors.special.erf": {"tf": 2.6457513110645907}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 3.605551275463989}, "pyerrors.special.erfcinv": {"tf": 3.3166247903554}, "pyerrors.special.logit": {"tf": 2.449489742783178}, "pyerrors.special.expit": {"tf": 3}, "pyerrors.special.logsumexp": {"tf": 4.47213595499958}}, "df": 165, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 7, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 8}}, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 6}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}, "y": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "m": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 6.324555320336759}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 51}, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 54}, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1, "g": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 2}, "pyerrors.special.erfcinv": {"tf": 2}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 66}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 2}}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "o": {"docs": {"pyerrors": {"tf": 8.831760866327848}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 3}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.plateau": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4}, "pyerrors.fits.total_least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.7416573867739413}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 3}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 3.1622776601683795}, "pyerrors.input.pandas.to_sql": {"tf": 2.23606797749979}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3.3166247903554}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 3.3166247903554}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2.23606797749979}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2.23606797749979}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.8284271247461903}, "pyerrors.obs.sort_corr": {"tf": 2.449489742783178}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.23606797749979}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gamma": {"tf": 2.8284271247461903}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 2.6457513110645907}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 2.8284271247461903}}, "df": 130, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 3}}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 30}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 3}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 6, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 8}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 7}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 5}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 2}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "+": {"1": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}}, "df": 2}, "2": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}}, "df": 1}}, "/": {"2": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 6}}}}, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 4}, "z": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 16, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 3.1622776601683795}, "pyerrors.special.betainc": {"tf": 2.23606797749979}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 5.744562646538029}, "pyerrors.special.gammaln": {"tf": 3}, "pyerrors.special.gammainc": {"tf": 3}, "pyerrors.special.gammaincc": {"tf": 3}, "pyerrors.special.gammasgn": {"tf": 3.872983346207417}, "pyerrors.special.rgamma": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 2.8284271247461903}}, "df": 32, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 2.449489742783178}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 2.6457513110645907}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.gammainc": {"tf": 2.23606797749979}, "pyerrors.special.gammaincc": {"tf": 2}}, "df": 2, "c": {"docs": {"pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2.23606797749979}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "+": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "@": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 39}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {"pyerrors": {"tf": 8.306623862918075}, "pyerrors.fits.least_squares": {"tf": 11.357816691600547}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.3166247903554}, "pyerrors.obs.sort_corr": {"tf": 4.58257569495584}, "pyerrors.special.beta": {"tf": 4.242640687119285}, "pyerrors.special.betainc": {"tf": 4.58257569495584}, "pyerrors.special.betaln": {"tf": 4.898979485566356}, "pyerrors.special.polygamma": {"tf": 3.4641016151377544}, "pyerrors.special.psi": {"tf": 3.4641016151377544}, "pyerrors.special.digamma": {"tf": 3.4641016151377544}, "pyerrors.special.gamma": {"tf": 7.615773105863909}, "pyerrors.special.gammaln": {"tf": 4.58257569495584}, "pyerrors.special.gammainc": {"tf": 4}, "pyerrors.special.gammaincc": {"tf": 4}, "pyerrors.special.gammasgn": {"tf": 4.795831523312719}, "pyerrors.special.rgamma": {"tf": 3.872983346207417}, "pyerrors.special.multigammaln": {"tf": 4.47213595499958}, "pyerrors.special.j0": {"tf": 5.477225575051661}, "pyerrors.special.y0": {"tf": 5.477225575051661}, "pyerrors.special.j1": {"tf": 5.477225575051661}, "pyerrors.special.y1": {"tf": 5.477225575051661}, "pyerrors.special.jn": {"tf": 7}, "pyerrors.special.yn": {"tf": 7.14142842854285}, "pyerrors.special.i0": {"tf": 5.477225575051661}, "pyerrors.special.i1": {"tf": 5.477225575051661}, "pyerrors.special.iv": {"tf": 6.928203230275509}, "pyerrors.special.ive": {"tf": 6.48074069840786}, "pyerrors.special.erf": {"tf": 4.898979485566356}, "pyerrors.special.erfc": {"tf": 4.898979485566356}, "pyerrors.special.erfinv": {"tf": 6.708203932499369}, "pyerrors.special.erfcinv": {"tf": 6.244997998398398}, "pyerrors.special.logit": {"tf": 6.244997998398398}, "pyerrors.special.expit": {"tf": 6.244997998398398}, "pyerrors.special.logsumexp": {"tf": 6.244997998398398}}, "df": 34}, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 3}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 10, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}}, "df": 4}}, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 3}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 6}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "/": {"5": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 8}, "8": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}}, "z": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 16, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}}, "^": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "f": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "/": {"0": {"3": {"0": {"6": {"0": {"1": {"7": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"1": {"2": {"0": {"8": {"7": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}}, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 12, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 7}}}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.7320508075688772}}, "df": 6, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 5}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 8}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}}, "df": 6}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 17}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 2.449489742783178}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 3.1622776601683795}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.extract_w0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 3.3166247903554}, "pyerrors.input.utils.sort_names": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 2.449489742783178}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.449489742783178}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 56, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 10}, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 12}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 27}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 23}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}}, "df": 4}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 3}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 3, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}}, "df": 12}}}}, "q": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2}}, "df": 2}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 7}}, "t": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}}}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 3}}, "df": 11, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.logsumexp": {"tf": 2.6457513110645907}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 5, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"2": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logit": {"tf": 4.242640687119285}, "pyerrors.special.expit": {"tf": 2.23606797749979}}, "df": 2}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.load_object": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 4}}, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 2}}, "df": 6}}}, "c": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}}, "df": 7}, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}}, "df": 1}, "n": {"docs": {"pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 13, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 11, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}}, "df": 1, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 4}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 6}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.23606797749979}}, "df": 5}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 6, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 9}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 7}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}}}}}}, "b": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 27}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 12}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 6}}, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 4}, "k": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 2}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 10}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 3}}, "df": 4, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 27}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 14, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 2}}}}, "d": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.6457513110645907}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 2}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 61, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 19, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 9}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 14, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 11}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 10, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {"pyerrors.special.beta": {"tf": 2.8284271247461903}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 2.449489742783178}, "pyerrors.special.rgamma": {"tf": 2.23606797749979}}, "df": 7, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 3}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 28}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 35}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 4, "s": {"1": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 3.1622776601683795}, "pyerrors.obs.import_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 2.6457513110645907}}, "df": 11}}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 44}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 5}}}, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}}, "df": 5, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 2.23606797749979}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 17}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 2}}}}, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 40}, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 20, "s": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 6}}}}, "p": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}}, "df": 10}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}, "e": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 13}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 19}, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 12, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 2}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 4}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.j0": {"tf": 2}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.jn": {"tf": 2}}, "df": 3}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}}, "df": 6}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 12}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}}, "df": 14}}}, "w": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 18, "n": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 6}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 3}, "d": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 5, "{": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 3}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.fits.least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 2}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.yn": {"tf": 2.23606797749979}}, "df": 22, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 20, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 6, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 50}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}}}}}}}}}, "t": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 43, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 32}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}, "w": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 10}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 6}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 8}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 7}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 5, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 47}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 33, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 10}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.4641016151377544}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 2}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 4.358898943540674}}, "df": 34, "r": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.23606797749979}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 30, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 20, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}, "/": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 3}}}, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 3}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 2.23606797749979}, "pyerrors.special.expit": {"tf": 2.23606797749979}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 49, "s": {"docs": {"pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 2.449489742783178}, "pyerrors.special.digamma": {"tf": 2.449489742783178}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}}, "df": 11}}}}, "x": {"0": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 12}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 12}, "3": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 4.795831523312719}, "pyerrors.fits.total_least_squares": {"tf": 3}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 4}, "pyerrors.special.polygamma": {"tf": 2.449489742783178}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 3.7416573867739413}, "pyerrors.special.gammaln": {"tf": 3.605551275463989}, "pyerrors.special.gammainc": {"tf": 3}, "pyerrors.special.gammaincc": {"tf": 3}, "pyerrors.special.gammasgn": {"tf": 3.605551275463989}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 2.8284271247461903}, "pyerrors.special.y0": {"tf": 3.4641016151377544}, "pyerrors.special.j1": {"tf": 2.6457513110645907}, "pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 2.449489742783178}, "pyerrors.special.i0": {"tf": 3}, "pyerrors.special.i1": {"tf": 3}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 2.8284271247461903}, "pyerrors.special.erfc": {"tf": 3}, "pyerrors.special.erfinv": {"tf": 2.8284271247461903}, "pyerrors.special.erfcinv": {"tf": 2.6457513110645907}, "pyerrors.special.logit": {"tf": 3.4641016151377544}, "pyerrors.special.expit": {"tf": 3.7416573867739413}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 41, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}}, "df": 7}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}, "[": {"0": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "^": {"2": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1, "/": {"4": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 8}}}}}}, "y": {"0": {"docs": {"pyerrors.special.y0": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 1.7320508075688772}}, "df": 2}, "1": {"docs": {"pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 1.7320508075688772}}, "df": 2}, "docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.358898943540674}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 3}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 2}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 3.4641016151377544}, "pyerrors.special.erfcinv": {"tf": 3.1622776601683795}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 24, "o": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}}, "df": 3}}}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.8284271247461903}}, "df": 2}, "v": {"docs": {"pyerrors.special.y0": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 3.4641016151377544}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.logit": {"tf": 1}}, "df": 1}}}}}}, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 19, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.6457513110645907}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 23, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 14, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 17}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 2}}}}}}}}}}}, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2, "[": {"0": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 9, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.23606797749979}}, "df": 21, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 13}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "t": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 7}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}}}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 6}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 7}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 6, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 12}, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 6}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 2.23606797749979}, "pyerrors.special.gammaincc": {"tf": 2.23606797749979}}, "df": 5}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 15, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 99}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 10}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 6}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.reweight": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 27}}}}}, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 25, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}, "k": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 3}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 4}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 8}}}}, "v": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 2.449489742783178}}, "df": 2}}}}}}, "v": {"1": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "v": {"2": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 4.795831523312719}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 4.242640687119285}, "pyerrors.special.ive": {"tf": 4.242640687119285}}, "df": 8, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 38, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 32}, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 24}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 12}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.449489742783178}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.449489742783178}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 18}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 6}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 2}}}}}}}}}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "/": {"2": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}}}, "u": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 22, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 39}, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}}, "df": 16}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 3, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 2}}}}}}, "j": {"0": {"docs": {"pyerrors.special.j0": {"tf": 2.6457513110645907}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}, "1": {"docs": {"pyerrors.special.j1": {"tf": 2.6457513110645907}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2.8284271247461903}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 20, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 4, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2.23606797749979}, "pyerrors.input.json.dump_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 12}}}, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "}": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}, "^": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "v": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 3.3166247903554}}, "df": 3, "e": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 3}}, "k": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 2.23606797749979}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 31, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.6457513110645907}}, "df": 3}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.6457513110645907}}, "df": 2}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "\u2013": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"1": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 2.449489742783178}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2.23606797749979}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 28}}}, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}}, "df": 2, "c": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}}, "df": 2}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.input.hadrons.read_hd5": {"tf": 2.8284271247461903}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 24}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 29, "h": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 11}}}}, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 5}}}}}}}, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 7}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}}, "u": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"2": {"docs": {}, "df": 0, "f": {"1": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "z": {"docs": {"pyerrors.special.psi": {"tf": 3}, "pyerrors.special.digamma": {"tf": 3}, "pyerrors.special.gamma": {"tf": 4.123105625617661}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 3.872983346207417}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 4.242640687119285}, "pyerrors.special.ive": {"tf": 4.69041575982343}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 12, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 22, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 5}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}}, "df": 7}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 10}}}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "i": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}, "k": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough.\n>>> a = np.ma.array([np.log(2), 2, np.log(3)],\n... mask=[False, True, False])\n>>> b = (~a.mask).astype(int)\n>>> logsumexp(a.data, b=b), np.log(5)\n1.6094379124341005, 1.6094379124341005\n