feat: spaghetti_plot method for monitoring exceptional configurations added to Corr class, tests added.

This commit is contained in:
Fabian Joswig 2022-03-08 10:50:46 +00:00
parent e5d7271a2b
commit 8d0bfafaab
2 changed files with 40 additions and 3 deletions

View file

@ -325,10 +325,20 @@ def test_corr_vector_operations():
assert np.all([o == 0 for o in ((my_corr * my_vec) / my_vec) - my_corr])
assert np.all([o == 0 for o in ((my_corr / my_vec) * my_vec) - my_corr])
def _gen_corr(val):
def test_spaghetti_plot():
corr = _gen_corr(12, 50)
corr += pe.pseudo_Obs(0.0, 0.1, 'another_ensemble')
corr += pe.cov_Obs(0.0, 0.01 ** 2, 'covobs')
corr.spaghetti_plot(True)
corr.spaghetti_plot(False)
def _gen_corr(val, samples=2000):
corr_content = []
for t in range(16):
corr_content.append(pe.pseudo_Obs(val, 0.1, 't', 2000))
corr_content.append(pe.pseudo_Obs(val, 0.1, 't', samples))
return pe.correlators.Corr(corr_content)