From 8811f01fb8e1c34ee57d6c80fa3d791694a197d5 Mon Sep 17 00:00:00 2001 From: fjosw Date: Tue, 25 Nov 2025 11:57:51 +0000 Subject: [PATCH] Documentation updated --- docs/pyerrors/input/sfcf.html | 2183 +++++++++++++++++---------------- docs/pyerrors/misc.html | 2 +- docs/search.js | 2 +- 3 files changed, 1114 insertions(+), 1073 deletions(-) diff --git a/docs/pyerrors/input/sfcf.html b/docs/pyerrors/input/sfcf.html index b1056afa..5329b3a4 100644 --- a/docs/pyerrors/input/sfcf.html +++ b/docs/pyerrors/input/sfcf.html @@ -89,690 +89,731 @@ 5from ..obs import Obs 6from .utils import sort_names, check_idl 7import itertools - 8 + 8import warnings 9 - 10sep = "/" - 11 + 10 + 11sep = "/" 12 - 13def read_sfcf(path, prefix, name, quarks='.*', corr_type="bi", noffset=0, wf=0, wf2=0, version="1.0c", cfg_separator="n", cfg_func=None, silent=False, **kwargs): - 14 """Read sfcf files from given folder structure. - 15 - 16 Parameters - 17 ---------- - 18 path : str - 19 Path to the sfcf files. - 20 prefix : str - 21 Prefix of the sfcf files. - 22 name : str - 23 Name of the correlation function to read. - 24 quarks : str - 25 Label of the quarks used in the sfcf input file. e.g. "quark quark" - 26 for version 0.0 this does NOT need to be given with the typical " - " - 27 that is present in the output file, - 28 this is done automatically for this version - 29 corr_type : str - 30 Type of correlation function to read. Can be - 31 - 'bi' for boundary-inner - 32 - 'bb' for boundary-boundary - 33 - 'bib' for boundary-inner-boundary - 34 noffset : int - 35 Offset of the source (only relevant when wavefunctions are used) - 36 wf : int - 37 ID of wave function - 38 wf2 : int - 39 ID of the second wavefunction - 40 (only relevant for boundary-to-boundary correlation functions) - 41 im : bool - 42 if True, read imaginary instead of real part - 43 of the correlation function. - 44 names : list - 45 Alternative labeling for replicas/ensembles. - 46 Has to have the appropriate length - 47 ens_name : str - 48 replaces the name of the ensemble - 49 version: str - 50 version of SFCF, with which the measurement was done. - 51 if the compact output option (-c) was specified, - 52 append a "c" to the version (e.g. "1.0c") - 53 if the append output option (-a) was specified, - 54 append an "a" to the version - 55 cfg_separator : str - 56 String that separates the ensemble identifier from the configuration number (default 'n'). - 57 replica: list - 58 list of replica to be read, default is all - 59 files: list - 60 list of files to be read per replica, default is all. - 61 for non-compact output format, hand the folders to be read here. - 62 check_configs: list[list[int]] - 63 list of list of supposed configs, eg. [range(1,1000)] - 64 for one replicum with 1000 configs - 65 - 66 Returns - 67 ------- - 68 result: list[Obs] - 69 list of Observables with length T, observable per timeslice. - 70 bb-type correlators have length 1. - 71 """ - 72 ret = read_sfcf_multi(path, prefix, [name], quarks_list=[quarks], corr_type_list=[corr_type], - 73 noffset_list=[noffset], wf_list=[wf], wf2_list=[wf2], version=version, - 74 cfg_separator=cfg_separator, cfg_func=cfg_func, silent=silent, **kwargs) - 75 return ret[name][quarks][str(noffset)][str(wf)][str(wf2)] - 76 + 13 + 14def read_sfcf(path, prefix, name, quarks='.*', corr_type="bi", noffset=0, wf=0, wf2=0, version="1.0c", cfg_separator="n", cfg_func=None, silent=False, **kwargs): + 15 """Read sfcf files from given folder structure. + 16 + 17 Parameters + 18 ---------- + 19 path : str + 20 Path to the sfcf files. + 21 prefix : str + 22 Prefix of the sfcf files. + 23 name : str + 24 Name of the correlation function to read. + 25 quarks : str + 26 Label of the quarks used in the sfcf input file. e.g. "quark quark" + 27 for version 0.0 this does NOT need to be given with the typical " - " + 28 that is present in the output file, + 29 this is done automatically for this version + 30 corr_type : str + 31 Type of correlation function to read. Can be + 32 - 'bi' for boundary-inner + 33 - 'bb' for boundary-boundary + 34 - 'bib' for boundary-inner-boundary + 35 noffset : int + 36 Offset of the source (only relevant when wavefunctions are used) + 37 wf : int + 38 ID of wave function + 39 wf2 : int + 40 ID of the second wavefunction + 41 (only relevant for boundary-to-boundary correlation functions) + 42 im : bool + 43 if True, read imaginary instead of real part + 44 of the correlation function. + 45 names : list + 46 Alternative labeling for replicas/ensembles. + 47 Has to have the appropriate length + 48 ens_name : str + 49 replaces the name of the ensemble + 50 version: str + 51 version of SFCF, with which the measurement was done. + 52 if the compact output option (-c) was specified, + 53 append a "c" to the version (e.g. "1.0c") + 54 if the append output option (-a) was specified, + 55 append an "a" to the version + 56 cfg_separator : str + 57 String that separates the ensemble identifier from the configuration number (default 'n'). + 58 replica: list + 59 list of replica to be read, default is all + 60 files: list + 61 list of files to be read per replica, default is all. + 62 for non-compact output format, hand the folders to be read here. + 63 check_configs: list[list[int]] + 64 list of list of supposed configs, eg. [range(1,1000)] + 65 for one replicum with 1000 configs + 66 + 67 Returns + 68 ------- + 69 result: list[Obs] + 70 list of Observables with length T, observable per timeslice. + 71 bb-type correlators have length 1. + 72 """ + 73 ret = read_sfcf_multi(path, prefix, [name], quarks_list=[quarks], corr_type_list=[corr_type], + 74 noffset_list=[noffset], wf_list=[wf], wf2_list=[wf2], version=version, + 75 cfg_separator=cfg_separator, cfg_func=cfg_func, silent=silent, **kwargs) + 76 return ret[name][quarks][str(noffset)][str(wf)][str(wf2)] 77 - 78def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=['bi'], noffset_list=[0], wf_list=[0], wf2_list=[0], version="1.0c", cfg_separator="n", cfg_func=None, silent=False, keyed_out=False, **kwargs): - 79 """Read sfcf files from given folder structure. - 80 - 81 Parameters - 82 ---------- - 83 path : str - 84 Path to the sfcf files. - 85 prefix : str - 86 Prefix of the sfcf files. - 87 name : str - 88 Name of the correlation function to read. - 89 quarks_list : list[str] - 90 Label of the quarks used in the sfcf input file. e.g. "quark quark" - 91 for version 0.0 this does NOT need to be given with the typical " - " - 92 that is present in the output file, - 93 this is done automatically for this version - 94 corr_type_list : list[str] - 95 Type of correlation function to read. Can be - 96 - 'bi' for boundary-inner - 97 - 'bb' for boundary-boundary - 98 - 'bib' for boundary-inner-boundary - 99 noffset_list : list[int] -100 Offset of the source (only relevant when wavefunctions are used) -101 wf_list : int -102 ID of wave function -103 wf2_list : list[int] -104 ID of the second wavefunction -105 (only relevant for boundary-to-boundary correlation functions) -106 im : bool -107 if True, read imaginary instead of real part -108 of the correlation function. -109 names : list -110 Alternative labeling for replicas/ensembles. -111 Has to have the appropriate length -112 ens_name : str -113 replaces the name of the ensemble -114 version: str -115 version of SFCF, with which the measurement was done. -116 if the compact output option (-c) was specified, -117 append a "c" to the version (e.g. "1.0c") -118 if the append output option (-a) was specified, -119 append an "a" to the version -120 cfg_separator : str -121 String that separates the ensemble identifier from the configuration number (default 'n'). -122 replica: list -123 list of replica to be read, default is all -124 files: list[list[int]] -125 list of files to be read per replica, default is all. -126 for non-compact output format, hand the folders to be read here. -127 check_configs: list[list[int]] -128 list of list of supposed configs, eg. [range(1,1000)] -129 for one replicum with 1000 configs -130 rep_string: str -131 Separator of ensemble name and replicum. Example: In "ensAr0", "r" would be the separator string. -132 Returns -133 ------- -134 result: dict[list[Obs]] -135 dict with one of the following properties: -136 if keyed_out: -137 dict[key] = list[Obs] -138 where key has the form name/quarks/offset/wf/wf2 -139 if not keyed_out: -140 dict[name][quarks][offset][wf][wf2] = list[Obs] -141 """ -142 -143 if kwargs.get('im'): -144 im = 1 -145 part = 'imaginary' -146 else: -147 im = 0 -148 part = 'real' -149 -150 known_versions = ["0.0", "1.0", "2.0", "1.0c", "2.0c", "1.0a", "2.0a"] -151 -152 if version not in known_versions: -153 raise Exception("This version is not known!") -154 if (version[-1] == "c"): -155 appended = False -156 compact = True -157 version = version[:-1] -158 elif (version[-1] == "a"): -159 appended = True -160 compact = False -161 version = version[:-1] -162 else: -163 compact = False -164 appended = False -165 ls = [] -166 if "replica" in kwargs: -167 ls = kwargs.get("replica") -168 else: -169 for (dirpath, dirnames, filenames) in os.walk(path): -170 if not appended: -171 ls.extend(dirnames) -172 else: -173 ls.extend(filenames) -174 break -175 if not ls: -176 raise Exception('Error, directory not found') -177 # Exclude folders with different names -178 for exc in ls: -179 if not fnmatch.fnmatch(exc, prefix + '*'): -180 ls = list(set(ls) - set([exc])) -181 -182 if not appended: -183 ls = sort_names(ls) -184 replica = len(ls) -185 -186 else: -187 replica = len([file.split(".")[-1] for file in ls]) // len(set([file.split(".")[-1] for file in ls])) -188 if replica == 0: -189 raise Exception('No replica found in directory') -190 if not silent: -191 print('Read', part, 'part of', name_list, 'from', prefix[:-1], ',', replica, 'replica') -192 -193 if 'names' in kwargs: -194 new_names = kwargs.get('names') -195 if len(new_names) != len(set(new_names)): -196 raise Exception("names are not unique!") -197 if len(new_names) != replica: -198 raise Exception('names should have the length', replica) -199 -200 else: -201 ens_name = kwargs.get("ens_name") -202 if not appended: -203 new_names = _get_rep_names(ls, ens_name, rep_sep=(kwargs.get('rep_string', 'r'))) -204 else: -205 new_names = _get_appended_rep_names(ls, prefix, name_list[0], ens_name, rep_sep=(kwargs.get('rep_string', 'r'))) -206 new_names = sort_names(new_names) -207 -208 idl = [] -209 -210 noffset_list = [str(x) for x in noffset_list] -211 wf_list = [str(x) for x in wf_list] -212 wf2_list = [str(x) for x in wf2_list] -213 -214 # setup dict structures -215 intern = {} -216 for name, corr_type in zip(name_list, corr_type_list): -217 intern[name] = {} -218 b2b, single = _extract_corr_type(corr_type) -219 intern[name]["b2b"] = b2b -220 intern[name]["single"] = single -221 intern[name]["spec"] = {} -222 for quarks in quarks_list: -223 intern[name]["spec"][quarks] = {} -224 for off in noffset_list: -225 intern[name]["spec"][quarks][off] = {} -226 for w in wf_list: -227 intern[name]["spec"][quarks][off][w] = {} -228 if b2b: -229 for w2 in wf2_list: -230 intern[name]["spec"][quarks][off][w][w2] = {} -231 intern[name]["spec"][quarks][off][w][w2]["pattern"] = _make_pattern(version, name, off, w, w2, intern[name]['b2b'], quarks) -232 else: -233 intern[name]["spec"][quarks][off][w]["0"] = {} -234 intern[name]["spec"][quarks][off][w]["0"]["pattern"] = _make_pattern(version, name, off, w, 0, intern[name]['b2b'], quarks) -235 -236 internal_ret_dict = {} -237 needed_keys = [] -238 for name, corr_type in zip(name_list, corr_type_list): -239 b2b, single = _extract_corr_type(corr_type) -240 if b2b: -241 needed_keys.extend(_lists2key([name], quarks_list, noffset_list, wf_list, wf2_list)) -242 else: -243 needed_keys.extend(_lists2key([name], quarks_list, noffset_list, wf_list, ["0"])) -244 -245 for key in needed_keys: -246 internal_ret_dict[key] = [] -247 -248 def _default_idl_func(cfg_string, cfg_sep): -249 return int(cfg_string.split(cfg_sep)[-1]) -250 -251 if cfg_func is None: -252 print("Default idl function in use.") -253 cfg_func = _default_idl_func -254 cfg_func_args = [cfg_separator] -255 else: -256 cfg_func_args = kwargs.get("cfg_func_args", []) -257 -258 if not appended: -259 for i, item in enumerate(ls): -260 rep_path = path + '/' + item -261 if "files" in kwargs: -262 files = kwargs.get("files") -263 if isinstance(files, list): -264 if all(isinstance(f, list) for f in files): -265 files = files[i] -266 elif all(isinstance(f, str) for f in files): -267 files = files -268 else: -269 raise TypeError("files has to be of type list[list[str]] or list[str]!") -270 else: -271 raise TypeError("files has to be of type list[list[str]] or list[str]!") -272 -273 else: -274 files = [] -275 sub_ls = _find_files(rep_path, prefix, compact, files) -276 rep_idl = [] -277 no_cfg = len(sub_ls) -278 for cfg in sub_ls: -279 try: -280 if compact: -281 rep_idl.append(cfg_func(cfg, *cfg_func_args)) -282 else: -283 rep_idl.append(int(cfg[3:])) -284 except Exception: -285 raise Exception("Couldn't parse idl from directory, problem with file " + cfg) -286 rep_idl.sort() -287 # maybe there is a better way to print the idls -288 if not silent: -289 print(item, ':', no_cfg, ' configurations') -290 idl.append(rep_idl) -291 # here we have found all the files we need to look into. -292 if i == 0: -293 if version != "0.0" and compact: -294 file = path + '/' + item + '/' + sub_ls[0] -295 for name_index, name in enumerate(name_list): -296 if version == "0.0" or not compact: -297 file = path + '/' + item + '/' + sub_ls[0] + '/' + name -298 if corr_type_list[name_index] == 'bi': -299 name_keys = _lists2key(quarks_list, noffset_list, wf_list, ["0"]) -300 else: -301 name_keys = _lists2key(quarks_list, noffset_list, wf_list, wf2_list) -302 for key in name_keys: -303 specs = _key2specs(key) -304 quarks = specs[0] -305 off = specs[1] -306 w = specs[2] -307 w2 = specs[3] -308 # here, we want to find the place within the file, -309 # where the correlator we need is stored. -310 # to do so, the pattern needed is put together -311 # from the input values -312 start_read, T = _find_correlator(file, version, intern[name]["spec"][quarks][str(off)][str(w)][str(w2)]["pattern"], intern[name]['b2b'], silent=silent) -313 intern[name]["spec"][quarks][str(off)][str(w)][str(w2)]["start"] = start_read -314 intern[name]["T"] = T -315 # preparing the datastructure -316 # the correlators get parsed into... -317 deltas = [] -318 for j in range(intern[name]["T"]): -319 deltas.append([]) -320 internal_ret_dict[sep.join([name, key])] = deltas -321 -322 if compact: -323 rep_deltas = _read_compact_rep(path, item, sub_ls, intern, needed_keys, im) -324 for key in needed_keys: -325 name = _key2specs(key)[0] -326 for t in range(intern[name]["T"]): -327 internal_ret_dict[key][t].append(rep_deltas[key][t]) -328 else: -329 for key in needed_keys: -330 rep_data = [] -331 name = _key2specs(key)[0] -332 for subitem in sub_ls: -333 cfg_path = path + '/' + item + '/' + subitem -334 file_data = _read_o_file(cfg_path, name, needed_keys, intern, version, im) -335 rep_data.append(file_data) -336 for t in range(intern[name]["T"]): -337 internal_ret_dict[key][t].append([]) -338 for cfg in range(no_cfg): -339 internal_ret_dict[key][t][i].append(rep_data[cfg][key][t]) -340 else: -341 for key in needed_keys: -342 specs = _key2specs(key) -343 name = specs[0] -344 quarks = specs[1] -345 off = specs[2] -346 w = specs[3] -347 w2 = specs[4] -348 if "files" in kwargs: -349 if isinstance(kwargs.get("files"), list) and all(isinstance(f, str) for f in kwargs.get("files")): -350 name_ls = kwargs.get("files") -351 else: -352 raise TypeError("In append mode, files has to be of type list[str]!") -353 else: -354 name_ls = ls -355 for exc in name_ls: -356 if not fnmatch.fnmatch(exc, prefix + '*.' + name): -357 name_ls = list(set(name_ls) - set([exc])) -358 name_ls = sort_names(name_ls) -359 pattern = intern[name]['spec'][quarks][off][w][w2]['pattern'] -360 deltas = [] -361 for rep, file in enumerate(name_ls): -362 rep_idl = [] -363 filename = path + '/' + file -364 T, rep_idl, rep_data = _read_append_rep(filename, pattern, intern[name]['b2b'], im, intern[name]['single'], cfg_func, cfg_func_args) -365 if rep == 0: -366 intern[name]['T'] = T -367 for t in range(intern[name]['T']): -368 deltas.append([]) -369 for t in range(intern[name]['T']): -370 deltas[t].append(rep_data[t]) -371 internal_ret_dict[key] = deltas -372 if name == name_list[0]: -373 idl.append(rep_idl) -374 -375 if kwargs.get("check_configs") is True: -376 if not silent: -377 print("Checking for missing configs...") -378 che = kwargs.get("check_configs") -379 if not (len(che) == len(idl)): -380 raise Exception("check_configs has to be the same length as replica!") -381 for r in range(len(idl)): -382 if not silent: -383 print("checking " + new_names[r]) -384 check_idl(idl[r], che[r]) -385 if not silent: -386 print("Done") -387 -388 result_dict = {} -389 if keyed_out: -390 for key in needed_keys: -391 name = _key2specs(key)[0] -392 result = [] -393 for t in range(intern[name]["T"]): -394 result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl)) -395 result_dict[key] = result -396 else: -397 for name, corr_type in zip(name_list, corr_type_list): -398 result_dict[name] = {} -399 for quarks in quarks_list: -400 result_dict[name][quarks] = {} -401 for off in noffset_list: -402 result_dict[name][quarks][off] = {} -403 for w in wf_list: -404 result_dict[name][quarks][off][w] = {} -405 if corr_type != 'bi': -406 for w2 in wf2_list: -407 key = _specs2key(name, quarks, off, w, w2) -408 result = [] -409 for t in range(intern[name]["T"]): -410 result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl)) -411 result_dict[name][quarks][str(off)][str(w)][str(w2)] = result -412 else: -413 key = _specs2key(name, quarks, off, w, "0") -414 result = [] -415 for t in range(intern[name]["T"]): -416 result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl)) -417 result_dict[name][quarks][str(off)][str(w)][str(0)] = result -418 return result_dict -419 + 78 + 79def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=['bi'], noffset_list=[0], wf_list=[0], wf2_list=[0], version="1.0c", cfg_separator="n", cfg_func=None, silent=False, keyed_out=False, **kwargs): + 80 """Read sfcf files from given folder structure. + 81 + 82 Parameters + 83 ---------- + 84 path : str + 85 Path to the sfcf files. + 86 prefix : str + 87 Prefix of the sfcf files. + 88 name : str + 89 Name of the correlation function to read. + 90 quarks_list : list[str] + 91 Label of the quarks used in the sfcf input file. e.g. "quark quark" + 92 for version 0.0 this does NOT need to be given with the typical " - " + 93 that is present in the output file, + 94 this is done automatically for this version + 95 corr_type_list : list[str] + 96 Type of correlation function to read. Can be + 97 - 'bi' for boundary-inner + 98 - 'bb' for boundary-boundary + 99 - 'bib' for boundary-inner-boundary +100 noffset_list : list[int] +101 Offset of the source (only relevant when wavefunctions are used) +102 wf_list : int +103 ID of wave function +104 wf2_list : list[int] +105 ID of the second wavefunction +106 (only relevant for boundary-to-boundary correlation functions) +107 im : bool +108 if True, read imaginary instead of real part +109 of the correlation function. +110 names : list +111 Alternative labeling for replicas/ensembles. +112 Has to have the appropriate length +113 ens_name : str +114 replaces the name of the ensemble +115 version: str +116 version of SFCF, with which the measurement was done. +117 if the compact output option (-c) was specified, +118 append a "c" to the version (e.g. "1.0c") +119 if the append output option (-a) was specified, +120 append an "a" to the version +121 cfg_separator : str +122 String that separates the ensemble identifier from the configuration number (default 'n'). +123 replica: list +124 list of replica to be read, default is all +125 files: list[list[int]] +126 list of files to be read per replica, default is all. +127 for non-compact output format, hand the folders to be read here. +128 check_configs: list[list[int]] +129 list of list of supposed configs, eg. [range(1,1000)] +130 for one replicum with 1000 configs +131 rep_string: str +132 Separator of ensemble name and replicum. Example: In "ensAr0", "r" would be the separator string. +133 Returns +134 ------- +135 result: dict[list[Obs]] +136 dict with one of the following properties: +137 if keyed_out: +138 dict[key] = list[Obs] +139 where key has the form name/quarks/offset/wf/wf2 +140 if not keyed_out: +141 dict[name][quarks][offset][wf][wf2] = list[Obs] +142 """ +143 +144 if kwargs.get('im'): +145 im = 1 +146 part = 'imaginary' +147 else: +148 im = 0 +149 part = 'real' +150 +151 known_versions = ["0.0", "1.0", "2.0", "1.0c", "2.0c", "1.0a", "2.0a"] +152 +153 if version not in known_versions: +154 raise Exception("This version is not known!") +155 if (version[-1] == "c"): +156 appended = False +157 compact = True +158 version = version[:-1] +159 elif (version[-1] == "a"): +160 appended = True +161 compact = False +162 version = version[:-1] +163 else: +164 compact = False +165 appended = False +166 ls = [] +167 if "replica" in kwargs: +168 ls = kwargs.get("replica") +169 else: +170 for (dirpath, dirnames, filenames) in os.walk(path): +171 if not appended: +172 ls.extend(dirnames) +173 else: +174 ls.extend(filenames) +175 break +176 if not ls: +177 raise Exception('Error, directory not found') +178 # Exclude folders with different names +179 for exc in ls: +180 if not fnmatch.fnmatch(exc, prefix + '*'): +181 ls = list(set(ls) - set([exc])) +182 +183 if not appended: +184 ls = sort_names(ls) +185 replica = len(ls) +186 +187 else: +188 replica = len([file.split(".")[-1] for file in ls]) // len(set([file.split(".")[-1] for file in ls])) +189 if replica == 0: +190 raise Exception('No replica found in directory') +191 if not silent: +192 print('Read', part, 'part of', name_list, 'from', prefix[:-1], ',', replica, 'replica') +193 +194 if 'names' in kwargs: +195 new_names = kwargs.get('names') +196 if len(new_names) != len(set(new_names)): +197 raise Exception("names are not unique!") +198 if len(new_names) != replica: +199 raise Exception('names should have the length', replica) +200 +201 else: +202 ens_name = kwargs.get("ens_name") +203 if not appended: +204 new_names = _get_rep_names(ls, ens_name, rep_sep=(kwargs.get('rep_string', 'r'))) +205 else: +206 new_names = _get_appended_rep_names(ls, prefix, name_list[0], ens_name, rep_sep=(kwargs.get('rep_string', 'r'))) +207 new_names = sort_names(new_names) +208 +209 idl = [] +210 +211 noffset_list = [str(x) for x in noffset_list] +212 wf_list = [str(x) for x in wf_list] +213 wf2_list = [str(x) for x in wf2_list] +214 +215 # setup dict structures +216 intern = {} +217 for name, corr_type in zip(name_list, corr_type_list): +218 intern[name] = {} +219 b2b, single = _extract_corr_type(corr_type) +220 intern[name]["b2b"] = b2b +221 intern[name]["single"] = single +222 intern[name]["spec"] = {} +223 for quarks in quarks_list: +224 intern[name]["spec"][quarks] = {} +225 for off in noffset_list: +226 intern[name]["spec"][quarks][off] = {} +227 for w in wf_list: +228 intern[name]["spec"][quarks][off][w] = {} +229 if b2b: +230 for w2 in wf2_list: +231 intern[name]["spec"][quarks][off][w][w2] = {} +232 intern[name]["spec"][quarks][off][w][w2]["pattern"] = _make_pattern(version, name, off, w, w2, intern[name]['b2b'], quarks) +233 else: +234 intern[name]["spec"][quarks][off][w]["0"] = {} +235 intern[name]["spec"][quarks][off][w]["0"]["pattern"] = _make_pattern(version, name, off, w, 0, intern[name]['b2b'], quarks) +236 +237 internal_ret_dict = {} +238 needed_keys = [] +239 for name, corr_type in zip(name_list, corr_type_list): +240 b2b, single = _extract_corr_type(corr_type) +241 if b2b: +242 needed_keys.extend(_lists2key([name], quarks_list, noffset_list, wf_list, wf2_list)) +243 else: +244 needed_keys.extend(_lists2key([name], quarks_list, noffset_list, wf_list, ["0"])) +245 +246 for key in needed_keys: +247 internal_ret_dict[key] = [] +248 +249 def _default_idl_func(cfg_string, cfg_sep): +250 return int(cfg_string.split(cfg_sep)[-1]) +251 +252 if cfg_func is None: +253 print("Default idl function in use.") +254 cfg_func = _default_idl_func +255 cfg_func_args = [cfg_separator] +256 else: +257 cfg_func_args = kwargs.get("cfg_func_args", []) +258 +259 if not appended: +260 for i, item in enumerate(ls): +261 rep_path = path + '/' + item +262 if "files" in kwargs: +263 files = kwargs.get("files") +264 if isinstance(files, list): +265 if all(isinstance(f, list) for f in files): +266 files = files[i] +267 elif all(isinstance(f, str) for f in files): +268 files = files +269 else: +270 raise TypeError("files has to be of type list[list[str]] or list[str]!") +271 else: +272 raise TypeError("files has to be of type list[list[str]] or list[str]!") +273 +274 else: +275 files = [] +276 sub_ls = _find_files(rep_path, prefix, compact, files) +277 rep_idl = [] +278 no_cfg = len(sub_ls) +279 for cfg in sub_ls: +280 try: +281 if compact: +282 rep_idl.append(cfg_func(cfg, *cfg_func_args)) +283 else: +284 rep_idl.append(int(cfg[3:])) +285 except Exception: +286 raise Exception("Couldn't parse idl from directory, problem with file " + cfg) +287 rep_idl.sort() +288 # maybe there is a better way to print the idls +289 if not silent: +290 print(item, ':', no_cfg, ' configurations') +291 idl.append(rep_idl) +292 # here we have found all the files we need to look into. +293 if i == 0: +294 if version != "0.0" and compact: +295 file = path + '/' + item + '/' + sub_ls[0] +296 for name_index, name in enumerate(name_list): +297 if version == "0.0" or not compact: +298 file = path + '/' + item + '/' + sub_ls[0] + '/' + name +299 if corr_type_list[name_index] == 'bi': +300 name_keys = _lists2key(quarks_list, noffset_list, wf_list, ["0"]) +301 else: +302 name_keys = _lists2key(quarks_list, noffset_list, wf_list, wf2_list) +303 for key in name_keys: +304 specs = _key2specs(key) +305 quarks = specs[0] +306 off = specs[1] +307 w = specs[2] +308 w2 = specs[3] +309 # here, we want to find the place within the file, +310 # where the correlator we need is stored. +311 # to do so, the pattern needed is put together +312 # from the input values +313 start_read, T = _find_correlator(file, version, intern[name]["spec"][quarks][str(off)][str(w)][str(w2)]["pattern"], intern[name]['b2b'], silent=silent) +314 intern[name]["spec"][quarks][str(off)][str(w)][str(w2)]["start"] = start_read +315 intern[name]["T"] = T +316 # preparing the datastructure +317 # the correlators get parsed into... +318 deltas = [] +319 for j in range(intern[name]["T"]): +320 deltas.append([]) +321 internal_ret_dict[sep.join([name, key])] = deltas +322 +323 if compact: +324 rep_deltas = _read_compact_rep(path, item, sub_ls, intern, needed_keys, im) +325 for key in needed_keys: +326 name = _key2specs(key)[0] +327 for t in range(intern[name]["T"]): +328 internal_ret_dict[key][t].append(rep_deltas[key][t]) +329 else: +330 for key in needed_keys: +331 rep_data = [] +332 name = _key2specs(key)[0] +333 for subitem in sub_ls: +334 cfg_path = path + '/' + item + '/' + subitem +335 file_data = _read_o_file(cfg_path, name, needed_keys, intern, version, im) +336 rep_data.append(file_data) +337 for t in range(intern[name]["T"]): +338 internal_ret_dict[key][t].append([]) +339 for cfg in range(no_cfg): +340 internal_ret_dict[key][t][i].append(rep_data[cfg][key][t]) +341 else: +342 for key in needed_keys: +343 specs = _key2specs(key) +344 name = specs[0] +345 quarks = specs[1] +346 off = specs[2] +347 w = specs[3] +348 w2 = specs[4] +349 if "files" in kwargs: +350 if isinstance(kwargs.get("files"), list) and all(isinstance(f, str) for f in kwargs.get("files")): +351 name_ls = kwargs.get("files") +352 else: +353 raise TypeError("In append mode, files has to be of type list[str]!") +354 else: +355 name_ls = ls +356 for exc in name_ls: +357 if not fnmatch.fnmatch(exc, prefix + '*.' + name): +358 name_ls = list(set(name_ls) - set([exc])) +359 name_ls = sort_names(name_ls) +360 pattern = intern[name]['spec'][quarks][off][w][w2]['pattern'] +361 deltas = [] +362 for rep, file in enumerate(name_ls): +363 rep_idl = [] +364 filename = path + '/' + file +365 T, rep_idl, rep_data = _read_append_rep(filename, pattern, intern[name]['b2b'], im, intern[name]['single'], cfg_func, cfg_func_args) +366 if rep == 0: +367 intern[name]['T'] = T +368 for t in range(intern[name]['T']): +369 deltas.append([]) +370 for t in range(intern[name]['T']): +371 deltas[t].append(rep_data[t]) +372 internal_ret_dict[key] = deltas +373 if name == name_list[0]: +374 idl.append(rep_idl) +375 +376 if kwargs.get("check_configs") is True: +377 if not silent: +378 print("Checking for missing configs...") +379 che = kwargs.get("check_configs") +380 if not (len(che) == len(idl)): +381 raise Exception("check_configs has to be the same length as replica!") +382 for r in range(len(idl)): +383 if not silent: +384 print("checking " + new_names[r]) +385 check_idl(idl[r], che[r]) +386 if not silent: +387 print("Done") +388 +389 result_dict = {} +390 if keyed_out: +391 for key in needed_keys: +392 name = _key2specs(key)[0] +393 result = [] +394 for t in range(intern[name]["T"]): +395 result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl)) +396 result_dict[key] = result +397 else: +398 for name, corr_type in zip(name_list, corr_type_list): +399 result_dict[name] = {} +400 for quarks in quarks_list: +401 result_dict[name][quarks] = {} +402 for off in noffset_list: +403 result_dict[name][quarks][off] = {} +404 for w in wf_list: +405 result_dict[name][quarks][off][w] = {} +406 if corr_type != 'bi': +407 for w2 in wf2_list: +408 key = _specs2key(name, quarks, off, w, w2) +409 result = [] +410 for t in range(intern[name]["T"]): +411 result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl)) +412 result_dict[name][quarks][str(off)][str(w)][str(w2)] = result +413 else: +414 key = _specs2key(name, quarks, off, w, "0") +415 result = [] +416 for t in range(intern[name]["T"]): +417 result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl)) +418 result_dict[name][quarks][str(off)][str(w)][str(0)] = result +419 return result_dict 420 -421def _lists2key(*lists): -422 keys = [] -423 for tup in itertools.product(*lists): -424 keys.append(sep.join(tup)) -425 return keys -426 +421 +422def _lists2key(*lists): +423 keys = [] +424 for tup in itertools.product(*lists): +425 keys.append(sep.join(tup)) +426 return keys 427 -428def _key2specs(key): -429 return key.split(sep) -430 +428 +429def _key2specs(key): +430 return key.split(sep) 431 -432def _specs2key(*specs): -433 return sep.join(specs) -434 +432 +433def _specs2key(*specs): +434 return sep.join(specs) 435 -436def _read_o_file(cfg_path, name, needed_keys, intern, version, im): -437 return_vals = {} -438 for key in needed_keys: -439 file = cfg_path + '/' + name -440 specs = _key2specs(key) -441 if specs[0] == name: -442 with open(file) as fp: -443 lines = fp.readlines() -444 quarks = specs[1] -445 off = specs[2] -446 w = specs[3] -447 w2 = specs[4] -448 T = intern[name]["T"] -449 start_read = intern[name]["spec"][quarks][off][w][w2]["start"] -450 deltas = [] -451 for line in lines[start_read:start_read + T]: -452 floats = list(map(float, line.split())) -453 if version == "0.0": -454 deltas.append(floats[im - intern[name]["single"]]) -455 else: -456 deltas.append(floats[1 + im - intern[name]["single"]]) -457 return_vals[key] = deltas -458 return return_vals -459 +436 +437def _read_o_file(cfg_path, name, needed_keys, intern, version, im): +438 return_vals = {} +439 for key in needed_keys: +440 file = cfg_path + '/' + name +441 specs = _key2specs(key) +442 if specs[0] == name: +443 with open(file) as fp: +444 lines = fp.readlines() +445 quarks = specs[1] +446 off = specs[2] +447 w = specs[3] +448 w2 = specs[4] +449 T = intern[name]["T"] +450 start_read = intern[name]["spec"][quarks][off][w][w2]["start"] +451 deltas = [] +452 for line in lines[start_read:start_read + T]: +453 floats = list(map(float, line.split())) +454 if version == "0.0": +455 deltas.append(floats[im - intern[name]["single"]]) +456 else: +457 deltas.append(floats[1 + im - intern[name]["single"]]) +458 return_vals[key] = deltas +459 return return_vals 460 -461def _extract_corr_type(corr_type): -462 if corr_type == 'bb': -463 b2b = True -464 single = True -465 elif corr_type == 'bib': -466 b2b = True -467 single = False -468 else: -469 b2b = False -470 single = False -471 return b2b, single -472 +461 +462def _extract_corr_type(corr_type): +463 if corr_type == 'bb': +464 b2b = True +465 single = True +466 elif corr_type == 'bib': +467 b2b = True +468 single = False +469 else: +470 b2b = False +471 single = False +472 return b2b, single 473 -474def _find_files(rep_path, prefix, compact, files=[]): -475 sub_ls = [] -476 if not files == []: -477 files.sort(key=lambda x: int(re.findall(r'\d+', x)[-1])) -478 else: -479 for (dirpath, dirnames, filenames) in os.walk(rep_path): -480 if compact: -481 sub_ls.extend(filenames) -482 else: -483 sub_ls.extend(dirnames) -484 break -485 if compact: -486 for exc in sub_ls: -487 if not fnmatch.fnmatch(exc, prefix + '*'): -488 sub_ls = list(set(sub_ls) - set([exc])) -489 sub_ls.sort(key=lambda x: int(re.findall(r'\d+', x)[-1])) -490 else: -491 for exc in sub_ls: -492 if not fnmatch.fnmatch(exc, 'cfg*'): -493 sub_ls = list(set(sub_ls) - set([exc])) -494 sub_ls.sort(key=lambda x: int(x[3:])) -495 files = sub_ls -496 if len(files) == 0: -497 raise FileNotFoundError("Did not find files in", rep_path, "with prefix", prefix, "and the given structure.") -498 return files -499 +474 +475def _find_files(rep_path, prefix, compact, files=[]): +476 sub_ls = [] +477 if not files == []: +478 files.sort(key=lambda x: int(re.findall(r'\d+', x)[-1])) +479 else: +480 for (dirpath, dirnames, filenames) in os.walk(rep_path): +481 if compact: +482 sub_ls.extend(filenames) +483 else: +484 sub_ls.extend(dirnames) +485 break +486 if compact: +487 for exc in sub_ls: +488 if not fnmatch.fnmatch(exc, prefix + '*'): +489 sub_ls = list(set(sub_ls) - set([exc])) +490 sub_ls.sort(key=lambda x: int(re.findall(r'\d+', x)[-1])) +491 else: +492 for exc in sub_ls: +493 if not fnmatch.fnmatch(exc, 'cfg*'): +494 sub_ls = list(set(sub_ls) - set([exc])) +495 sub_ls.sort(key=lambda x: int(x[3:])) +496 files = sub_ls +497 if len(files) == 0: +498 raise FileNotFoundError("Did not find files in", rep_path, "with prefix", prefix, "and the given structure.") +499 return files 500 -501def _make_pattern(version, name, noffset, wf, wf2, b2b, quarks): -502 if version == "0.0": -503 pattern = "# " + name + " : offset " + str(noffset) + ", wf " + str(wf) -504 if b2b: -505 pattern += ", wf_2 " + str(wf2) -506 qs = quarks.split(" ") -507 pattern += " : " + qs[0] + " - " + qs[1] -508 else: -509 pattern = 'name ' + name + '\nquarks ' + quarks + '\noffset ' + str(noffset) + '\nwf ' + str(wf) -510 if b2b: -511 pattern += '\nwf_2 ' + str(wf2) -512 return pattern -513 +501 +502def _make_pattern(version, name, noffset, wf, wf2, b2b, quarks): +503 if version == "0.0": +504 pattern = "# " + name + " : offset " + str(noffset) + ", wf " + str(wf) +505 if b2b: +506 pattern += ", wf_2 " + str(wf2) +507 qs = quarks.split(" ") +508 pattern += " : " + qs[0] + " - " + qs[1] +509 else: +510 pattern = 'name ' + name + '\nquarks ' + quarks + '\noffset ' + str(noffset) + '\nwf ' + str(wf) +511 if b2b: +512 pattern += '\nwf_2 ' + str(wf2) +513 return pattern 514 -515def _find_correlator(file_name, version, pattern, b2b, silent=False): -516 T = 0 -517 -518 with open(file_name, "r") as my_file: -519 -520 content = my_file.read() -521 match = re.search(pattern, content) -522 if match: -523 if version == "0.0": -524 start_read = content.count('\n', 0, match.start()) + 1 -525 T = content.count('\n', start_read) -526 else: -527 start_read = content.count('\n', 0, match.start()) + 5 + b2b -528 end_match = re.search(r'\n\s*\n', content[match.start():]) -529 T = content[match.start():].count('\n', 0, end_match.start()) - 4 - b2b -530 if not T > 0: -531 raise ValueError("Correlator with pattern\n" + pattern + "\nis empty!") -532 if not silent: -533 print(T, 'entries, starting to read in line', start_read) -534 -535 else: -536 raise ValueError('Correlator with pattern\n' + pattern + '\nnot found.') -537 -538 return start_read, T -539 +515 +516def _find_correlator(file_name, version, pattern, b2b, silent=False): +517 T = 0 +518 +519 with open(file_name, "r") as my_file: +520 +521 content = my_file.read() +522 match = re.search(pattern, content) +523 if match: +524 if version == "0.0": +525 start_read = content.count('\n', 0, match.start()) + 1 +526 T = content.count('\n', start_read) +527 else: +528 start_read = content.count('\n', 0, match.start()) + 5 + b2b +529 end_match = re.search(r'\n\s*\n', content[match.start():]) +530 T = content[match.start():].count('\n', 0, end_match.start()) - 4 - b2b +531 if not T > 0: +532 raise ValueError("Correlator with pattern\n" + pattern + "\nis empty!") +533 if not silent: +534 print(T, 'entries, starting to read in line', start_read) +535 +536 else: +537 raise ValueError('Correlator with pattern\n' + pattern + '\nnot found.') +538 +539 return start_read, T 540 -541def _read_compact_file(rep_path, cfg_file, intern, needed_keys, im): -542 return_vals = {} -543 with open(rep_path + cfg_file) as fp: -544 lines = fp.readlines() -545 for key in needed_keys: -546 keys = _key2specs(key) -547 name = keys[0] -548 quarks = keys[1] -549 off = keys[2] -550 w = keys[3] -551 w2 = keys[4] -552 -553 T = intern[name]["T"] -554 start_read = intern[name]["spec"][quarks][off][w][w2]["start"] -555 # check, if the correlator is in fact -556 # printed completely -557 if (start_read + T + 1 > len(lines)): -558 raise Exception("EOF before end of correlator data! Maybe " + rep_path + cfg_file + " is corrupted?") -559 corr_lines = lines[start_read - 6: start_read + T] -560 t_vals = [] -561 -562 if corr_lines[1 - intern[name]["b2b"]].strip() != 'name ' + name: -563 raise Exception('Wrong format in file', cfg_file) -564 -565 for k in range(6, T + 6): -566 floats = list(map(float, corr_lines[k].split())) -567 t_vals.append(floats[-2:][im]) -568 return_vals[key] = t_vals -569 return return_vals -570 +541 +542def _read_compact_file(rep_path, cfg_file, intern, needed_keys, im): +543 return_vals = {} +544 with open(rep_path + cfg_file) as fp: +545 lines = fp.readlines() +546 for key in needed_keys: +547 keys = _key2specs(key) +548 name = keys[0] +549 quarks = keys[1] +550 off = keys[2] +551 w = keys[3] +552 w2 = keys[4] +553 +554 T = intern[name]["T"] +555 start_read = intern[name]["spec"][quarks][off][w][w2]["start"] +556 # check, if the correlator is in fact +557 # printed completely +558 if (start_read + T + 1 > len(lines)): +559 raise Exception("EOF before end of correlator data! Maybe " + rep_path + cfg_file + " is corrupted?") +560 corr_lines = lines[start_read - 6: start_read + T] +561 t_vals = [] +562 +563 if corr_lines[1 - intern[name]["b2b"]].strip() != 'name ' + name: +564 raise Exception('Wrong format in file', cfg_file) +565 +566 for k in range(6, T + 6): +567 floats = list(map(float, corr_lines[k].split())) +568 t_vals.append(floats[-2:][im]) +569 return_vals[key] = t_vals +570 return return_vals 571 -572def _read_compact_rep(path, rep, sub_ls, intern, needed_keys, im): -573 rep_path = path + '/' + rep + '/' -574 no_cfg = len(sub_ls) -575 -576 return_vals = {} -577 for key in needed_keys: -578 name = _key2specs(key)[0] -579 deltas = [] -580 for t in range(intern[name]["T"]): -581 deltas.append(np.zeros(no_cfg)) -582 return_vals[key] = deltas -583 -584 for cfg in range(no_cfg): -585 cfg_file = sub_ls[cfg] -586 cfg_data = _read_compact_file(rep_path, cfg_file, intern, needed_keys, im) -587 for key in needed_keys: -588 name = _key2specs(key)[0] -589 for t in range(intern[name]["T"]): -590 return_vals[key][t][cfg] = cfg_data[key][t] -591 return return_vals -592 +572 +573def _read_compact_rep(path, rep, sub_ls, intern, needed_keys, im): +574 rep_path = path + '/' + rep + '/' +575 no_cfg = len(sub_ls) +576 +577 return_vals = {} +578 for key in needed_keys: +579 name = _key2specs(key)[0] +580 deltas = [] +581 for t in range(intern[name]["T"]): +582 deltas.append(np.zeros(no_cfg)) +583 return_vals[key] = deltas +584 +585 for cfg in range(no_cfg): +586 cfg_file = sub_ls[cfg] +587 cfg_data = _read_compact_file(rep_path, cfg_file, intern, needed_keys, im) +588 for key in needed_keys: +589 name = _key2specs(key)[0] +590 for t in range(intern[name]["T"]): +591 return_vals[key][t][cfg] = cfg_data[key][t] +592 return return_vals 593 -594def _read_chunk_data(chunk, start_read, T, corr_line, b2b, pattern, im, single): -595 found_pat = "" -596 data = [] -597 for li in chunk[corr_line + 1:corr_line + 6 + b2b]: -598 found_pat += li -599 if re.search(pattern, found_pat): -600 for t, line in enumerate(chunk[start_read:start_read + T]): -601 floats = list(map(float, line.split())) -602 data.append(floats[im + 1 - single]) -603 return data -604 +594 +595def _read_chunk_data(chunk, start_read, T, corr_line, b2b, pattern, im, single): +596 found_pat = "" +597 data = [] +598 for li in chunk[corr_line + 1:corr_line + 6 + b2b]: +599 found_pat += li +600 if re.search(pattern, found_pat): +601 for t, line in enumerate(chunk[start_read:start_read + T]): +602 floats = list(map(float, line.split())) +603 data.append(floats[im + 1 - single]) +604 return data 605 -606def _read_append_rep(filename, pattern, b2b, im, single, idl_func, cfg_func_args): -607 with open(filename, 'r') as fp: -608 content = fp.readlines() -609 data_starts = [] -610 for linenumber, line in enumerate(content): -611 if "[run]" in line: -612 data_starts.append(linenumber) -613 if len(set([data_starts[i] - data_starts[i - 1] for i in range(1, len(data_starts))])) > 1: -614 raise Exception("Irregularities in file structure found, not all runs have the same output length") -615 chunk = content[:data_starts[1]] -616 for linenumber, line in enumerate(chunk): -617 if line.startswith("gauge_name"): -618 gauge_line = linenumber -619 elif line.startswith("[correlator]"): -620 corr_line = linenumber -621 found_pat = "" -622 for li in chunk[corr_line + 1: corr_line + 6 + b2b]: -623 found_pat += li -624 if re.search(pattern, found_pat): -625 start_read = corr_line + 7 + b2b -626 break -627 else: -628 raise ValueError("Did not find pattern\n", pattern, "\nin\n", filename) -629 endline = corr_line + 6 + b2b -630 while not chunk[endline] == "\n": -631 endline += 1 -632 T = endline - start_read +606 +607def _check_append_rep(content, start_list): +608 data_len_list = [] +609 header_len_list = [] +610 has_regular_len_heads = True +611 for chunk_num in range(len(start_list)): +612 start = start_list[chunk_num] +613 if chunk_num == len(start_list) - 1: +614 stop = len(content) +615 else: +616 stop = start_list[chunk_num + 1] +617 chunk = content[start:stop] +618 for linenumber, line in enumerate(chunk): +619 if line.startswith("[correlator]"): +620 header_len = linenumber +621 break +622 header_len_list.append(header_len) +623 data_len_list.append(len(chunk) - header_len) +624 +625 if len(set(header_len_list)) > 1: +626 warnings.warn("Not all headers have the same length. Data parts do.") +627 has_regular_len_heads = False +628 +629 if len(set(data_len_list)) > 1: +630 raise Exception("Irregularities in file structure found, not all run data are of the same output length") +631 return has_regular_len_heads +632 633 -634 # all other chunks should follow the same structure -635 rep_idl = [] -636 rep_data = [] -637 -638 for cnfg in range(len(data_starts)): -639 start = data_starts[cnfg] -640 stop = start + data_starts[1] -641 chunk = content[start:stop] -642 try: -643 idl = idl_func(chunk[gauge_line], *cfg_func_args) -644 except Exception: -645 raise Exception("Couldn't parse idl from file", filename, ", problem with chunk of lines", start + 1, "to", stop + 1) -646 data = _read_chunk_data(chunk, start_read, T, corr_line, b2b, pattern, im, single) -647 rep_idl.append(idl) -648 rep_data.append(data) -649 -650 data = [] -651 -652 for t in range(T): -653 data.append([]) -654 for c in range(len(rep_data)): -655 data[t].append(rep_data[c][t]) -656 return T, rep_idl, data -657 -658 -659def _get_rep_names(ls, ens_name=None, rep_sep='r'): -660 new_names = [] -661 for entry in ls: -662 try: -663 idx = entry.index(rep_sep) -664 except Exception: -665 raise Exception("Automatic recognition of replicum failed, please enter the key word 'names'.") -666 -667 if ens_name: -668 new_names.append(ens_name + '|' + entry[idx:]) -669 else: -670 new_names.append(entry[:idx] + '|' + entry[idx:]) -671 return new_names -672 +634def _read_chunk_structure(chunk, pattern, b2b): +635 start_read = 0 +636 for linenumber, line in enumerate(chunk): +637 if line.startswith("gauge_name"): +638 gauge_line = linenumber +639 elif line.startswith("[correlator]"): +640 corr_line = linenumber +641 found_pat = "" +642 for li in chunk[corr_line + 1: corr_line + 6 + b2b]: +643 found_pat += li +644 if re.search(pattern, found_pat): +645 start_read = corr_line + 7 + b2b +646 break +647 if start_read == 0: +648 raise ValueError("Did not find pattern\n", pattern) +649 endline = corr_line + 6 + b2b +650 while not chunk[endline] == "\n": +651 endline += 1 +652 T = endline - start_read +653 return gauge_line, corr_line, start_read, T +654 +655 +656def _read_append_rep(filename, pattern, b2b, im, single, idl_func, cfg_func_args): +657 with open(filename, 'r') as fp: +658 content = fp.readlines() +659 chunk_start_lines = [] +660 for linenumber, line in enumerate(content): +661 if "[run]" in line: +662 chunk_start_lines.append(linenumber) +663 has_regular_len_heads = _check_append_rep(content, chunk_start_lines) +664 if has_regular_len_heads: +665 chunk = content[:chunk_start_lines[1]] +666 try: +667 gauge_line, corr_line, start_read, T = _read_chunk_structure(chunk, pattern, b2b) +668 except ValueError: +669 raise ValueError("Did not find pattern\n", pattern, "\nin\n", filename, "lines", 1, "to", chunk_start_lines[1] + 1) +670 # if has_regular_len_heads is true, all other chunks should follow the same structure +671 rep_idl = [] +672 rep_data = [] 673 -674def _get_appended_rep_names(ls, prefix, name, ens_name=None, rep_sep='r'): -675 new_names = [] -676 for exc in ls: -677 if not fnmatch.fnmatch(exc, prefix + '*.' + name): -678 ls = list(set(ls) - set([exc])) -679 ls.sort(key=lambda x: int(re.findall(r'\d+', x)[-1])) -680 for entry in ls: -681 myentry = entry[:-len(name) - 1] -682 try: -683 idx = myentry.index(rep_sep) -684 except Exception: -685 raise Exception("Automatic recognition of replicum failed, please enter the key word 'names'.") -686 -687 if ens_name: -688 new_names.append(ens_name + '|' + entry[idx:]) -689 else: -690 new_names.append(myentry[:idx] + '|' + myentry[idx:]) -691 return new_names +674 for chunk_num in range(len(chunk_start_lines)): +675 start = chunk_start_lines[chunk_num] +676 if chunk_num == len(chunk_start_lines) - 1: +677 stop = len(content) +678 else: +679 stop = chunk_start_lines[chunk_num + 1] +680 chunk = content[start:stop] +681 if not has_regular_len_heads: +682 gauge_line, corr_line, start_read, T = _read_chunk_structure(chunk, pattern, b2b) +683 try: +684 idl = idl_func(chunk[gauge_line], *cfg_func_args) +685 except Exception: +686 raise Exception("Couldn't parse idl from file", filename, ", problem with chunk of lines", start + 1, "to", stop + 1) +687 data = _read_chunk_data(chunk, start_read, T, corr_line, b2b, pattern, im, single) +688 rep_idl.append(idl) +689 rep_data.append(data) +690 +691 data = [] +692 +693 for t in range(T): +694 data.append([]) +695 for c in range(len(rep_data)): +696 data[t].append(rep_data[c][t]) +697 return T, rep_idl, data +698 +699 +700def _get_rep_names(ls, ens_name=None, rep_sep='r'): +701 new_names = [] +702 for entry in ls: +703 try: +704 idx = entry.index(rep_sep) +705 except Exception: +706 raise Exception("Automatic recognition of replicum failed, please enter the key word 'names'.") +707 +708 if ens_name: +709 new_names.append(ens_name + '|' + entry[idx:]) +710 else: +711 new_names.append(entry[:idx] + '|' + entry[idx:]) +712 return new_names +713 +714 +715def _get_appended_rep_names(ls, prefix, name, ens_name=None, rep_sep='r'): +716 new_names = [] +717 for exc in ls: +718 if not fnmatch.fnmatch(exc, prefix + '*.' + name): +719 ls = list(set(ls) - set([exc])) +720 ls.sort(key=lambda x: int(re.findall(r'\d+', x)[-1])) +721 for entry in ls: +722 myentry = entry[:-len(name) - 1] +723 try: +724 idx = myentry.index(rep_sep) +725 except Exception: +726 raise Exception("Automatic recognition of replicum failed, please enter the key word 'names'.") +727 +728 if ens_name: +729 new_names.append(ens_name + '|' + entry[idx:]) +730 else: +731 new_names.append(myentry[:idx] + '|' + myentry[idx:]) +732 return new_names @@ -800,69 +841,69 @@ -
14def read_sfcf(path, prefix, name, quarks='.*', corr_type="bi", noffset=0, wf=0, wf2=0, version="1.0c", cfg_separator="n", cfg_func=None, silent=False, **kwargs):
-15    """Read sfcf files from given folder structure.
-16
-17    Parameters
-18    ----------
-19    path : str
-20        Path to the sfcf files.
-21    prefix : str
-22        Prefix of the sfcf files.
-23    name : str
-24        Name of the correlation function to read.
-25    quarks : str
-26        Label of the quarks used in the sfcf input file. e.g. "quark quark"
-27        for version 0.0 this does NOT need to be given with the typical " - "
-28        that is present in the output file,
-29        this is done automatically for this version
-30    corr_type : str
-31        Type of correlation function to read. Can be
-32        - 'bi' for boundary-inner
-33        - 'bb' for boundary-boundary
-34        - 'bib' for boundary-inner-boundary
-35    noffset : int
-36        Offset of the source (only relevant when wavefunctions are used)
-37    wf : int
-38        ID of wave function
-39    wf2 : int
-40        ID of the second wavefunction
-41        (only relevant for boundary-to-boundary correlation functions)
-42    im : bool
-43        if True, read imaginary instead of real part
-44        of the correlation function.
-45    names : list
-46        Alternative labeling for replicas/ensembles.
-47        Has to have the appropriate length
-48    ens_name : str
-49        replaces the name of the ensemble
-50    version: str
-51        version of SFCF, with which the measurement was done.
-52        if the compact output option (-c) was specified,
-53        append a "c" to the version (e.g. "1.0c")
-54        if the append output option (-a) was specified,
-55        append an "a" to the version
-56    cfg_separator : str
-57        String that separates the ensemble identifier from the configuration number (default 'n').
-58    replica: list
-59        list of replica to be read, default is all
-60    files: list
-61        list of files to be read per replica, default is all.
-62        for non-compact output format, hand the folders to be read here.
-63    check_configs: list[list[int]]
-64        list of list of supposed configs, eg. [range(1,1000)]
-65        for one replicum with 1000 configs
-66
-67    Returns
-68    -------
-69    result: list[Obs]
-70        list of Observables with length T, observable per timeslice.
-71        bb-type correlators have length 1.
-72    """
-73    ret = read_sfcf_multi(path, prefix, [name], quarks_list=[quarks], corr_type_list=[corr_type],
-74                          noffset_list=[noffset], wf_list=[wf], wf2_list=[wf2], version=version,
-75                          cfg_separator=cfg_separator, cfg_func=cfg_func, silent=silent, **kwargs)
-76    return ret[name][quarks][str(noffset)][str(wf)][str(wf2)]
+            
15def read_sfcf(path, prefix, name, quarks='.*', corr_type="bi", noffset=0, wf=0, wf2=0, version="1.0c", cfg_separator="n", cfg_func=None, silent=False, **kwargs):
+16    """Read sfcf files from given folder structure.
+17
+18    Parameters
+19    ----------
+20    path : str
+21        Path to the sfcf files.
+22    prefix : str
+23        Prefix of the sfcf files.
+24    name : str
+25        Name of the correlation function to read.
+26    quarks : str
+27        Label of the quarks used in the sfcf input file. e.g. "quark quark"
+28        for version 0.0 this does NOT need to be given with the typical " - "
+29        that is present in the output file,
+30        this is done automatically for this version
+31    corr_type : str
+32        Type of correlation function to read. Can be
+33        - 'bi' for boundary-inner
+34        - 'bb' for boundary-boundary
+35        - 'bib' for boundary-inner-boundary
+36    noffset : int
+37        Offset of the source (only relevant when wavefunctions are used)
+38    wf : int
+39        ID of wave function
+40    wf2 : int
+41        ID of the second wavefunction
+42        (only relevant for boundary-to-boundary correlation functions)
+43    im : bool
+44        if True, read imaginary instead of real part
+45        of the correlation function.
+46    names : list
+47        Alternative labeling for replicas/ensembles.
+48        Has to have the appropriate length
+49    ens_name : str
+50        replaces the name of the ensemble
+51    version: str
+52        version of SFCF, with which the measurement was done.
+53        if the compact output option (-c) was specified,
+54        append a "c" to the version (e.g. "1.0c")
+55        if the append output option (-a) was specified,
+56        append an "a" to the version
+57    cfg_separator : str
+58        String that separates the ensemble identifier from the configuration number (default 'n').
+59    replica: list
+60        list of replica to be read, default is all
+61    files: list
+62        list of files to be read per replica, default is all.
+63        for non-compact output format, hand the folders to be read here.
+64    check_configs: list[list[int]]
+65        list of list of supposed configs, eg. [range(1,1000)]
+66        for one replicum with 1000 configs
+67
+68    Returns
+69    -------
+70    result: list[Obs]
+71        list of Observables with length T, observable per timeslice.
+72        bb-type correlators have length 1.
+73    """
+74    ret = read_sfcf_multi(path, prefix, [name], quarks_list=[quarks], corr_type_list=[corr_type],
+75                          noffset_list=[noffset], wf_list=[wf], wf2_list=[wf2], version=version,
+76                          cfg_separator=cfg_separator, cfg_func=cfg_func, silent=silent, **kwargs)
+77    return ret[name][quarks][str(noffset)][str(wf)][str(wf2)]
 
@@ -944,347 +985,347 @@ bb-type correlators have length 1.
-
 79def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=['bi'], noffset_list=[0], wf_list=[0], wf2_list=[0], version="1.0c", cfg_separator="n", cfg_func=None, silent=False, keyed_out=False, **kwargs):
- 80    """Read sfcf files from given folder structure.
- 81
- 82    Parameters
- 83    ----------
- 84    path : str
- 85        Path to the sfcf files.
- 86    prefix : str
- 87        Prefix of the sfcf files.
- 88    name : str
- 89        Name of the correlation function to read.
- 90    quarks_list : list[str]
- 91        Label of the quarks used in the sfcf input file. e.g. "quark quark"
- 92        for version 0.0 this does NOT need to be given with the typical " - "
- 93        that is present in the output file,
- 94        this is done automatically for this version
- 95    corr_type_list : list[str]
- 96        Type of correlation function to read. Can be
- 97        - 'bi' for boundary-inner
- 98        - 'bb' for boundary-boundary
- 99        - 'bib' for boundary-inner-boundary
-100    noffset_list : list[int]
-101        Offset of the source (only relevant when wavefunctions are used)
-102    wf_list : int
-103        ID of wave function
-104    wf2_list : list[int]
-105        ID of the second wavefunction
-106        (only relevant for boundary-to-boundary correlation functions)
-107    im : bool
-108        if True, read imaginary instead of real part
-109        of the correlation function.
-110    names : list
-111        Alternative labeling for replicas/ensembles.
-112        Has to have the appropriate length
-113    ens_name : str
-114        replaces the name of the ensemble
-115    version: str
-116        version of SFCF, with which the measurement was done.
-117        if the compact output option (-c) was specified,
-118        append a "c" to the version (e.g. "1.0c")
-119        if the append output option (-a) was specified,
-120        append an "a" to the version
-121    cfg_separator : str
-122        String that separates the ensemble identifier from the configuration number (default 'n').
-123    replica: list
-124        list of replica to be read, default is all
-125    files: list[list[int]]
-126        list of files to be read per replica, default is all.
-127        for non-compact output format, hand the folders to be read here.
-128    check_configs: list[list[int]]
-129        list of list of supposed configs, eg. [range(1,1000)]
-130        for one replicum with 1000 configs
-131    rep_string: str
-132        Separator of ensemble name and replicum. Example: In "ensAr0", "r" would be the separator string.
-133    Returns
-134    -------
-135    result: dict[list[Obs]]
-136        dict with one of the following properties:
-137        if keyed_out:
-138            dict[key] = list[Obs]
-139            where key has the form name/quarks/offset/wf/wf2
-140        if not keyed_out:
-141            dict[name][quarks][offset][wf][wf2] = list[Obs]
-142    """
-143
-144    if kwargs.get('im'):
-145        im = 1
-146        part = 'imaginary'
-147    else:
-148        im = 0
-149        part = 'real'
-150
-151    known_versions = ["0.0", "1.0", "2.0", "1.0c", "2.0c", "1.0a", "2.0a"]
-152
-153    if version not in known_versions:
-154        raise Exception("This version is not known!")
-155    if (version[-1] == "c"):
-156        appended = False
-157        compact = True
-158        version = version[:-1]
-159    elif (version[-1] == "a"):
-160        appended = True
-161        compact = False
-162        version = version[:-1]
-163    else:
-164        compact = False
-165        appended = False
-166    ls = []
-167    if "replica" in kwargs:
-168        ls = kwargs.get("replica")
-169    else:
-170        for (dirpath, dirnames, filenames) in os.walk(path):
-171            if not appended:
-172                ls.extend(dirnames)
-173            else:
-174                ls.extend(filenames)
-175            break
-176        if not ls:
-177            raise Exception('Error, directory not found')
-178        # Exclude folders with different names
-179        for exc in ls:
-180            if not fnmatch.fnmatch(exc, prefix + '*'):
-181                ls = list(set(ls) - set([exc]))
-182
-183    if not appended:
-184        ls = sort_names(ls)
-185        replica = len(ls)
-186
-187    else:
-188        replica = len([file.split(".")[-1] for file in ls]) // len(set([file.split(".")[-1] for file in ls]))
-189    if replica == 0:
-190        raise Exception('No replica found in directory')
-191    if not silent:
-192        print('Read', part, 'part of', name_list, 'from', prefix[:-1], ',', replica, 'replica')
-193
-194    if 'names' in kwargs:
-195        new_names = kwargs.get('names')
-196        if len(new_names) != len(set(new_names)):
-197            raise Exception("names are not unique!")
-198        if len(new_names) != replica:
-199            raise Exception('names should have the length', replica)
-200
-201    else:
-202        ens_name = kwargs.get("ens_name")
-203        if not appended:
-204            new_names = _get_rep_names(ls, ens_name, rep_sep=(kwargs.get('rep_string', 'r')))
-205        else:
-206            new_names = _get_appended_rep_names(ls, prefix, name_list[0], ens_name, rep_sep=(kwargs.get('rep_string', 'r')))
-207        new_names = sort_names(new_names)
-208
-209    idl = []
-210
-211    noffset_list = [str(x) for x in noffset_list]
-212    wf_list = [str(x) for x in wf_list]
-213    wf2_list = [str(x) for x in wf2_list]
-214
-215    # setup dict structures
-216    intern = {}
-217    for name, corr_type in zip(name_list, corr_type_list):
-218        intern[name] = {}
-219        b2b, single = _extract_corr_type(corr_type)
-220        intern[name]["b2b"] = b2b
-221        intern[name]["single"] = single
-222        intern[name]["spec"] = {}
-223        for quarks in quarks_list:
-224            intern[name]["spec"][quarks] = {}
-225            for off in noffset_list:
-226                intern[name]["spec"][quarks][off] = {}
-227                for w in wf_list:
-228                    intern[name]["spec"][quarks][off][w] = {}
-229                    if b2b:
-230                        for w2 in wf2_list:
-231                            intern[name]["spec"][quarks][off][w][w2] = {}
-232                            intern[name]["spec"][quarks][off][w][w2]["pattern"] = _make_pattern(version, name, off, w, w2, intern[name]['b2b'], quarks)
-233                    else:
-234                        intern[name]["spec"][quarks][off][w]["0"] = {}
-235                        intern[name]["spec"][quarks][off][w]["0"]["pattern"] = _make_pattern(version, name, off, w, 0, intern[name]['b2b'], quarks)
-236
-237    internal_ret_dict = {}
-238    needed_keys = []
-239    for name, corr_type in zip(name_list, corr_type_list):
-240        b2b, single = _extract_corr_type(corr_type)
-241        if b2b:
-242            needed_keys.extend(_lists2key([name], quarks_list, noffset_list, wf_list, wf2_list))
-243        else:
-244            needed_keys.extend(_lists2key([name], quarks_list, noffset_list, wf_list, ["0"]))
-245
-246    for key in needed_keys:
-247        internal_ret_dict[key] = []
-248
-249    def _default_idl_func(cfg_string, cfg_sep):
-250        return int(cfg_string.split(cfg_sep)[-1])
-251
-252    if cfg_func is None:
-253        print("Default idl function in use.")
-254        cfg_func = _default_idl_func
-255        cfg_func_args = [cfg_separator]
-256    else:
-257        cfg_func_args = kwargs.get("cfg_func_args", [])
-258
-259    if not appended:
-260        for i, item in enumerate(ls):
-261            rep_path = path + '/' + item
-262            if "files" in kwargs:
-263                files = kwargs.get("files")
-264                if isinstance(files, list):
-265                    if all(isinstance(f, list) for f in files):
-266                        files = files[i]
-267                    elif all(isinstance(f, str) for f in files):
-268                        files = files
-269                    else:
-270                        raise TypeError("files has to be of type list[list[str]] or list[str]!")
-271                else:
-272                    raise TypeError("files has to be of type list[list[str]] or list[str]!")
-273
-274            else:
-275                files = []
-276            sub_ls = _find_files(rep_path, prefix, compact, files)
-277            rep_idl = []
-278            no_cfg = len(sub_ls)
-279            for cfg in sub_ls:
-280                try:
-281                    if compact:
-282                        rep_idl.append(cfg_func(cfg, *cfg_func_args))
-283                    else:
-284                        rep_idl.append(int(cfg[3:]))
-285                except Exception:
-286                    raise Exception("Couldn't parse idl from directory, problem with file " + cfg)
-287            rep_idl.sort()
-288            # maybe there is a better way to print the idls
-289            if not silent:
-290                print(item, ':', no_cfg, ' configurations')
-291            idl.append(rep_idl)
-292            # here we have found all the files we need to look into.
-293            if i == 0:
-294                if version != "0.0" and compact:
-295                    file = path + '/' + item + '/' + sub_ls[0]
-296                for name_index, name in enumerate(name_list):
-297                    if version == "0.0" or not compact:
-298                        file = path + '/' + item + '/' + sub_ls[0] + '/' + name
-299                    if corr_type_list[name_index] == 'bi':
-300                        name_keys = _lists2key(quarks_list, noffset_list, wf_list, ["0"])
-301                    else:
-302                        name_keys = _lists2key(quarks_list, noffset_list, wf_list, wf2_list)
-303                    for key in name_keys:
-304                        specs = _key2specs(key)
-305                        quarks = specs[0]
-306                        off = specs[1]
-307                        w = specs[2]
-308                        w2 = specs[3]
-309                        # here, we want to find the place within the file,
-310                        # where the correlator we need is stored.
-311                        # to do so, the pattern needed is put together
-312                        # from the input values
-313                        start_read, T = _find_correlator(file, version, intern[name]["spec"][quarks][str(off)][str(w)][str(w2)]["pattern"], intern[name]['b2b'], silent=silent)
-314                        intern[name]["spec"][quarks][str(off)][str(w)][str(w2)]["start"] = start_read
-315                        intern[name]["T"] = T
-316                        # preparing the datastructure
-317                        # the correlators get parsed into...
-318                        deltas = []
-319                        for j in range(intern[name]["T"]):
-320                            deltas.append([])
-321                        internal_ret_dict[sep.join([name, key])] = deltas
-322
-323            if compact:
-324                rep_deltas = _read_compact_rep(path, item, sub_ls, intern, needed_keys, im)
-325                for key in needed_keys:
-326                    name = _key2specs(key)[0]
-327                    for t in range(intern[name]["T"]):
-328                        internal_ret_dict[key][t].append(rep_deltas[key][t])
-329            else:
-330                for key in needed_keys:
-331                    rep_data = []
-332                    name = _key2specs(key)[0]
-333                    for subitem in sub_ls:
-334                        cfg_path = path + '/' + item + '/' + subitem
-335                        file_data = _read_o_file(cfg_path, name, needed_keys, intern, version, im)
-336                        rep_data.append(file_data)
-337                    for t in range(intern[name]["T"]):
-338                        internal_ret_dict[key][t].append([])
-339                        for cfg in range(no_cfg):
-340                            internal_ret_dict[key][t][i].append(rep_data[cfg][key][t])
-341    else:
-342        for key in needed_keys:
-343            specs = _key2specs(key)
-344            name = specs[0]
-345            quarks = specs[1]
-346            off = specs[2]
-347            w = specs[3]
-348            w2 = specs[4]
-349            if "files" in kwargs:
-350                if isinstance(kwargs.get("files"), list) and all(isinstance(f, str) for f in kwargs.get("files")):
-351                    name_ls = kwargs.get("files")
-352                else:
-353                    raise TypeError("In append mode, files has to be of type list[str]!")
-354            else:
-355                name_ls = ls
-356                for exc in name_ls:
-357                    if not fnmatch.fnmatch(exc, prefix + '*.' + name):
-358                        name_ls = list(set(name_ls) - set([exc]))
-359            name_ls = sort_names(name_ls)
-360            pattern = intern[name]['spec'][quarks][off][w][w2]['pattern']
-361            deltas = []
-362            for rep, file in enumerate(name_ls):
-363                rep_idl = []
-364                filename = path + '/' + file
-365                T, rep_idl, rep_data = _read_append_rep(filename, pattern, intern[name]['b2b'], im, intern[name]['single'], cfg_func, cfg_func_args)
-366                if rep == 0:
-367                    intern[name]['T'] = T
-368                    for t in range(intern[name]['T']):
-369                        deltas.append([])
-370                for t in range(intern[name]['T']):
-371                    deltas[t].append(rep_data[t])
-372                internal_ret_dict[key] = deltas
-373                if name == name_list[0]:
-374                    idl.append(rep_idl)
-375
-376    if kwargs.get("check_configs") is True:
-377        if not silent:
-378            print("Checking for missing configs...")
-379        che = kwargs.get("check_configs")
-380        if not (len(che) == len(idl)):
-381            raise Exception("check_configs has to be the same length as replica!")
-382        for r in range(len(idl)):
-383            if not silent:
-384                print("checking " + new_names[r])
-385            check_idl(idl[r], che[r])
-386        if not silent:
-387            print("Done")
-388
-389    result_dict = {}
-390    if keyed_out:
-391        for key in needed_keys:
-392            name = _key2specs(key)[0]
-393            result = []
-394            for t in range(intern[name]["T"]):
-395                result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl))
-396            result_dict[key] = result
-397    else:
-398        for name, corr_type in zip(name_list, corr_type_list):
-399            result_dict[name] = {}
-400            for quarks in quarks_list:
-401                result_dict[name][quarks] = {}
-402                for off in noffset_list:
-403                    result_dict[name][quarks][off] = {}
-404                    for w in wf_list:
-405                        result_dict[name][quarks][off][w] = {}
-406                        if corr_type != 'bi':
-407                            for w2 in wf2_list:
-408                                key = _specs2key(name, quarks, off, w, w2)
-409                                result = []
-410                                for t in range(intern[name]["T"]):
-411                                    result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl))
-412                                result_dict[name][quarks][str(off)][str(w)][str(w2)] = result
-413                        else:
-414                            key = _specs2key(name, quarks, off, w, "0")
-415                            result = []
-416                            for t in range(intern[name]["T"]):
-417                                result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl))
-418                            result_dict[name][quarks][str(off)][str(w)][str(0)] = result
-419    return result_dict
+            
 80def read_sfcf_multi(path, prefix, name_list, quarks_list=['.*'], corr_type_list=['bi'], noffset_list=[0], wf_list=[0], wf2_list=[0], version="1.0c", cfg_separator="n", cfg_func=None, silent=False, keyed_out=False, **kwargs):
+ 81    """Read sfcf files from given folder structure.
+ 82
+ 83    Parameters
+ 84    ----------
+ 85    path : str
+ 86        Path to the sfcf files.
+ 87    prefix : str
+ 88        Prefix of the sfcf files.
+ 89    name : str
+ 90        Name of the correlation function to read.
+ 91    quarks_list : list[str]
+ 92        Label of the quarks used in the sfcf input file. e.g. "quark quark"
+ 93        for version 0.0 this does NOT need to be given with the typical " - "
+ 94        that is present in the output file,
+ 95        this is done automatically for this version
+ 96    corr_type_list : list[str]
+ 97        Type of correlation function to read. Can be
+ 98        - 'bi' for boundary-inner
+ 99        - 'bb' for boundary-boundary
+100        - 'bib' for boundary-inner-boundary
+101    noffset_list : list[int]
+102        Offset of the source (only relevant when wavefunctions are used)
+103    wf_list : int
+104        ID of wave function
+105    wf2_list : list[int]
+106        ID of the second wavefunction
+107        (only relevant for boundary-to-boundary correlation functions)
+108    im : bool
+109        if True, read imaginary instead of real part
+110        of the correlation function.
+111    names : list
+112        Alternative labeling for replicas/ensembles.
+113        Has to have the appropriate length
+114    ens_name : str
+115        replaces the name of the ensemble
+116    version: str
+117        version of SFCF, with which the measurement was done.
+118        if the compact output option (-c) was specified,
+119        append a "c" to the version (e.g. "1.0c")
+120        if the append output option (-a) was specified,
+121        append an "a" to the version
+122    cfg_separator : str
+123        String that separates the ensemble identifier from the configuration number (default 'n').
+124    replica: list
+125        list of replica to be read, default is all
+126    files: list[list[int]]
+127        list of files to be read per replica, default is all.
+128        for non-compact output format, hand the folders to be read here.
+129    check_configs: list[list[int]]
+130        list of list of supposed configs, eg. [range(1,1000)]
+131        for one replicum with 1000 configs
+132    rep_string: str
+133        Separator of ensemble name and replicum. Example: In "ensAr0", "r" would be the separator string.
+134    Returns
+135    -------
+136    result: dict[list[Obs]]
+137        dict with one of the following properties:
+138        if keyed_out:
+139            dict[key] = list[Obs]
+140            where key has the form name/quarks/offset/wf/wf2
+141        if not keyed_out:
+142            dict[name][quarks][offset][wf][wf2] = list[Obs]
+143    """
+144
+145    if kwargs.get('im'):
+146        im = 1
+147        part = 'imaginary'
+148    else:
+149        im = 0
+150        part = 'real'
+151
+152    known_versions = ["0.0", "1.0", "2.0", "1.0c", "2.0c", "1.0a", "2.0a"]
+153
+154    if version not in known_versions:
+155        raise Exception("This version is not known!")
+156    if (version[-1] == "c"):
+157        appended = False
+158        compact = True
+159        version = version[:-1]
+160    elif (version[-1] == "a"):
+161        appended = True
+162        compact = False
+163        version = version[:-1]
+164    else:
+165        compact = False
+166        appended = False
+167    ls = []
+168    if "replica" in kwargs:
+169        ls = kwargs.get("replica")
+170    else:
+171        for (dirpath, dirnames, filenames) in os.walk(path):
+172            if not appended:
+173                ls.extend(dirnames)
+174            else:
+175                ls.extend(filenames)
+176            break
+177        if not ls:
+178            raise Exception('Error, directory not found')
+179        # Exclude folders with different names
+180        for exc in ls:
+181            if not fnmatch.fnmatch(exc, prefix + '*'):
+182                ls = list(set(ls) - set([exc]))
+183
+184    if not appended:
+185        ls = sort_names(ls)
+186        replica = len(ls)
+187
+188    else:
+189        replica = len([file.split(".")[-1] for file in ls]) // len(set([file.split(".")[-1] for file in ls]))
+190    if replica == 0:
+191        raise Exception('No replica found in directory')
+192    if not silent:
+193        print('Read', part, 'part of', name_list, 'from', prefix[:-1], ',', replica, 'replica')
+194
+195    if 'names' in kwargs:
+196        new_names = kwargs.get('names')
+197        if len(new_names) != len(set(new_names)):
+198            raise Exception("names are not unique!")
+199        if len(new_names) != replica:
+200            raise Exception('names should have the length', replica)
+201
+202    else:
+203        ens_name = kwargs.get("ens_name")
+204        if not appended:
+205            new_names = _get_rep_names(ls, ens_name, rep_sep=(kwargs.get('rep_string', 'r')))
+206        else:
+207            new_names = _get_appended_rep_names(ls, prefix, name_list[0], ens_name, rep_sep=(kwargs.get('rep_string', 'r')))
+208        new_names = sort_names(new_names)
+209
+210    idl = []
+211
+212    noffset_list = [str(x) for x in noffset_list]
+213    wf_list = [str(x) for x in wf_list]
+214    wf2_list = [str(x) for x in wf2_list]
+215
+216    # setup dict structures
+217    intern = {}
+218    for name, corr_type in zip(name_list, corr_type_list):
+219        intern[name] = {}
+220        b2b, single = _extract_corr_type(corr_type)
+221        intern[name]["b2b"] = b2b
+222        intern[name]["single"] = single
+223        intern[name]["spec"] = {}
+224        for quarks in quarks_list:
+225            intern[name]["spec"][quarks] = {}
+226            for off in noffset_list:
+227                intern[name]["spec"][quarks][off] = {}
+228                for w in wf_list:
+229                    intern[name]["spec"][quarks][off][w] = {}
+230                    if b2b:
+231                        for w2 in wf2_list:
+232                            intern[name]["spec"][quarks][off][w][w2] = {}
+233                            intern[name]["spec"][quarks][off][w][w2]["pattern"] = _make_pattern(version, name, off, w, w2, intern[name]['b2b'], quarks)
+234                    else:
+235                        intern[name]["spec"][quarks][off][w]["0"] = {}
+236                        intern[name]["spec"][quarks][off][w]["0"]["pattern"] = _make_pattern(version, name, off, w, 0, intern[name]['b2b'], quarks)
+237
+238    internal_ret_dict = {}
+239    needed_keys = []
+240    for name, corr_type in zip(name_list, corr_type_list):
+241        b2b, single = _extract_corr_type(corr_type)
+242        if b2b:
+243            needed_keys.extend(_lists2key([name], quarks_list, noffset_list, wf_list, wf2_list))
+244        else:
+245            needed_keys.extend(_lists2key([name], quarks_list, noffset_list, wf_list, ["0"]))
+246
+247    for key in needed_keys:
+248        internal_ret_dict[key] = []
+249
+250    def _default_idl_func(cfg_string, cfg_sep):
+251        return int(cfg_string.split(cfg_sep)[-1])
+252
+253    if cfg_func is None:
+254        print("Default idl function in use.")
+255        cfg_func = _default_idl_func
+256        cfg_func_args = [cfg_separator]
+257    else:
+258        cfg_func_args = kwargs.get("cfg_func_args", [])
+259
+260    if not appended:
+261        for i, item in enumerate(ls):
+262            rep_path = path + '/' + item
+263            if "files" in kwargs:
+264                files = kwargs.get("files")
+265                if isinstance(files, list):
+266                    if all(isinstance(f, list) for f in files):
+267                        files = files[i]
+268                    elif all(isinstance(f, str) for f in files):
+269                        files = files
+270                    else:
+271                        raise TypeError("files has to be of type list[list[str]] or list[str]!")
+272                else:
+273                    raise TypeError("files has to be of type list[list[str]] or list[str]!")
+274
+275            else:
+276                files = []
+277            sub_ls = _find_files(rep_path, prefix, compact, files)
+278            rep_idl = []
+279            no_cfg = len(sub_ls)
+280            for cfg in sub_ls:
+281                try:
+282                    if compact:
+283                        rep_idl.append(cfg_func(cfg, *cfg_func_args))
+284                    else:
+285                        rep_idl.append(int(cfg[3:]))
+286                except Exception:
+287                    raise Exception("Couldn't parse idl from directory, problem with file " + cfg)
+288            rep_idl.sort()
+289            # maybe there is a better way to print the idls
+290            if not silent:
+291                print(item, ':', no_cfg, ' configurations')
+292            idl.append(rep_idl)
+293            # here we have found all the files we need to look into.
+294            if i == 0:
+295                if version != "0.0" and compact:
+296                    file = path + '/' + item + '/' + sub_ls[0]
+297                for name_index, name in enumerate(name_list):
+298                    if version == "0.0" or not compact:
+299                        file = path + '/' + item + '/' + sub_ls[0] + '/' + name
+300                    if corr_type_list[name_index] == 'bi':
+301                        name_keys = _lists2key(quarks_list, noffset_list, wf_list, ["0"])
+302                    else:
+303                        name_keys = _lists2key(quarks_list, noffset_list, wf_list, wf2_list)
+304                    for key in name_keys:
+305                        specs = _key2specs(key)
+306                        quarks = specs[0]
+307                        off = specs[1]
+308                        w = specs[2]
+309                        w2 = specs[3]
+310                        # here, we want to find the place within the file,
+311                        # where the correlator we need is stored.
+312                        # to do so, the pattern needed is put together
+313                        # from the input values
+314                        start_read, T = _find_correlator(file, version, intern[name]["spec"][quarks][str(off)][str(w)][str(w2)]["pattern"], intern[name]['b2b'], silent=silent)
+315                        intern[name]["spec"][quarks][str(off)][str(w)][str(w2)]["start"] = start_read
+316                        intern[name]["T"] = T
+317                        # preparing the datastructure
+318                        # the correlators get parsed into...
+319                        deltas = []
+320                        for j in range(intern[name]["T"]):
+321                            deltas.append([])
+322                        internal_ret_dict[sep.join([name, key])] = deltas
+323
+324            if compact:
+325                rep_deltas = _read_compact_rep(path, item, sub_ls, intern, needed_keys, im)
+326                for key in needed_keys:
+327                    name = _key2specs(key)[0]
+328                    for t in range(intern[name]["T"]):
+329                        internal_ret_dict[key][t].append(rep_deltas[key][t])
+330            else:
+331                for key in needed_keys:
+332                    rep_data = []
+333                    name = _key2specs(key)[0]
+334                    for subitem in sub_ls:
+335                        cfg_path = path + '/' + item + '/' + subitem
+336                        file_data = _read_o_file(cfg_path, name, needed_keys, intern, version, im)
+337                        rep_data.append(file_data)
+338                    for t in range(intern[name]["T"]):
+339                        internal_ret_dict[key][t].append([])
+340                        for cfg in range(no_cfg):
+341                            internal_ret_dict[key][t][i].append(rep_data[cfg][key][t])
+342    else:
+343        for key in needed_keys:
+344            specs = _key2specs(key)
+345            name = specs[0]
+346            quarks = specs[1]
+347            off = specs[2]
+348            w = specs[3]
+349            w2 = specs[4]
+350            if "files" in kwargs:
+351                if isinstance(kwargs.get("files"), list) and all(isinstance(f, str) for f in kwargs.get("files")):
+352                    name_ls = kwargs.get("files")
+353                else:
+354                    raise TypeError("In append mode, files has to be of type list[str]!")
+355            else:
+356                name_ls = ls
+357                for exc in name_ls:
+358                    if not fnmatch.fnmatch(exc, prefix + '*.' + name):
+359                        name_ls = list(set(name_ls) - set([exc]))
+360            name_ls = sort_names(name_ls)
+361            pattern = intern[name]['spec'][quarks][off][w][w2]['pattern']
+362            deltas = []
+363            for rep, file in enumerate(name_ls):
+364                rep_idl = []
+365                filename = path + '/' + file
+366                T, rep_idl, rep_data = _read_append_rep(filename, pattern, intern[name]['b2b'], im, intern[name]['single'], cfg_func, cfg_func_args)
+367                if rep == 0:
+368                    intern[name]['T'] = T
+369                    for t in range(intern[name]['T']):
+370                        deltas.append([])
+371                for t in range(intern[name]['T']):
+372                    deltas[t].append(rep_data[t])
+373                internal_ret_dict[key] = deltas
+374                if name == name_list[0]:
+375                    idl.append(rep_idl)
+376
+377    if kwargs.get("check_configs") is True:
+378        if not silent:
+379            print("Checking for missing configs...")
+380        che = kwargs.get("check_configs")
+381        if not (len(che) == len(idl)):
+382            raise Exception("check_configs has to be the same length as replica!")
+383        for r in range(len(idl)):
+384            if not silent:
+385                print("checking " + new_names[r])
+386            check_idl(idl[r], che[r])
+387        if not silent:
+388            print("Done")
+389
+390    result_dict = {}
+391    if keyed_out:
+392        for key in needed_keys:
+393            name = _key2specs(key)[0]
+394            result = []
+395            for t in range(intern[name]["T"]):
+396                result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl))
+397            result_dict[key] = result
+398    else:
+399        for name, corr_type in zip(name_list, corr_type_list):
+400            result_dict[name] = {}
+401            for quarks in quarks_list:
+402                result_dict[name][quarks] = {}
+403                for off in noffset_list:
+404                    result_dict[name][quarks][off] = {}
+405                    for w in wf_list:
+406                        result_dict[name][quarks][off][w] = {}
+407                        if corr_type != 'bi':
+408                            for w2 in wf2_list:
+409                                key = _specs2key(name, quarks, off, w, w2)
+410                                result = []
+411                                for t in range(intern[name]["T"]):
+412                                    result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl))
+413                                result_dict[name][quarks][str(off)][str(w)][str(w2)] = result
+414                        else:
+415                            key = _specs2key(name, quarks, off, w, "0")
+416                            result = []
+417                            for t in range(intern[name]["T"]):
+418                                result.append(Obs(internal_ret_dict[key][t], new_names, idl=idl))
+419                            result_dict[name][quarks][str(off)][str(w)][str(0)] = result
+420    return result_dict
 
diff --git a/docs/pyerrors/misc.html b/docs/pyerrors/misc.html index d8a27b6a..67022ce0 100644 --- a/docs/pyerrors/misc.html +++ b/docs/pyerrors/misc.html @@ -316,7 +316,7 @@
def - errorbar( x, y, axes=<module 'matplotlib.pyplot' from '/opt/hostedtoolcache/Python/3.12.11/x64/lib/python3.12/site-packages/matplotlib/pyplot.py'>, **kwargs): + errorbar( x, y, axes=<module 'matplotlib.pyplot' from '/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/matplotlib/pyplot.py'>, **kwargs): diff --git a/docs/search.js b/docs/search.js index 914a773c..0e8a3900 100644 --- a/docs/search.js +++ b/docs/search.js @@ -1,6 +1,6 @@ window.pdocSearch = (function(){ /** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();oWhat is pyerrors?\n\n

pyerrors is a python package for error computation and propagation of Markov chain Monte Carlo data.\nIt is based on the gamma method arXiv:hep-lat/0306017. Some of its features are:

\n\n
    \n
  • automatic differentiation for exact linear error propagation as suggested in arXiv:1809.01289 (partly based on the autograd package).
  • \n
  • treatment of slow modes in the simulation as suggested in arXiv:1009.5228.
  • \n
  • coherent error propagation for data from different Markov chains.
  • \n
  • non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in arXiv:1809.01289.
  • \n
  • real and complex matrix operations and their error propagation based on automatic differentiation (Matrix inverse, Cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...).
  • \n
\n\n

More detailed examples can found in the GitHub repository \"badge\".

\n\n

If you use pyerrors for research that leads to a publication please consider citing:

\n\n
    \n
  • Fabian Joswig, Simon Kuberski, Justus T. Kuhlmann, Jan Neuendorf, pyerrors: a python framework for error analysis of Monte Carlo data. Comput.Phys.Commun. 288 (2023) 108750.
  • \n
  • Ulli Wolff, Monte Carlo errors with less errors. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
  • \n
  • Alberto Ramos, Automatic differentiation for error analysis of Monte Carlo data. Comput.Phys.Commun. 238 (2019) 19-35.
  • \n
\n\n

and

\n\n
    \n
  • Stefan Schaefer, Rainer Sommer, Francesco Virotta, Critical slowing down and error analysis in lattice QCD simulations. Nucl.Phys.B 845 (2011) 93-119.
  • \n
\n\n

where applicable.

\n\n

There exist similar publicly available implementations of gamma method error analysis suites in Fortran, Julia and Python.

\n\n

Installation

\n\n

Install the most recent release using pip and pypi:

\n\n
\n
python -m pip install pyerrors     # Fresh install\npython -m pip install -U pyerrors  # Update\n
\n
\n\n

Install the most recent release using conda and conda-forge:

\n\n
\n
conda install -c conda-forge pyerrors  # Fresh install\nconda update -c conda-forge pyerrors   # Update\n
\n
\n\n

Install the current develop version:

\n\n
\n
python -m pip install -U --no-deps --force-reinstall git+https://github.com/fjosw/pyerrors.git@develop\n
\n
\n\n

(Also works for any feature branch).

\n\n

Basic example

\n\n
\n
import numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name']) # Initialize an Obs object\nmy_new_obs = 2 * np.log(my_obs) / my_obs ** 2 # Construct derived Obs object\nmy_new_obs.gamma_method()                     # Estimate the statistical error\nprint(my_new_obs)                             # Print the result to stdout\n> 0.31498(72)\n
\n
\n\n

The Obs class

\n\n

pyerrors introduces a new datatype, Obs, which simplifies error propagation and estimation for auto- and cross-correlated data.\nAn Obs object can be initialized with two arguments, the first is a list containing the samples for an observable from a Monte Carlo chain.\nThe samples can either be provided as python list or as numpy array.\nThe second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble. It is crucial for the correct error propagation that observations from the same Monte Carlo history are labeled with the same name. See Multiple ensembles/replica for details.

\n\n
\n
import pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\n
\n
\n\n

Error propagation

\n\n

When performing mathematical operations on Obs objects the correct error propagation is intrinsically taken care of using a first order Taylor expansion\n$$\\delta_f^i=\\sum_\\alpha \\bar{f}_\\alpha \\delta_\\alpha^i\\,,\\quad \\delta_\\alpha^i=a_\\alpha^i-\\bar{a}_\\alpha\\,,$$\nas introduced in arXiv:hep-lat/0306017.\nThe required derivatives $\\bar{f}_\\alpha$ are evaluated up to machine precision via automatic differentiation as suggested in arXiv:1809.01289.

\n\n

The Obs class is designed such that mathematical numpy functions can be used on Obs just as for regular floats.

\n\n
\n
import numpy as np\nimport pyerrors as pe\n\nmy_obs1 = pe.Obs([samples1], ['ensemble_name'])\nmy_obs2 = pe.Obs([samples2], ['ensemble_name'])\n\nmy_sum = my_obs1 + my_obs2\n\nmy_m_eff = np.log(my_obs1 / my_obs2)\n\niamzero = my_m_eff - my_m_eff\n# Check that value and fluctuations are zero within machine precision\nprint(iamzero == 0.0)\n> True\n
\n
\n\n

Error estimation

\n\n

The error estimation within pyerrors is based on the gamma method introduced in arXiv:hep-lat/0306017.\nAfter having arrived at the derived quantity of interest the gamma_method can be called as detailed in the following example.

\n\n
\n
my_sum.gamma_method()\nprint(my_sum)\n> 1.70(57)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 5.72046658e-01 +/- 7.56746598e-02 (33.650%)\n>  t_int         2.71422900e+00 +/- 6.40320983e-01 S = 2.00\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n
\n\n

The gamma_method is not automatically called after every intermediate step in order to prevent computational overhead.

\n\n

We use the following definition of the integrated autocorrelation time established in Madras & Sokal 1988\n$$\\tau_\\mathrm{int}=\\frac{1}{2}+\\sum_{t=1}^{W}\\rho(t)\\geq \\frac{1}{2}\\,.$$\nThe window $W$ is determined via the automatic windowing procedure described in arXiv:hep-lat/0306017.\nThe standard value for the parameter $S$ of this automatic windowing procedure is $S=2$. Other values for $S$ can be passed to the gamma_method as parameter.

\n\n
\n
my_sum.gamma_method(S=3.0)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 6.30675201e-01 +/- 1.04585650e-01 (37.099%)\n>  t_int         3.29909703e+00 +/- 9.77310102e-01 S = 3.00\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n
\n\n

The integrated autocorrelation time $\\tau_\\mathrm{int}$ and the autocorrelation function $\\rho(W)$ can be monitored via the methods pyerrors.obs.Obs.plot_tauint and pyerrors.obs.Obs.plot_rho.

\n\n

If the parameter $S$ is set to zero it is assumed that the dataset does not exhibit any autocorrelation and the window size is chosen to be zero.\nIn this case the error estimate is identical to the sample standard error.

\n\n

Exponential tails

\n\n

Slow modes in the Monte Carlo history can be accounted for by attaching an exponential tail to the autocorrelation function $\\rho$ as suggested in arXiv:1009.5228. The longest autocorrelation time in the history, $\\tau_\\mathrm{exp}$, can be passed to the gamma_method as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.

\n\n
\n
my_sum.gamma_method(tau_exp=7.2)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 6.28097762e-01 +/- 5.79077524e-02 (36.947%)\n>  t_int         3.27218667e+00 +/- 7.99583654e-01 tau_exp = 7.20,  N_sigma = 1\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n
\n\n

For the full API see pyerrors.obs.Obs.gamma_method.

\n\n

Multiple ensembles/replica

\n\n

Error propagation for multiple ensembles (Markov chains with different simulation parameters) is handled automatically. Ensembles are uniquely identified by their name.

\n\n
\n
obs1 = pe.Obs([samples1], ['ensemble1'])\nobs2 = pe.Obs([samples2], ['ensemble2'])\n\nmy_sum = obs1 + obs2\nmy_sum.details()\n> Result   2.00697958e+00\n> 1500 samples in 2 ensembles:\n>   \u00b7 Ensemble 'ensemble1' : 1000 configurations (from 1 to 1000)\n>   \u00b7 Ensemble 'ensemble2' : 500 configurations (from 1 to 500)\n
\n
\n\n

Observables from the same Monte Carlo chain have to be initialized with the same name for correct error propagation. If different names were used in this case the data would be treated as statistically independent resulting in loss of relevant information and a potential over or under estimate of the statistical error.

\n\n

pyerrors identifies multiple replica (independent Markov chains with identical simulation parameters) by the vertical bar | in the name of the data set.

\n\n
\n
obs1 = pe.Obs([samples1], ['ensemble1|r01'])\nobs2 = pe.Obs([samples2], ['ensemble1|r02'])\n\n> my_sum = obs1 + obs2\n> my_sum.details()\n> Result   2.00697958e+00\n> 1500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1'\n>     \u00b7 Replicum 'r01' : 1000 configurations (from 1 to 1000)\n>     \u00b7 Replicum 'r02' : 500 configurations (from 1 to 500)\n
\n
\n\n

Error estimation for multiple ensembles

\n\n

In order to keep track of different error analysis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.

\n\n
\n
pe.Obs.S_dict['ensemble1'] = 2.5\npe.Obs.tau_exp_dict['ensemble2'] = 8.0\npe.Obs.tau_exp_dict['ensemble3'] = 2.0\n
\n
\n\n

In case the gamma_method is called without any parameters it will use the values specified in the dictionaries for the respective ensembles.\nPassing arguments to the gamma_method still dominates over the dictionaries.

\n\n

Irregular Monte Carlo chains

\n\n

Obs objects defined on irregular Monte Carlo chains can be initialized with the parameter idl.

\n\n
\n
# Observable defined on configurations 20 to 519\nobs1 = pe.Obs([samples1], ['ensemble1'], idl=[range(20, 520)])\nobs1.details()\n> Result         9.98319881e-01\n> 500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 500 configurations (from 20 to 519)\n\n# Observable defined on every second configuration between 5 and 1003\nobs2 = pe.Obs([samples2], ['ensemble1'], idl=[range(5, 1005, 2)])\nobs2.details()\n> Result         9.99100712e-01\n> 500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 500 configurations (from 5 to 1003 in steps of 2)\n\n# Observable defined on configurations 2, 9, 28, 29 and 501\nobs3 = pe.Obs([samples3], ['ensemble1'], idl=[[2, 9, 28, 29, 501]])\nobs3.details()\n> Result         1.01718064e+00\n> 5 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 5 configurations (irregular range)\n
\n
\n\n

Obs objects defined on regular and irregular histories of the same ensemble can be combined with each other and the correct error propagation and estimation is automatically taken care of.

\n\n

Warning: Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions.\nMake sure to check the autocorrelation time with e.g. pyerrors.obs.Obs.plot_rho or pyerrors.obs.Obs.plot_tauint.

\n\n

For the full API see pyerrors.obs.Obs.

\n\n

Correlators

\n\n

When one is not interested in single observables but correlation functions, pyerrors offers the Corr class which simplifies the corresponding error propagation and provides the user with a set of standard methods. In order to initialize a Corr objects one needs to arrange the data as a list of Obs

\n\n
\n
my_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3])\nprint(my_corr)\n> x0/a  Corr(x0/a)\n> ------------------\n> 0      0.7957(80)\n> 1      0.5156(51)\n> 2      0.3227(33)\n> 3      0.2041(21)\n
\n
\n\n

In case the correlation functions are not defined on the outermost timeslices, for example because of fixed boundary conditions, a padding can be introduced.

\n\n
\n
my_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3], padding=[1, 1])\nprint(my_corr)\n> x0/a  Corr(x0/a)\n> ------------------\n> 0\n> 1      0.7957(80)\n> 2      0.5156(51)\n> 3      0.3227(33)\n> 4      0.2041(21)\n> 5\n
\n
\n\n

The individual entries of a correlator can be accessed via slicing

\n\n
\n
print(my_corr[3])\n> 0.3227(33)\n
\n
\n\n

Error propagation with the Corr class works very similar to Obs objects. Mathematical operations are overloaded and Corr objects can be computed together with other Corr objects, Obs objects or real numbers and integers.

\n\n
\n
my_new_corr = 0.3 * my_corr[2] * my_corr * my_corr + 12 / my_corr\n
\n
\n\n

pyerrors provides the user with a set of regularly used methods for the manipulation of correlator objects:

\n\n
    \n
  • Corr.gamma_method applies the gamma method to all entries of the correlator.
  • \n
  • Corr.m_eff to construct effective masses. Various variants for periodic and fixed temporal boundary conditions are available.
  • \n
  • Corr.deriv returns the first derivative of the correlator as Corr. Different discretizations of the numerical derivative are available.
  • \n
  • Corr.second_deriv returns the second derivative of the correlator as Corr. Different discretizations of the numerical derivative are available.
  • \n
  • Corr.symmetric symmetrizes parity even correlations functions, assuming periodic boundary conditions.
  • \n
  • Corr.anti_symmetric anti-symmetrizes parity odd correlations functions, assuming periodic boundary conditions.
  • \n
  • Corr.T_symmetry averages a correlator with its time symmetry partner, assuming fixed boundary conditions.
  • \n
  • Corr.plateau extracts a plateau value from the correlator in a given range.
  • \n
  • Corr.roll periodically shifts the correlator.
  • \n
  • Corr.reverse reverses the time ordering of the correlator.
  • \n
  • Corr.correlate constructs a disconnected correlation function from the correlator and another Corr or Obs object.
  • \n
  • Corr.reweight reweights the correlator.
  • \n
\n\n

pyerrors can also handle matrices of correlation functions and extract energy states from these matrices via a generalized eigenvalue problem (see pyerrors.correlators.Corr.GEVP).

\n\n

For the full API see pyerrors.correlators.Corr.

\n\n

Complex valued observables

\n\n

pyerrors can handle complex valued observables via the class pyerrors.obs.CObs.\nCObs are initialized with a real and an imaginary part which both can be Obs valued.

\n\n
\n
my_real_part = pe.Obs([samples1], ['ensemble1'])\nmy_imag_part = pe.Obs([samples2], ['ensemble1'])\n\nmy_cobs = pe.CObs(my_real_part, my_imag_part)\nmy_cobs.gamma_method()\nprint(my_cobs)\n> (0.9959(91)+0.659(28)j)\n
\n
\n\n

Elementary mathematical operations are overloaded and samples are properly propagated as for the Obs class.

\n\n
\n
my_derived_cobs = (my_cobs + my_cobs.conjugate()) / np.abs(my_cobs)\nmy_derived_cobs.gamma_method()\nprint(my_derived_cobs)\n> (1.668(23)+0.0j)\n
\n
\n\n

The Covobs class

\n\n

In many projects, auxiliary data that is not based on Monte Carlo chains enters. Examples are experimentally determined mesons masses which are used to set the scale or renormalization constants. These numbers come with an error that has to be propagated through the analysis. The Covobs class allows to define such quantities in pyerrors. Furthermore, external input might consist of correlated quantities. An example are the parameters of an interpolation formula, which are defined via mean values and a covariance matrix between all parameters. The contribution of the interpolation formula to the error of a derived quantity therefore might depend on the complete covariance matrix.

\n\n

This concept is built into the definition of Covobs. In pyerrors, external input is defined by $M$ mean values, a $M\\times M$ covariance matrix, where $M=1$ is permissible, and a name that uniquely identifies the covariance matrix. Below, we define the pion mass, based on its mean value and error, 134.9768(5). Note, that the square of the error enters cov_Obs, since the second argument of this function is the covariance matrix of the Covobs.

\n\n
\n
import pyerrors.obs as pe\n\nmpi = pe.cov_Obs(134.9768, 0.0005**2, 'pi^0 mass')\nmpi.gamma_method()\nmpi.details()\n> Result         1.34976800e+02 +/- 5.00000000e-04 +/- 0.00000000e+00 (0.000%)\n>  pi^0 mass     5.00000000e-04\n> 0 samples in 1 ensemble:\n>   \u00b7 Covobs   'pi^0 mass'\n
\n
\n\n

The resulting object mpi is an Obs that contains a Covobs. In the following, it may be handled as any other Obs. The contribution of the covariance matrix to the error of an Obs is determined from the $M \\times M$ covariance matrix $\\Sigma$ and the gradient of the Obs with respect to the external quantities, which is the $1\\times M$ Jacobian matrix $J$, via\n$$s = \\sqrt{J^T \\Sigma J}\\,,$$\nwhere the Jacobian is computed for each derived quantity via automatic differentiation.

\n\n

Correlated auxiliary data is defined similarly to above, e.g., via

\n\n
\n
RAP = pe.cov_Obs([16.7457, -19.0475], [[3.49591, -6.07560], [-6.07560, 10.5834]], 'R_AP, 1906.03445, (5.3a)')\nprint(RAP)\n> [Obs[16.7(1.9)], Obs[-19.0(3.3)]]\n
\n
\n\n

where RAP now is a list of two Obs that contains the two correlated parameters.

\n\n

Since the gradient of a derived observable with respect to an external covariance matrix is propagated through the entire analysis, the Covobs class allows to quote the derivative of a result with respect to the external quantities. If these derivatives are published together with the result, small shifts in the definition of external quantities, e.g., the definition of the physical point, can be performed a posteriori based on the published information. This may help to compare results of different groups. The gradient of an Obs o with respect to a covariance matrix with the identifying string k may be accessed via

\n\n
\n
o.covobs[k].grad\n
\n
\n\n

Error propagation in iterative algorithms

\n\n

pyerrors supports exact linear error propagation for iterative algorithms like various variants of non-linear least squares fits or root finding. The derivatives required for the error propagation are calculated as described in arXiv:1809.01289.

\n\n

Least squares fits

\n\n

Standard non-linear least square fits with errors on the dependent but not the independent variables can be performed with pyerrors.fits.least_squares. As default solver the Levenberg-Marquardt algorithm implemented in scipy is used.

\n\n

Fit functions have to be of the following form

\n\n
\n
import autograd.numpy as anp\n\ndef func(a, x):\n    return a[1] * anp.exp(-a[0] * x)\n
\n
\n\n

It is important that numerical functions refer to autograd.numpy instead of numpy for the automatic differentiation in iterative algorithms to work properly.

\n\n

Fits can then be performed via

\n\n
\n
fit_result = pe.fits.least_squares(x, y, func)\nprint("\\n", fit_result)\n> Fit with 2 parameters\n> Method: Levenberg-Marquardt\n> `ftol` termination condition is satisfied.\n> chisquare/d.o.f.: 0.9593035785160936\n\n>  Goodness of fit:\n> \u03c7\u00b2/d.o.f. = 0.959304\n> p-value   = 0.5673\n> Fit parameters:\n> 0      0.0548(28)\n> 1      1.933(64)\n
\n
\n\n

where x is a list or numpy.array of floats and y is a list or numpy.array of Obs.

\n\n

Data stored in Corr objects can be fitted directly using the Corr.fit method.

\n\n
\n
my_corr = pe.Corr(y)\nfit_result = my_corr.fit(func, fitrange=[12, 25])\n
\n
\n\n

this can simplify working with absolute fit ranges and takes care of gaps in the data automatically.

\n\n

For fit functions with multiple independent variables the fit function can be of the form

\n\n
\n
def func(a, x):\n    (x1, x2) = x\n    return a[0] * x1 ** 2 + a[1] * x2\n
\n
\n\n

pyerrors also supports correlated fits which can be triggered via the parameter correlated_fit=True.\nDetails about how the required covariance matrix is estimated can be found in pyerrors.obs.covariance.\nDirect visualizations of the performed fits can be triggered via resplot=True or qqplot=True.

\n\n

For all available options including combined fits to multiple datasets see pyerrors.fits.least_squares.

\n\n

Total least squares fits

\n\n

pyerrors can also fit data with errors on both the dependent and independent variables using the total least squares method also referred to as orthogonal distance regression as implemented in scipy, see pyerrors.fits.least_squares. The syntax is identical to the standard least squares case, the only difference being that x also has to be a list or numpy.array of Obs.

\n\n

For the full API see pyerrors.fits for fits and pyerrors.roots for finding roots of functions.

\n\n

Matrix operations

\n\n

pyerrors provides wrappers for Obs- and CObs-valued matrix operations based on numpy.linalg. The supported functions include:

\n\n
    \n
  • inv for the matrix inverse.
  • \n
  • cholseky for the Cholesky decomposition.
  • \n
  • det for the matrix determinant.
  • \n
  • eigh for eigenvalues and eigenvectors of hermitean matrices.
  • \n
  • eig for eigenvalues of general matrices.
  • \n
  • pinv for the Moore-Penrose pseudoinverse.
  • \n
  • svd for the singular-value-decomposition.
  • \n
\n\n

For the full API see pyerrors.linalg.

\n\n

Export data

\n\n

\n\n

The preferred exported file format within pyerrors is json.gz. Files written to this format are valid JSON files that have been compressed using gzip. The structure of the content is inspired by the dobs format of the ALPHA collaboration. The aim of the format is to facilitate the storage of data in a self-contained way such that, even years after the creation of the file, it is possible to extract all necessary information:

\n\n
    \n
  • What observables are stored? Possibly: How exactly are they defined.
  • \n
  • How does each single ensemble or external quantity contribute to the error of the observable?
  • \n
  • Who did write the file when and on which machine?
  • \n
\n\n

This can be achieved by storing all information in one single file. The export routines of pyerrors are written such that as much information as possible is written automatically as described in the following example

\n\n
\n
my_obs = pe.Obs([samples], ["test_ensemble"])\nmy_obs.tag = "My observable"\n\npe.input.json.dump_to_json(my_obs, "test_output_file", description="This file contains a test observable")\n# For a single observable one can equivalently use the class method dump\nmy_obs.dump("test_output_file", description="This file contains a test observable")\n\ncheck = pe.input.json.load_json("test_output_file")\n\nprint(my_obs == check)\n> True\n
\n
\n\n

The format also allows to directly write out the content of Corr objects or lists and arrays of Obs objects by passing the desired data to pyerrors.input.json.dump_to_json.

\n\n

json.gz format specification

\n\n

The first entries of the file provide optional auxiliary information:

\n\n
    \n
  • program is a string that indicates which program was used to write the file.
  • \n
  • version is a string that specifies the version of the format.
  • \n
  • who is a string that specifies the user name of the creator of the file.
  • \n
  • date is a string and contains the creation date of the file.
  • \n
  • host is a string and contains the hostname of the machine where the file has been written.
  • \n
  • description contains information on the content of the file. This field is not filled automatically in pyerrors. The user is advised to provide as detailed information as possible in this field. Examples are: Input files of measurements or simulations, LaTeX formulae or references to publications to specify how the observables have been computed, details on the analysis strategy, ... This field may be any valid JSON type. Strings, arrays or objects (equivalent to dicts in python) are well suited to provide information.
  • \n
\n\n

The only necessary entry of the file is the field\n-obsdata, an array that contains the actual data.

\n\n

Each entry of the array belongs to a single structure of observables. Currently, these structures can be either of Obs, list, numpy.ndarray, Corr. All Obs inside a structure (with dimension > 0) have to be defined on the same set of configurations. Different structures, that are represented by entries of the array obsdata, are treated independently. Each entry of the array obsdata has the following required entries:

\n\n
    \n
  • type is a string that specifies the type of the structure. This allows to parse the content to the correct form after reading the file. It is always possible to interpret the content as list of Obs.
  • \n
  • value is an array that contains the mean values of the Obs inside the structure.\nThe following entries are optional:
  • \n
  • layout is a string that specifies the layout of multi-dimensional structures. Examples are \"2, 2\" for a 2x2 dimensional matrix or \"64, 4, 4\" for a Corr with $T=64$ and 4x4 matrices on each time slices. \"1\" denotes a single Obs. Multi-dimensional structures are stored in row-major format (see below).
  • \n
  • tag is any JSON type. It contains additional information concerning the structure. The tag of an Obs in pyerrors is written here.
  • \n
  • reweighted is a Bool that may be used to specify, whether the Obs in the structure have been reweighted.
  • \n
  • data is an array that contains the data from MC chains. We will define it below.
  • \n
  • cdata is an array that contains the data from external quantities with an error (Covobs in pyerrors). We will define it below.
  • \n
\n\n

The array data contains the data from MC chains. Each entry of the array corresponds to one ensemble and contains:

\n\n
    \n
  • id, a string that contains the name of the ensemble
  • \n
  • replica, an array that contains an entry per replica of the ensemble.
  • \n
\n\n

Each entry of replica contains\nname, a string that contains the name of the replica\ndeltas, an array that contains the actual data.

\n\n

Each entry in deltas corresponds to one configuration of the replica and has $1+N$ many entries. The first entry is an integer that specifies the configuration number that, together with ensemble and replica name, may be used to uniquely identify the configuration on which the data has been obtained. The following N entries specify the deltas, i.e., the deviation of the observable from the mean value on this configuration, of each Obs inside the structure. Multi-dimensional structures are stored in a row-major format. For primary observables, such as correlation functions, $value + delta_i$ matches the primary data obtained on the configuration.

\n\n

The array cdata contains information about the contribution of auxiliary observables, represented by Covobs in pyerrors, to the total error of the observables. Each entry of the array belongs to one auxiliary covariance matrix and contains:

\n\n
    \n
  • id, a string that identifies the covariance matrix
  • \n
  • layout, a string that defines the dimensions of the $M\\times M$ covariance matrix (has to be \"M, M\" or \"1\").
  • \n
  • cov, an array that contains the $M\\times M$ many entries of the covariance matrix, stored in row-major format.
  • \n
  • grad, an array that contains N entries, one for each Obs inside the structure. Each entry itself is an array, that contains the M gradients of the Nth observable with respect to the quantity that corresponds to the Mth diagonal entry of the covariance matrix.
  • \n
\n\n

A JSON schema that may be used to verify the correctness of a file with respect to the format definition is stored in ./examples/json_schema.json. The schema is a self-descriptive format definition and contains an exemplary file.

\n\n

Julia I/O routines for the json.gz format, compatible with ADerrors.jl, can be found here.

\n"}, "pyerrors.correlators": {"fullname": "pyerrors.correlators", "modulename": "pyerrors.correlators", "kind": "module", "doc": "

\n"}, "pyerrors.correlators.Corr": {"fullname": "pyerrors.correlators.Corr", "modulename": "pyerrors.correlators", "qualname": "Corr", "kind": "class", "doc": "

The class for a correlator (time dependent sequence of pe.Obs).

\n\n

Everything, this class does, can be achieved using lists or arrays of Obs.\nBut it is simply more convenient to have a dedicated object for correlators.\nOne often wants to add or multiply correlators of the same length at every timeslice and it is inconvenient\nto iterate over all timeslices for every operation. This is especially true, when dealing with matrices.

\n\n

The correlator can have two types of content: An Obs at every timeslice OR a matrix at every timeslice.\nOther dependency (eg. spatial) are not supported.

\n\n

The Corr class can also deal with missing measurements or paddings for fixed boundary conditions.\nThe missing entries are represented via the None object.

\n\n
Initialization
\n\n

A simple correlator can be initialized with a list or a one-dimensional array of Obs or Cobs

\n\n
\n
corr11 = pe.Corr([obs1, obs2])\ncorr11 = pe.Corr(np.array([obs1, obs2]))\n
\n
\n\n

A matrix-valued correlator can either be initialized via a two-dimensional array of Corr objects

\n\n
\n
matrix_corr = pe.Corr(np.array([[corr11, corr12], [corr21, corr22]]))\n
\n
\n\n

or alternatively via a three-dimensional array of Obs or CObs of shape (T, N, N) where T is\nthe temporal extent of the correlator and N is the dimension of the matrix.

\n"}, "pyerrors.correlators.Corr.__init__": {"fullname": "pyerrors.correlators.Corr.__init__", "modulename": "pyerrors.correlators", "qualname": "Corr.__init__", "kind": "function", "doc": "

Initialize a Corr object.

\n\n
Parameters
\n\n
    \n
  • data_input (list or array):\nlist of Obs or list of arrays of Obs or array of Corrs (see class docstring for details).
  • \n
  • padding (list, optional):\nList with two entries where the first labels the padding\nat the front of the correlator and the second the padding\nat the back.
  • \n
  • prange (list, optional):\nList containing the first and last timeslice of the plateau\nregion identified for this correlator.
  • \n
\n", "signature": "(data_input, padding=[0, 0], prange=None)"}, "pyerrors.correlators.Corr.tag": {"fullname": "pyerrors.correlators.Corr.tag", "modulename": "pyerrors.correlators", "qualname": "Corr.tag", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.content": {"fullname": "pyerrors.correlators.Corr.content", "modulename": "pyerrors.correlators", "qualname": "Corr.content", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.T": {"fullname": "pyerrors.correlators.Corr.T", "modulename": "pyerrors.correlators", "qualname": "Corr.T", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.prange": {"fullname": "pyerrors.correlators.Corr.prange", "modulename": "pyerrors.correlators", "qualname": "Corr.prange", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.reweighted": {"fullname": "pyerrors.correlators.Corr.reweighted", "modulename": "pyerrors.correlators", "qualname": "Corr.reweighted", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.gamma_method": {"fullname": "pyerrors.correlators.Corr.gamma_method", "modulename": "pyerrors.correlators", "qualname": "Corr.gamma_method", "kind": "function", "doc": "

Apply the gamma method to the content of the Corr.

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.gm": {"fullname": "pyerrors.correlators.Corr.gm", "modulename": "pyerrors.correlators", "qualname": "Corr.gm", "kind": "function", "doc": "

Apply the gamma method to the content of the Corr.

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.projected": {"fullname": "pyerrors.correlators.Corr.projected", "modulename": "pyerrors.correlators", "qualname": "Corr.projected", "kind": "function", "doc": "

We need to project the Correlator with a Vector to get a single value at each timeslice.

\n\n

The method can use one or two vectors.\nIf two are specified it returns v1@G@v2 (the order might be very important.)\nBy default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to

\n", "signature": "(self, vector_l=None, vector_r=None, normalize=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.item": {"fullname": "pyerrors.correlators.Corr.item", "modulename": "pyerrors.correlators", "qualname": "Corr.item", "kind": "function", "doc": "

Picks the element [i,j] from every matrix and returns a correlator containing one Obs per timeslice.

\n\n
Parameters
\n\n
    \n
  • i (int):\nFirst index to be picked.
  • \n
  • j (int):\nSecond index to be picked.
  • \n
\n", "signature": "(self, i, j):", "funcdef": "def"}, "pyerrors.correlators.Corr.plottable": {"fullname": "pyerrors.correlators.Corr.plottable", "modulename": "pyerrors.correlators", "qualname": "Corr.plottable", "kind": "function", "doc": "

Outputs the correlator in a plotable format.

\n\n

Outputs three lists containing the timeslice index, the value on each\ntimeslice and the error on each timeslice.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.symmetric": {"fullname": "pyerrors.correlators.Corr.symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.symmetric", "kind": "function", "doc": "

Symmetrize the correlator around x0=0.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.anti_symmetric": {"fullname": "pyerrors.correlators.Corr.anti_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.anti_symmetric", "kind": "function", "doc": "

Anti-symmetrize the correlator around x0=0.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.is_matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.is_matrix_symmetric", "kind": "function", "doc": "

Checks whether a correlator matrices is symmetric on every timeslice.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.trace": {"fullname": "pyerrors.correlators.Corr.trace", "modulename": "pyerrors.correlators", "qualname": "Corr.trace", "kind": "function", "doc": "

Calculates the per-timeslice trace of a correlator matrix.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.matrix_symmetric", "kind": "function", "doc": "

Symmetrizes the correlator matrices on every timeslice.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.GEVP": {"fullname": "pyerrors.correlators.Corr.GEVP", "modulename": "pyerrors.correlators", "qualname": "Corr.GEVP", "kind": "function", "doc": "

Solve the generalized eigenvalue problem on the correlator matrix and returns the corresponding eigenvectors.

\n\n

The eigenvectors are sorted according to the descending eigenvalues, the zeroth eigenvector(s) correspond to the\nlargest eigenvalue(s). The eigenvector(s) for the individual states can be accessed via slicing

\n\n
\n
C.GEVP(t0=2)[0]  # Ground state vector(s)\nC.GEVP(t0=2)[:3]  # Vectors for the lowest three states\n
\n
\n\n
Parameters
\n\n
    \n
  • t0 (int):\nThe time t0 for the right hand side of the GEVP according to $G(t)v_i=\\lambda_i G(t_0)v_i$
  • \n
  • ts (int):\nfixed time $G(t_s)v_i=\\lambda_i G(t_0)v_i$ if sort=None.\nIf sort=\"Eigenvector\" it gives a reference point for the sorting method.
  • \n
  • sort (string):\nIf this argument is set, a list of self.T vectors per state is returned. If it is set to None, only one vector is returned.\n
      \n
    • \"Eigenvalue\": The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice. (default)
    • \n
    • \"Eigenvector\": Use the method described in arXiv:2004.10472 to find the set of v(t) belonging to the state.\nThe reference state is identified by its eigenvalue at $t=t_s$.
    • \n
    • None: The GEVP is solved only at ts, no sorting is necessary
    • \n
  • \n
  • vector_obs (bool):\nIf True, uncertainties are propagated in the eigenvector computation (default False).
  • \n
\n\n
Other Parameters
\n\n
    \n
  • state (int):\nReturns only the vector(s) for a specified state. The lowest state is zero.
  • \n
  • method (str):\nMethod used to solve the GEVP.\n
      \n
    • \"eigh\": Use scipy.linalg.eigh to solve the GEVP. (default for vector_obs=False)
    • \n
    • \"cholesky\": Use manually implemented solution via the Cholesky decomposition. Automatically chosen if vector_obs==True.
    • \n
  • \n
\n", "signature": "(self, t0, ts=None, sort='Eigenvalue', vector_obs=False, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.Eigenvalue": {"fullname": "pyerrors.correlators.Corr.Eigenvalue", "modulename": "pyerrors.correlators", "qualname": "Corr.Eigenvalue", "kind": "function", "doc": "

Determines the eigenvalue of the GEVP by solving and projecting the correlator

\n\n
Parameters
\n\n
    \n
  • state (int):\nThe state one is interested in ordered by energy. The lowest state is zero.
  • \n
  • All other parameters are identical to the ones of Corr.GEVP.
  • \n
\n", "signature": "(self, t0, ts=None, state=0, sort='Eigenvalue', **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.Hankel": {"fullname": "pyerrors.correlators.Corr.Hankel", "modulename": "pyerrors.correlators", "qualname": "Corr.Hankel", "kind": "function", "doc": "

Constructs an NxN Hankel matrix

\n\n

C(t) c(t+1) ... c(t+n-1)\nC(t+1) c(t+2) ... c(t+n)\n.................\nC(t+(n-1)) c(t+n) ... c(t+2(n-1))

\n\n
Parameters
\n\n
    \n
  • N (int):\nDimension of the Hankel matrix
  • \n
  • periodic (bool, optional):\ndetermines whether the matrix is extended periodically
  • \n
\n", "signature": "(self, N, periodic=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.roll": {"fullname": "pyerrors.correlators.Corr.roll", "modulename": "pyerrors.correlators", "qualname": "Corr.roll", "kind": "function", "doc": "

Periodically shift the correlator by dt timeslices

\n\n
Parameters
\n\n
    \n
  • dt (int):\nnumber of timeslices
  • \n
\n", "signature": "(self, dt):", "funcdef": "def"}, "pyerrors.correlators.Corr.reverse": {"fullname": "pyerrors.correlators.Corr.reverse", "modulename": "pyerrors.correlators", "qualname": "Corr.reverse", "kind": "function", "doc": "

Reverse the time ordering of the Corr

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.thin": {"fullname": "pyerrors.correlators.Corr.thin", "modulename": "pyerrors.correlators", "qualname": "Corr.thin", "kind": "function", "doc": "

Thin out a correlator to suppress correlations

\n\n
Parameters
\n\n
    \n
  • spacing (int):\nKeep only every 'spacing'th entry of the correlator
  • \n
  • offset (int):\nOffset the equal spacing
  • \n
\n", "signature": "(self, spacing=2, offset=0):", "funcdef": "def"}, "pyerrors.correlators.Corr.correlate": {"fullname": "pyerrors.correlators.Corr.correlate", "modulename": "pyerrors.correlators", "qualname": "Corr.correlate", "kind": "function", "doc": "

Correlate the correlator with another correlator or Obs

\n\n
Parameters
\n\n
    \n
  • partner (Obs or Corr):\npartner to correlate the correlator with.\nCan either be an Obs which is correlated with all entries of the\ncorrelator or a Corr of same length.
  • \n
\n", "signature": "(self, partner):", "funcdef": "def"}, "pyerrors.correlators.Corr.reweight": {"fullname": "pyerrors.correlators.Corr.reweight", "modulename": "pyerrors.correlators", "qualname": "Corr.reweight", "kind": "function", "doc": "

Reweight the correlator.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
  • \n
\n", "signature": "(self, weight, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.T_symmetry": {"fullname": "pyerrors.correlators.Corr.T_symmetry", "modulename": "pyerrors.correlators", "qualname": "Corr.T_symmetry", "kind": "function", "doc": "

Return the time symmetry average of the correlator and its partner

\n\n
Parameters
\n\n
    \n
  • partner (Corr):\nTime symmetry partner of the Corr
  • \n
  • parity (int):\nParity quantum number of the correlator, can be +1 or -1
  • \n
\n", "signature": "(self, partner, parity=1):", "funcdef": "def"}, "pyerrors.correlators.Corr.deriv": {"fullname": "pyerrors.correlators.Corr.deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.deriv", "kind": "function", "doc": "

Return the first derivative of the correlator with respect to x0.

\n\n
Parameters
\n\n
    \n
  • variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice: symmetric, forward, backward, improved, log, default: symmetric
  • \n
\n", "signature": "(self, variant='symmetric'):", "funcdef": "def"}, "pyerrors.correlators.Corr.second_deriv": {"fullname": "pyerrors.correlators.Corr.second_deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.second_deriv", "kind": "function", "doc": "

Return the second derivative of the correlator with respect to x0.

\n\n
Parameters
\n\n
    \n
  • variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice:\n - symmetric (default)\n $$\\tilde{\\partial}^2_0 f(x_0) = f(x_0+1)-2f(x_0)+f(x_0-1)$$\n - big_symmetric\n $$\\partial^2_0 f(x_0) = \\frac{f(x_0+2)-2f(x_0)+f(x_0-2)}{4}$$\n - improved\n $$\\partial^2_0 f(x_0) = \\frac{-f(x_0+2) + 16 * f(x_0+1) - 30 * f(x_0) + 16 * f(x_0-1) - f(x_0-2)}{12}$$\n - log\n $$f(x) = \\tilde{\\partial}^2_0 log(f(x_0))+(\\tilde{\\partial}_0 log(f(x_0)))^2$$
  • \n
\n", "signature": "(self, variant='symmetric'):", "funcdef": "def"}, "pyerrors.correlators.Corr.m_eff": {"fullname": "pyerrors.correlators.Corr.m_eff", "modulename": "pyerrors.correlators", "qualname": "Corr.m_eff", "kind": "function", "doc": "

Returns the effective mass of the correlator as correlator object

\n\n
Parameters
\n\n
    \n
  • variant (str):\nlog : uses the standard effective mass log(C(t) / C(t+1))\ncosh, periodic : Use periodicity of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.\nsinh : Use anti-periodicity of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.\nSee, e.g., arXiv:1205.5380\narccosh : Uses the explicit form of the symmetrized correlator (not recommended)\nlogsym: uses the symmetric effective mass log(C(t-1) / C(t+1))/2
  • \n
  • guess (float):\nguess for the root finder, only relevant for the root variant
  • \n
\n", "signature": "(self, variant='log', guess=1.0):", "funcdef": "def"}, "pyerrors.correlators.Corr.fit": {"fullname": "pyerrors.correlators.Corr.fit", "modulename": "pyerrors.correlators", "qualname": "Corr.fit", "kind": "function", "doc": "

Fits function to the data

\n\n
Parameters
\n\n
    \n
  • function (obj):\nfunction to fit to the data. See fits.least_squares for details.
  • \n
  • fitrange (list):\nTwo element list containing the timeslices on which the fit is supposed to start and stop.\nCaution: This range is inclusive as opposed to standard python indexing.\nfitrange=[4, 6] corresponds to the three entries 4, 5 and 6.\nIf not specified, self.prange or all timeslices are used.
  • \n
  • silent (bool):\nDecides whether output is printed to the standard output.
  • \n
\n", "signature": "(self, function, fitrange=None, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.plateau": {"fullname": "pyerrors.correlators.Corr.plateau", "modulename": "pyerrors.correlators", "qualname": "Corr.plateau", "kind": "function", "doc": "

Extract a plateau value from a Corr object

\n\n
Parameters
\n\n
    \n
  • plateau_range (list):\nlist with two entries, indicating the first and the last timeslice\nof the plateau region.
  • \n
  • method (str):\nmethod to extract the plateau.\n 'fit' fits a constant to the plateau region\n 'avg', 'average' or 'mean' just average over the given timeslices.
  • \n
  • auto_gamma (bool):\napply gamma_method with default parameters to the Corr. Defaults to None
  • \n
\n", "signature": "(self, plateau_range=None, method='fit', auto_gamma=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.set_prange": {"fullname": "pyerrors.correlators.Corr.set_prange", "modulename": "pyerrors.correlators", "qualname": "Corr.set_prange", "kind": "function", "doc": "

Sets the attribute prange of the Corr object.

\n", "signature": "(self, prange):", "funcdef": "def"}, "pyerrors.correlators.Corr.show": {"fullname": "pyerrors.correlators.Corr.show", "modulename": "pyerrors.correlators", "qualname": "Corr.show", "kind": "function", "doc": "

Plots the correlator using the tag of the correlator as label if available.

\n\n
Parameters
\n\n
    \n
  • x_range (list):\nlist of two values, determining the range of the x-axis e.g. [4, 8].
  • \n
  • comp (Corr or list of Corr):\nCorrelator or list of correlators which are plotted for comparison.\nThe tags of these correlators are used as labels if available.
  • \n
  • logscale (bool):\nSets y-axis to logscale.
  • \n
  • plateau (Obs):\nPlateau value to be visualized in the figure.
  • \n
  • fit_res (Fit_result):\nFit_result object to be visualized.
  • \n
  • fit_key (str):\nKey for the fit function in Fit_result.fit_function (for combined fits).
  • \n
  • ylabel (str):\nLabel for the y-axis.
  • \n
  • save (str):\npath to file in which the figure should be saved.
  • \n
  • auto_gamma (bool):\nApply the gamma method with standard parameters to all correlators and plateau values before plotting.
  • \n
  • hide_sigma (float):\nHides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors.
  • \n
  • references (list):\nList of floating point values that are displayed as horizontal lines for reference.
  • \n
  • title (string):\nOptional title of the figure.
  • \n
\n", "signature": "(\tself,\tx_range=None,\tcomp=None,\ty_range=None,\tlogscale=False,\tplateau=None,\tfit_res=None,\tfit_key=None,\tylabel=None,\tsave=None,\tauto_gamma=False,\thide_sigma=None,\treferences=None,\ttitle=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.spaghetti_plot": {"fullname": "pyerrors.correlators.Corr.spaghetti_plot", "modulename": "pyerrors.correlators", "qualname": "Corr.spaghetti_plot", "kind": "function", "doc": "

Produces a spaghetti plot of the correlator suited to monitor exceptional configurations.

\n\n
Parameters
\n\n
    \n
  • logscale (bool):\nDetermines whether the scale of the y-axis is logarithmic or standard.
  • \n
\n", "signature": "(self, logscale=True):", "funcdef": "def"}, "pyerrors.correlators.Corr.dump": {"fullname": "pyerrors.correlators.Corr.dump", "modulename": "pyerrors.correlators", "qualname": "Corr.dump", "kind": "function", "doc": "

Dumps the Corr into a file of chosen type

\n\n
Parameters
\n\n
    \n
  • filename (str):\nName of the file to be saved.
  • \n
  • datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n", "signature": "(self, filename, datatype='json.gz', **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.print": {"fullname": "pyerrors.correlators.Corr.print", "modulename": "pyerrors.correlators", "qualname": "Corr.print", "kind": "function", "doc": "

\n", "signature": "(self, print_range=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.sqrt": {"fullname": "pyerrors.correlators.Corr.sqrt", "modulename": "pyerrors.correlators", "qualname": "Corr.sqrt", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.log": {"fullname": "pyerrors.correlators.Corr.log", "modulename": "pyerrors.correlators", "qualname": "Corr.log", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.exp": {"fullname": "pyerrors.correlators.Corr.exp", "modulename": "pyerrors.correlators", "qualname": "Corr.exp", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.sin": {"fullname": "pyerrors.correlators.Corr.sin", "modulename": "pyerrors.correlators", "qualname": "Corr.sin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.cos": {"fullname": "pyerrors.correlators.Corr.cos", "modulename": "pyerrors.correlators", "qualname": "Corr.cos", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.tan": {"fullname": "pyerrors.correlators.Corr.tan", "modulename": "pyerrors.correlators", "qualname": "Corr.tan", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.sinh": {"fullname": "pyerrors.correlators.Corr.sinh", "modulename": "pyerrors.correlators", "qualname": "Corr.sinh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.cosh": {"fullname": "pyerrors.correlators.Corr.cosh", "modulename": "pyerrors.correlators", "qualname": "Corr.cosh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.tanh": {"fullname": "pyerrors.correlators.Corr.tanh", "modulename": "pyerrors.correlators", "qualname": "Corr.tanh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsin": {"fullname": "pyerrors.correlators.Corr.arcsin", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arccos": {"fullname": "pyerrors.correlators.Corr.arccos", "modulename": "pyerrors.correlators", "qualname": "Corr.arccos", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arctan": {"fullname": "pyerrors.correlators.Corr.arctan", "modulename": "pyerrors.correlators", "qualname": "Corr.arctan", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsinh": {"fullname": "pyerrors.correlators.Corr.arcsinh", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsinh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arccosh": {"fullname": "pyerrors.correlators.Corr.arccosh", "modulename": "pyerrors.correlators", "qualname": "Corr.arccosh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arctanh": {"fullname": "pyerrors.correlators.Corr.arctanh", "modulename": "pyerrors.correlators", "qualname": "Corr.arctanh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.real": {"fullname": "pyerrors.correlators.Corr.real", "modulename": "pyerrors.correlators", "qualname": "Corr.real", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.imag": {"fullname": "pyerrors.correlators.Corr.imag", "modulename": "pyerrors.correlators", "qualname": "Corr.imag", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.prune": {"fullname": "pyerrors.correlators.Corr.prune", "modulename": "pyerrors.correlators", "qualname": "Corr.prune", "kind": "function", "doc": "

Project large correlation matrix to lowest states

\n\n

This method can be used to reduce the size of an (N x N) correlation matrix\nto (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise\nis still small.

\n\n
Parameters
\n\n
    \n
  • Ntrunc (int):\nRank of the target matrix.
  • \n
  • tproj (int):\nTime where the eigenvectors are evaluated, corresponds to ts in the GEVP method.\nThe default value is 3.
  • \n
  • t0proj (int):\nTime where the correlation matrix is inverted. Choosing t0proj=1 is strongly\ndiscouraged for O(a) improved theories, since the correctness of the procedure\ncannot be granted in this case. The default value is 2.
  • \n
  • basematrix (Corr):\nCorrelation matrix that is used to determine the eigenvectors of the\nlowest states based on a GEVP. basematrix is taken to be the Corr itself if\nis is not specified.
  • \n
\n\n
Notes
\n\n

We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving\nthe GEVP $$C(t) v_n(t, t_0) = \\lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \\equiv t_\\mathrm{proj}$\nand $t_0 \\equiv t_{0, \\mathrm{proj}}$. The target matrix is projected onto the subspace of the\nresulting eigenvectors $v_n, n=1,\\dots,N_\\mathrm{trunc}$ via\n$$G^\\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large\ncorrelation matrix and to remove some noise that is added by irrelevant operators.\nThis may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated\nbound $t_0 \\leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$.

\n", "signature": "(self, Ntrunc, tproj=3, t0proj=2, basematrix=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.N": {"fullname": "pyerrors.correlators.Corr.N", "modulename": "pyerrors.correlators", "qualname": "Corr.N", "kind": "variable", "doc": "

\n"}, "pyerrors.covobs": {"fullname": "pyerrors.covobs", "modulename": "pyerrors.covobs", "kind": "module", "doc": "

\n"}, "pyerrors.covobs.Covobs": {"fullname": "pyerrors.covobs.Covobs", "modulename": "pyerrors.covobs", "qualname": "Covobs", "kind": "class", "doc": "

\n"}, "pyerrors.covobs.Covobs.__init__": {"fullname": "pyerrors.covobs.Covobs.__init__", "modulename": "pyerrors.covobs", "qualname": "Covobs.__init__", "kind": "function", "doc": "

Initialize Covobs object.

\n\n
Parameters
\n\n
    \n
  • mean (float):\nMean value of the new Obs
  • \n
  • cov (list or array):\n2d Covariance matrix or 1d diagonal entries
  • \n
  • name (str):\nidentifier for the covariance matrix
  • \n
  • pos (int):\nPosition of the variance belonging to mean in cov.\nIs taken to be 1 if cov is 0-dimensional
  • \n
  • grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
  • \n
\n", "signature": "(mean, cov, name, pos=None, grad=None)"}, "pyerrors.covobs.Covobs.name": {"fullname": "pyerrors.covobs.Covobs.name", "modulename": "pyerrors.covobs", "qualname": "Covobs.name", "kind": "variable", "doc": "

\n"}, "pyerrors.covobs.Covobs.value": {"fullname": "pyerrors.covobs.Covobs.value", "modulename": "pyerrors.covobs", "qualname": "Covobs.value", "kind": "variable", "doc": "

\n"}, "pyerrors.covobs.Covobs.errsq": {"fullname": "pyerrors.covobs.Covobs.errsq", "modulename": "pyerrors.covobs", "qualname": "Covobs.errsq", "kind": "function", "doc": "

Return the variance (= square of the error) of the Covobs

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.covobs.Covobs.cov": {"fullname": "pyerrors.covobs.Covobs.cov", "modulename": "pyerrors.covobs", "qualname": "Covobs.cov", "kind": "variable", "doc": "

\n"}, "pyerrors.covobs.Covobs.grad": {"fullname": "pyerrors.covobs.Covobs.grad", "modulename": "pyerrors.covobs", "qualname": "Covobs.grad", "kind": "variable", "doc": "

\n"}, "pyerrors.dirac": {"fullname": "pyerrors.dirac", "modulename": "pyerrors.dirac", "kind": "module", "doc": "

\n"}, "pyerrors.dirac.gammaX": {"fullname": "pyerrors.dirac.gammaX", "modulename": "pyerrors.dirac", "qualname": "gammaX", "kind": "variable", "doc": "

\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j],\n [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, -0.-1.j, 0.+0.j, 0.+0.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaY": {"fullname": "pyerrors.dirac.gammaY", "modulename": "pyerrors.dirac", "qualname": "gammaY", "kind": "variable", "doc": "

\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],\n [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaZ": {"fullname": "pyerrors.dirac.gammaZ", "modulename": "pyerrors.dirac", "qualname": "gammaZ", "kind": "variable", "doc": "

\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaT": {"fullname": "pyerrors.dirac.gammaT", "modulename": "pyerrors.dirac", "qualname": "gammaT", "kind": "variable", "doc": "

\n", "default_value": "array([[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n [1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gamma": {"fullname": "pyerrors.dirac.gamma", "modulename": "pyerrors.dirac", "qualname": "gamma", "kind": "variable", "doc": "

\n", "default_value": "array([[[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j],\n [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, -0.-1.j, 0.+0.j, 0.+0.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],\n [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n [ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]])"}, "pyerrors.dirac.gamma5": {"fullname": "pyerrors.dirac.gamma5", "modulename": "pyerrors.dirac", "qualname": "gamma5", "kind": "variable", "doc": "

\n", "default_value": "array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j]])"}, "pyerrors.dirac.identity": {"fullname": "pyerrors.dirac.identity", "modulename": "pyerrors.dirac", "qualname": "identity", "kind": "variable", "doc": "

\n", "default_value": "array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])"}, "pyerrors.dirac.epsilon_tensor": {"fullname": "pyerrors.dirac.epsilon_tensor", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor", "kind": "function", "doc": "

Rank-3 epsilon tensor

\n\n

Based on https://codegolf.stackexchange.com/a/160375

\n\n
Returns
\n\n
    \n
  • elem (int):\nElement (i,j,k) of the epsilon tensor of rank 3
  • \n
\n", "signature": "(i, j, k):", "funcdef": "def"}, "pyerrors.dirac.epsilon_tensor_rank4": {"fullname": "pyerrors.dirac.epsilon_tensor_rank4", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor_rank4", "kind": "function", "doc": "

Rank-4 epsilon tensor

\n\n

Extension of https://codegolf.stackexchange.com/a/160375

\n\n
Returns
\n\n
    \n
  • elem (int):\nElement (i,j,k,o) of the epsilon tensor of rank 4
  • \n
\n", "signature": "(i, j, k, o):", "funcdef": "def"}, "pyerrors.dirac.Grid_gamma": {"fullname": "pyerrors.dirac.Grid_gamma", "modulename": "pyerrors.dirac", "qualname": "Grid_gamma", "kind": "function", "doc": "

Returns gamma matrix in Grid labeling.

\n", "signature": "(gamma_tag):", "funcdef": "def"}, "pyerrors.fits": {"fullname": "pyerrors.fits", "modulename": "pyerrors.fits", "kind": "module", "doc": "

\n"}, "pyerrors.fits.Fit_result": {"fullname": "pyerrors.fits.Fit_result", "modulename": "pyerrors.fits", "qualname": "Fit_result", "kind": "class", "doc": "

Represents fit results.

\n\n
Attributes
\n\n
    \n
  • fit_parameters (list):\nresults for the individual fit parameters,\nalso accessible via indices.
  • \n
  • chisquare_by_dof (float):\nreduced chisquare.
  • \n
  • p_value (float):\np-value of the fit
  • \n
  • t2_p_value (float):\nHotelling t-squared p-value for correlated fits.
  • \n
\n", "bases": "collections.abc.Sequence"}, "pyerrors.fits.Fit_result.fit_parameters": {"fullname": "pyerrors.fits.Fit_result.fit_parameters", "modulename": "pyerrors.fits", "qualname": "Fit_result.fit_parameters", "kind": "variable", "doc": "

\n"}, "pyerrors.fits.Fit_result.gamma_method": {"fullname": "pyerrors.fits.Fit_result.gamma_method", "modulename": "pyerrors.fits", "qualname": "Fit_result.gamma_method", "kind": "function", "doc": "

Apply the gamma method to all fit parameters

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.fits.Fit_result.gm": {"fullname": "pyerrors.fits.Fit_result.gm", "modulename": "pyerrors.fits", "qualname": "Fit_result.gm", "kind": "function", "doc": "

Apply the gamma method to all fit parameters

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.fits.least_squares": {"fullname": "pyerrors.fits.least_squares", "modulename": "pyerrors.fits", "qualname": "least_squares", "kind": "function", "doc": "

Performs a non-linear fit to y = func(x).\n ```

\n\n
Parameters
\n\n
    \n
  • For an uncombined fit:
  • \n
  • x (list):\nlist of floats.
  • \n
  • y (list):\nlist of Obs.
  • \n
  • func (object):\nfit function, has to be of the form

    \n\n
    \n
    import autograd.numpy as anp\n\ndef func(a, x):\n    return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
    \n
    \n\n

    For multiple x values func can be of the form

    \n\n
    \n
    def func(a, x):\n    (x1, x2) = x\n    return a[0] * x1 ** 2 + a[1] * x2\n
    \n
    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • OR For a combined fit:
  • \n
  • x (dict):\ndict of lists.
  • \n
  • y (dict):\ndict of lists of Obs.
  • \n
  • funcs (dict):\ndict of objects\nfit functions have to be of the form (here a[0] is the common fit parameter)\n```python\nimport autograd.numpy as anp\nfuncs = {\"a\": func_a,\n \"b\": func_b}

    \n\n

    def func_a(a, x):\n return a[1] * anp.exp(-a[0] * x)

    \n\n

    def func_b(a, x):\n return a[2] * anp.exp(-a[0] * x)

    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • priors (dict or list, optional):\npriors can either be a dictionary with integer keys and the corresponding priors as values or\na list with an entry for every parameter in the fit. The entries can either be\nObs (e.g. results from a previous fit) or strings containing a value and an error formatted like\n0.548(23), 500(40) or 0.5(0.4)
  • \n
  • silent (bool, optional):\nIf True all output to the console is omitted (default False).
  • \n
  • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for\nnon-linear fits with many parameters. In case of correlated fits the guess is used to perform\nan uncorrelated fit which then serves as guess for the correlated fit.
  • \n
  • method (str, optional):\ncan be used to choose an alternative method for the minimization of chisquare.\nThe possible methods are the ones which can be used for scipy.optimize.minimize and\nmigrad of iminuit. If no method is specified, Levenberg\u2013Marquardt is used.\nReliable alternatives are migrad, Powell and Nelder-Mead.
  • \n
  • tol (float, optional):\ncan be used (only for combined fits and methods other than Levenberg\u2013Marquardt) to set the tolerance for convergence\nto a different value to either speed up convergence at the cost of a larger error on the fitted parameters (and possibly\ninvalid estimates for parameter uncertainties) or smaller values to get more accurate parameter values\nThe stopping criterion depends on the method, e.g. migrad: edm_max = 0.002 * tol * errordef (EDM criterion: edm < edm_max)
  • \n
  • correlated_fit (bool):\nIf True, use the full inverse covariance matrix in the definition of the chisquare cost function.\nFor details about how the covariance matrix is estimated see pyerrors.obs.covariance.\nIn practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix).\nThis procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning).
  • \n
  • inv_chol_cov_matrix [array,list], optional: array: shape = (number of y values) X (number of y values)\nlist: for an uncombined fit: [\"\"]\nfor a combined fit: list of keys belonging to the corr_matrix saved in the array, must be the same as the keys of the y dict in alphabetical order\nIf correlated_fit=True is set as well, can provide an inverse covariance matrix (y errors, dy_f included!) of your own choosing for a correlated fit.\nThe matrix must be a lower triangular matrix constructed from a Cholesky decomposition: The function invert_corr_cov_cholesky(corr, inverrdiag) can be\nused to construct it from a correlation matrix (corr) and the errors dy_f of the data points (inverrdiag = np.diag(1 / np.asarray(dy_f))). For the correct\nordering the correlation matrix (corr) can be sorted via the function sort_corr(corr, kl, yd) where kl is the list of keys and yd the y dict.
  • \n
  • expected_chisquare (bool):\nIf True estimates the expected chisquare which is\ncorrected by effects caused by correlated input data (default False).
  • \n
  • resplot (bool):\nIf True, a plot which displays fit, data and residuals is generated (default False).
  • \n
  • qqplot (bool):\nIf True, a quantile-quantile plot of the fit result is generated (default False).
  • \n
  • num_grad (bool):\nUse numerical differentation instead of automatic differentiation to perform the error propagation (default False).
  • \n
  • n_parms (int, optional):\nNumber of fit parameters. Overrides automatic detection of parameter count.\nUseful when autodetection fails. Must match the length of initial_guess or priors (if provided).
  • \n
\n\n
Returns
\n\n
    \n
  • output (Fit_result):\nParameters and information on the fitted result.
  • \n
\n\n
Examples
\n\n
\n
>>> # Example of a correlated (correlated_fit = True, inv_chol_cov_matrix handed over) combined fit, based on a randomly generated data set\n>>> import numpy as np\n>>> from scipy.stats import norm\n>>> from scipy.linalg import cholesky\n>>> import pyerrors as pe\n>>> # generating the random data set\n>>> num_samples = 400\n>>> N = 3\n>>> x = np.arange(N)\n>>> x1 = norm.rvs(size=(N, num_samples)) # generate random numbers\n>>> x2 = norm.rvs(size=(N, num_samples)) # generate random numbers\n>>> r = r1 = r2 = np.zeros((N, N))\n>>> y = {}\n>>> for i in range(N):\n>>>    for j in range(N):\n>>>        r[i, j] = np.exp(-0.8 * np.fabs(i - j)) # element in correlation matrix\n>>> errl = np.sqrt([3.4, 2.5, 3.6]) # set y errors\n>>> for i in range(N):\n>>>    for j in range(N):\n>>>        r[i, j] *= errl[i] * errl[j] # element in covariance matrix\n>>> c = cholesky(r, lower=True)\n>>> y = {'a': np.dot(c, x1), 'b': np.dot(c, x2)} # generate y data with the covariance matrix defined\n>>> # random data set has been generated, now the dictionaries and the inverse covariance matrix to be handed over are built\n>>> x_dict = {}\n>>> y_dict = {}\n>>> chol_inv_dict = {}\n>>> data = []\n>>> for key in y.keys():\n>>>    x_dict[key] = x\n>>>    for i in range(N):\n>>>        data.append(pe.Obs([[i + 1 + o for o in y[key][i]]], ['ens'])) # generate y Obs from the y data\n>>>    [o.gamma_method() for o in data]\n>>>    corr = pe.covariance(data, correlation=True)\n>>>    inverrdiag = np.diag(1 / np.asarray([o.dvalue for o in data]))\n>>>    chol_inv = pe.obs.invert_corr_cov_cholesky(corr, inverrdiag) # gives form of the inverse covariance matrix needed for the combined correlated fit below\n>>> y_dict = {'a': data[:3], 'b': data[3:]}\n>>> # common fit parameter p[0] in combined fit\n>>> def fit1(p, x):\n>>>    return p[0] + p[1] * x\n>>> def fit2(p, x):\n>>>    return p[0] + p[2] * x\n>>> fitf_dict = {'a': fit1, 'b':fit2}\n>>> fitp_inv_cov_combined_fit = pe.least_squares(x_dict,y_dict, fitf_dict, correlated_fit = True, inv_chol_cov_matrix = [chol_inv,['a','b']])\nFit with 3 parameters\nMethod: Levenberg-Marquardt\n`ftol` termination condition is satisfied.\nchisquare/d.o.f.: 0.5388013574561786 # random\nfit parameters [1.11897846 0.96361162 0.92325319] # random\n
\n
\n", "signature": "(x, y, func, priors=None, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.fits.total_least_squares": {"fullname": "pyerrors.fits.total_least_squares", "modulename": "pyerrors.fits", "qualname": "total_least_squares", "kind": "function", "doc": "

Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.

\n\n
Parameters
\n\n
    \n
  • x (list):\nlist of Obs, or a tuple of lists of Obs
  • \n
  • y (list):\nlist of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
  • \n
  • func (object):\nfunc has to be of the form

    \n\n
    \n
    import autograd.numpy as anp\n\ndef func(a, x):\n    return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
    \n
    \n\n

    For multiple x values func can be of the form

    \n\n
    \n
    def func(a, x):\n    (x1, x2) = x\n    return a[0] * x1 ** 2 + a[1] * x2\n
    \n
    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • silent (bool, optional):\nIf True all output to the console is omitted (default False).
  • \n
  • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for non-linear\nfits with many parameters.
  • \n
  • expected_chisquare (bool):\nIf True prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
  • \n
  • num_grad (bool):\nUse numerical differentiation instead of automatic differentiation to perform the error propagation (default False).
  • \n
  • n_parms (int, optional):\nNumber of fit parameters. Overrides automatic detection of parameter count.\nUseful when autodetection fails. Must match the length of initial_guess (if provided).
  • \n
\n\n
Notes
\n\n

Based on the orthogonal distance regression module of scipy.

\n\n
Returns
\n\n
    \n
  • output (Fit_result):\nParameters and information on the fitted result.
  • \n
\n", "signature": "(x, y, func, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.fits.fit_lin": {"fullname": "pyerrors.fits.fit_lin", "modulename": "pyerrors.fits", "qualname": "fit_lin", "kind": "function", "doc": "

Performs a linear fit to y = n + m * x and returns two Obs n, m.

\n\n
Parameters
\n\n
    \n
  • x (list):\nCan either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.
  • \n
  • y (list):\nList of Obs, the dvalues of the Obs are used as yerror for the fit.
  • \n
\n\n
Returns
\n\n
    \n
  • fit_parameters (list[Obs]):\nLIist of fitted observables.
  • \n
\n", "signature": "(x, y, **kwargs):", "funcdef": "def"}, "pyerrors.fits.qqplot": {"fullname": "pyerrors.fits.qqplot", "modulename": "pyerrors.fits", "qualname": "qqplot", "kind": "function", "doc": "

Generates a quantile-quantile plot of the fit result which can be used to\n check if the residuals of the fit are gaussian distributed.

\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(x, o_y, func, p, title=''):", "funcdef": "def"}, "pyerrors.fits.residual_plot": {"fullname": "pyerrors.fits.residual_plot", "modulename": "pyerrors.fits", "qualname": "residual_plot", "kind": "function", "doc": "

Generates a plot which compares the fit to the data and displays the corresponding residuals

\n\n

For uncorrelated data the residuals are expected to be distributed ~N(0,1).

\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(x, y, func, fit_res, title=''):", "funcdef": "def"}, "pyerrors.fits.error_band": {"fullname": "pyerrors.fits.error_band", "modulename": "pyerrors.fits", "qualname": "error_band", "kind": "function", "doc": "

Calculate the error band for an array of sample values x, for given fit function func with optimized parameters beta.

\n\n
Returns
\n\n
    \n
  • err (np.array(Obs)):\nError band for an array of sample values x
  • \n
\n", "signature": "(x, func, beta):", "funcdef": "def"}, "pyerrors.fits.ks_test": {"fullname": "pyerrors.fits.ks_test", "modulename": "pyerrors.fits", "qualname": "ks_test", "kind": "function", "doc": "

Performs a Kolmogorov\u2013Smirnov test for the p-values of all fit object.

\n\n
Parameters
\n\n
    \n
  • objects (list):\nList of fit results to include in the analysis (optional).
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(objects=None):", "funcdef": "def"}, "pyerrors.input": {"fullname": "pyerrors.input", "modulename": "pyerrors.input", "kind": "module", "doc": "

pyerrors includes an input submodule in which input routines and parsers for the output of various numerical programs are contained.

\n\n

Jackknife samples

\n\n

For comparison with other analysis workflows pyerrors can also generate jackknife samples from an Obs object or import jackknife samples into an Obs object.\nSee pyerrors.obs.Obs.export_jackknife and pyerrors.obs.import_jackknife for details.

\n"}, "pyerrors.input.bdio": {"fullname": "pyerrors.input.bdio", "modulename": "pyerrors.input.bdio", "kind": "module", "doc": "

\n"}, "pyerrors.input.bdio.read_ADerrors": {"fullname": "pyerrors.input.bdio.read_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "read_ADerrors", "kind": "function", "doc": "

Extract generic MCMC data from a bdio file

\n\n

read_ADerrors requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path -- path to the bdio file
  • \n
  • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
\n\n
Returns
\n\n
    \n
  • data (List[Obs]):\nExtracted data
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.write_ADerrors": {"fullname": "pyerrors.input.bdio.write_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "write_ADerrors", "kind": "function", "doc": "

Write Obs to a bdio file according to ADerrors conventions

\n\n

read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path -- path to the bdio file
  • \n
  • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
\n\n
Returns
\n\n
    \n
  • success (int):\nreturns 0 is successful
  • \n
\n", "signature": "(obs_list, file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.read_mesons": {"fullname": "pyerrors.input.bdio.read_mesons", "modulename": "pyerrors.input.bdio", "qualname": "read_mesons", "kind": "function", "doc": "

Extract mesons data from a bdio file and return it as a dictionary

\n\n

The dictionary can be accessed with a tuple consisting of (type, source_position, kappa1, kappa2)

\n\n

read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path (str):\npath to the bdio file
  • \n
  • bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
  • start (int):\nThe first configuration to be read (default 1)
  • \n
  • stop (int):\nThe last configuration to be read (default None)
  • \n
  • step (int):\nFixed step size between two measurements (default 1)
  • \n
  • alternative_ensemble_name (str):\nManually overwrite ensemble name
  • \n
\n\n
Returns
\n\n
    \n
  • data (dict):\nExtracted meson data
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.read_dSdm": {"fullname": "pyerrors.input.bdio.read_dSdm", "modulename": "pyerrors.input.bdio", "qualname": "read_dSdm", "kind": "function", "doc": "

Extract dSdm data from a bdio file and return it as a dictionary

\n\n

The dictionary can be accessed with a tuple consisting of (type, kappa)

\n\n

read_dSdm requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path (str):\npath to the bdio file
  • \n
  • bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
  • start (int):\nThe first configuration to be read (default 1)
  • \n
  • stop (int):\nThe last configuration to be read (default None)
  • \n
  • step (int):\nFixed step size between two measurements (default 1)
  • \n
  • alternative_ensemble_name (str):\nManually overwrite ensemble name
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.dobs": {"fullname": "pyerrors.input.dobs", "modulename": "pyerrors.input.dobs", "kind": "module", "doc": "

\n"}, "pyerrors.input.dobs.create_pobs_string": {"fullname": "pyerrors.input.dobs.create_pobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_pobs_string", "kind": "function", "doc": "

Export a list of Obs or structures containing Obs to an xml string\naccording to the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
  • \n
\n\n
Returns
\n\n
    \n
  • xml_str (str):\nXML formatted string of the input data
  • \n
\n", "signature": "(obsl, name, spec='', origin='', symbol=[], enstag=None):", "funcdef": "def"}, "pyerrors.input.dobs.write_pobs": {"fullname": "pyerrors.input.dobs.write_pobs", "modulename": "pyerrors.input.dobs", "qualname": "write_pobs", "kind": "function", "doc": "

Export a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
  • \n
  • gz (bool):\nIf True, the output is a gzipped xml. If False, the output is an xml file.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(\tobsl,\tfname,\tname,\tspec='',\torigin='',\tsymbol=[],\tenstag=None,\tgz=True):", "funcdef": "def"}, "pyerrors.input.dobs.read_pobs": {"fullname": "pyerrors.input.dobs.read_pobs", "modulename": "pyerrors.input.dobs", "qualname": "read_pobs", "kind": "function", "doc": "

Import a list of Obs from an xml.gz file in the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • separatior_insertion (str or int):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nNone (default): Replica names remain unchanged.
  • \n
\n\n
Returns
\n\n
    \n
  • res (list[Obs]):\nImported data
  • \n
  • or
  • \n
  • res (dict):\nImported data and meta-data
  • \n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=None):", "funcdef": "def"}, "pyerrors.input.dobs.import_dobs_string": {"fullname": "pyerrors.input.dobs.import_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "import_dobs_string", "kind": "function", "doc": "

Import a list of Obs from a string in the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • content (str):\nXML string containing the data
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
  • \n
\n\n
Returns
\n\n
    \n
  • res (list[Obs]):\nImported data
  • \n
  • or
  • \n
  • res (dict):\nImported data and meta-data
  • \n
\n", "signature": "(content, full_output=False, separator_insertion=True):", "funcdef": "def"}, "pyerrors.input.dobs.read_dobs": {"fullname": "pyerrors.input.dobs.read_dobs", "modulename": "pyerrors.input.dobs", "qualname": "read_dobs", "kind": "function", "doc": "

Import a list of Obs from an xml.gz file in the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes XML file.
  • \n
  • separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
  • \n
\n\n
Returns
\n\n
    \n
  • res (list[Obs]):\nImported data
  • \n
  • or
  • \n
  • res (dict):\nImported data and meta-data
  • \n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=True):", "funcdef": "def"}, "pyerrors.input.dobs.create_dobs_string": {"fullname": "pyerrors.input.dobs.create_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_dobs_string", "kind": "function", "doc": "

Generate the string for the export of a list of Obs or structures containing Obs\nto a .xml.gz file according to the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically. The separator |is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • who (str):\nProvide the name of the person that exports the data.
  • \n
  • enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
  • \n
\n\n
Returns
\n\n
    \n
  • xml_str (str):\nXML string generated from the data
  • \n
\n", "signature": "(\tobsl,\tname,\tspec='dobs v1.0',\torigin='',\tsymbol=[],\twho=None,\tenstags=None):", "funcdef": "def"}, "pyerrors.input.dobs.write_dobs": {"fullname": "pyerrors.input.dobs.write_dobs", "modulename": "pyerrors.input.dobs", "qualname": "write_dobs", "kind": "function", "doc": "

Export a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • who (str):\nProvide the name of the person that exports the data.
  • \n
  • enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
  • \n
  • gz (bool):\nIf True, the output is a gzipped XML. If False, the output is a XML file.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(\tobsl,\tfname,\tname,\tspec='dobs v1.0',\torigin='',\tsymbol=[],\twho=None,\tenstags=None,\tgz=True):", "funcdef": "def"}, "pyerrors.input.hadrons": {"fullname": "pyerrors.input.hadrons", "modulename": "pyerrors.input.hadrons", "kind": "module", "doc": "

\n"}, "pyerrors.input.hadrons.read_hd5": {"fullname": "pyerrors.input.hadrons.read_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_hd5", "kind": "function", "doc": "

Read hadrons hdf5 file and extract entry based on attributes.

\n\n
Parameters
\n\n
    \n
  • filestem (str):\nFull namestem of the files to read, including the full path.
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • group (str):\nlabel of the group to be extracted.
  • \n
  • attrs (dict or int):\nDictionary containing the attributes. For example

    \n\n
    \n
    attrs = {"gamma_snk": "Gamma5",\n         "gamma_src": "Gamma5"}\n
    \n
    \n\n

    Alternatively an integer can be specified to identify the sub group.\nThis is discouraged as the order in the file is not guaranteed.

  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
  • part (str):\nstring specifying whether to extract the real part ('real'),\nthe imaginary part ('imag') or a complex correlator ('complex').\nDefault 'real'.
  • \n
\n\n
Returns
\n\n
    \n
  • corr (Corr):\nCorrelator of the source sink combination in question.
  • \n
\n", "signature": "(filestem, ens_id, group, attrs=None, idl=None, part='real'):", "funcdef": "def"}, "pyerrors.input.hadrons.read_meson_hd5": {"fullname": "pyerrors.input.hadrons.read_meson_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_meson_hd5", "kind": "function", "doc": "

Read hadrons meson hdf5 file and extract the meson labeled 'meson'

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • meson (str):\nlabel of the meson to be extracted, standard value meson_0 which\ncorresponds to the pseudoscalar pseudoscalar two-point function.
  • \n
  • gammas (tuple of strings):\nInstrad of a meson label one can also provide a tuple of two strings\nindicating the gamma matrices at sink and source (gamma_snk, gamma_src).\n(\"Gamma5\", \"Gamma5\") corresponds to the pseudoscalar pseudoscalar\ntwo-point function. The gammas argument dominateds over meson.
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n\n
Returns
\n\n
    \n
  • corr (Corr):\nCorrelator of the source sink combination in question.
  • \n
\n", "signature": "(path, filestem, ens_id, meson='meson_0', idl=None, gammas=None):", "funcdef": "def"}, "pyerrors.input.hadrons.extract_t0_hd5": {"fullname": "pyerrors.input.hadrons.extract_t0_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "extract_t0_hd5", "kind": "function", "doc": "

Read hadrons FlowObservables hdf5 file and extract t0

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • obs (str):\nlabel of the observable from which t0 should be extracted.\nOptions: 'Clover energy density' and 'Plaquette energy density'
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
  • \n
\n", "signature": "(\tpath,\tfilestem,\tens_id,\tobs='Clover energy density',\tfit_range=5,\tidl=None,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"fullname": "pyerrors.input.hadrons.read_DistillationContraction_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_DistillationContraction_hd5", "kind": "function", "doc": "

Read hadrons DistillationContraction hdf5 files in given directory structure

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the directories to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • diagrams (list):\nList of strings of the diagrams to extract, e.g. [\"direct\", \"box\", \"cross\"].
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n\n
Returns
\n\n
    \n
  • result (dict):\nextracted DistillationContration data
  • \n
\n", "signature": "(path, ens_id, diagrams=['direct'], idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.Npr_matrix": {"fullname": "pyerrors.input.hadrons.Npr_matrix", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix", "kind": "class", "doc": "

ndarray(shape, dtype=float, buffer=None, offset=0,\n strides=None, order=None)

\n\n

An array object represents a multidimensional, homogeneous array\nof fixed-size items. An associated data-type object describes the\nformat of each element in the array (its byte-order, how many bytes it\noccupies in memory, whether it is an integer, a floating point number,\nor something else, etc.)

\n\n

Arrays should be constructed using array, zeros or empty (refer\nto the See Also section below). The parameters given here refer to\na low-level method (ndarray(...)) for instantiating an array.

\n\n

For more information, refer to the numpy module and examine the\nmethods and attributes of an array.

\n\n
Parameters
\n\n
    \n
  • (for the __new__ method; see Notes below)
  • \n
  • shape (tuple of ints):\nShape of created array.
  • \n
  • dtype (data-type, optional):\nAny object that can be interpreted as a numpy data type.
  • \n
  • buffer (object exposing buffer interface, optional):\nUsed to fill the array with data.
  • \n
  • offset (int, optional):\nOffset of array data in buffer.
  • \n
  • strides (tuple of ints, optional):\nStrides of data in memory.
  • \n
  • order ({'C', 'F'}, optional):\nRow-major (C-style) or column-major (Fortran-style) order.
  • \n
\n\n
Attributes
\n\n
    \n
  • T (ndarray):\nTranspose of the array.
  • \n
  • data (buffer):\nThe array's elements, in memory.
  • \n
  • dtype (dtype object):\nDescribes the format of the elements in the array.
  • \n
  • flags (dict):\nDictionary containing information related to memory use, e.g.,\n'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
  • \n
  • flat (numpy.flatiter object):\nFlattened version of the array as an iterator. The iterator\nallows assignments, e.g., x.flat = 3 (See ndarray.flat for\nassignment examples; TODO).
  • \n
  • imag (ndarray):\nImaginary part of the array.
  • \n
  • real (ndarray):\nReal part of the array.
  • \n
  • size (int):\nNumber of elements in the array.
  • \n
  • itemsize (int):\nThe memory use of each array element in bytes.
  • \n
  • nbytes (int):\nThe total number of bytes required to store the array data,\ni.e., itemsize * size.
  • \n
  • ndim (int):\nThe array's number of dimensions.
  • \n
  • shape (tuple of ints):\nShape of the array.
  • \n
  • strides (tuple of ints):\nThe step-size required to move from one element to the next in\nmemory. For example, a contiguous (3, 4) array of type\nint16 in C-order has strides (8, 2). This implies that\nto move from element to element in memory requires jumps of 2 bytes.\nTo move from row-to-row, one needs to jump 8 bytes at a time\n(2 * 4).
  • \n
  • ctypes (ctypes object):\nClass containing properties of the array needed for interaction\nwith ctypes.
  • \n
  • base (ndarray):\nIf the array is a view into another array, that array is its base\n(unless that array is also a view). The base array is where the\narray data is actually stored.
  • \n
\n\n
See Also
\n\n

array: Construct an array.
\nzeros: Create an array, each element of which is zero.
\nempty: Create an array, but leave its allocated memory unchanged (i.e.,\nit contains \"garbage\").
\ndtype: Create a data-type.
\nnumpy.typing.NDArray: An ndarray alias :term:generic <generic type>\nw.r.t. its dtype.type <numpy.dtype.type>.

\n\n
Notes
\n\n

There are two modes of creating an array using __new__:

\n\n
    \n
  1. If buffer is None, then only shape, dtype, and order\nare used.
  2. \n
  3. If buffer is an object exposing the buffer interface, then\nall keywords are interpreted.
  4. \n
\n\n

No __init__ method is needed because the array is fully initialized\nafter the __new__ method.

\n\n
Examples
\n\n

These examples illustrate the low-level ndarray constructor. Refer\nto the See Also section above for easier ways of constructing an\nndarray.

\n\n

First mode, buffer is None:

\n\n
\n
>>> import numpy as np\n>>> np.ndarray(shape=(2,2), dtype=float, order='F')\narray([[0.0e+000, 0.0e+000], # random\n       [     nan, 2.5e-323]])\n
\n
\n\n

Second mode:

\n\n
\n
>>> np.ndarray((2,), buffer=np.array([1,2,3]),\n...            offset=np.int_().itemsize,\n...            dtype=int) # offset = 1*itemsize, i.e. skip first element\narray([2, 3])\n
\n
\n", "bases": "numpy.ndarray"}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"fullname": "pyerrors.input.hadrons.Npr_matrix.g5H", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix.g5H", "kind": "variable", "doc": "

Gamma_5 hermitean conjugate

\n\n

Uses the fact that the propagator is gamma5 hermitean, so just the\nin and out momenta of the propagator are exchanged.

\n"}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"fullname": "pyerrors.input.hadrons.read_ExternalLeg_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_ExternalLeg_hd5", "kind": "function", "doc": "

Read hadrons ExternalLeg hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n\n
Returns
\n\n
    \n
  • result (Npr_matrix):\nread Cobs-matrix
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"fullname": "pyerrors.input.hadrons.read_Bilinear_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Bilinear_hd5", "kind": "function", "doc": "

Read hadrons Bilinear hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n\n
Returns
\n\n
    \n
  • result_dict (dict[Npr_matrix]):\nextracted Bilinears
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"fullname": "pyerrors.input.hadrons.read_Fourquark_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Fourquark_hd5", "kind": "function", "doc": "

Read hadrons FourquarkFullyConnected hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
  • vertices (list):\nVertex functions to be extracted.
  • \n
\n\n
Returns
\n\n
    \n
  • result_dict (dict):\nextracted fourquark matrizes
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None, vertices=['VA', 'AV']):", "funcdef": "def"}, "pyerrors.input.json": {"fullname": "pyerrors.input.json", "modulename": "pyerrors.input.json", "kind": "module", "doc": "

\n"}, "pyerrors.input.json.create_json_string": {"fullname": "pyerrors.input.json.create_json_string", "modulename": "pyerrors.input.json", "qualname": "create_json_string", "kind": "function", "doc": "

Generate the string for the export of a list of Obs or structures containing Obs\nto a .json(.gz) file

\n\n
Parameters
\n\n
    \n
  • ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
\n\n
Returns
\n\n
    \n
  • json_string (str):\nString for export to .json(.gz) file
  • \n
\n", "signature": "(ol, description='', indent=1):", "funcdef": "def"}, "pyerrors.input.json.dump_to_json": {"fullname": "pyerrors.input.json.dump_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_to_json", "kind": "function", "doc": "

Export a list of Obs or structures containing Obs to a .json(.gz) file.\nDict keys that are not JSON-serializable such as floats are converted to strings.

\n\n
Parameters
\n\n
    \n
  • ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
  • gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
  • \n
\n\n
Returns
\n\n
    \n
  • Null
  • \n
\n", "signature": "(ol, fname, description='', indent=1, gz=True):", "funcdef": "def"}, "pyerrors.input.json.import_json_string": {"fullname": "pyerrors.input.json.import_json_string", "modulename": "pyerrors.input.json", "qualname": "import_json_string", "kind": "function", "doc": "

Reconstruct a list of Obs or structures containing Obs from a json string.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.

\n\n
Parameters
\n\n
    \n
  • json_string (str):\njson string containing the data.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
\n\n
Returns
\n\n
    \n
  • result (list[Obs]):\nreconstructed list of observables from the json string
  • \n
  • or
  • \n
  • result (Obs):\nonly one observable if the list only has one entry
  • \n
  • or
  • \n
  • result (dict):\nif full_output=True
  • \n
\n", "signature": "(json_string, verbose=True, full_output=False):", "funcdef": "def"}, "pyerrors.input.json.load_json": {"fullname": "pyerrors.input.json.load_json", "modulename": "pyerrors.input.json", "qualname": "load_json", "kind": "function", "doc": "

Import a list of Obs or structures containing Obs from a .json(.gz) file.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
\n\n
Returns
\n\n
    \n
  • result (list[Obs]):\nreconstructed list of observables from the json string
  • \n
  • or
  • \n
  • result (Obs):\nonly one observable if the list only has one entry
  • \n
  • or
  • \n
  • result (dict):\nif full_output=True
  • \n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False):", "funcdef": "def"}, "pyerrors.input.json.dump_dict_to_json": {"fullname": "pyerrors.input.json.dump_dict_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_dict_to_json", "kind": "function", "doc": "

Export a dict of Obs or structures containing Obs to a .json(.gz) file

\n\n
Parameters
\n\n
    \n
  • od (dict):\nDict of JSON valid structures and objects that will be exported.\nAt the moment, these objects can be either of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
  • reps (str):\nSpecify the structure of the placeholder in exported dict to be reps[0-9]+.
  • \n
  • gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(od, fname, description='', indent=1, reps='DICTOBS', gz=True):", "funcdef": "def"}, "pyerrors.input.json.load_json_dict": {"fullname": "pyerrors.input.json.load_json_dict", "modulename": "pyerrors.input.json", "qualname": "load_json_dict", "kind": "function", "doc": "

Import a dict of Obs or structures containing Obs from a .json(.gz) file.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
  • reps (str):\nSpecify the structure of the placeholder in imported dict to be reps[0-9]+.
  • \n
\n\n
Returns
\n\n
    \n
  • data (Obs / list / Corr):\nRead data
  • \n
  • or
  • \n
  • data (dict):\nRead data and meta-data
  • \n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False, reps='DICTOBS'):", "funcdef": "def"}, "pyerrors.input.misc": {"fullname": "pyerrors.input.misc", "modulename": "pyerrors.input.misc", "kind": "module", "doc": "

\n"}, "pyerrors.input.misc.fit_t0": {"fullname": "pyerrors.input.misc.fit_t0", "modulename": "pyerrors.input.misc", "qualname": "fit_t0", "kind": "function", "doc": "

Compute the root of (flow-based) data based on a dictionary that contains\nthe necessary information in key-value pairs a la (flow time: observable at flow time).

\n\n

It is assumed that the data is monotonically increasing and passes zero from below.\nNo exception is thrown if this is not the case (several roots, no monotonic increase).\nAn exception is thrown if no root can be found in the data.

\n\n

A linear fit in the vicinity of the root is performed to exctract the root from the\ntwo fit parameters.

\n\n
Parameters
\n\n
    \n
  • t2E_dict (dict):\nDictionary with pairs of (flow time: observable at flow time) where the flow times\nare of type float and the observables of type Obs.
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data. (Default: False)
  • \n
  • observable (str):\nKeyword to identify the observable to print the correct ylabel (if plot_fit is True)\nfor the observables 't0' and 'w0'. No y label is printed otherwise. (Default: 't0')
  • \n
\n\n
Returns
\n\n
    \n
  • root (Obs):\nThe root of the data series.
  • \n
\n", "signature": "(t2E_dict, fit_range, plot_fit=False, observable='t0'):", "funcdef": "def"}, "pyerrors.input.misc.read_pbp": {"fullname": "pyerrors.input.misc.read_pbp", "modulename": "pyerrors.input.misc", "qualname": "read_pbp", "kind": "function", "doc": "

Read pbp format from given folder structure.

\n\n
Parameters
\n\n
    \n
  • r_start (list):\nlist which contains the first config to be read for each replicum
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum
  • \n
\n\n
Returns
\n\n
    \n
  • result (list[Obs]):\nlist of observables read
  • \n
\n", "signature": "(path, prefix, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD": {"fullname": "pyerrors.input.openQCD", "modulename": "pyerrors.input.openQCD", "kind": "module", "doc": "

\n"}, "pyerrors.input.openQCD.read_rwms": {"fullname": "pyerrors.input.openQCD.read_rwms", "modulename": "pyerrors.input.openQCD", "qualname": "read_rwms", "kind": "function", "doc": "

Read rwms format from given folder structure. Returns a list of length nrw

\n\n
Parameters
\n\n
    \n
  • path (str):\npath that contains the data files
  • \n
  • prefix (str):\nall files in path that start with prefix are considered as input files.\nMay be used together postfix to consider only special file endings.\nPrefix is ignored, if the keyword 'files' is used.
  • \n
  • version (str):\nversion of openQCD, default 2.0
  • \n
  • names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum
  • \n
  • r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
  • \n
  • postfix (str):\npostfix of the file to read, e.g. '.ms1' for openQCD-files
  • \n
  • files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
  • \n
  • print_err (bool):\nPrint additional information that is useful for debugging.
  • \n
\n\n
Returns
\n\n
    \n
  • rwms (Obs):\nReweighting factors read
  • \n
\n", "signature": "(path, prefix, version='2.0', names=None, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.extract_t0": {"fullname": "pyerrors.input.openQCD.extract_t0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_t0", "kind": "function", "doc": "

Extract t0/a^2 from given .ms.dat files. Returns t0 as Obs.

\n\n

It is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t^2 - c (where c=0.3 by default)\nis fitted with a linear function\nfrom which the exact root is extracted.

\n\n

It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to .ms.dat files
  • \n
  • prefix (str):\nEnsemble prefix
  • \n
  • dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
  • \n
  • xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
  • \n
  • spatial_extent (int):\nspatial extent of the lattice, required for normalization.
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
  • \n
  • postfix (str):\nPostfix of measurement file (Default: ms)
  • \n
  • c (float):\nConstant that defines the flow scale. Default 0.3 for t_0, choose 2./3 for t_1.
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
  • \n
  • plaquette (bool):\nIf true extract the plaquette estimate of t0 instead.
  • \n
  • names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
  • \n
  • files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
  • \n
  • assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
  • \n
\n\n
Returns
\n\n
    \n
  • t0 (Obs):\nExtracted t0
  • \n
\n", "signature": "(\tpath,\tprefix,\tdtr_read,\txmin,\tspatial_extent,\tfit_range=5,\tpostfix='ms',\tc=0.3,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.extract_w0": {"fullname": "pyerrors.input.openQCD.extract_w0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_w0", "kind": "function", "doc": "

Extract w0/a from given .ms.dat files. Returns w0 as Obs.

\n\n

It is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t d(t^2)/dt - (where c=0.3 by default)\nis fitted with a linear function\nfrom which the exact root is extracted.

\n\n

It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to .ms.dat files
  • \n
  • prefix (str):\nEnsemble prefix
  • \n
  • dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
  • \n
  • xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
  • \n
  • spatial_extent (int):\nspatial extent of the lattice, required for normalization.
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
  • \n
  • postfix (str):\nPostfix of measurement file (Default: ms)
  • \n
  • c (float):\nConstant that defines the flow scale. Default 0.3 for w_0, choose 2./3 for w_1.
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
  • \n
  • plaquette (bool):\nIf true extract the plaquette estimate of w0 instead.
  • \n
  • names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
  • \n
  • files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of w0 is shown together with the data.
  • \n
  • assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
  • \n
\n\n
Returns
\n\n
    \n
  • w0 (Obs):\nExtracted w0
  • \n
\n", "signature": "(\tpath,\tprefix,\tdtr_read,\txmin,\tspatial_extent,\tfit_range=5,\tpostfix='ms',\tc=0.3,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop": {"fullname": "pyerrors.input.openQCD.read_qtop", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop", "kind": "function", "doc": "

Read the topologial charge based on openQCD gradient flow measurements.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath of the measurement files
  • \n
  • prefix (str):\nprefix of the measurement files, e.g. _id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files.
  • \n
  • c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
  • \n
  • dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
  • \n
  • steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
  • \n
  • version (str):\nEither openQCD or sfqcd, depending on the data.
  • \n
  • L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
  • \n
  • postfix (str):\npostfix of the file to read, e.g. '.gfms.dat' for openQCD-files
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
  • \n
  • Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
  • \n
  • integer_charge (bool):\nIf True, the charge is rounded towards the nearest integer on each config.
  • \n
\n\n
Returns
\n\n
    \n
  • result (Obs):\nRead topological charge
  • \n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, version='openQCD', **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_gf_coupling": {"fullname": "pyerrors.input.openQCD.read_gf_coupling", "modulename": "pyerrors.input.openQCD", "qualname": "read_gf_coupling", "kind": "function", "doc": "

Read the gradient flow coupling based on sfqcd gradient flow measurements. See 1607.06423 for details.

\n\n

Note: The current implementation only works for c=0.3 and T=L. The definition of the coupling in 1607.06423 requires projection to topological charge zero which is not done within this function but has to be performed in a separate step.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath of the measurement files
  • \n
  • prefix (str):\nprefix of the measurement files, e.g. _id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files.
  • \n
  • c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
  • \n
  • dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
  • \n
  • steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
  • \n
  • postfix (str):\npostfix of the file to read, e.g. '.gfms.dat' for openQCD-files
  • \n
  • Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for the coupling. If False, the Wilson flow is used.
  • \n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, Zeuthen_flow=True, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.qtop_projection": {"fullname": "pyerrors.input.openQCD.qtop_projection", "modulename": "pyerrors.input.openQCD", "qualname": "qtop_projection", "kind": "function", "doc": "

Returns the projection to the topological charge sector defined by target.

\n\n
Parameters
\n\n
    \n
  • path (Obs):\nTopological charge.
  • \n
  • target (int):\nSpecifies the topological sector to be reweighted to (default 0)
  • \n
\n\n
Returns
\n\n
    \n
  • reto (Obs):\nprojection to the topological charge sector defined by target
  • \n
\n", "signature": "(qtop, target=0):", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop_sector": {"fullname": "pyerrors.input.openQCD.read_qtop_sector", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop_sector", "kind": "function", "doc": "

Constructs reweighting factors to a specified topological sector.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath of the measurement files
  • \n
  • prefix (str):\nprefix of the measurement files, e.g. _id0_r0.ms.dat
  • \n
  • c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L
  • \n
  • target (int):\nSpecifies the topological sector to be reweighted to (default 0)
  • \n
  • dtr_cnfg (int):\n(optional) parameter that specifies the number of trajectories\nbetween two configs.\nif it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
  • \n
  • steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
  • \n
  • version (str):\nversion string of the openQCD (sfqcd) version used to create\nthe ensemble. Default is 2.0. May also be set to sfqcd.
  • \n
  • L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
  • \n
  • r_start (list):\noffset of the first ensemble, making it easier to match\nlater on with other Obs
  • \n
  • r_stop (list):\nlast configurations that need to be read (per replicum)
  • \n
  • files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
  • \n
  • Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
  • \n
\n\n
Returns
\n\n
    \n
  • reto (Obs):\nprojection to the topological charge sector defined by target
  • \n
\n", "signature": "(path, prefix, c, target=0, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_ms5_xsf": {"fullname": "pyerrors.input.openQCD.read_ms5_xsf", "modulename": "pyerrors.input.openQCD", "qualname": "read_ms5_xsf", "kind": "function", "doc": "

Read data from files in the specified directory with the specified prefix and quark combination extension, and return a Corr object containing the data.

\n\n
Parameters
\n\n
    \n
  • path (str):\nThe directory to search for the files in.
  • \n
  • prefix (str):\nThe prefix to match the files against.
  • \n
  • qc (str):\nThe quark combination extension to match the files against.
  • \n
  • corr (str):\nThe correlator to extract data for.
  • \n
  • sep (str, optional):\nThe separator to use when parsing the replika names.
  • \n
  • **kwargs: Additional keyword arguments. The following keyword arguments are recognized:

    \n\n
      \n
    • names (List[str]): A list of names to use for the replicas.
    • \n
    • files (List[str]): A list of files to read data from.
    • \n
    • idl (List[List[int]]): A list of idls per replicum, resticting data to the idls given.
    • \n
  • \n
\n\n
Returns
\n\n
    \n
  • Corr: A complex valued Corr object containing the data read from the files. In case of boudary to bulk correlators.
  • \n
  • or
  • \n
  • CObs: A complex valued CObs object containing the data read from the files. In case of boudary to boundary correlators.
  • \n
\n\n
Raises
\n\n
    \n
  • FileNotFoundError: If no files matching the specified prefix and quark combination extension are found in the specified directory.
  • \n
  • IOError: If there is an error reading a file.
  • \n
  • struct.error: If there is an error unpacking binary data.
  • \n
\n", "signature": "(path, prefix, qc, corr, sep='r', **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas": {"fullname": "pyerrors.input.pandas", "modulename": "pyerrors.input.pandas", "kind": "module", "doc": "

\n"}, "pyerrors.input.pandas.to_sql": {"fullname": "pyerrors.input.pandas.to_sql", "modulename": "pyerrors.input.pandas", "qualname": "to_sql", "kind": "function", "doc": "

Write DataFrame including Obs or Corr valued columns to sqlite database.

\n\n
Parameters
\n\n
    \n
  • df (pandas.DataFrame):\nDataframe to be written to the database.
  • \n
  • table_name (str):\nName of the table in the database.
  • \n
  • db (str):\nPath to the sqlite database.
  • \n
  • if exists (str):\nHow to behave if table already exists. Options 'fail', 'replace', 'append'.
  • \n
  • gz (bool):\nIf True the json strings are gzipped.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(df, table_name, db, if_exists='fail', gz=True, **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas.read_sql": {"fullname": "pyerrors.input.pandas.read_sql", "modulename": "pyerrors.input.pandas", "qualname": "read_sql", "kind": "function", "doc": "

Execute SQL query on sqlite database and obtain DataFrame including Obs or Corr valued columns.

\n\n
Parameters
\n\n
    \n
  • sql (str):\nSQL query to be executed.
  • \n
  • db (str):\nPath to the sqlite database.
  • \n
  • auto_gamma (bool):\nIf True applies the gamma_method to all imported Obs objects with the default parameters for\nthe error analysis. Default False.
  • \n
\n\n
Returns
\n\n
    \n
  • data (pandas.DataFrame):\nDataframe with the content of the sqlite database.
  • \n
\n", "signature": "(sql, db, auto_gamma=False, **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas.dump_df": {"fullname": "pyerrors.input.pandas.dump_df", "modulename": "pyerrors.input.pandas", "qualname": "dump_df", "kind": "function", "doc": "

Exports a pandas DataFrame containing Obs valued columns to a (gzipped) csv file.

\n\n

Before making use of pandas to_csv functionality Obs objects are serialized via the standardized\njson format of pyerrors.

\n\n
Parameters
\n\n
    \n
  • df (pandas.DataFrame):\nDataframe to be dumped to a file.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • gz (bool):\nIf True, the output is a gzipped csv file. If False, the output is a csv file.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(df, fname, gz=True):", "funcdef": "def"}, "pyerrors.input.pandas.load_df": {"fullname": "pyerrors.input.pandas.load_df", "modulename": "pyerrors.input.pandas", "qualname": "load_df", "kind": "function", "doc": "

Imports a pandas DataFrame from a csv.(gz) file in which Obs objects are serialized as json strings.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • auto_gamma (bool):\nIf True applies the gamma_method to all imported Obs objects with the default parameters for\nthe error analysis. Default False.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
  • \n
\n\n
Returns
\n\n
    \n
  • data (pandas.DataFrame):\nDataframe with the content of the sqlite database.
  • \n
\n", "signature": "(fname, auto_gamma=False, gz=True):", "funcdef": "def"}, "pyerrors.input.sfcf": {"fullname": "pyerrors.input.sfcf", "modulename": "pyerrors.input.sfcf", "kind": "module", "doc": "

\n"}, "pyerrors.input.sfcf.sep": {"fullname": "pyerrors.input.sfcf.sep", "modulename": "pyerrors.input.sfcf", "qualname": "sep", "kind": "variable", "doc": "

\n", "default_value": "'/'"}, "pyerrors.input.sfcf.read_sfcf": {"fullname": "pyerrors.input.sfcf.read_sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf", "kind": "function", "doc": "

Read sfcf files from given folder structure.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to the sfcf files.
  • \n
  • prefix (str):\nPrefix of the sfcf files.
  • \n
  • name (str):\nName of the correlation function to read.
  • \n
  • quarks (str):\nLabel of the quarks used in the sfcf input file. e.g. \"quark quark\"\nfor version 0.0 this does NOT need to be given with the typical \" - \"\nthat is present in the output file,\nthis is done automatically for this version
  • \n
  • corr_type (str):\nType of correlation function to read. Can be\n
      \n
    • 'bi' for boundary-inner
    • \n
    • 'bb' for boundary-boundary
    • \n
    • 'bib' for boundary-inner-boundary
    • \n
  • \n
  • noffset (int):\nOffset of the source (only relevant when wavefunctions are used)
  • \n
  • wf (int):\nID of wave function
  • \n
  • wf2 (int):\nID of the second wavefunction\n(only relevant for boundary-to-boundary correlation functions)
  • \n
  • im (bool):\nif True, read imaginary instead of real part\nof the correlation function.
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
  • \n
  • ens_name (str):\nreplaces the name of the ensemble
  • \n
  • version (str):\nversion of SFCF, with which the measurement was done.\nif the compact output option (-c) was specified,\nappend a \"c\" to the version (e.g. \"1.0c\")\nif the append output option (-a) was specified,\nappend an \"a\" to the version
  • \n
  • cfg_separator (str):\nString that separates the ensemble identifier from the configuration number (default 'n').
  • \n
  • replica (list):\nlist of replica to be read, default is all
  • \n
  • files (list):\nlist of files to be read per replica, default is all.\nfor non-compact output format, hand the folders to be read here.
  • \n
  • check_configs (list[list[int]]):\nlist of list of supposed configs, eg. [range(1,1000)]\nfor one replicum with 1000 configs
  • \n
\n\n
Returns
\n\n
    \n
  • result (list[Obs]):\nlist of Observables with length T, observable per timeslice.\nbb-type correlators have length 1.
  • \n
\n", "signature": "(\tpath,\tprefix,\tname,\tquarks='.*',\tcorr_type='bi',\tnoffset=0,\twf=0,\twf2=0,\tversion='1.0c',\tcfg_separator='n',\tcfg_func=None,\tsilent=False,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.sfcf.read_sfcf_multi": {"fullname": "pyerrors.input.sfcf.read_sfcf_multi", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf_multi", "kind": "function", "doc": "

Read sfcf files from given folder structure.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to the sfcf files.
  • \n
  • prefix (str):\nPrefix of the sfcf files.
  • \n
  • name (str):\nName of the correlation function to read.
  • \n
  • quarks_list (list[str]):\nLabel of the quarks used in the sfcf input file. e.g. \"quark quark\"\nfor version 0.0 this does NOT need to be given with the typical \" - \"\nthat is present in the output file,\nthis is done automatically for this version
  • \n
  • corr_type_list (list[str]):\nType of correlation function to read. Can be\n
      \n
    • 'bi' for boundary-inner
    • \n
    • 'bb' for boundary-boundary
    • \n
    • 'bib' for boundary-inner-boundary
    • \n
  • \n
  • noffset_list (list[int]):\nOffset of the source (only relevant when wavefunctions are used)
  • \n
  • wf_list (int):\nID of wave function
  • \n
  • wf2_list (list[int]):\nID of the second wavefunction\n(only relevant for boundary-to-boundary correlation functions)
  • \n
  • im (bool):\nif True, read imaginary instead of real part\nof the correlation function.
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
  • \n
  • ens_name (str):\nreplaces the name of the ensemble
  • \n
  • version (str):\nversion of SFCF, with which the measurement was done.\nif the compact output option (-c) was specified,\nappend a \"c\" to the version (e.g. \"1.0c\")\nif the append output option (-a) was specified,\nappend an \"a\" to the version
  • \n
  • cfg_separator (str):\nString that separates the ensemble identifier from the configuration number (default 'n').
  • \n
  • replica (list):\nlist of replica to be read, default is all
  • \n
  • files (list[list[int]]):\nlist of files to be read per replica, default is all.\nfor non-compact output format, hand the folders to be read here.
  • \n
  • check_configs (list[list[int]]):\nlist of list of supposed configs, eg. [range(1,1000)]\nfor one replicum with 1000 configs
  • \n
  • rep_string (str):\nSeparator of ensemble name and replicum. Example: In \"ensAr0\", \"r\" would be the separator string.
  • \n
\n\n
Returns
\n\n
    \n
  • result (dict[list[Obs]]):\ndict with one of the following properties:\nif keyed_out:\n dict[key] = list[Obs]\n where key has the form name/quarks/offset/wf/wf2\nif not keyed_out:\n dict[name][quarks][offset][wf][wf2] = list[Obs]
  • \n
\n", "signature": "(\tpath,\tprefix,\tname_list,\tquarks_list=['.*'],\tcorr_type_list=['bi'],\tnoffset_list=[0],\twf_list=[0],\twf2_list=[0],\tversion='1.0c',\tcfg_separator='n',\tcfg_func=None,\tsilent=False,\tkeyed_out=False,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.utils": {"fullname": "pyerrors.input.utils", "modulename": "pyerrors.input.utils", "kind": "module", "doc": "

Utilities for the input

\n"}, "pyerrors.input.utils.sort_names": {"fullname": "pyerrors.input.utils.sort_names", "modulename": "pyerrors.input.utils", "qualname": "sort_names", "kind": "function", "doc": "

Sorts a list of names of replika with searches for r and id in the replikum string.\nIf this search fails, a fallback method is used,\nwhere the strings are simply compared and the first diffeing numeral is used for differentiation.

\n\n
Parameters
\n\n
    \n
  • ll (list):\nlist to sort
  • \n
\n\n
Returns
\n\n
    \n
  • ll (list):\nsorted list
  • \n
\n", "signature": "(ll):", "funcdef": "def"}, "pyerrors.input.utils.check_idl": {"fullname": "pyerrors.input.utils.check_idl", "modulename": "pyerrors.input.utils", "qualname": "check_idl", "kind": "function", "doc": "

Checks if list of configurations is contained in an idl

\n\n
Parameters
\n\n
    \n
  • idl (range or list):\nidl of the current replicum
  • \n
  • che (list):\nlist of configurations to be checked against
  • \n
\n\n
Returns
\n\n
    \n
  • miss_str (str):\nstring with integers of which idls are missing
  • \n
\n", "signature": "(idl, che):", "funcdef": "def"}, "pyerrors.input.utils.check_params": {"fullname": "pyerrors.input.utils.check_params", "modulename": "pyerrors.input.utils", "qualname": "check_params", "kind": "function", "doc": "

Check if, for sfcf, the parameter hashes at the end of the parameter files are in fact the expected one.

\n\n
Parameters
\n\n
    \n
  • path (str):\nmeasurement path, same as for sfcf read method
  • \n
  • param_hash (str):\nexpected parameter hash
  • \n
  • prefix (str):\ndata prefix to find the appropriate replicum folders in path
  • \n
  • param_prefix (str):\nprefix of the parameter file. Defaults to 'parameters_'
  • \n
\n\n
Returns
\n\n
    \n
  • nums (dict):\ndictionary of faulty parameter files sorted by the replica paths
  • \n
\n", "signature": "(path, param_hash, prefix, param_prefix='parameters_'):", "funcdef": "def"}, "pyerrors.integrate": {"fullname": "pyerrors.integrate", "modulename": "pyerrors.integrate", "kind": "module", "doc": "

\n"}, "pyerrors.integrate.quad": {"fullname": "pyerrors.integrate.quad", "modulename": "pyerrors.integrate", "qualname": "quad", "kind": "function", "doc": "

Performs a (one-dimensional) numeric integration of f(p, x) from a to b.

\n\n

The integration is performed using scipy.integrate.quad().\nAll parameters that can be passed to scipy.integrate.quad may also be passed to this function.\nThe output is the same as for scipy.integrate.quad, the first element being an Obs.

\n\n
Parameters
\n\n
    \n
  • func (object):\nfunction to integrate, has to be of the form

    \n\n
    \n
    import autograd.numpy as anp\n\ndef func(p, x):\n    return p[0] + p[1] * x + p[2] * anp.sinh(x)\n
    \n
    \n\n

    where x is the integration variable.

  • \n
  • p (list of floats or Obs):\nparameters of the function func.
  • \n
  • a (float or Obs):\nLower limit of integration (use -numpy.inf for -infinity).
  • \n
  • b (float or Obs):\nUpper limit of integration (use -numpy.inf for -infinity).
  • \n
  • All parameters of scipy.integrate.quad
  • \n
\n\n
Returns
\n\n
    \n
  • y (Obs):\nThe integral of func from a to b.
  • \n
  • abserr (float):\nAn estimate of the absolute error in the result.
  • \n
  • infodict (dict):\nA dictionary containing additional information.\nRun scipy.integrate.quad_explain() for more information.
  • \n
  • message: A convergence message.
  • \n
  • explain: Appended only with 'cos' or 'sin' weighting and infinite\nintegration limits, it contains an explanation of the codes in\ninfodict['ierlst']
  • \n
\n", "signature": "(func, p, a, b, **kwargs):", "funcdef": "def"}, "pyerrors.linalg": {"fullname": "pyerrors.linalg", "modulename": "pyerrors.linalg", "kind": "module", "doc": "

\n"}, "pyerrors.linalg.matmul": {"fullname": "pyerrors.linalg.matmul", "modulename": "pyerrors.linalg", "qualname": "matmul", "kind": "function", "doc": "

Matrix multiply all operands.

\n\n
Parameters
\n\n
    \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
  • This implementation is faster compared to standard multiplication via the @ operator.
  • \n
\n", "signature": "(*operands):", "funcdef": "def"}, "pyerrors.linalg.jack_matmul": {"fullname": "pyerrors.linalg.jack_matmul", "modulename": "pyerrors.linalg", "qualname": "jack_matmul", "kind": "function", "doc": "

Matrix multiply both operands making use of the jackknife approximation.

\n\n
Parameters
\n\n
    \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
  • For large matrices this is considerably faster compared to matmul.
  • \n
\n", "signature": "(*operands):", "funcdef": "def"}, "pyerrors.linalg.einsum": {"fullname": "pyerrors.linalg.einsum", "modulename": "pyerrors.linalg", "qualname": "einsum", "kind": "function", "doc": "

Wrapper for numpy.einsum

\n\n
Parameters
\n\n
    \n
  • subscripts (str):\nSubscripts for summation (see numpy documentation for details)
  • \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
\n", "signature": "(subscripts, *operands):", "funcdef": "def"}, "pyerrors.linalg.inv": {"fullname": "pyerrors.linalg.inv", "modulename": "pyerrors.linalg", "qualname": "inv", "kind": "function", "doc": "

Inverse of Obs or CObs valued matrices.

\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.cholesky": {"fullname": "pyerrors.linalg.cholesky", "modulename": "pyerrors.linalg", "qualname": "cholesky", "kind": "function", "doc": "

Cholesky decomposition of Obs valued matrices.

\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.det": {"fullname": "pyerrors.linalg.det", "modulename": "pyerrors.linalg", "qualname": "det", "kind": "function", "doc": "

Determinant of Obs valued matrices.

\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.eigh": {"fullname": "pyerrors.linalg.eigh", "modulename": "pyerrors.linalg", "qualname": "eigh", "kind": "function", "doc": "

Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.eig": {"fullname": "pyerrors.linalg.eig", "modulename": "pyerrors.linalg", "qualname": "eig", "kind": "function", "doc": "

Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.eigv": {"fullname": "pyerrors.linalg.eigv", "modulename": "pyerrors.linalg", "qualname": "eigv", "kind": "function", "doc": "

Computes the eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.pinv": {"fullname": "pyerrors.linalg.pinv", "modulename": "pyerrors.linalg", "qualname": "pinv", "kind": "function", "doc": "

Computes the Moore-Penrose pseudoinverse of a matrix of Obs.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.svd": {"fullname": "pyerrors.linalg.svd", "modulename": "pyerrors.linalg", "qualname": "svd", "kind": "function", "doc": "

Computes the singular value decomposition of a matrix of Obs.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.misc": {"fullname": "pyerrors.misc", "modulename": "pyerrors.misc", "kind": "module", "doc": "

\n"}, "pyerrors.misc.print_config": {"fullname": "pyerrors.misc.print_config", "modulename": "pyerrors.misc", "qualname": "print_config", "kind": "function", "doc": "

Print information about version of python, pyerrors and dependencies.

\n", "signature": "():", "funcdef": "def"}, "pyerrors.misc.errorbar": {"fullname": "pyerrors.misc.errorbar", "modulename": "pyerrors.misc", "qualname": "errorbar", "kind": "function", "doc": "

pyerrors wrapper for the errorbars method of matplotlib

\n\n
Parameters
\n\n
    \n
  • x (list):\nA list of x-values which can be Obs.
  • \n
  • y (list):\nA list of y-values which can be Obs.
  • \n
  • axes ((matplotlib.pyplot.axes)):\nThe axes to plot on. default is plt.
  • \n
\n", "signature": "(\tx,\ty,\taxes=<module 'matplotlib.pyplot' from '/opt/hostedtoolcache/Python/3.12.11/x64/lib/python3.12/site-packages/matplotlib/pyplot.py'>,\t**kwargs):", "funcdef": "def"}, "pyerrors.misc.dump_object": {"fullname": "pyerrors.misc.dump_object", "modulename": "pyerrors.misc", "qualname": "dump_object", "kind": "function", "doc": "

Dump object into pickle file.

\n\n
Parameters
\n\n
    \n
  • obj (object):\nobject to be saved in the pickle file
  • \n
  • name (str):\nname of the file
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(obj, name, **kwargs):", "funcdef": "def"}, "pyerrors.misc.load_object": {"fullname": "pyerrors.misc.load_object", "modulename": "pyerrors.misc", "qualname": "load_object", "kind": "function", "doc": "

Load object from pickle file.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the file
  • \n
\n\n
Returns
\n\n
    \n
  • object (Obs):\nLoaded Object
  • \n
\n", "signature": "(path):", "funcdef": "def"}, "pyerrors.misc.pseudo_Obs": {"fullname": "pyerrors.misc.pseudo_Obs", "modulename": "pyerrors.misc", "qualname": "pseudo_Obs", "kind": "function", "doc": "

Generate an Obs object with given value, dvalue and name for test purposes

\n\n
Parameters
\n\n
    \n
  • value (float):\ncentral value of the Obs to be generated.
  • \n
  • dvalue (float):\nerror of the Obs to be generated.
  • \n
  • name (str):\nname of the ensemble for which the Obs is to be generated.
  • \n
  • samples (int):\nnumber of samples for the Obs (default 1000).
  • \n
\n\n
Returns
\n\n
    \n
  • res (Obs):\nGenerated Observable
  • \n
\n", "signature": "(value, dvalue, name, samples=1000):", "funcdef": "def"}, "pyerrors.misc.gen_correlated_data": {"fullname": "pyerrors.misc.gen_correlated_data", "modulename": "pyerrors.misc", "qualname": "gen_correlated_data", "kind": "function", "doc": "

Generate observables with given covariance and autocorrelation times.

\n\n
Parameters
\n\n
    \n
  • means (list):\nlist containing the mean value of each observable.
  • \n
  • cov (numpy.ndarray):\ncovariance matrix for the data to be generated.
  • \n
  • name (str):\nensemble name for the data to be geneated.
  • \n
  • tau (float or list):\ncan either be a real number or a list with an entry for\nevery dataset.
  • \n
  • samples (int):\nnumber of samples to be generated for each observable.
  • \n
\n\n
Returns
\n\n
    \n
  • corr_obs (list[Obs]):\nGenerated observable list
  • \n
\n", "signature": "(means, cov, name, tau=0.5, samples=1000):", "funcdef": "def"}, "pyerrors.mpm": {"fullname": "pyerrors.mpm", "modulename": "pyerrors.mpm", "kind": "module", "doc": "

\n"}, "pyerrors.mpm.matrix_pencil_method": {"fullname": "pyerrors.mpm.matrix_pencil_method", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method", "kind": "function", "doc": "

Matrix pencil method to extract k energy levels from data

\n\n

Implementation of the matrix pencil method based on\neq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)

\n\n
Parameters
\n\n
    \n
  • data (list):\ncan be a list of Obs for the analysis of a single correlator, or a list of lists\nof Obs if several correlators are to analyzed at once.
  • \n
  • k (int):\nNumber of states to extract (default 1).
  • \n
  • p (int):\nmatrix pencil parameter which filters noise. The optimal value is expected between\nlen(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is\nto len(data)/2 but could possibly suppress more noise (default len(data)//2).
  • \n
\n\n
Returns
\n\n
    \n
  • energy_levels (list[Obs]):\nExtracted energy levels
  • \n
\n", "signature": "(corrs, k=1, p=None, **kwargs):", "funcdef": "def"}, "pyerrors.obs": {"fullname": "pyerrors.obs", "modulename": "pyerrors.obs", "kind": "module", "doc": "

\n"}, "pyerrors.obs.Obs": {"fullname": "pyerrors.obs.Obs", "modulename": "pyerrors.obs", "qualname": "Obs", "kind": "class", "doc": "

Class for a general observable.

\n\n

Instances of Obs are the basic objects of a pyerrors error analysis.\nThey are initialized with a list which contains arrays of samples for\ndifferent ensembles/replica and another list of same length which contains\nthe names of the ensembles/replica. Mathematical operations can be\nperformed on instances. The result is another instance of Obs. The error of\nan instance can be computed with the gamma_method. Also contains additional\nmethods for output and visualization of the error calculation.

\n\n
Attributes
\n\n
    \n
  • S_global (float):\nStandard value for S (default 2.0)
  • \n
  • S_dict (dict):\nDictionary for S values. If an entry for a given ensemble\nexists this overwrites the standard value for that ensemble.
  • \n
  • tau_exp_global (float):\nStandard value for tau_exp (default 0.0)
  • \n
  • tau_exp_dict (dict):\nDictionary for tau_exp values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
  • \n
  • N_sigma_global (float):\nStandard value for N_sigma (default 1.0)
  • \n
  • N_sigma_dict (dict):\nDictionary for N_sigma values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
  • \n
\n"}, "pyerrors.obs.Obs.__init__": {"fullname": "pyerrors.obs.Obs.__init__", "modulename": "pyerrors.obs", "qualname": "Obs.__init__", "kind": "function", "doc": "

Initialize Obs object.

\n\n
Parameters
\n\n
    \n
  • samples (list):\nlist of numpy arrays containing the Monte Carlo samples
  • \n
  • names (list):\nlist of strings labeling the individual samples
  • \n
  • idl (list, optional):\nlist of ranges or lists on which the samples are defined
  • \n
\n", "signature": "(samples, names, idl=None, **kwargs)"}, "pyerrors.obs.Obs.S_global": {"fullname": "pyerrors.obs.Obs.S_global", "modulename": "pyerrors.obs", "qualname": "Obs.S_global", "kind": "variable", "doc": "

\n", "default_value": "2.0"}, "pyerrors.obs.Obs.S_dict": {"fullname": "pyerrors.obs.Obs.S_dict", "modulename": "pyerrors.obs", "qualname": "Obs.S_dict", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "pyerrors.obs.Obs.tau_exp_global": {"fullname": "pyerrors.obs.Obs.tau_exp_global", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_global", "kind": "variable", "doc": "

\n", "default_value": "0.0"}, "pyerrors.obs.Obs.tau_exp_dict": {"fullname": "pyerrors.obs.Obs.tau_exp_dict", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_dict", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "pyerrors.obs.Obs.N_sigma_global": {"fullname": "pyerrors.obs.Obs.N_sigma_global", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_global", "kind": "variable", "doc": "

\n", "default_value": "1.0"}, "pyerrors.obs.Obs.N_sigma_dict": {"fullname": "pyerrors.obs.Obs.N_sigma_dict", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_dict", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "pyerrors.obs.Obs.names": {"fullname": "pyerrors.obs.Obs.names", "modulename": "pyerrors.obs", "qualname": "Obs.names", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.shape": {"fullname": "pyerrors.obs.Obs.shape", "modulename": "pyerrors.obs", "qualname": "Obs.shape", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.r_values": {"fullname": "pyerrors.obs.Obs.r_values", "modulename": "pyerrors.obs", "qualname": "Obs.r_values", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.deltas": {"fullname": "pyerrors.obs.Obs.deltas", "modulename": "pyerrors.obs", "qualname": "Obs.deltas", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.N": {"fullname": "pyerrors.obs.Obs.N", "modulename": "pyerrors.obs", "qualname": "Obs.N", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.idl": {"fullname": "pyerrors.obs.Obs.idl", "modulename": "pyerrors.obs", "qualname": "Obs.idl", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.ddvalue": {"fullname": "pyerrors.obs.Obs.ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.ddvalue", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.reweighted": {"fullname": "pyerrors.obs.Obs.reweighted", "modulename": "pyerrors.obs", "qualname": "Obs.reweighted", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.tag": {"fullname": "pyerrors.obs.Obs.tag", "modulename": "pyerrors.obs", "qualname": "Obs.tag", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.value": {"fullname": "pyerrors.obs.Obs.value", "modulename": "pyerrors.obs", "qualname": "Obs.value", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.dvalue": {"fullname": "pyerrors.obs.Obs.dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.dvalue", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_names": {"fullname": "pyerrors.obs.Obs.e_names", "modulename": "pyerrors.obs", "qualname": "Obs.e_names", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.cov_names": {"fullname": "pyerrors.obs.Obs.cov_names", "modulename": "pyerrors.obs", "qualname": "Obs.cov_names", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.mc_names": {"fullname": "pyerrors.obs.Obs.mc_names", "modulename": "pyerrors.obs", "qualname": "Obs.mc_names", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_content": {"fullname": "pyerrors.obs.Obs.e_content", "modulename": "pyerrors.obs", "qualname": "Obs.e_content", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.covobs": {"fullname": "pyerrors.obs.Obs.covobs", "modulename": "pyerrors.obs", "qualname": "Obs.covobs", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.gamma_method": {"fullname": "pyerrors.obs.Obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "Obs.gamma_method", "kind": "function", "doc": "

Estimate the error and related properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
  • \n
  • tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
  • \n
  • N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
  • \n
  • fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
  • \n
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.gm": {"fullname": "pyerrors.obs.Obs.gm", "modulename": "pyerrors.obs", "qualname": "Obs.gm", "kind": "function", "doc": "

Estimate the error and related properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
  • \n
  • tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
  • \n
  • N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
  • \n
  • fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
  • \n
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.details": {"fullname": "pyerrors.obs.Obs.details", "modulename": "pyerrors.obs", "qualname": "Obs.details", "kind": "function", "doc": "

Output detailed properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • ens_content (bool):\nprint details about the ensembles and replica if true.
  • \n
\n", "signature": "(self, ens_content=True):", "funcdef": "def"}, "pyerrors.obs.Obs.reweight": {"fullname": "pyerrors.obs.Obs.reweight", "modulename": "pyerrors.obs", "qualname": "Obs.reweight", "kind": "function", "doc": "

Reweight the obs with given rewighting factors.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl. Default False.
  • \n
\n", "signature": "(self, weight):", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero_within_error": {"fullname": "pyerrors.obs.Obs.is_zero_within_error", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero_within_error", "kind": "function", "doc": "

Checks whether the observable is zero within 'sigma' standard errors.

\n\n
Parameters
\n\n
    \n
  • sigma (int):\nNumber of standard errors used for the check.
  • \n
  • Works only properly when the gamma method was run.
  • \n
\n", "signature": "(self, sigma=1):", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero": {"fullname": "pyerrors.obs.Obs.is_zero", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero", "kind": "function", "doc": "

Checks whether the observable is zero within a given tolerance.

\n\n
Parameters
\n\n
    \n
  • atol (float):\nAbsolute tolerance (for details see numpy documentation).
  • \n
\n", "signature": "(self, atol=1e-10):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_tauint": {"fullname": "pyerrors.obs.Obs.plot_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.plot_tauint", "kind": "function", "doc": "

Plot integrated autocorrelation time for each ensemble.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rho": {"fullname": "pyerrors.obs.Obs.plot_rho", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rho", "kind": "function", "doc": "

Plot normalized autocorrelation function time for each ensemble.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rep_dist": {"fullname": "pyerrors.obs.Obs.plot_rep_dist", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rep_dist", "kind": "function", "doc": "

Plot replica distribution for each ensemble with more than one replicum.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_history": {"fullname": "pyerrors.obs.Obs.plot_history", "modulename": "pyerrors.obs", "qualname": "Obs.plot_history", "kind": "function", "doc": "

Plot derived Monte Carlo history for each ensemble

\n\n
Parameters
\n\n
    \n
  • expand (bool):\nshow expanded history for irregular Monte Carlo chains (default: True).
  • \n
\n", "signature": "(self, expand=True):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_piechart": {"fullname": "pyerrors.obs.Obs.plot_piechart", "modulename": "pyerrors.obs", "qualname": "Obs.plot_piechart", "kind": "function", "doc": "

Plot piechart which shows the fractional contribution of each\nensemble to the error and returns a dictionary containing the fractions.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.dump": {"fullname": "pyerrors.obs.Obs.dump", "modulename": "pyerrors.obs", "qualname": "Obs.dump", "kind": "function", "doc": "

Dump the Obs to a file 'name' of chosen format.

\n\n
Parameters
\n\n
    \n
  • filename (str):\nname of the file to be saved.
  • \n
  • datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
  • \n
  • description (str):\nDescription for output file, only relevant for json.gz format.
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n", "signature": "(self, filename, datatype='json.gz', description='', **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.export_jackknife": {"fullname": "pyerrors.obs.Obs.export_jackknife", "modulename": "pyerrors.obs", "qualname": "Obs.export_jackknife", "kind": "function", "doc": "

Export jackknife samples from the Obs

\n\n
Returns
\n\n
    \n
  • numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N jackknife samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived jackknife samples\nshould agree with samples from a full jackknife analysis up to O(1/N).
  • \n
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.export_bootstrap": {"fullname": "pyerrors.obs.Obs.export_bootstrap", "modulename": "pyerrors.obs", "qualname": "Obs.export_bootstrap", "kind": "function", "doc": "

Export bootstrap samples from the Obs

\n\n
Parameters
\n\n
    \n
  • samples (int):\nNumber of bootstrap samples to generate.
  • \n
  • random_numbers (np.ndarray):\nArray of shape (samples, length) containing the random numbers to generate the bootstrap samples.\nIf not provided the bootstrap samples are generated bashed on the md5 hash of the enesmble name.
  • \n
  • save_rng (str):\nSave the random numbers to a file if a path is specified.
  • \n
\n\n
Returns
\n\n
    \n
  • numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N import_bootstrap samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived bootstrap samples\nshould agree with samples from a full bootstrap analysis up to O(1/N).
  • \n
\n", "signature": "(self, samples=500, random_numbers=None, save_rng=None):", "funcdef": "def"}, "pyerrors.obs.Obs.sqrt": {"fullname": "pyerrors.obs.Obs.sqrt", "modulename": "pyerrors.obs", "qualname": "Obs.sqrt", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.log": {"fullname": "pyerrors.obs.Obs.log", "modulename": "pyerrors.obs", "qualname": "Obs.log", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.exp": {"fullname": "pyerrors.obs.Obs.exp", "modulename": "pyerrors.obs", "qualname": "Obs.exp", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sin": {"fullname": "pyerrors.obs.Obs.sin", "modulename": "pyerrors.obs", "qualname": "Obs.sin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.cos": {"fullname": "pyerrors.obs.Obs.cos", "modulename": "pyerrors.obs", "qualname": "Obs.cos", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.tan": {"fullname": "pyerrors.obs.Obs.tan", "modulename": "pyerrors.obs", "qualname": "Obs.tan", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arcsin": {"fullname": "pyerrors.obs.Obs.arcsin", "modulename": "pyerrors.obs", "qualname": "Obs.arcsin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arccos": {"fullname": "pyerrors.obs.Obs.arccos", "modulename": "pyerrors.obs", "qualname": "Obs.arccos", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arctan": {"fullname": "pyerrors.obs.Obs.arctan", "modulename": "pyerrors.obs", "qualname": "Obs.arctan", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sinh": {"fullname": "pyerrors.obs.Obs.sinh", "modulename": "pyerrors.obs", "qualname": "Obs.sinh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.cosh": {"fullname": "pyerrors.obs.Obs.cosh", "modulename": "pyerrors.obs", "qualname": "Obs.cosh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.tanh": {"fullname": "pyerrors.obs.Obs.tanh", "modulename": "pyerrors.obs", "qualname": "Obs.tanh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arcsinh": {"fullname": "pyerrors.obs.Obs.arcsinh", "modulename": "pyerrors.obs", "qualname": "Obs.arcsinh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arccosh": {"fullname": "pyerrors.obs.Obs.arccosh", "modulename": "pyerrors.obs", "qualname": "Obs.arccosh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arctanh": {"fullname": "pyerrors.obs.Obs.arctanh", "modulename": "pyerrors.obs", "qualname": "Obs.arctanh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.N_sigma": {"fullname": "pyerrors.obs.Obs.N_sigma", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.S": {"fullname": "pyerrors.obs.Obs.S", "modulename": "pyerrors.obs", "qualname": "Obs.S", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_ddvalue": {"fullname": "pyerrors.obs.Obs.e_ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_ddvalue", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_drho": {"fullname": "pyerrors.obs.Obs.e_drho", "modulename": "pyerrors.obs", "qualname": "Obs.e_drho", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_dtauint": {"fullname": "pyerrors.obs.Obs.e_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_dtauint", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_dvalue": {"fullname": "pyerrors.obs.Obs.e_dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_dvalue", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_n_dtauint": {"fullname": "pyerrors.obs.Obs.e_n_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_dtauint", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_n_tauint": {"fullname": "pyerrors.obs.Obs.e_n_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_tauint", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_rho": {"fullname": "pyerrors.obs.Obs.e_rho", "modulename": "pyerrors.obs", "qualname": "Obs.e_rho", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_tauint": {"fullname": "pyerrors.obs.Obs.e_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_tauint", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_windowsize": {"fullname": "pyerrors.obs.Obs.e_windowsize", "modulename": "pyerrors.obs", "qualname": "Obs.e_windowsize", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.tau_exp": {"fullname": "pyerrors.obs.Obs.tau_exp", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.CObs": {"fullname": "pyerrors.obs.CObs", "modulename": "pyerrors.obs", "qualname": "CObs", "kind": "class", "doc": "

Class for a complex valued observable.

\n"}, "pyerrors.obs.CObs.__init__": {"fullname": "pyerrors.obs.CObs.__init__", "modulename": "pyerrors.obs", "qualname": "CObs.__init__", "kind": "function", "doc": "

\n", "signature": "(real, imag=0.0)"}, "pyerrors.obs.CObs.tag": {"fullname": "pyerrors.obs.CObs.tag", "modulename": "pyerrors.obs", "qualname": "CObs.tag", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.real": {"fullname": "pyerrors.obs.CObs.real", "modulename": "pyerrors.obs", "qualname": "CObs.real", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.imag": {"fullname": "pyerrors.obs.CObs.imag", "modulename": "pyerrors.obs", "qualname": "CObs.imag", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.gamma_method": {"fullname": "pyerrors.obs.CObs.gamma_method", "modulename": "pyerrors.obs", "qualname": "CObs.gamma_method", "kind": "function", "doc": "

Executes the gamma_method for the real and the imaginary part.

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.CObs.is_zero": {"fullname": "pyerrors.obs.CObs.is_zero", "modulename": "pyerrors.obs", "qualname": "CObs.is_zero", "kind": "function", "doc": "

Checks whether both real and imaginary part are zero within machine precision.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.CObs.conjugate": {"fullname": "pyerrors.obs.CObs.conjugate", "modulename": "pyerrors.obs", "qualname": "CObs.conjugate", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.gamma_method": {"fullname": "pyerrors.obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "gamma_method", "kind": "function", "doc": "

Vectorized version of the gamma_method applicable to lists or arrays of Obs.

\n\n

See docstring of pe.Obs.gamma_method for details.

\n", "signature": "(x, **kwargs):", "funcdef": "def"}, "pyerrors.obs.gm": {"fullname": "pyerrors.obs.gm", "modulename": "pyerrors.obs", "qualname": "gm", "kind": "function", "doc": "

Vectorized version of the gamma_method applicable to lists or arrays of Obs.

\n\n

See docstring of pe.Obs.gamma_method for details.

\n", "signature": "(x, **kwargs):", "funcdef": "def"}, "pyerrors.obs.derived_observable": {"fullname": "pyerrors.obs.derived_observable", "modulename": "pyerrors.obs", "qualname": "derived_observable", "kind": "function", "doc": "

Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.

\n\n
Parameters
\n\n
    \n
  • func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
  • \n
  • data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
  • \n
  • num_grad (bool):\nif True, numerical derivatives are used instead of autograd\n(default False). To control the numerical differentiation the\nkwargs of numdifftools.step_generators.MaxStepGenerator\ncan be used.
  • \n
  • man_grad (list):\nmanually supply a list or an array which contains the jacobian\nof func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
  • \n
\n\n
Notes
\n\n

For simple mathematical operations it can be practical to use anonymous\nfunctions. For the ratio of two observables one can e.g. use

\n\n

new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])

\n", "signature": "(func, data, array_mode=False, **kwargs):", "funcdef": "def"}, "pyerrors.obs.reweight": {"fullname": "pyerrors.obs.reweight", "modulename": "pyerrors.obs", "qualname": "reweight", "kind": "function", "doc": "

Reweight a list of observables.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • obs (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl. Default False.
  • \n
\n", "signature": "(weight, obs, **kwargs):", "funcdef": "def"}, "pyerrors.obs.correlate": {"fullname": "pyerrors.obs.correlate", "modulename": "pyerrors.obs", "qualname": "correlate", "kind": "function", "doc": "

Correlate two observables.

\n\n
Parameters
\n\n
    \n
  • obs_a (Obs):\nFirst observable
  • \n
  • obs_b (Obs):\nSecond observable
  • \n
\n\n
Notes
\n\n

Keep in mind to only correlate primary observables which have not been reweighted\nyet. The reweighting has to be applied after correlating the observables.\nOnly works if a single ensemble is present in the Obs.\nCurrently only works if ensemble content is identical (this is not strictly necessary).

\n", "signature": "(obs_a, obs_b):", "funcdef": "def"}, "pyerrors.obs.covariance": {"fullname": "pyerrors.obs.covariance", "modulename": "pyerrors.obs", "qualname": "covariance", "kind": "function", "doc": "

Calculates the error covariance matrix of a set of observables.

\n\n

WARNING: This function should be used with care, especially for observables with support on multiple\n ensembles with differing autocorrelations. See the notes below for details.

\n\n

The gamma method has to be applied first to all observables.

\n\n
Parameters
\n\n
    \n
  • obs (list or numpy.ndarray):\nList or one dimensional array of Obs
  • \n
  • visualize (bool):\nIf True plots the corresponding normalized correlation matrix (default False).
  • \n
  • correlation (bool):\nIf True the correlation matrix instead of the error covariance matrix is returned (default False).
  • \n
  • smooth (None or int):\nIf smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue\nsmoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the\nlargest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely\nsmall ones.
  • \n
\n\n
Notes
\n\n

The error covariance is defined such that it agrees with the squared standard error for two identical observables\n$$\\operatorname{cov}(a,a)=\\sum_{s=1}^N\\delta_a^s\\delta_a^s/N^2=\\Gamma_{aa}(0)/N=\\operatorname{var}(a)/N=\\sigma_a^2$$\nin the absence of autocorrelation.\nThe error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite\n$$\\sum_{i,j}v_i\\Gamma_{ij}(0)v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i,j}v_i\\delta_i^s\\delta_j^s v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i}|v_i\\delta_i^s|^2\\geq 0\\,,$$ for every $v\\in\\mathbb{R}^M$, while such an identity does not hold for larger windows/lags.\nFor observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements.\n$$\\tau_{\\mathrm{int}, ij}=\\sqrt{\\tau_{\\mathrm{int}, i}\\times \\tau_{\\mathrm{int}, j}}$$\nThis construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors).

\n", "signature": "(obs, visualize=False, correlation=False, smooth=None, **kwargs):", "funcdef": "def"}, "pyerrors.obs.invert_corr_cov_cholesky": {"fullname": "pyerrors.obs.invert_corr_cov_cholesky", "modulename": "pyerrors.obs", "qualname": "invert_corr_cov_cholesky", "kind": "function", "doc": "

Constructs a lower triangular matrix chol via the Cholesky decomposition of the correlation matrix corr\n and then returns the inverse covariance matrix chol_inv as a lower triangular matrix by solving chol * x = inverrdiag.

\n\n
Parameters
\n\n
    \n
  • corr (np.ndarray):\ncorrelation matrix
  • \n
  • inverrdiag (np.ndarray):\ndiagonal matrix, the entries are the inverse errors of the data points considered
  • \n
\n", "signature": "(corr, inverrdiag):", "funcdef": "def"}, "pyerrors.obs.sort_corr": {"fullname": "pyerrors.obs.sort_corr", "modulename": "pyerrors.obs", "qualname": "sort_corr", "kind": "function", "doc": "

Reorders a correlation matrix to match the alphabetical order of its underlying y data.

\n\n

The ordering of the input correlation matrix corr is given by the list of keys kl.\nThe input dictionary yd (with the same keys kl) must contain the corresponding y data\nthat the correlation matrix is based on.\nThis function sorts the list of keys kl alphabetically and sorts the matrix corr\naccording to this alphabetical order such that the sorted matrix corr_sorted corresponds\nto the y data yd when arranged in an alphabetical order by its keys.

\n\n
Parameters
\n\n
    \n
  • corr (np.ndarray):\nA square correlation matrix constructed using the order of the y data specified by kl.\nThe dimensions of corr should match the total number of y data points in yd combined.
  • \n
  • kl (list of str):\nA list of keys that denotes the order in which the y data from yd was used to build the\ninput correlation matrix corr.
  • \n
  • yd (dict of list):\nA dictionary where each key corresponds to a unique identifier, and its value is a list of\ny data points. The total number of y data points across all keys must match the dimensions\nof corr. The lists in the dictionary can be lists of Obs.
  • \n
\n\n
Returns
\n\n
    \n
  • np.ndarray: A new, sorted correlation matrix that corresponds to the y data from yd when arranged alphabetically by its keys.
  • \n
\n\n
Example
\n\n
\n
>>> import numpy as np\n>>> import pyerrors as pe\n>>> corr = np.array([[1, 0.2, 0.3], [0.2, 1, 0.4], [0.3, 0.4, 1]])\n>>> kl = ['b', 'a']\n>>> yd = {'a': [1, 2], 'b': [3]}\n>>> sorted_corr = pe.obs.sort_corr(corr, kl, yd)\n>>> print(sorted_corr)\narray([[1. , 0.3, 0.4],\n       [0.3, 1. , 0.2],\n       [0.4, 0.2, 1. ]])\n
\n
\n", "signature": "(corr, kl, yd):", "funcdef": "def"}, "pyerrors.obs.import_jackknife": {"fullname": "pyerrors.obs.import_jackknife", "modulename": "pyerrors.obs", "qualname": "import_jackknife", "kind": "function", "doc": "

Imports jackknife samples and returns an Obs

\n\n
Parameters
\n\n
    \n
  • jacks (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N jackknife samples as first to Nth entry.
  • \n
  • name (str):\nname of the ensemble the samples are defined on.
  • \n
\n", "signature": "(jacks, name, idl=None):", "funcdef": "def"}, "pyerrors.obs.import_bootstrap": {"fullname": "pyerrors.obs.import_bootstrap", "modulename": "pyerrors.obs", "qualname": "import_bootstrap", "kind": "function", "doc": "

Imports bootstrap samples and returns an Obs

\n\n
Parameters
\n\n
    \n
  • boots (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N bootstrap samples as first to Nth entry.
  • \n
  • name (str):\nname of the ensemble the samples are defined on.
  • \n
  • random_numbers (np.ndarray):\nArray of shape (samples, length) containing the random numbers to generate the bootstrap samples,\nwhere samples is the number of bootstrap samples and length is the length of the original Monte Carlo\nchain to be reconstructed.
  • \n
\n", "signature": "(boots, name, random_numbers):", "funcdef": "def"}, "pyerrors.obs.merge_obs": {"fullname": "pyerrors.obs.merge_obs", "modulename": "pyerrors.obs", "qualname": "merge_obs", "kind": "function", "doc": "

Combine all observables in list_of_obs into one new observable.\nThis allows to merge Obs that have been computed on multiple replica\nof the same ensemble.\nIf you like to merge Obs that are based on several ensembles, please\naverage them yourself.

\n\n
Parameters
\n\n
    \n
  • list_of_obs (list):\nlist of the Obs object to be combined
  • \n
\n\n
Notes
\n\n

It is not possible to combine obs which are based on the same replicum

\n", "signature": "(list_of_obs):", "funcdef": "def"}, "pyerrors.obs.cov_Obs": {"fullname": "pyerrors.obs.cov_Obs", "modulename": "pyerrors.obs", "qualname": "cov_Obs", "kind": "function", "doc": "

Create an Obs based on mean(s) and a covariance matrix

\n\n
Parameters
\n\n
    \n
  • mean (list of floats or float):\nN mean value(s) of the new Obs
  • \n
  • cov (list or array):\n2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance
  • \n
  • name (str):\nidentifier for the covariance matrix
  • \n
  • grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
  • \n
\n", "signature": "(means, cov, name, grad=None):", "funcdef": "def"}, "pyerrors.roots": {"fullname": "pyerrors.roots", "modulename": "pyerrors.roots", "kind": "module", "doc": "

\n"}, "pyerrors.roots.find_root": {"fullname": "pyerrors.roots.find_root", "modulename": "pyerrors.roots", "qualname": "find_root", "kind": "function", "doc": "

Finds the root of the function func(x, d) where d is an Obs.

\n\n
Parameters
\n\n
    \n
  • d (Obs):\nObs passed to the function.
  • \n
  • func (object):\nFunction to be minimized. Any numpy functions have to use the autograd.numpy wrapper.\nExample:

    \n\n
    \n
    import autograd.numpy as anp\ndef root_func(x, d):\n    return anp.exp(-x ** 2) - d\n
    \n
  • \n
  • guess (float):\nInitial guess for the minimization.

  • \n
\n\n
Returns
\n\n
    \n
  • res (Obs):\nObs valued root of the function.
  • \n
\n", "signature": "(d, func, guess=1.0, **kwargs):", "funcdef": "def"}, "pyerrors.special": {"fullname": "pyerrors.special", "modulename": "pyerrors.special", "kind": "module", "doc": "

\n"}, "pyerrors.special.beta": {"fullname": "pyerrors.special.beta", "modulename": "pyerrors.special", "qualname": "beta", "kind": "function", "doc": "

beta(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

beta(a, b, out=None)

\n\n

Beta function.

\n\n

This function is defined in 1 as

\n\n

$$B(a, b) = \\int_0^1 t^{a-1}(1-t)^{b-1}dt\n = \\frac{\\Gamma(a)\\Gamma(b)}{\\Gamma(a+b)},$$

\n\n

where \\( \\Gamma \\) is the gamma function.

\n\n
Parameters
\n\n
    \n
  • a, b (array_like):\nReal-valued arguments
  • \n
  • out (ndarray, optional):\nOptional output array for the function result
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Value of the beta function
  • \n
\n\n
See Also
\n\n

gamma: the gamma function
\nbetainc: the regularized incomplete beta function
\nbetaln: the natural logarithm of the absolute\nvalue of the beta function

\n\n
References
\n\n
Examples
\n\n
\n
>>> import scipy.special as sc\n
\n
\n\n

The beta function relates to the gamma function by the\ndefinition given above:

\n\n
\n
>>> sc.beta(2, 3)\n0.08333333333333333\n>>> sc.gamma(2)*sc.gamma(3)/sc.gamma(2 + 3)\n0.08333333333333333\n
\n
\n\n

As this relationship demonstrates, the beta function\nis symmetric:

\n\n
\n
>>> sc.beta(1.7, 2.4)\n0.16567527689031739\n>>> sc.beta(2.4, 1.7)\n0.16567527689031739\n
\n
\n\n

This function satisfies \\( B(1, b) = 1/b \\):

\n\n
\n
>>> sc.beta(1, 4)\n0.25\n
\n
\n\n
\n
\n
    \n
  1. \n

    NIST Digital Library of Mathematical Functions,\nEq. 5.12.1. https://dlmf.nist.gov/5.12 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.betainc": {"fullname": "pyerrors.special.betainc", "modulename": "pyerrors.special", "qualname": "betainc", "kind": "function", "doc": "

betainc(a, b, x, out=None)

\n\n

Regularized incomplete beta function.

\n\n

Computes the regularized incomplete beta function, defined as 1:

\n\n

$$I_x(a, b) = \\frac{\\Gamma(a+b)}{\\Gamma(a)\\Gamma(b)} \\int_0^x\nt^{a-1}(1-t)^{b-1}dt,$$

\n\n

for \\( 0 \\leq x \\leq 1 \\).

\n\n

This function is the cumulative distribution function for the beta\ndistribution; its range is [0, 1].

\n\n
Parameters
\n\n
    \n
  • a, b (array_like):\nPositive, real-valued parameters
  • \n
  • x (array_like):\nReal-valued such that \\( 0 \\leq x \\leq 1 \\),\nthe upper limit of integration
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Value of the regularized incomplete beta function
  • \n
\n\n
See Also
\n\n

beta()`\nbeta`, `function` \nbetaincinv()\ninverse, of, the, regularized, incomplete, beta, function
\nbetaincc()`\ncomplement`, `of`, `the`, `regularized`, `incomplete`, `beta`, `function` \nscipy.stats.beta()\nbeta, distribution

\n\n
Notes
\n\n

The term regularized in the name of this function refers to the\nscaling of the function by the gamma function terms shown in the\nformula. When not qualified as regularized, the name incomplete\nbeta function often refers to just the integral expression,\nwithout the gamma terms. One can use the function beta from\nscipy.special to get this \"nonregularized\" incomplete beta\nfunction by multiplying the result of betainc(a, b, x) by\nbeta(a, b).

\n\n

betainc(a, b, x) is treated as a two parameter family of functions\nof a single variable x, rather than as a function of three variables.\nThis impacts only the limiting cases a = 0, b = 0, a = inf,\nb = inf.

\n\n

In general

\n\n

$$\\lim_{(a, b) \\rightarrow (a_0, b_0)} \\mathrm{betainc}(a, b, x)$$

\n\n

is treated as a pointwise limit in x. Thus for example,\nbetainc(0, b, 0) equals 0 for b > 0, although it would be\nindeterminate when considering the simultaneous limit (a, x) -> (0+, 0+).

\n\n

This function wraps the ibeta routine from the\nBoost Math C++ library 2.

\n\n

betainc has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u26d4
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
References
\n\n
Examples
\n\n

Let \\( B(a, b) \\) be the beta function.

\n\n
\n
>>> import scipy.special as sc\n
\n
\n\n

The coefficient in terms of gamma is equal to\n\\( 1/B(a, b) \\). Also, when \\( x=1 \\)\nthe integral is equal to \\( B(a, b) \\).\nTherefore, \\( I_{x=1}(a, b) = 1 \\) for any \\( a, b \\).

\n\n
\n
>>> sc.betainc(0.2, 3.5, 1.0)\n1.0\n
\n
\n\n

It satisfies\n\\( I_x(a, b) = x^a F(a, 1-b, a+1, x)/ (aB(a, b)) \\),\nwhere \\( F \\) is the hypergeometric function hyp2f1:

\n\n
\n
>>> a, b, x = 1.4, 3.1, 0.5\n>>> x**a * sc.hyp2f1(a, 1 - b, a + 1, x)/(a * sc.beta(a, b))\n0.8148904036225295\n>>> sc.betainc(a, b, x)\n0.8148904036225296\n
\n
\n\n

This functions satisfies the relationship\n\\( I_x(a, b) = 1 - I_{1-x}(b, a) \\):

\n\n
\n
>>> sc.betainc(2.2, 3.1, 0.4)\n0.49339638807619446\n>>> 1 - sc.betainc(3.1, 2.2, 1 - 0.4)\n0.49339638807619446\n
\n
\n\n
\n
\n
    \n
  1. \n

    NIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/8.17 

    \n
  2. \n\n
  3. \n

    The Boost Developers. \"Boost C++ Libraries\". https://www.boost.org/

    \n
  4. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.betaln": {"fullname": "pyerrors.special.betaln", "modulename": "pyerrors.special", "qualname": "betaln", "kind": "function", "doc": "

betaln(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

betaln(a, b, out=None)

\n\n

Natural logarithm of absolute value of beta function.

\n\n

Computes ln(abs(beta(a, b))).

\n\n
Parameters
\n\n
    \n
  • a, b (array_like):\nPositive, real-valued parameters
  • \n
  • out (ndarray, optional):\nOptional output array for function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Value of the betaln function
  • \n
\n\n
See Also
\n\n

gamma: the gamma function
\nbetainc: the regularized incomplete beta function
\nbeta: the beta function

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> from scipy.special import betaln, beta\n
\n
\n\n

Verify that, for moderate values of a and b, betaln(a, b)\nis the same as log(beta(a, b)):

\n\n
\n
>>> betaln(3, 4)\n-4.0943445622221\n
\n
\n\n
\n
>>> np.log(beta(3, 4))\n-4.0943445622221\n
\n
\n\n

In the following beta(a, b) underflows to 0, so we can't compute\nthe logarithm of the actual value.

\n\n
\n
>>> a = 400\n>>> b = 900\n>>> beta(a, b)\n0.0\n
\n
\n\n

We can compute the logarithm of beta(a, b) by using betaln:

\n\n
\n
>>> betaln(a, b)\n-804.3069951764146\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.polygamma": {"fullname": "pyerrors.special.polygamma", "modulename": "pyerrors.special", "qualname": "polygamma", "kind": "function", "doc": "

Polygamma functions.

\n\n

Defined as \\( \\psi^{(n)}(x) \\) where \\( \\psi \\) is the\ndigamma function. See [dlmf]_ for details.

\n\n
Parameters
\n\n
    \n
  • n (array_like):\nThe order of the derivative of the digamma function; must be\nintegral
  • \n
  • x (array_like):\nReal valued input
  • \n
\n\n
Returns
\n\n
    \n
  • ndarray: Function results
  • \n
\n\n
See Also
\n\n

digamma

\n\n
References
\n\n

.. [dlmf] NIST, Digital Library of Mathematical Functions,\n https://dlmf.nist.gov/5.15

\n\n
Examples
\n\n
\n
>>> from scipy import special\n>>> x = [2, 3, 25.5]\n>>> special.polygamma(1, x)\narray([ 0.64493407,  0.39493407,  0.03999467])\n>>> special.polygamma(0, x) == special.psi(x)\narray([ True,  True,  True], dtype=bool)\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.psi": {"fullname": "pyerrors.special.psi", "modulename": "pyerrors.special", "qualname": "psi", "kind": "function", "doc": "

psi(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

psi(z, out=None)

\n\n

The digamma function.

\n\n

The logarithmic derivative of the gamma function evaluated at z.

\n\n
Parameters
\n\n
    \n
  • z (array_like):\nReal or complex argument.
  • \n
  • out (ndarray, optional):\nArray for the computed values of psi.
  • \n
\n\n
Returns
\n\n
    \n
  • digamma (scalar or ndarray):\nComputed values of psi.
  • \n
\n\n
Notes
\n\n

For large values not close to the negative real axis, psi is\ncomputed using the asymptotic series (5.11.2) from 1. For small\narguments not close to the negative real axis, the recurrence\nrelation (5.5.2) from 2 is used until the argument is large\nenough to use the asymptotic series. For values close to the\nnegative real axis, the reflection formula (5.5.4) from 3 is\nused first. Note that psi has a family of zeros on the\nnegative real axis which occur between the poles at nonpositive\nintegers. Around the zeros the reflection formula suffers from\ncancellation and the implementation loses precision. The sole\npositive zero and the first negative zero, however, are handled\nseparately by precomputing series expansions using 4, so the\nfunction should maintain full accuracy around the origin.

\n\n
References
\n\n
Examples
\n\n
\n
>>> from scipy.special import psi\n>>> z = 3 + 4j\n>>> psi(z)\n(1.55035981733341+1.0105022091860445j)\n
\n
\n\n

Verify psi(z) = psi(z + 1) - 1/z:

\n\n
\n
>>> psi(z + 1) - 1/z\n(1.55035981733341+1.0105022091860445j)\n
\n
\n\n
\n
\n
    \n
  1. \n

    NIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 

    \n
  2. \n\n
  3. \n

    NIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 

    \n
  4. \n\n
  5. \n

    NIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 

    \n
  6. \n\n
  7. \n

    Fredrik Johansson and others.\n\"mpmath: a Python library for arbitrary-precision floating-point arithmetic\"\n(Version 0.19) http://mpmath.org/ 

    \n
  8. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.digamma": {"fullname": "pyerrors.special.digamma", "modulename": "pyerrors.special", "qualname": "digamma", "kind": "function", "doc": "

psi(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

psi(z, out=None)

\n\n

The digamma function.

\n\n

The logarithmic derivative of the gamma function evaluated at z.

\n\n
Parameters
\n\n
    \n
  • z (array_like):\nReal or complex argument.
  • \n
  • out (ndarray, optional):\nArray for the computed values of psi.
  • \n
\n\n
Returns
\n\n
    \n
  • digamma (scalar or ndarray):\nComputed values of psi.
  • \n
\n\n
Notes
\n\n

For large values not close to the negative real axis, psi is\ncomputed using the asymptotic series (5.11.2) from 1. For small\narguments not close to the negative real axis, the recurrence\nrelation (5.5.2) from 2 is used until the argument is large\nenough to use the asymptotic series. For values close to the\nnegative real axis, the reflection formula (5.5.4) from 3 is\nused first. Note that psi has a family of zeros on the\nnegative real axis which occur between the poles at nonpositive\nintegers. Around the zeros the reflection formula suffers from\ncancellation and the implementation loses precision. The sole\npositive zero and the first negative zero, however, are handled\nseparately by precomputing series expansions using 4, so the\nfunction should maintain full accuracy around the origin.

\n\n
References
\n\n
Examples
\n\n
\n
>>> from scipy.special import psi\n>>> z = 3 + 4j\n>>> psi(z)\n(1.55035981733341+1.0105022091860445j)\n
\n
\n\n

Verify psi(z) = psi(z + 1) - 1/z:

\n\n
\n
>>> psi(z + 1) - 1/z\n(1.55035981733341+1.0105022091860445j)\n
\n
\n\n
\n
\n
    \n
  1. \n

    NIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 

    \n
  2. \n\n
  3. \n

    NIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 

    \n
  4. \n\n
  5. \n

    NIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 

    \n
  6. \n\n
  7. \n

    Fredrik Johansson and others.\n\"mpmath: a Python library for arbitrary-precision floating-point arithmetic\"\n(Version 0.19) http://mpmath.org/ 

    \n
  8. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gamma": {"fullname": "pyerrors.special.gamma", "modulename": "pyerrors.special", "qualname": "gamma", "kind": "function", "doc": "

gamma(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

gamma(z, out=None)

\n\n

gamma function.

\n\n

The gamma function is defined as

\n\n

$$\\Gamma(z) = \\int_0^\\infty t^{z-1} e^{-t} dt$$

\n\n

for \\( \\Re(z) > 0 \\) and is extended to the rest of the complex\nplane by analytic continuation. See [dlmf]_ for more details.

\n\n
Parameters
\n\n
    \n
  • z (array_like):\nReal or complex valued argument
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Values of the gamma function
  • \n
\n\n
Notes
\n\n

The gamma function is often referred to as the generalized\nfactorial since \\( \\Gamma(n + 1) = n! \\) for natural numbers\n\\( n \\). More generally it satisfies the recurrence relation\n\\( \\Gamma(z + 1) = z \\cdot \\Gamma(z) \\) for complex \\( z \\),\nwhich, combined with the fact that \\( \\Gamma(1) = 1 \\), implies\nthe above identity for \\( z = n \\).

\n\n

The gamma function has poles at non-negative integers and the sign\nof infinity as z approaches each pole depends upon the direction in\nwhich the pole is approached. For this reason, the consistent thing\nis for gamma(z) to return NaN at negative integers, and to return\n-inf when x = -0.0 and +inf when x = 0.0, using the signbit of zero\nto signify the direction in which the origin is being approached. This\nis for instance what is recommended for the gamma function in annex F\nentry 9.5.4 of the Iso C 99 standard [isoc99]_.

\n\n

Prior to SciPy version 1.15, scipy.special.gamma(z) returned +inf\nat each pole. This was fixed in version 1.15, but with the following\nconsequence. Expressions where gamma appears in the denominator\nsuch as

\n\n

gamma(u) * gamma(v) / (gamma(w) * gamma(x))

\n\n

no longer evaluate to 0 if the numerator is well defined but there is a\npole in the denominator. Instead such expressions evaluate to NaN. We\nrecommend instead using the function rgamma for the reciprocal gamma\nfunction in such cases. The above expression could for instance be written\nas

\n\n

gamma(u) * gamma(v) * (rgamma(w) * rgamma(x))

\n\n
References
\n\n

.. [dlmf] NIST Digital Library of Mathematical Functions\n https://dlmf.nist.gov/5.2#E1\n.. [isoc99] https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> from scipy.special import gamma, factorial\n
\n
\n\n
\n
>>> gamma([0, 0.5, 1, 5])\narray([         inf,   1.77245385,   1.        ,  24.        ])\n
\n
\n\n
\n
>>> z = 2.5 + 1j\n>>> gamma(z)\n(0.77476210455108352+0.70763120437959293j)\n>>> gamma(z+1), z*gamma(z)  # Recurrence property\n((1.2292740569981171+2.5438401155000685j),\n (1.2292740569981158+2.5438401155000658j))\n
\n
\n\n
\n
>>> gamma(0.5)**2  # gamma(0.5) = sqrt(pi)\n3.1415926535897927\n
\n
\n\n

Plot gamma(x) for real x

\n\n
\n
>>> x = np.linspace(-3.5, 5.5, 2251)\n>>> y = gamma(x)\n
\n
\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> plt.plot(x, y, 'b', alpha=0.6, label='gamma(x)')\n>>> k = np.arange(1, 7)\n>>> plt.plot(k, factorial(k-1), 'k*', alpha=0.6,\n...          label='(x-1)!, x = 1, 2, ...')\n>>> plt.xlim(-3.5, 5.5)\n>>> plt.ylim(-10, 25)\n>>> plt.grid()\n>>> plt.xlabel('x')\n>>> plt.legend(loc='lower right')\n>>> plt.show()\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gammaln": {"fullname": "pyerrors.special.gammaln", "modulename": "pyerrors.special", "qualname": "gammaln", "kind": "function", "doc": "

gammaln(x, out=None)

\n\n

Logarithm of the absolute value of the gamma function.

\n\n

Defined as

\n\n

$$\\ln(\\lvert\\Gamma(x)\\rvert)$$

\n\n

where \\( \\Gamma \\) is the gamma function. For more details on\nthe gamma function, see [dlmf]_.

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nReal argument
  • \n
  • out (ndarray, optional):\nOptional output array for the function results
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Values of the log of the absolute value of gamma
  • \n
\n\n
See Also
\n\n

gammasgn()`\nsign`, `of`, `the`, `gamma`, `function` \nloggamma()\nprincipal, branch, of, the, logarithm, of, the, gamma, function

\n\n
Notes
\n\n

It is the same function as the Python standard library function\nmath.lgamma().

\n\n

When used in conjunction with gammasgn, this function is useful\nfor working in logspace on the real axis without having to deal\nwith complex numbers via the relation exp(gammaln(x)) =\ngammasgn(x) * gamma(x).

\n\n

For complex-valued log-gamma, use loggamma instead of gammaln.

\n\n

gammaln has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
References
\n\n

.. [dlmf] NIST Digital Library of Mathematical Functions\n https://dlmf.nist.gov/5

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> import scipy.special as sc\n
\n
\n\n

It has two positive zeros.

\n\n
\n
>>> sc.gammaln([1, 2])\narray([0., 0.])\n
\n
\n\n

It has poles at nonpositive integers.

\n\n
\n
>>> sc.gammaln([0, -1, -2, -3, -4])\narray([inf, inf, inf, inf, inf])\n
\n
\n\n

It asymptotically approaches x * log(x) (Stirling's formula).

\n\n
\n
>>> x = np.array([1e10, 1e20, 1e40, 1e80])\n>>> sc.gammaln(x)\narray([2.20258509e+11, 4.50517019e+21, 9.11034037e+41, 1.83206807e+82])\n>>> x * np.log(x)\narray([2.30258509e+11, 4.60517019e+21, 9.21034037e+41, 1.84206807e+82])\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gammainc": {"fullname": "pyerrors.special.gammainc", "modulename": "pyerrors.special", "qualname": "gammainc", "kind": "function", "doc": "

gammainc(a, x, out=None)

\n\n

Regularized lower incomplete gamma function.

\n\n

It is defined as

\n\n

$$P(a, x) = \\frac{1}{\\Gamma(a)} \\int_0^x t^{a - 1}e^{-t} dt$$

\n\n

for \\( a > 0 \\) and \\( x \\geq 0 \\). See [dlmf]_ for details.

\n\n
Parameters
\n\n
    \n
  • a (array_like):\nPositive parameter
  • \n
  • x (array_like):\nNonnegative argument
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Values of the lower incomplete gamma function
  • \n
\n\n
See Also
\n\n

gammaincc()`\nregularized`, `upper`, `incomplete`, `gamma`, `function` \ngammaincinv()\ninverse, of, the, regularized, lower, incomplete, gamma, function
\n`gammainccinv()\ninverse,of,the,regularized,upper,incomplete,gamma,function`

\n\n
Notes
\n\n

The function satisfies the relation gammainc(a, x) +\ngammaincc(a, x) = 1 where gammaincc is the regularized upper\nincomplete gamma function.

\n\n

The implementation largely follows that of [boost]_.

\n\n

gammainc has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
References
\n\n

.. [dlmf] NIST Digital Library of Mathematical functions\n https://dlmf.nist.gov/8.2#E4\n.. [boost] Maddock et. al., \"Incomplete Gamma Functions\",\n https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html

\n\n
Examples
\n\n
\n
>>> import scipy.special as sc\n
\n
\n\n

It is the CDF of the gamma distribution, so it starts at 0 and\nmonotonically increases to 1.

\n\n
\n
>>> sc.gammainc(0.5, [0, 1, 10, 100])\narray([0.        , 0.84270079, 0.99999226, 1.        ])\n
\n
\n\n

It is equal to one minus the upper incomplete gamma function.

\n\n
\n
>>> a, x = 0.5, 0.4\n>>> sc.gammainc(a, x)\n0.6289066304773024\n>>> 1 - sc.gammaincc(a, x)\n0.6289066304773024\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gammaincc": {"fullname": "pyerrors.special.gammaincc", "modulename": "pyerrors.special", "qualname": "gammaincc", "kind": "function", "doc": "

gammaincc(a, x, out=None)

\n\n

Regularized upper incomplete gamma function.

\n\n

It is defined as

\n\n

$$Q(a, x) = \\frac{1}{\\Gamma(a)} \\int_x^\\infty t^{a - 1}e^{-t} dt$$

\n\n

for \\( a > 0 \\) and \\( x \\geq 0 \\). See [dlmf]_ for details.

\n\n
Parameters
\n\n
    \n
  • a (array_like):\nPositive parameter
  • \n
  • x (array_like):\nNonnegative argument
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Values of the upper incomplete gamma function
  • \n
\n\n
See Also
\n\n

gammainc()`\nregularized`, `lower`, `incomplete`, `gamma`, `function` \ngammaincinv()\ninverse, of, the, regularized, lower, incomplete, gamma, function
\n`gammainccinv()\ninverse,of,the,regularized,upper,incomplete,gamma,function`

\n\n
Notes
\n\n

The function satisfies the relation gammainc(a, x) +\ngammaincc(a, x) = 1 where gammainc is the regularized lower\nincomplete gamma function.

\n\n

The implementation largely follows that of [boost]_.

\n\n

gammaincc has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
References
\n\n

.. [dlmf] NIST Digital Library of Mathematical functions\n https://dlmf.nist.gov/8.2#E4\n.. [boost] Maddock et. al., \"Incomplete Gamma Functions\",\n https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html

\n\n
Examples
\n\n
\n
>>> import scipy.special as sc\n
\n
\n\n

It is the survival function of the gamma distribution, so it\nstarts at 1 and monotonically decreases to 0.

\n\n
\n
>>> sc.gammaincc(0.5, [0, 1, 10, 100, 1000])\narray([1.00000000e+00, 1.57299207e-01, 7.74421643e-06, 2.08848758e-45,\n       0.00000000e+00])\n
\n
\n\n

It is equal to one minus the lower incomplete gamma function.

\n\n
\n
>>> a, x = 0.5, 0.4\n>>> sc.gammaincc(a, x)\n0.37109336952269756\n>>> 1 - sc.gammainc(a, x)\n0.37109336952269756\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gammasgn": {"fullname": "pyerrors.special.gammasgn", "modulename": "pyerrors.special", "qualname": "gammasgn", "kind": "function", "doc": "

gammasgn(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

gammasgn(x, out=None)

\n\n

Sign of the gamma function.

\n\n

It is defined as

\n\n

$$\\text{gammasgn}(x) =\n\\begin{cases}\n +1 & \\Gamma(x) > 0 \\\n -1 & \\Gamma(x) < 0\n\\end{cases}$$

\n\n

where \\( \\Gamma \\) is the gamma function; see gamma. This\ndefinition is complete since the gamma function is never zero;\nsee the discussion after [dlmf]_.

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nReal argument
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Sign of the gamma function
  • \n
\n\n
See Also
\n\n

gamma: the gamma function
\ngammaln: log of the absolute value of the gamma function
\nloggamma: analytic continuation of the log of the gamma function

\n\n
Notes
\n\n

The gamma function can be computed as gammasgn(x) *\nnp.exp(gammaln(x)).

\n\n
References
\n\n

.. [dlmf] NIST Digital Library of Mathematical Functions\n https://dlmf.nist.gov/5.2#E1

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> import scipy.special as sc\n
\n
\n\n

It is 1 for x > 0.

\n\n
\n
>>> sc.gammasgn([1, 2, 3, 4])\narray([1., 1., 1., 1.])\n
\n
\n\n

It alternates between -1 and 1 for negative integers.

\n\n
\n
>>> sc.gammasgn([-0.5, -1.5, -2.5, -3.5])\narray([-1.,  1., -1.,  1.])\n
\n
\n\n

It can be used to compute the gamma function.

\n\n
\n
>>> x = [1.5, 0.5, -0.5, -1.5]\n>>> sc.gammasgn(x) * np.exp(sc.gammaln(x))\narray([ 0.88622693,  1.77245385, -3.5449077 ,  2.3632718 ])\n>>> sc.gamma(x)\narray([ 0.88622693,  1.77245385, -3.5449077 ,  2.3632718 ])\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.rgamma": {"fullname": "pyerrors.special.rgamma", "modulename": "pyerrors.special", "qualname": "rgamma", "kind": "function", "doc": "

rgamma(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

rgamma(z, out=None)

\n\n

Reciprocal of the gamma function.

\n\n

Defined as \\( 1 / \\Gamma(z) \\), where \\( \\Gamma \\) is the\ngamma function. For more on the gamma function see gamma.

\n\n
Parameters
\n\n
    \n
  • z (array_like):\nReal or complex valued input
  • \n
  • out (ndarray, optional):\nOptional output array for the function results
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Function results
  • \n
\n\n
See Also
\n\n

gamma,, gammaln,, loggamma

\n\n
Notes
\n\n

The gamma function has no zeros and has simple poles at\nnonpositive integers, so rgamma is an entire function with zeros\nat the nonpositive integers. See the discussion in [dlmf]_ for\nmore details.

\n\n
References
\n\n

.. [dlmf] Nist, Digital Library of Mathematical functions,\n https://dlmf.nist.gov/5.2#i

\n\n
Examples
\n\n
\n
>>> import scipy.special as sc\n
\n
\n\n

It is the reciprocal of the gamma function.

\n\n
\n
>>> sc.rgamma([1, 2, 3, 4])\narray([1.        , 1.        , 0.5       , 0.16666667])\n>>> 1 / sc.gamma([1, 2, 3, 4])\narray([1.        , 1.        , 0.5       , 0.16666667])\n
\n
\n\n

It is zero at nonpositive integers.

\n\n
\n
>>> sc.rgamma([0, -1, -2, -3])\narray([0., 0., 0., 0.])\n
\n
\n\n

It rapidly underflows to zero along the positive real axis.

\n\n
\n
>>> sc.rgamma([10, 100, 179])\narray([2.75573192e-006, 1.07151029e-156, 0.00000000e+000])\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.multigammaln": {"fullname": "pyerrors.special.multigammaln", "modulename": "pyerrors.special", "qualname": "multigammaln", "kind": "function", "doc": "

Returns the log of multivariate gamma, also sometimes called the\ngeneralized gamma.

\n\n
Parameters
\n\n
    \n
  • a (ndarray):\nThe multivariate gamma is computed for each item of a.
  • \n
  • d (int):\nThe dimension of the space of integration.
  • \n
\n\n
Returns
\n\n
    \n
  • res (ndarray):\nThe values of the log multivariate gamma at the given points a.
  • \n
\n\n
Notes
\n\n

The formal definition of the multivariate gamma of dimension d for a real\na is

\n\n

$$\\Gamma_d(a) = \\int_{A>0} e^{-tr(A)} |A|^{a - (d+1)/2} dA$$

\n\n

with the condition \\( a > (d-1)/2 \\), and \\( A > 0 \\) being the set of\nall the positive definite matrices of dimension d. Note that a is a\nscalar: the integrand only is multivariate, the argument is not (the\nfunction is defined over a subset of the real set).

\n\n

This can be proven to be equal to the much friendlier equation

\n\n

$$\\Gamma_d(a) = \\pi^{d(d-1)/4} \\prod_{i=1}^{d} \\Gamma(a - (i-1)/2).$$

\n\n
References
\n\n

R. J. Muirhead, Aspects of multivariate statistical theory (Wiley Series in\nprobability and mathematical statistics).

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> from scipy.special import multigammaln, gammaln\n>>> a = 23.5\n>>> d = 10\n>>> multigammaln(a, d)\n454.1488605074416\n
\n
\n\n

Verify that the result agrees with the logarithm of the equation\nshown above:

\n\n
\n
>>> d*(d-1)/4*np.log(np.pi) + gammaln(a - 0.5*np.arange(0, d)).sum()\n454.1488605074416\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.kn": {"fullname": "pyerrors.special.kn", "modulename": "pyerrors.special", "qualname": "kn", "kind": "function", "doc": "

Modified Bessel function of the second kind of integer order n

\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.j0": {"fullname": "pyerrors.special.j0", "modulename": "pyerrors.special", "qualname": "j0", "kind": "function", "doc": "

j0(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

j0(x, out=None)

\n\n

Bessel function of the first kind of order 0.

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nArgument (float).
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • J (scalar or ndarray):\nValue of the Bessel function of the first kind of order 0 at x.
  • \n
\n\n
See Also
\n\n

jv: Bessel function of real order and complex argument.
\nspherical_jn: spherical Bessel functions.

\n\n
Notes
\n\n

The domain is divided into the intervals [0, 5] and (5, infinity). In the\nfirst interval the following rational approximation is used:

\n\n

$$J_0(x) \\approx (w - r_1^2)(w - r_2^2) \\frac{P_3(w)}{Q_8(w)},$$

\n\n

where \\( w = x^2 \\) and \\( r_1 \\), \\( r_2 \\) are the zeros of\n\\( J_0 \\), and \\( P_3 \\) and \\( Q_8 \\) are polynomials of degrees 3\nand 8, respectively.

\n\n

In the second interval, the Hankel asymptotic expansion is employed with\ntwo rational functions of degree 6/6 and 7/7.

\n\n

This function is a wrapper for the Cephes 1 routine j0.\nIt should not be confused with the spherical Bessel functions (see\nspherical_jn).

\n\n
References
\n\n
Examples
\n\n

Calculate the function at one point:

\n\n
\n
>>> from scipy.special import j0\n>>> j0(1.)\n0.7651976865579665\n
\n
\n\n

Calculate the function at several points:

\n\n
\n
>>> import numpy as np\n>>> j0(np.array([-2., 0., 4.]))\narray([ 0.22389078,  1.        , -0.39714981])\n
\n
\n\n

Plot the function from -20 to 20.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-20., 20., 1000)\n>>> y = j0(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Cephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.y0": {"fullname": "pyerrors.special.y0", "modulename": "pyerrors.special", "qualname": "y0", "kind": "function", "doc": "

y0(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

y0(x, out=None)

\n\n

Bessel function of the second kind of order 0.

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nArgument (float).
  • \n
  • out (ndarray, optional):\nOptional output array for the function results
  • \n
\n\n
Returns
\n\n
    \n
  • Y (scalar or ndarray):\nValue of the Bessel function of the second kind of order 0 at x.
  • \n
\n\n
See Also
\n\n

j0: Bessel function of the first kind of order 0
\nyv: Bessel function of the first kind

\n\n
Notes
\n\n

The domain is divided into the intervals [0, 5] and (5, infinity). In the\nfirst interval a rational approximation \\( R(x) \\) is employed to\ncompute,

\n\n

$$Y_0(x) = R(x) + \\frac{2 \\log(x) J_0(x)}{\\pi},$$

\n\n

where \\( J_0 \\) is the Bessel function of the first kind of order 0.

\n\n

In the second interval, the Hankel asymptotic expansion is employed with\ntwo rational functions of degree 6/6 and 7/7.

\n\n

This function is a wrapper for the Cephes 1 routine y0.

\n\n
References
\n\n
Examples
\n\n

Calculate the function at one point:

\n\n
\n
>>> from scipy.special import y0\n>>> y0(1.)\n0.08825696421567697\n
\n
\n\n

Calculate at several points:

\n\n
\n
>>> import numpy as np\n>>> y0(np.array([0.5, 2., 3.]))\narray([-0.44451873,  0.51037567,  0.37685001])\n
\n
\n\n

Plot the function from 0 to 10.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(0., 10., 1000)\n>>> y = y0(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Cephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.j1": {"fullname": "pyerrors.special.j1", "modulename": "pyerrors.special", "qualname": "j1", "kind": "function", "doc": "

j1(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

j1(x, out=None)

\n\n

Bessel function of the first kind of order 1.

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nArgument (float).
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • J (scalar or ndarray):\nValue of the Bessel function of the first kind of order 1 at x.
  • \n
\n\n
See Also
\n\n

jv: Bessel function of the first kind
\nspherical_jn: spherical Bessel functions.

\n\n
Notes
\n\n

The domain is divided into the intervals [0, 8] and (8, infinity). In the\nfirst interval a 24 term Chebyshev expansion is used. In the second, the\nasymptotic trigonometric representation is employed using two rational\nfunctions of degree 5/5.

\n\n

This function is a wrapper for the Cephes 1 routine j1.\nIt should not be confused with the spherical Bessel functions (see\nspherical_jn).

\n\n
References
\n\n
Examples
\n\n

Calculate the function at one point:

\n\n
\n
>>> from scipy.special import j1\n>>> j1(1.)\n0.44005058574493355\n
\n
\n\n

Calculate the function at several points:

\n\n
\n
>>> import numpy as np\n>>> j1(np.array([-2., 0., 4.]))\narray([-0.57672481,  0.        , -0.06604333])\n
\n
\n\n

Plot the function from -20 to 20.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-20., 20., 1000)\n>>> y = j1(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Cephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.y1": {"fullname": "pyerrors.special.y1", "modulename": "pyerrors.special", "qualname": "y1", "kind": "function", "doc": "

y1(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

y1(x, out=None)

\n\n

Bessel function of the second kind of order 1.

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nArgument (float).
  • \n
  • out (ndarray, optional):\nOptional output array for the function results
  • \n
\n\n
Returns
\n\n
    \n
  • Y (scalar or ndarray):\nValue of the Bessel function of the second kind of order 1 at x.
  • \n
\n\n
See Also
\n\n

j1: Bessel function of the first kind of order 1
\nyn: Bessel function of the second kind
\nyv: Bessel function of the second kind

\n\n
Notes
\n\n

The domain is divided into the intervals [0, 8] and (8, infinity). In the\nfirst interval a 25 term Chebyshev expansion is used, and computing\n\\( J_1 \\) (the Bessel function of the first kind) is required. In the\nsecond, the asymptotic trigonometric representation is employed using two\nrational functions of degree 5/5.

\n\n

This function is a wrapper for the Cephes 1 routine y1.

\n\n
References
\n\n
Examples
\n\n

Calculate the function at one point:

\n\n
\n
>>> from scipy.special import y1\n>>> y1(1.)\n-0.7812128213002888\n
\n
\n\n

Calculate at several points:

\n\n
\n
>>> import numpy as np\n>>> y1(np.array([0.5, 2., 3.]))\narray([-1.47147239, -0.10703243,  0.32467442])\n
\n
\n\n

Plot the function from 0 to 10.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(0., 10., 1000)\n>>> y = y1(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Cephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.jn": {"fullname": "pyerrors.special.jn", "modulename": "pyerrors.special", "qualname": "jn", "kind": "function", "doc": "

jv(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

jv(v, z, out=None)

\n\n

Bessel function of the first kind of real order and complex argument.

\n\n
Parameters
\n\n
    \n
  • v (array_like):\nOrder (float).
  • \n
  • z (array_like):\nArgument (float or complex).
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • J (scalar or ndarray):\nValue of the Bessel function, \\( J_v(z) \\).
  • \n
\n\n
See Also
\n\n

jve: \\( J_v \\) with leading exponential behavior stripped off.
\nspherical_jn: spherical Bessel functions.
\nj0: faster version of this function for order 0.
\nj1: faster version of this function for order 1.

\n\n
Notes
\n\n

For positive v values, the computation is carried out using the AMOS\n1 zbesj routine, which exploits the connection to the modified\nBessel function \\( I_v \\),

\n\n

$$J_v(z) = \\exp(v\\pi\\imath/2) I_v(-\\imath z)\\qquad (\\Im z > 0)

\n\n

J_v(z) = \\exp(-v\\pi\\imath/2) I_v(\\imath z)\\qquad (\\Im z < 0)$$

\n\n

For negative v values the formula,

\n\n

$$J_{-v}(z) = J_v(z) \\cos(\\pi v) - Y_v(z) \\sin(\\pi v)$$

\n\n

is used, where \\( Y_v(z) \\) is the Bessel function of the second\nkind, computed using the AMOS routine zbesy. Note that the second\nterm is exactly zero for integer v; to improve accuracy the second\nterm is explicitly omitted for v values such that v = floor(v).

\n\n

Not to be confused with the spherical Bessel functions (see spherical_jn).

\n\n
References
\n\n
Examples
\n\n

Evaluate the function of order 0 at one point.

\n\n
\n
>>> from scipy.special import jv\n>>> jv(0, 1.)\n0.7651976865579666\n
\n
\n\n

Evaluate the function at one point for different orders.

\n\n
\n
>>> jv(0, 1.), jv(1, 1.), jv(1.5, 1.)\n(0.7651976865579666, 0.44005058574493355, 0.24029783912342725)\n
\n
\n\n

The evaluation for different orders can be carried out in one call by\nproviding a list or NumPy array as argument for the v parameter:

\n\n
\n
>>> jv([0, 1, 1.5], 1.)\narray([0.76519769, 0.44005059, 0.24029784])\n
\n
\n\n

Evaluate the function at several points for order 0 by providing an\narray for z.

\n\n
\n
>>> import numpy as np\n>>> points = np.array([-2., 0., 3.])\n>>> jv(0, points)\narray([ 0.22389078,  1.        , -0.26005195])\n
\n
\n\n

If z is an array, the order parameter v must be broadcastable to\nthe correct shape if different orders shall be computed in one call.\nTo calculate the orders 0 and 1 for an 1D array:

\n\n
\n
>>> orders = np.array([[0], [1]])\n>>> orders.shape\n(2, 1)\n
\n
\n\n
\n
>>> jv(orders, points)\narray([[ 0.22389078,  1.        , -0.26005195],\n       [-0.57672481,  0.        ,  0.33905896]])\n
\n
\n\n

Plot the functions of order 0 to 3 from -10 to 10.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-10., 10., 1000)\n>>> for i in range(4):\n...     ax.plot(x, jv(i, x), label=f'$J_{i!r}$')\n>>> ax.legend()\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\nof a Complex Argument and Nonnegative Order\",\nhttp://netlib.org/amos/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.yn": {"fullname": "pyerrors.special.yn", "modulename": "pyerrors.special", "qualname": "yn", "kind": "function", "doc": "

yn(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

yn(n, x, out=None)

\n\n

Bessel function of the second kind of integer order and real argument.

\n\n
Parameters
\n\n
    \n
  • n (array_like):\nOrder (integer).
  • \n
  • x (array_like):\nArgument (float).
  • \n
  • out (ndarray, optional):\nOptional output array for the function results
  • \n
\n\n
Returns
\n\n
    \n
  • Y (scalar or ndarray):\nValue of the Bessel function, \\( Y_n(x) \\).
  • \n
\n\n
See Also
\n\n

yv: For real order and real or complex argument.
\ny0: faster implementation of this function for order 0
\ny1: faster implementation of this function for order 1

\n\n
Notes
\n\n

Wrapper for the Cephes 1 routine yn.

\n\n

The function is evaluated by forward recurrence on n, starting with\nvalues computed by the Cephes routines y0 and y1. If n = 0 or 1,\nthe routine for y0 or y1 is called directly.

\n\n
References
\n\n
Examples
\n\n

Evaluate the function of order 0 at one point.

\n\n
\n
>>> from scipy.special import yn\n>>> yn(0, 1.)\n0.08825696421567697\n
\n
\n\n

Evaluate the function at one point for different orders.

\n\n
\n
>>> yn(0, 1.), yn(1, 1.), yn(2, 1.)\n(0.08825696421567697, -0.7812128213002888, -1.6506826068162546)\n
\n
\n\n

The evaluation for different orders can be carried out in one call by\nproviding a list or NumPy array as argument for the v parameter:

\n\n
\n
>>> yn([0, 1, 2], 1.)\narray([ 0.08825696, -0.78121282, -1.65068261])\n
\n
\n\n

Evaluate the function at several points for order 0 by providing an\narray for z.

\n\n
\n
>>> import numpy as np\n>>> points = np.array([0.5, 3., 8.])\n>>> yn(0, points)\narray([-0.44451873,  0.37685001,  0.22352149])\n
\n
\n\n

If z is an array, the order parameter v must be broadcastable to\nthe correct shape if different orders shall be computed in one call.\nTo calculate the orders 0 and 1 for an 1D array:

\n\n
\n
>>> orders = np.array([[0], [1]])\n>>> orders.shape\n(2, 1)\n
\n
\n\n
\n
>>> yn(orders, points)\narray([[-0.44451873,  0.37685001,  0.22352149],\n       [-1.47147239,  0.32467442, -0.15806046]])\n
\n
\n\n

Plot the functions of order 0 to 3 from 0 to 10.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(0., 10., 1000)\n>>> for i in range(4):\n...     ax.plot(x, yn(i, x), label=f'$Y_{i!r}$')\n>>> ax.set_ylim(-3, 1)\n>>> ax.legend()\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Cephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.i0": {"fullname": "pyerrors.special.i0", "modulename": "pyerrors.special", "qualname": "i0", "kind": "function", "doc": "

i0(x, out=None)

\n\n

Modified Bessel function of order 0.

\n\n

Defined as,

\n\n

$$I_0(x) = \\sum_{k=0}^\\infty \\frac{(x^2/4)^k}{(k!)^2} = J_0(\\imath x),$$

\n\n

where \\( J_0 \\) is the Bessel function of the first kind of order 0.

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nArgument (float)
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • I (scalar or ndarray):\nValue of the modified Bessel function of order 0 at x.
  • \n
\n\n
See Also
\n\n

iv()`\nModified`, `Bessel`, `function`, `of`, `any`, `order` \ni0e()\nExponentially, scaled, modified, Bessel, function, of, order, 0

\n\n
Notes
\n\n

The range is partitioned into the two intervals [0, 8] and (8, infinity).\nChebyshev polynomial expansions are employed in each interval.

\n\n

This function is a wrapper for the Cephes 1 routine i0.

\n\n

i0 has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
References
\n\n
Examples
\n\n

Calculate the function at one point:

\n\n
\n
>>> from scipy.special import i0\n>>> i0(1.)\n1.2660658777520082\n
\n
\n\n

Calculate at several points:

\n\n
\n
>>> import numpy as np\n>>> i0(np.array([-2., 0., 3.5]))\narray([2.2795853 , 1.        , 7.37820343])\n
\n
\n\n

Plot the function from -10 to 10.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-10., 10., 1000)\n>>> y = i0(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Cephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.i1": {"fullname": "pyerrors.special.i1", "modulename": "pyerrors.special", "qualname": "i1", "kind": "function", "doc": "

i1(x, out=None)

\n\n

Modified Bessel function of order 1.

\n\n

Defined as,

\n\n

$$I_1(x) = \\frac{1}{2}x \\sum_{k=0}^\\infty \\frac{(x^2/4)^k}{k! (k + 1)!}\n = -\\imath J_1(\\imath x),$$

\n\n

where \\( J_1 \\) is the Bessel function of the first kind of order 1.

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nArgument (float)
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • I (scalar or ndarray):\nValue of the modified Bessel function of order 1 at x.
  • \n
\n\n
See Also
\n\n

iv()`\nModified`, `Bessel`, `function`, `of`, `the`, `first`, `kind` \ni1e()\nExponentially, scaled, modified, Bessel, function, of, order, 1

\n\n
Notes
\n\n

The range is partitioned into the two intervals [0, 8] and (8, infinity).\nChebyshev polynomial expansions are employed in each interval.

\n\n

This function is a wrapper for the Cephes 1 routine i1.

\n\n

i1 has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
References
\n\n
Examples
\n\n

Calculate the function at one point:

\n\n
\n
>>> from scipy.special import i1\n>>> i1(1.)\n0.5651591039924851\n
\n
\n\n

Calculate the function at several points:

\n\n
\n
>>> import numpy as np\n>>> i1(np.array([-2., 0., 6.]))\narray([-1.59063685,  0.        , 61.34193678])\n
\n
\n\n

Plot the function between -10 and 10.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-10., 10., 1000)\n>>> y = i1(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Cephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.iv": {"fullname": "pyerrors.special.iv", "modulename": "pyerrors.special", "qualname": "iv", "kind": "function", "doc": "

iv(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

iv(v, z, out=None)

\n\n

Modified Bessel function of the first kind of real order.

\n\n
Parameters
\n\n
    \n
  • v (array_like):\nOrder. If z is of real type and negative, v must be integer\nvalued.
  • \n
  • z (array_like of float or complex):\nArgument.
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Values of the modified Bessel function.
  • \n
\n\n
See Also
\n\n

ive: This function with leading exponential behavior stripped off.
\ni0: Faster version of this function for order 0.
\ni1: Faster version of this function for order 1.

\n\n
Notes
\n\n

For real z and \\( v \\in [-50, 50] \\), the evaluation is carried out\nusing Temme's method 1. For larger orders, uniform asymptotic\nexpansions are applied.

\n\n

For complex z and positive v, the AMOS 2 zbesi routine is\ncalled. It uses a power series for small z, the asymptotic expansion\nfor large abs(z), the Miller algorithm normalized by the Wronskian\nand a Neumann series for intermediate magnitudes, and the uniform\nasymptotic expansions for \\( I_v(z) \\) and \\( J_v(z) \\) for large\norders. Backward recurrence is used to generate sequences or reduce\norders when necessary.

\n\n

The calculations above are done in the right half plane and continued\ninto the left half plane by the formula,

\n\n

$$I_v(z \\exp(\\pm\\imath\\pi)) = \\exp(\\pm\\pi v) I_v(z)$$

\n\n

(valid when the real part of z is positive). For negative v, the\nformula

\n\n

$$I_{-v}(z) = I_v(z) + \\frac{2}{\\pi} \\sin(\\pi v) K_v(z)$$

\n\n

is used, where \\( K_v(z) \\) is the modified Bessel function of the\nsecond kind, evaluated using the AMOS routine zbesk.

\n\n
References
\n\n
Examples
\n\n

Evaluate the function of order 0 at one point.

\n\n
\n
>>> from scipy.special import iv\n>>> iv(0, 1.)\n1.2660658777520084\n
\n
\n\n

Evaluate the function at one point for different orders.

\n\n
\n
>>> iv(0, 1.), iv(1, 1.), iv(1.5, 1.)\n(1.2660658777520084, 0.565159103992485, 0.2935253263474798)\n
\n
\n\n

The evaluation for different orders can be carried out in one call by\nproviding a list or NumPy array as argument for the v parameter:

\n\n
\n
>>> iv([0, 1, 1.5], 1.)\narray([1.26606588, 0.5651591 , 0.29352533])\n
\n
\n\n

Evaluate the function at several points for order 0 by providing an\narray for z.

\n\n
\n
>>> import numpy as np\n>>> points = np.array([-2., 0., 3.])\n>>> iv(0, points)\narray([2.2795853 , 1.        , 4.88079259])\n
\n
\n\n

If z is an array, the order parameter v must be broadcastable to\nthe correct shape if different orders shall be computed in one call.\nTo calculate the orders 0 and 1 for an 1D array:

\n\n
\n
>>> orders = np.array([[0], [1]])\n>>> orders.shape\n(2, 1)\n
\n
\n\n
\n
>>> iv(orders, points)\narray([[ 2.2795853 ,  1.        ,  4.88079259],\n       [-1.59063685,  0.        ,  3.95337022]])\n
\n
\n\n

Plot the functions of order 0 to 3 from -5 to 5.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-5., 5., 1000)\n>>> for i in range(4):\n...     ax.plot(x, iv(i, x), label=f'$I_{i!r}$')\n>>> ax.legend()\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Temme, Journal of Computational Physics, vol 21, 343 (1976) 

    \n
  2. \n\n
  3. \n

    Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\nof a Complex Argument and Nonnegative Order\",\nhttp://netlib.org/amos/ 

    \n
  4. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.ive": {"fullname": "pyerrors.special.ive", "modulename": "pyerrors.special", "qualname": "ive", "kind": "function", "doc": "

ive(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

ive(v, z, out=None)

\n\n

Exponentially scaled modified Bessel function of the first kind.

\n\n

Defined as::

\n\n
ive(v, z) = iv(v, z) * exp(-abs(z.real))\n
\n\n

For imaginary numbers without a real part, returns the unscaled\nBessel function of the first kind iv.

\n\n
Parameters
\n\n
    \n
  • v (array_like of float):\nOrder.
  • \n
  • z (array_like of float or complex):\nArgument.
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Values of the exponentially scaled modified Bessel function.
  • \n
\n\n
See Also
\n\n

iv: Modified Bessel function of the first kind
\ni0e: Faster implementation of this function for order 0
\ni1e: Faster implementation of this function for order 1

\n\n
Notes
\n\n

For positive v, the AMOS 1 zbesi routine is called. It uses a\npower series for small z, the asymptotic expansion for large\nabs(z), the Miller algorithm normalized by the Wronskian and a\nNeumann series for intermediate magnitudes, and the uniform asymptotic\nexpansions for \\( I_v(z) \\) and \\( J_v(z) \\) for large orders.\nBackward recurrence is used to generate sequences or reduce orders when\nnecessary.

\n\n

The calculations above are done in the right half plane and continued\ninto the left half plane by the formula,

\n\n

$$I_v(z \\exp(\\pm\\imath\\pi)) = \\exp(\\pm\\pi v) I_v(z)$$

\n\n

(valid when the real part of z is positive). For negative v, the\nformula

\n\n

$$I_{-v}(z) = I_v(z) + \\frac{2}{\\pi} \\sin(\\pi v) K_v(z)$$

\n\n

is used, where \\( K_v(z) \\) is the modified Bessel function of the\nsecond kind, evaluated using the AMOS routine zbesk.

\n\n

ive is useful for large arguments z: for these, iv easily overflows,\nwhile ive does not due to the exponential scaling.

\n\n
References
\n\n
Examples
\n\n

In the following example iv returns infinity whereas ive still returns\na finite number.

\n\n
\n
>>> from scipy.special import iv, ive\n>>> import numpy as np\n>>> import matplotlib.pyplot as plt\n>>> iv(3, 1000.), ive(3, 1000.)\n(inf, 0.01256056218254712)\n
\n
\n\n

Evaluate the function at one point for different orders by\nproviding a list or NumPy array as argument for the v parameter:

\n\n
\n
>>> ive([0, 1, 1.5], 1.)\narray([0.46575961, 0.20791042, 0.10798193])\n
\n
\n\n

Evaluate the function at several points for order 0 by providing an\narray for z.

\n\n
\n
>>> points = np.array([-2., 0., 3.])\n>>> ive(0, points)\narray([0.30850832, 1.        , 0.24300035])\n
\n
\n\n

Evaluate the function at several points for different orders by\nproviding arrays for both v for z. Both arrays have to be\nbroadcastable to the correct shape. To calculate the orders 0, 1\nand 2 for a 1D array of points:

\n\n
\n
>>> ive([[0], [1], [2]], points)\narray([[ 0.30850832,  1.        ,  0.24300035],\n       [-0.21526929,  0.        ,  0.19682671],\n       [ 0.09323903,  0.        ,  0.11178255]])\n
\n
\n\n

Plot the functions of order 0 to 3 from -5 to 5.

\n\n
\n
>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-5., 5., 1000)\n>>> for i in range(4):\n...     ax.plot(x, ive(i, x), label=fr'$I_{i!r}(z)\\cdot e^{{-|z|}}$')\n>>> ax.legend()\n>>> ax.set_xlabel(r"$z$")\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\nof a Complex Argument and Nonnegative Order\",\nhttp://netlib.org/amos/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.erf": {"fullname": "pyerrors.special.erf", "modulename": "pyerrors.special", "qualname": "erf", "kind": "function", "doc": "

erf(z, out=None)

\n\n

Returns the error function of complex argument.

\n\n

It is defined as 2/sqrt(pi)*integral(exp(-t**2), t=0..z).

\n\n
Parameters
\n\n
    \n
  • x (ndarray):\nInput array.
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • res (scalar or ndarray):\nThe values of the error function at the given points x.
  • \n
\n\n
See Also
\n\n

erfc()`,`,erfinv(),, erfcinv()`,`,wofz(),, erfcx()`,`,erfi()\n..

\n\n
Notes
\n\n

The cumulative of the unit normal distribution is given by\nPhi(z) = 1/2[1 + erf(z/sqrt(2))].

\n\n

erf has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
References
\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> from scipy import special\n>>> import matplotlib.pyplot as plt\n>>> x = np.linspace(-3, 3)\n>>> plt.plot(x, special.erf(x))\n>>> plt.xlabel('$x$')\n>>> plt.ylabel('$erf(x)$')\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.erfc": {"fullname": "pyerrors.special.erfc", "modulename": "pyerrors.special", "qualname": "erfc", "kind": "function", "doc": "

erfc(x, out=None)

\n\n

Complementary error function, 1 - erf(x).

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nReal or complex valued argument
  • \n
  • out (ndarray, optional):\nOptional output array for the function results
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Values of the complementary error function
  • \n
\n\n
See Also
\n\n

erf()`,`,erfi(),, erfcx()`,`,dawsn(),, `wofz()\n..`

\n\n
Notes
\n\n

erfc has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
References
\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> from scipy import special\n>>> import matplotlib.pyplot as plt\n>>> x = np.linspace(-3, 3)\n>>> plt.plot(x, special.erfc(x))\n>>> plt.xlabel('$x$')\n>>> plt.ylabel('$erfc(x)$')\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.erfinv": {"fullname": "pyerrors.special.erfinv", "modulename": "pyerrors.special", "qualname": "erfinv", "kind": "function", "doc": "

erfinv(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

erfinv(y, out=None)

\n\n

Inverse of the error function.

\n\n

Computes the inverse of the error function.

\n\n

In the complex domain, there is no unique complex number w satisfying\nerf(w)=z. This indicates a true inverse function would be multivalued.\nWhen the domain restricts to the real, -1 < x < 1, there is a unique real\nnumber satisfying erf(erfinv(x)) = x.

\n\n
Parameters
\n\n
    \n
  • y (ndarray):\nArgument at which to evaluate. Domain: [-1, 1]
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • erfinv (scalar or ndarray):\nThe inverse of erf of y, element-wise
  • \n
\n\n
See Also
\n\n

erf: Error function of a complex argument
\nerfc: Complementary error function, 1 - erf(x)
\nerfcinv: Inverse of the complementary error function

\n\n
Notes
\n\n

This function wraps the erf_inv routine from the\nBoost Math C++ library 1.

\n\n
References
\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> import matplotlib.pyplot as plt\n>>> from scipy.special import erfinv, erf\n
\n
\n\n
\n
>>> erfinv(0.5)\n0.4769362762044699\n
\n
\n\n
\n
>>> y = np.linspace(-1.0, 1.0, num=9)\n>>> x = erfinv(y)\n>>> x\narray([       -inf, -0.81341985, -0.47693628, -0.22531206,  0.        ,\n        0.22531206,  0.47693628,  0.81341985,         inf])\n
\n
\n\n

Verify that erf(erfinv(y)) is y.

\n\n
\n
>>> erf(x)\narray([-1.  , -0.75, -0.5 , -0.25,  0.  ,  0.25,  0.5 ,  0.75,  1.  ])\n
\n
\n\n

Plot the function:

\n\n
\n
>>> y = np.linspace(-1, 1, 200)\n>>> fig, ax = plt.subplots()\n>>> ax.plot(y, erfinv(y))\n>>> ax.grid(True)\n>>> ax.set_xlabel('y')\n>>> ax.set_title('erfinv(y)')\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    The Boost Developers. \"Boost C++ Libraries\". https://www.boost.org/

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.erfcinv": {"fullname": "pyerrors.special.erfcinv", "modulename": "pyerrors.special", "qualname": "erfcinv", "kind": "function", "doc": "

erfcinv(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

erfcinv(y, out=None)

\n\n

Inverse of the complementary error function.

\n\n

Computes the inverse of the complementary error function.

\n\n

In the complex domain, there is no unique complex number w satisfying\nerfc(w)=z. This indicates a true inverse function would be multivalued.\nWhen the domain restricts to the real, 0 < x < 2, there is a unique real\nnumber satisfying erfc(erfcinv(x)) = erfcinv(erfc(x)).

\n\n

It is related to inverse of the error function by erfcinv(1-x) = erfinv(x)

\n\n
Parameters
\n\n
    \n
  • y (ndarray):\nArgument at which to evaluate. Domain: [0, 2]
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • erfcinv (scalar or ndarray):\nThe inverse of erfc of y, element-wise
  • \n
\n\n
See Also
\n\n

erf: Error function of a complex argument
\nerfc: Complementary error function, 1 - erf(x)
\nerfinv: Inverse of the error function

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> import matplotlib.pyplot as plt\n>>> from scipy.special import erfcinv\n
\n
\n\n
\n
>>> erfcinv(0.5)\n0.4769362762044699\n
\n
\n\n
\n
>>> y = np.linspace(0.0, 2.0, num=11)\n>>> erfcinv(y)\narray([        inf,  0.9061938 ,  0.59511608,  0.37080716,  0.17914345,\n       -0.        , -0.17914345, -0.37080716, -0.59511608, -0.9061938 ,\n              -inf])\n
\n
\n\n

Plot the function:

\n\n
\n
>>> y = np.linspace(0, 2, 200)\n>>> fig, ax = plt.subplots()\n>>> ax.plot(y, erfcinv(y))\n>>> ax.grid(True)\n>>> ax.set_xlabel('y')\n>>> ax.set_title('erfcinv(y)')\n>>> plt.show()\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.logit": {"fullname": "pyerrors.special.logit", "modulename": "pyerrors.special", "qualname": "logit", "kind": "function", "doc": "

logit(x, out=None)

\n\n

Logit ufunc for ndarrays.

\n\n

The logit function is defined as logit(p) = log(p/(1-p)).\nNote that logit(0) = -inf, logit(1) = inf, and logit(p)\nfor p<0 or p>1 yields nan.

\n\n
Parameters
\n\n
    \n
  • x (ndarray):\nThe ndarray to apply logit to element-wise.
  • \n
  • out (ndarray, optional):\nOptional output array for the function results
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: An ndarray of the same shape as x. Its entries\nare logit of the corresponding entry of x.
  • \n
\n\n
See Also
\n\n

`expit()\n..`

\n\n
Notes
\n\n

As a ufunc logit takes a number of optional\nkeyword arguments. For more information\nsee ufuncs

\n\n

New in version 0.10.0.

\n\n

logit has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> from scipy.special import logit, expit\n
\n
\n\n
\n
>>> logit([0, 0.25, 0.5, 0.75, 1])\narray([       -inf, -1.09861229,  0.        ,  1.09861229,         inf])\n
\n
\n\n

expit is the inverse of logit:

\n\n
\n
>>> expit(logit([0.1, 0.75, 0.999]))\narray([ 0.1  ,  0.75 ,  0.999])\n
\n
\n\n

Plot logit(x) for x in [0, 1]:

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> x = np.linspace(0, 1, 501)\n>>> y = logit(x)\n>>> plt.plot(x, y)\n>>> plt.grid()\n>>> plt.ylim(-6, 6)\n>>> plt.xlabel('x')\n>>> plt.title('logit(x)')\n>>> plt.show()\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.expit": {"fullname": "pyerrors.special.expit", "modulename": "pyerrors.special", "qualname": "expit", "kind": "function", "doc": "

expit(x, out=None)

\n\n

Expit (a.k.a. logistic sigmoid) ufunc for ndarrays.

\n\n

The expit function, also known as the logistic sigmoid function, is\ndefined as expit(x) = 1/(1+exp(-x)). It is the inverse of the\nlogit function.

\n\n
Parameters
\n\n
    \n
  • x (ndarray):\nThe ndarray to apply expit to element-wise.
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: An ndarray of the same shape as x. Its entries\nare expit of the corresponding entry of x.
  • \n
\n\n
See Also
\n\n

`logit()\n..`

\n\n
Notes
\n\n

As a ufunc expit takes a number of optional\nkeyword arguments. For more information\nsee ufuncs

\n\n

New in version 0.10.0.

\n\n

expit has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> from scipy.special import expit, logit\n
\n
\n\n
\n
>>> expit([-np.inf, -1.5, 0, 1.5, np.inf])\narray([ 0.        ,  0.18242552,  0.5       ,  0.81757448,  1.        ])\n
\n
\n\n

logit is the inverse of expit:

\n\n
\n
>>> logit(expit([-2.5, 0, 3.1, 5.0]))\narray([-2.5,  0. ,  3.1,  5. ])\n
\n
\n\n

Plot expit(x) for x in [-6, 6]:

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> x = np.linspace(-6, 6, 121)\n>>> y = expit(x)\n>>> plt.plot(x, y)\n>>> plt.grid()\n>>> plt.xlim(-6, 6)\n>>> plt.xlabel('x')\n>>> plt.title('expit(x)')\n>>> plt.show()\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.logsumexp": {"fullname": "pyerrors.special.logsumexp", "modulename": "pyerrors.special", "qualname": "logsumexp", "kind": "function", "doc": "

Compute the log of the sum of exponentials of input elements.

\n\n
Parameters
\n\n
    \n
  • a (array_like):\nInput array.
  • \n
  • axis (None or int or tuple of ints, optional):\nAxis or axes over which the sum is taken. By default axis is None,\nand all elements are summed.

    \n\n

    New in version 0.11.0.

  • \n
  • b (array-like, optional):\nScaling factor for exp(a) must be of the same shape as a or\nbroadcastable to a. These values may be negative in order to\nimplement subtraction.

    \n\n

    New in version 0.12.0.

  • \n
  • keepdims (bool, optional):\nIf this is set to True, the axes which are reduced are left in the\nresult as dimensions with size one. With this option, the result\nwill broadcast correctly against the original array.

    \n\n

    New in version 0.15.0.

  • \n
  • return_sign (bool, optional):\nIf this is set to True, the result will be a pair containing sign\ninformation; if False, results that are negative will be returned\nas NaN. Default is False (no sign information).

    \n\n

    New in version 0.16.0.

  • \n
\n\n
Returns
\n\n
    \n
  • res (ndarray):\nThe result, np.log(np.sum(np.exp(a))) calculated in a numerically\nmore stable way. If b is given then np.log(np.sum(b*np.exp(a)))\nis returned. If return_sign is True, res contains the log of\nthe absolute value of the argument.
  • \n
  • sgn (ndarray):\nIf return_sign is True, this will be an array of floating-point\nnumbers matching res containing +1, 0, -1 (for real-valued inputs)\nor a complex phase (for complex inputs). This gives the sign of the\nargument of the logarithm in res.\nIf return_sign is False, only one result is returned.
  • \n
\n\n
See Also
\n\n

numpy.logaddexp`\n..` \nnumpy.logaddexp2\n..

\n\n
Notes
\n\n

NumPy has a logaddexp function which is very similar to logsumexp, but\nonly handles two arguments. logaddexp.reduce is similar to this\nfunction, but may be less stable.

\n\n

The logarithm is a multivalued function: for each \\( x \\) there is an\ninfinite number of \\( z \\) such that \\( exp(z) = x \\). The convention\nis to return the \\( z \\) whose imaginary part lies in \\( (-pi, pi] \\).

\n\n

logsumexp has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> from scipy.special import logsumexp\n>>> a = np.arange(10)\n>>> logsumexp(a)\n9.4586297444267107\n>>> np.log(np.sum(np.exp(a)))\n9.4586297444267107\n
\n
\n\n

With weights

\n\n
\n
>>> a = np.arange(10)\n>>> b = np.arange(10, 0, -1)\n>>> logsumexp(a, b=b)\n9.9170178533034665\n>>> np.log(np.sum(b*np.exp(a)))\n9.9170178533034647\n
\n
\n\n

Returning a sign flag

\n\n
\n
>>> logsumexp([1,2],b=[1,-1],return_sign=True)\n(1.5413248546129181, -1.0)\n
\n
\n\n

Notice that logsumexp does not directly support masked arrays. To use it\non a masked array, convert the mask into zero weights:

\n\n
\n
>>> a = np.ma.array([np.log(2), 2, np.log(3)],\n...                  mask=[False, True, False])\n>>> b = (~a.mask).astype(int)\n>>> logsumexp(a.data, b=b), np.log(5)\n1.6094379124341005, 1.6094379124341005\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.version": {"fullname": "pyerrors.version", "modulename": "pyerrors.version", "kind": "module", "doc": "

\n"}}, "docInfo": {"pyerrors": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 8400}, "pyerrors.correlators": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 367}, "pyerrors.correlators.Corr.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 100}, "pyerrors.correlators.Corr.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.content": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.T": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prange": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.gm": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.projected": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 64}, "pyerrors.correlators.Corr.item": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.plottable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 31}, "pyerrors.correlators.Corr.symmetric": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.anti_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.trace": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 12}, "pyerrors.correlators.Corr.matrix_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.GEVP": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 58, "bases": 0, "doc": 417}, "pyerrors.correlators.Corr.Eigenvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 59}, "pyerrors.correlators.Corr.Hankel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 67}, "pyerrors.correlators.Corr.roll": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 26}, "pyerrors.correlators.Corr.reverse": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.thin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 43}, "pyerrors.correlators.Corr.correlate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 79}, "pyerrors.correlators.Corr.T_symmetry": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 51}, "pyerrors.correlators.Corr.deriv": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 47}, "pyerrors.correlators.Corr.second_deriv": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 126}, "pyerrors.correlators.Corr.m_eff": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 148}, "pyerrors.correlators.Corr.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 110}, "pyerrors.correlators.Corr.plateau": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 92}, "pyerrors.correlators.Corr.set_prange": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 11}, "pyerrors.correlators.Corr.show": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 161, "bases": 0, "doc": 263}, "pyerrors.correlators.Corr.spaghetti_plot": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 42}, "pyerrors.correlators.Corr.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 69}, "pyerrors.correlators.Corr.print": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prune": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 325}, "pyerrors.correlators.Corr.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 100}, "pyerrors.covobs.Covobs.name": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.errsq": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 12}, "pyerrors.covobs.Covobs.cov": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.grad": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaX": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaY": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaZ": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaT": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 210, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gamma5": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.identity": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.epsilon_tensor": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 40}, "pyerrors.dirac.epsilon_tensor_rank4": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 41}, "pyerrors.dirac.Grid_gamma": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 12, "bases": 0, "doc": 9}, "pyerrors.fits": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 75}, "pyerrors.fits.Fit_result.fit_parameters": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result.gamma_method": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 10}, "pyerrors.fits.Fit_result.gm": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 10}, "pyerrors.fits.least_squares": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 2747}, "pyerrors.fits.total_least_squares": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 511}, "pyerrors.fits.fit_lin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 110}, "pyerrors.fits.qqplot": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 39}, "pyerrors.fits.residual_plot": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 45}, "pyerrors.fits.error_band": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 48}, "pyerrors.fits.ks_test": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 52}, "pyerrors.input": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 81}, "pyerrors.input.bdio": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.bdio.read_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 122}, "pyerrors.input.bdio.write_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 126}, "pyerrors.input.bdio.read_mesons": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 211}, "pyerrors.input.bdio.read_dSdm": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 191}, "pyerrors.input.dobs": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.dobs.create_pobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 186}, "pyerrors.input.dobs.write_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 214}, "pyerrors.input.dobs.read_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 164}, "pyerrors.input.dobs.import_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 184}, "pyerrors.input.dobs.read_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 207}, "pyerrors.input.dobs.create_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 82, "bases": 0, "doc": 229}, "pyerrors.input.dobs.write_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 99, "bases": 0, "doc": 252}, "pyerrors.input.hadrons": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.hadrons.read_hd5": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 242}, "pyerrors.input.hadrons.read_meson_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 185}, "pyerrors.input.hadrons.extract_t0_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 73, "bases": 0, "doc": 157}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 106}, "pyerrors.input.hadrons.Npr_matrix": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 1093}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 30}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 99}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 99}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 60, "bases": 0, "doc": 112}, "pyerrors.input.json": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.json.create_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 138}, "pyerrors.input.json.dump_to_json": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 174}, "pyerrors.input.json.import_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 168}, "pyerrors.input.json.load_json": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 188}, "pyerrors.input.json.dump_dict_to_json": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 184}, "pyerrors.input.json.load_json_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 172}, "pyerrors.input.misc": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.misc.fit_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 250}, "pyerrors.input.misc.read_pbp": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 75}, "pyerrors.input.openQCD": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.openQCD.read_rwms": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 271}, "pyerrors.input.openQCD.extract_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 518}, "pyerrors.input.openQCD.extract_w0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 520}, "pyerrors.input.openQCD.read_qtop": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 53, "bases": 0, "doc": 383}, "pyerrors.input.openQCD.read_gf_coupling": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 345}, "pyerrors.input.openQCD.qtop_projection": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 72}, "pyerrors.input.openQCD.read_qtop_sector": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 363}, "pyerrors.input.openQCD.read_ms5_xsf": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 308}, "pyerrors.input.pandas": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.pandas.to_sql": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 54, "bases": 0, "doc": 113}, "pyerrors.input.pandas.read_sql": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 105}, "pyerrors.input.pandas.dump_df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 111}, "pyerrors.input.pandas.load_df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 115}, "pyerrors.input.sfcf": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.sfcf.sep": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.sfcf.read_sfcf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 151, "bases": 0, "doc": 421}, "pyerrors.input.sfcf.read_sfcf_multi": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 189, "bases": 0, "doc": 458}, "pyerrors.input.utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "pyerrors.input.utils.sort_names": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 81}, "pyerrors.input.utils.check_idl": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 70}, "pyerrors.input.utils.check_params": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 114}, "pyerrors.integrate": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.integrate.quad": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 374}, "pyerrors.linalg": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.linalg.matmul": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 54}, "pyerrors.linalg.jack_matmul": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 58}, "pyerrors.linalg.einsum": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 52}, "pyerrors.linalg.inv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.linalg.cholesky": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.linalg.det": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 8}, "pyerrors.linalg.eigh": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 20}, "pyerrors.linalg.eig": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 17}, "pyerrors.linalg.eigv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 18}, "pyerrors.linalg.pinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.linalg.svd": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.misc": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.misc.print_config": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 12}, "pyerrors.misc.errorbar": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 69}, "pyerrors.misc.dump_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "pyerrors.misc.load_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 42}, "pyerrors.misc.pseudo_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 105}, "pyerrors.misc.gen_correlated_data": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 127}, "pyerrors.mpm": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.mpm.matrix_pencil_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 165}, "pyerrors.obs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 238}, "pyerrors.obs.Obs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 62}, "pyerrors.obs.Obs.S_global": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.names": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.shape": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.r_values": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.deltas": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.idl": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.ddvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.dvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cov_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.mc_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_content": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.covobs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.gm": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.details": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 85}, "pyerrors.obs.Obs.is_zero_within_error": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 50}, "pyerrors.obs.Obs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.plot_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_rep_dist": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 14}, "pyerrors.obs.Obs.plot_history": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_piechart": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 47}, "pyerrors.obs.Obs.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 89}, "pyerrors.obs.Obs.export_jackknife": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 101}, "pyerrors.obs.Obs.export_bootstrap": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 185}, "pyerrors.obs.Obs.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_ddvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_drho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dtauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_dtauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_tauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_windowsize": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "pyerrors.obs.CObs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 14}, "pyerrors.obs.CObs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 15}, "pyerrors.obs.CObs.conjugate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.gamma_method": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 28}, "pyerrors.obs.gm": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 28}, "pyerrors.obs.derived_observable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 184}, "pyerrors.obs.reweight": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 99}, "pyerrors.obs.correlate": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 87}, "pyerrors.obs.covariance": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 374}, "pyerrors.obs.invert_corr_cov_cholesky": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 84}, "pyerrors.obs.sort_corr": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 630}, "pyerrors.obs.import_jackknife": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 61}, "pyerrors.obs.import_bootstrap": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 107}, "pyerrors.obs.merge_obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 89}, "pyerrors.obs.cov_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 90}, "pyerrors.roots": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.roots.find_root": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 189}, "pyerrors.special": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.special.beta": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 519}, "pyerrors.special.betainc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1132}, "pyerrors.special.betaln": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 476}, "pyerrors.special.polygamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 277}, "pyerrors.special.psi": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 534}, "pyerrors.special.digamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 534}, "pyerrors.special.gamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1217}, "pyerrors.special.gammaln": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 701}, "pyerrors.special.gammainc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 619}, "pyerrors.special.gammaincc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 636}, "pyerrors.special.gammasgn": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 620}, "pyerrors.special.rgamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 509}, "pyerrors.special.multigammaln": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 494}, "pyerrors.special.kn": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 13}, "pyerrors.special.j0": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 670}, "pyerrors.special.y0": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 628}, "pyerrors.special.j1": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 600}, "pyerrors.special.y1": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 609}, "pyerrors.special.jn": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1211}, "pyerrors.special.yn": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1096}, "pyerrors.special.i0": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 695}, "pyerrors.special.i1": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 703}, "pyerrors.special.iv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1281}, "pyerrors.special.ive": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1217}, "pyerrors.special.erf": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 502}, "pyerrors.special.erfc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 451}, "pyerrors.special.erfinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 784}, "pyerrors.special.erfcinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 658}, "pyerrors.special.logit": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 725}, "pyerrors.special.expit": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 761}, "pyerrors.special.logsumexp": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1222}, "pyerrors.version": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 288, "save": true}, "index": {"qualname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 57, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.name": {"tf": 1}, "pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 8}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"0": {"docs": {"pyerrors.special.i0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.identity": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}, "t": {"0": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "docs": {"pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {"pyerrors.special.psi": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 20}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.dirac.gamma5": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 8, "x": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.dirac.gammaY": {"tf": 1}}, "df": 1}, "z": {"docs": {"pyerrors.dirac.gammaZ": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.dirac.gammaT": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1, "c": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}}, "df": 6}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "s": {"5": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 4}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}, "p": {"docs": {"pyerrors.input.sfcf.sep": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}, "v": {"docs": {"pyerrors.linalg.eigv": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1, "c": {"docs": {"pyerrors.special.erfc": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erfcinv": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erfinv": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.digamma": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 7}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logit": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.name": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}, "n": {"docs": {"pyerrors.special.kn": {"tf": 1}}, "df": 1}}, "w": {"0": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"0": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.j1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 68, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}, "y": {"0": {"docs": {"pyerrors.special.y0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.y1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}}}}, "fullname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.name": {"tf": 1}, "pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.sep": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}, "pyerrors.version": {"tf": 1}}, "df": 288}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {"pyerrors.special.psi": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 57, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}}, "df": 56}}}, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.name": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.value": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.grad": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 9}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"0": {"docs": {"pyerrors.special.i0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.sep": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 56}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.identity": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}, "t": {"0": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "docs": {"pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 20}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.dirac.gamma5": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 8, "x": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.dirac.gammaY": {"tf": 1}}, "df": 1}, "z": {"docs": {"pyerrors.dirac.gammaZ": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.dirac.gammaT": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1, "c": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}}, "df": 6}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 10}}}, "s": {"5": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 4}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}, "p": {"docs": {"pyerrors.input.sfcf.sep": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 32}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.sep": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}, "v": {"docs": {"pyerrors.linalg.eigv": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1, "c": {"docs": {"pyerrors.special.erfc": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erfcinv": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erfinv": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 10}}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 11}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.digamma": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 8}}}, "f": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 12}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logit": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 12}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.name": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.version": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}, "n": {"docs": {"pyerrors.special.kn": {"tf": 1}}, "df": 1}}, "w": {"0": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"0": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.j1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 9}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.shape": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.r_values": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweighted": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tag": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.value": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cov_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.mc_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_content": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_drho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 87, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 4}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}, "y": {"0": {"docs": {"pyerrors.special.y0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.y1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"0": {"docs": {"pyerrors.dirac.gammaX": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaY": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaZ": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaT": {"tf": 5.291502622129181}, "pyerrors.dirac.gamma": {"tf": 10.583005244258363}, "pyerrors.dirac.gamma5": {"tf": 5.291502622129181}, "pyerrors.dirac.identity": {"tf": 5.291502622129181}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 10}, "1": {"docs": {"pyerrors.dirac.gammaX": {"tf": 2}, "pyerrors.dirac.gammaY": {"tf": 2}, "pyerrors.dirac.gammaZ": {"tf": 2}, "pyerrors.dirac.gammaT": {"tf": 2}, "pyerrors.dirac.gamma": {"tf": 4}, "pyerrors.dirac.gamma5": {"tf": 2}, "pyerrors.dirac.identity": {"tf": 2}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 8}, "2": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.dirac.gammaX": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaY": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaZ": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 4.123105625617661}, "pyerrors.dirac.gamma5": {"tf": 2.23606797749979}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.input.sfcf.sep": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 11, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}}, "df": 7}}}}}, "j": {"docs": {"pyerrors.dirac.gammaX": {"tf": 4}, "pyerrors.dirac.gammaY": {"tf": 4}, "pyerrors.dirac.gammaZ": {"tf": 4}, "pyerrors.dirac.gammaT": {"tf": 4}, "pyerrors.dirac.gamma": {"tf": 8}, "pyerrors.dirac.gamma5": {"tf": 4}, "pyerrors.dirac.identity": {"tf": 4}}, "df": 7}, "x": {"2": {"7": {"docs": {"pyerrors.input.sfcf.sep": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "signature": {"root": {"0": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 17, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}, "1": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "x": {"6": {"4": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"3": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "2": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 12, "e": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}, "2": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 3}, "3": {"9": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.8284271247461903}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.misc.errorbar": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}}, "df": 38}, "docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}, "5": {"0": {"0": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 4}, "docs": {"pyerrors.correlators.Corr.__init__": {"tf": 5.744562646538029}, "pyerrors.correlators.Corr.gamma_method": {"tf": 4}, "pyerrors.correlators.Corr.gm": {"tf": 4}, "pyerrors.correlators.Corr.projected": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.item": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.plottable": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.trace": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 6.782329983125268}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 6.782329983125268}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.roll": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reverse": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.thin": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.deriv": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.fit": {"tf": 6}, "pyerrors.correlators.Corr.plateau": {"tf": 6}, "pyerrors.correlators.Corr.set_prange": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.show": {"tf": 11.313708498984761}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.dump": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr.print": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.sqrt": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.log": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.exp": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.sin": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.cos": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.tan": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.sinh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.cosh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.tanh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arcsin": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arccos": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arctan": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arcsinh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arccosh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arctanh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.prune": {"tf": 6.164414002968976}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.656854249492381}, "pyerrors.covobs.Covobs.errsq": {"tf": 3.1622776601683795}, "pyerrors.dirac.epsilon_tensor": {"tf": 4.242640687119285}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 4.69041575982343}, "pyerrors.dirac.Grid_gamma": {"tf": 3.1622776601683795}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 4}, "pyerrors.fits.Fit_result.gm": {"tf": 4}, "pyerrors.fits.least_squares": {"tf": 6.324555320336759}, "pyerrors.fits.total_least_squares": {"tf": 5.656854249492381}, "pyerrors.fits.fit_lin": {"tf": 4.47213595499958}, "pyerrors.fits.qqplot": {"tf": 5.656854249492381}, "pyerrors.fits.residual_plot": {"tf": 5.656854249492381}, "pyerrors.fits.error_band": {"tf": 4.242640687119285}, "pyerrors.fits.ks_test": {"tf": 3.7416573867739413}, "pyerrors.input.bdio.read_ADerrors": {"tf": 5.0990195135927845}, "pyerrors.input.bdio.write_ADerrors": {"tf": 5.477225575051661}, "pyerrors.input.bdio.read_mesons": {"tf": 5.0990195135927845}, "pyerrors.input.bdio.read_dSdm": {"tf": 5.0990195135927845}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7.14142842854285}, "pyerrors.input.dobs.write_pobs": {"tf": 8.426149773176359}, "pyerrors.input.dobs.read_pobs": {"tf": 5.830951894845301}, "pyerrors.input.dobs.import_dobs_string": {"tf": 5.0990195135927845}, "pyerrors.input.dobs.read_dobs": {"tf": 5.830951894845301}, "pyerrors.input.dobs.create_dobs_string": {"tf": 8.12403840463596}, "pyerrors.input.dobs.write_dobs": {"tf": 8.94427190999916}, "pyerrors.input.hadrons.read_hd5": {"tf": 6.6332495807108}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 6.6332495807108}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 7.54983443527075}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 6}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 6.855654600401044}, "pyerrors.input.json.create_json_string": {"tf": 5.291502622129181}, "pyerrors.input.json.dump_to_json": {"tf": 6.324555320336759}, "pyerrors.input.json.import_json_string": {"tf": 5.0990195135927845}, "pyerrors.input.json.load_json": {"tf": 5.830951894845301}, "pyerrors.input.json.dump_dict_to_json": {"tf": 7.0710678118654755}, "pyerrors.input.json.load_json_dict": {"tf": 6.6332495807108}, "pyerrors.input.misc.fit_t0": {"tf": 5.656854249492381}, "pyerrors.input.misc.read_pbp": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.read_rwms": {"tf": 6.164414002968976}, "pyerrors.input.openQCD.extract_t0": {"tf": 8.18535277187245}, "pyerrors.input.openQCD.extract_w0": {"tf": 8.18535277187245}, "pyerrors.input.openQCD.read_qtop": {"tf": 6.48074069840786}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 6.324555320336759}, "pyerrors.input.openQCD.qtop_projection": {"tf": 4.242640687119285}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 5.656854249492381}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 6.164414002968976}, "pyerrors.input.pandas.to_sql": {"tf": 6.48074069840786}, "pyerrors.input.pandas.read_sql": {"tf": 5.291502622129181}, "pyerrors.input.pandas.dump_df": {"tf": 4.69041575982343}, "pyerrors.input.pandas.load_df": {"tf": 5.0990195135927845}, "pyerrors.input.sfcf.read_sfcf": {"tf": 10.862780491200215}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 12.12435565298214}, "pyerrors.input.utils.sort_names": {"tf": 3.1622776601683795}, "pyerrors.input.utils.check_idl": {"tf": 3.7416573867739413}, "pyerrors.input.utils.check_params": {"tf": 5.291502622129181}, "pyerrors.integrate.quad": {"tf": 5.291502622129181}, "pyerrors.linalg.matmul": {"tf": 3.4641016151377544}, "pyerrors.linalg.jack_matmul": {"tf": 3.4641016151377544}, "pyerrors.linalg.einsum": {"tf": 4}, "pyerrors.linalg.inv": {"tf": 3.1622776601683795}, "pyerrors.linalg.cholesky": {"tf": 3.1622776601683795}, "pyerrors.linalg.det": {"tf": 3.1622776601683795}, "pyerrors.linalg.eigh": {"tf": 4}, "pyerrors.linalg.eig": {"tf": 4}, "pyerrors.linalg.eigv": {"tf": 4}, "pyerrors.linalg.pinv": {"tf": 4}, "pyerrors.linalg.svd": {"tf": 4}, "pyerrors.misc.print_config": {"tf": 2.6457513110645907}, "pyerrors.misc.errorbar": {"tf": 6.855654600401044}, "pyerrors.misc.dump_object": {"tf": 4.47213595499958}, "pyerrors.misc.load_object": {"tf": 3.1622776601683795}, "pyerrors.misc.pseudo_Obs": {"tf": 5.0990195135927845}, "pyerrors.misc.gen_correlated_data": {"tf": 5.830951894845301}, "pyerrors.mpm.matrix_pencil_method": {"tf": 5.656854249492381}, "pyerrors.obs.Obs.__init__": {"tf": 5.0990195135927845}, "pyerrors.obs.Obs.gamma_method": {"tf": 4}, "pyerrors.obs.Obs.gm": {"tf": 4}, "pyerrors.obs.Obs.details": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.reweight": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.is_zero": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_tauint": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_rho": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_piechart": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.dump": {"tf": 6.324555320336759}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 5.830951894845301}, "pyerrors.obs.Obs.sqrt": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.log": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.exp": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sin": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.cos": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.tan": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arcsin": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arccos": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arctan": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sinh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.cosh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.tanh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arcsinh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arccosh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arctanh": {"tf": 3.1622776601683795}, "pyerrors.obs.CObs.__init__": {"tf": 4}, "pyerrors.obs.CObs.gamma_method": {"tf": 4}, "pyerrors.obs.CObs.is_zero": {"tf": 3.1622776601683795}, "pyerrors.obs.CObs.conjugate": {"tf": 3.1622776601683795}, "pyerrors.obs.gamma_method": {"tf": 4}, "pyerrors.obs.gm": {"tf": 4}, "pyerrors.obs.derived_observable": {"tf": 5.291502622129181}, "pyerrors.obs.reweight": {"tf": 4.47213595499958}, "pyerrors.obs.correlate": {"tf": 3.7416573867739413}, "pyerrors.obs.covariance": {"tf": 6.324555320336759}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 3.7416573867739413}, "pyerrors.obs.sort_corr": {"tf": 4.242640687119285}, "pyerrors.obs.import_jackknife": {"tf": 4.69041575982343}, "pyerrors.obs.import_bootstrap": {"tf": 4.242640687119285}, "pyerrors.obs.merge_obs": {"tf": 3.1622776601683795}, "pyerrors.obs.cov_Obs": {"tf": 5.0990195135927845}, "pyerrors.roots.find_root": {"tf": 5.291502622129181}, "pyerrors.special.beta": {"tf": 4.242640687119285}, "pyerrors.special.betainc": {"tf": 4.242640687119285}, "pyerrors.special.betaln": {"tf": 4.242640687119285}, "pyerrors.special.polygamma": {"tf": 4.242640687119285}, "pyerrors.special.psi": {"tf": 4.242640687119285}, "pyerrors.special.digamma": {"tf": 4.242640687119285}, "pyerrors.special.gamma": {"tf": 4.242640687119285}, "pyerrors.special.gammaln": {"tf": 4.242640687119285}, "pyerrors.special.gammainc": {"tf": 4.242640687119285}, "pyerrors.special.gammaincc": {"tf": 4.242640687119285}, "pyerrors.special.gammasgn": {"tf": 4.242640687119285}, "pyerrors.special.rgamma": {"tf": 4.242640687119285}, "pyerrors.special.multigammaln": {"tf": 4.242640687119285}, "pyerrors.special.kn": {"tf": 4.242640687119285}, "pyerrors.special.j0": {"tf": 4.242640687119285}, "pyerrors.special.y0": {"tf": 4.242640687119285}, "pyerrors.special.j1": {"tf": 4.242640687119285}, "pyerrors.special.y1": {"tf": 4.242640687119285}, "pyerrors.special.jn": {"tf": 4.242640687119285}, "pyerrors.special.yn": {"tf": 4.242640687119285}, "pyerrors.special.i0": {"tf": 4.242640687119285}, "pyerrors.special.i1": {"tf": 4.242640687119285}, "pyerrors.special.iv": {"tf": 4.242640687119285}, "pyerrors.special.ive": {"tf": 4.242640687119285}, "pyerrors.special.erf": {"tf": 4.242640687119285}, "pyerrors.special.erfc": {"tf": 4.242640687119285}, "pyerrors.special.erfinv": {"tf": 4.242640687119285}, "pyerrors.special.erfcinv": {"tf": 4.242640687119285}, "pyerrors.special.logit": {"tf": 4.242640687119285}, "pyerrors.special.expit": {"tf": 4.242640687119285}, "pyerrors.special.logsumexp": {"tf": 4.242640687119285}}, "df": 200, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7, "l": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 10}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 22}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 11}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "y": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 36}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 14, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 80}}, "p": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}}}}}}}, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 4}}}}}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 80}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}, "v": {"1": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.449489742783178}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 3}}}, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 21}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 10, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 17}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}, "u": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 12, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}, "j": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"3": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 13}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "v": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31}}}}, "x": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 13, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "v": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}}, "df": 7, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}, "c": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "doc": {"root": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "+": {"0": {"0": {"0": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "6": {"9": {"7": {"9": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"0": {"5": {"0": {"2": {"2": {"0": {"9": {"1": {"8": {"6": {"0": {"4": {"4": {"5": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 2}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"5": {"6": {"0": {"5": {"6": {"2": {"1": {"8": {"2": {"5": {"4": {"7": {"1": {"2": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"8": {"0": {"6": {"4": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"4": {"4": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"9": {"4": {"6": {"7": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"8": {"5": {"6": {"5": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"4": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"4": {"2": {"3": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"4": {"3": {"3": {"3": {"docs": {"pyerrors.special.j1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}, "7": {"1": {"5": {"1": {"0": {"2": {"9": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"6": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"docs": {"pyerrors.special.beta": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"2": {"5": {"6": {"9": {"6": {"4": {"2": {"1": {"5": {"6": {"7": {"6": {"9": {"7": {"docs": {"pyerrors.special.y0": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"7": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"2": {"3": {"9": {"0": {"3": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"3": {"4": {"4": {"5": {"6": {"2": {"2": {"2": {"2": {"1": {"docs": {"pyerrors.special.betaln": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"6": {"1": {"2": {"2": {"9": {"docs": {"pyerrors.special.logit": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.4641016151377544}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.gm": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2}, "pyerrors.obs.sort_corr": {"tf": 3.4641016151377544}, "pyerrors.special.beta": {"tf": 2.23606797749979}, "pyerrors.special.betainc": {"tf": 4.795831523312719}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.polygamma": {"tf": 2}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 3.605551275463989}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 3.4641016151377544}, "pyerrors.special.gammaincc": {"tf": 3.1622776601683795}, "pyerrors.special.gammasgn": {"tf": 2.8284271247461903}, "pyerrors.special.rgamma": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 3}, "pyerrors.special.y0": {"tf": 3.872983346207417}, "pyerrors.special.j1": {"tf": 2.449489742783178}, "pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.jn": {"tf": 5.196152422706632}, "pyerrors.special.yn": {"tf": 5.196152422706632}, "pyerrors.special.i0": {"tf": 3}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 4}, "pyerrors.special.ive": {"tf": 4.69041575982343}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 4.242640687119285}, "pyerrors.special.erfcinv": {"tf": 4.123105625617661}, "pyerrors.special.logit": {"tf": 4.123105625617661}, "pyerrors.special.expit": {"tf": 3.1622776601683795}, "pyerrors.special.logsumexp": {"tf": 3.3166247903554}}, "df": 60, "+": {"1": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"0": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}, "^": {"1": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "x": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}}, "df": 2}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}}}, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}}}}}}, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 2}}}}}}}}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.7320508075688772}}, "df": 15}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 3}, "4": {"7": {"2": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"3": {"2": {"4": {"3": {"docs": {"pyerrors.special.y1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"8": {"1": {"9": {"3": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"7": {"5": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 15}, "1": {"0": {"3": {"4": {"0": {"3": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"4": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"7": {"8": {"2": {"5": {"5": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"7": {"8": {"4": {"6": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "2": {"1": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "3": {"4": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "4": {"1": {"5": {"9": {"2": {"6": {"5": {"3": {"5": {"8": {"9": {"7": {"9": {"2": {"7": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"8": {"6": {"0": {"5": {"0": {"7": {"4": {"4": {"1": {"6": {"docs": {"pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 2}, "8": {"0": {"6": {"0": {"4": {"6": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}, "6": {"0": {"7": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 15}, "5": {"6": {"7": {"5": {"2": {"7": {"6": {"8": {"9": {"0": {"3": {"1": {"7": {"3": {"9": {"docs": {"pyerrors.special.beta": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"6": {"6": {"6": {"6": {"7": {"docs": {"pyerrors.special.rgamma": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}, "7": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"1": {"4": {"3": {"4": {"5": {"docs": {"pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}, "8": {"2": {"4": {"2": {"5": {"5": {"2": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"8": {"2": {"6": {"7": {"1": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"0": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.6457513110645907}, "pyerrors.special.beta": {"tf": 2.8284271247461903}, "pyerrors.special.betainc": {"tf": 4.795831523312719}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.449489742783178}, "pyerrors.special.digamma": {"tf": 2.449489742783178}, "pyerrors.special.gamma": {"tf": 4.242640687119285}, "pyerrors.special.gammaln": {"tf": 2.23606797749979}, "pyerrors.special.gammainc": {"tf": 2.449489742783178}, "pyerrors.special.gammaincc": {"tf": 2.6457513110645907}, "pyerrors.special.gammasgn": {"tf": 4.358898943540674}, "pyerrors.special.rgamma": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 2}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.jn": {"tf": 4}, "pyerrors.special.yn": {"tf": 4.123105625617661}, "pyerrors.special.i0": {"tf": 2.23606797749979}, "pyerrors.special.i1": {"tf": 3.4641016151377544}, "pyerrors.special.iv": {"tf": 4.47213595499958}, "pyerrors.special.ive": {"tf": 3}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 3.4641016151377544}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 3.1622776601683795}, "pyerrors.special.expit": {"tf": 2.6457513110645907}, "pyerrors.special.logsumexp": {"tf": 3.3166247903554}}, "df": 56, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}, "e": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "+": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 6}, "*": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"2": {"docs": {}, "df": 0, "[": {"1": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}, "z": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}, "e": {"1": {"0": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"0": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"0": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"0": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "^": {"2": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "2": {"0": {"0": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 2}, "1": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "5": {"8": {"5": {"0": {"9": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"1": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "7": {"9": {"1": {"0": {"4": {"2": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.j1": {"tf": 2}}, "df": 3}, "1": {"0": {"3": {"4": {"0": {"3": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"4": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"6": {"9": {"2": {"9": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}, "2": {"3": {"5": {"2": {"1": {"4": {"9": {"docs": {"pyerrors.special.yn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"0": {"7": {"8": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "3": {"1": {"2": {"0": {"6": {"docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"2": {"7": {"4": {"0": {"5": {"6": {"9": {"9": {"8": {"1": {"1": {"5": {"8": {"docs": {}, "df": 0, "+": {"2": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "7": {"1": {"docs": {}, "df": 0, "+": {"2": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 3}, "4": {"0": {"2": {"9": {"7": {"8": {"3": {"9": {"1": {"2": {"3": {"4": {"2": {"7": {"2": {"5": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"0": {"0": {"0": {"3": {"5": {"docs": {"pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}}, "df": 2}, "5": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}}, "df": 7}, "6": {"0": {"0": {"5": {"1": {"9": {"5": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"6": {"5": {"8": {"7": {"7": {"7": {"5": {"2": {"0": {"0": {"8": {"2": {"docs": {"pyerrors.special.i0": {"tf": 1}}, "df": 1}, "4": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"1": {"8": {"6": {"6": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"5": {"8": {"5": {"3": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"7": {"7": {"6": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "9": {"3": {"5": {"2": {"5": {"3": {"2": {"6": {"3": {"4": {"7": {"4": {"7": {"9": {"8": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"9": {"7": {"0": {"3": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.23606797749979}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 2.23606797749979}, "pyerrors.special.betainc": {"tf": 2.449489742783178}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 2}, "pyerrors.special.rgamma": {"tf": 2}, "pyerrors.special.multigammaln": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 2}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 45, "x": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "f": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "#": {"docs": {}, "df": 0, "e": {"1": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 2}, "4": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "i": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}, "^": {"2": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}}}}}}, "3": {"0": {"2": {"5": {"8": {"5": {"0": {"9": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"1": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"5": {"2": {"0": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"5": {"1": {"7": {"6": {"4": {"1": {"4": {"6": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"5": {"0": {"8": {"3": {"2": {"docs": {"pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "1": {"4": {"9": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"7": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "4": {"6": {"7": {"4": {"4": {"2": {"docs": {"pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"9": {"0": {"5": {"8": {"9": {"6": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "4": {"1": {"9": {"3": {"6": {"7": {"8": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "9": {"7": {"6": {"8": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"3": {"2": {"7": {"1": {"8": {"docs": {"pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"0": {"8": {"0": {"7": {"1": {"6": {"docs": {"pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"0": {"9": {"3": {"3": {"6": {"9": {"5": {"2": {"2": {"6": {"9": {"7": {"5": {"6": {"docs": {"pyerrors.special.gammaincc": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"8": {"5": {"0": {"0": {"1": {"docs": {"pyerrors.special.y0": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"2": {"0": {"3": {"4": {"3": {"docs": {"pyerrors.special.i0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"4": {"9": {"3": {"4": {"0": {"7": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"4": {"9": {"8": {"1": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 7.745966692414834}, "pyerrors.fits.least_squares": {"tf": 4.242640687119285}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.8284271247461903}, "pyerrors.special.gamma": {"tf": 3.4641016151377544}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 2}, "pyerrors.special.erfc": {"tf": 2}, "pyerrors.special.erfinv": {"tf": 2}, "pyerrors.special.erfcinv": {"tf": 2}, "pyerrors.special.logit": {"tf": 2}, "pyerrors.special.expit": {"tf": 2}}, "df": 15}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.23606797749979}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 2}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 2}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 33, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "4": {"0": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}}, "df": 2}, "3": {"2": {"0": {"9": {"8": {"3": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "4": {"0": {"0": {"5": {"0": {"5": {"8": {"5": {"7": {"4": {"4": {"9": {"3": {"3": {"5": {"5": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"1": {"8": {"7": {"3": {"docs": {"pyerrors.special.y0": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"4": {"docs": {"pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"6": {"2": {"9": {"7": {"4": {"4": {"4": {"2": {"6": {"7": {"1": {"0": {"7": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}, "6": {"5": {"7": {"5": {"9": {"6": {"1": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"4": {"7": {"2": {"3": {"9": {"docs": {"pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"9": {"3": {"6": {"2": {"7": {"6": {"2": {"0": {"4": {"4": {"6": {"9": {"9": {"docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"3": {"9": {"6": {"3": {"8": {"8": {"0": {"7": {"6": {"1": {"9": {"4": {"4": {"6": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 2}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1}}, "df": 26, "x": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}}, "df": 2}, "5": {"1": {"7": {"0": {"1": {"9": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"2": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"0": {"3": {"7": {"5": {"6": {"7": {"docs": {"pyerrors.special.y0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"6": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"0": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "8": {"0": {"1": {"3": {"5": {"7": {"4": {"5": {"6": {"1": {"7": {"8": {"6": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"3": {"2": {"4": {"8": {"5": {"4": {"6": {"1": {"2": {"9": {"1": {"8": {"1": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"4": {"0": {"1": {"1": {"5": {"5": {"0": {"0": {"0": {"6": {"5": {"8": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "8": {"5": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"9": {"0": {"7": {"7": {"docs": {"pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"0": {"3": {"5": {"9": {"8": {"1": {"7": {"3": {"3": {"3": {"4": {"1": {"docs": {}, "df": 0, "+": {"1": {"docs": {"pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"5": {"1": {"5": {"9": {"1": {"0": {"3": {"9": {"9": {"2": {"4": {"8": {"5": {"1": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"6": {"5": {"9": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"9": {"9": {"2": {"0": {"7": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"2": {"4": {"8": {"1": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"6": {"3": {"6": {"8": {"5": {"docs": {"pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"1": {"6": {"0": {"8": {"docs": {"pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 3.4641016151377544}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 2.8284271247461903}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.449489742783178}, "pyerrors.special.ive": {"tf": 2.23606797749979}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 2.6457513110645907}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "/": {"5": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "6": {"0": {"5": {"1": {"7": {"0": {"1": {"9": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"2": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"3": {"7": {"9": {"1": {"2": {"4": {"3": {"4": {"1": {"0": {"0": {"5": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 3}, "2": {"8": {"9": {"0": {"6": {"6": {"3": {"0": {"4": {"7": {"7": {"3": {"0": {"2": {"4": {"docs": {"pyerrors.special.gammainc": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"4": {"9": {"3": {"4": {"0": {"7": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "5": {"0": {"6": {"8": {"2": {"6": {"0": {"6": {"8": {"1": {"6": {"2": {"5": {"4": {"6": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 2.449489742783178}}, "df": 7, "/": {"6": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"3": {"1": {"2": {"0": {"4": {"3": {"7": {"9": {"5": {"9": {"2": {"9": {"3": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"4": {"2": {"2": {"9": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"4": {"6": {"6": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"4": {"2": {"1": {"6": {"4": {"3": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"5": {"7": {"3": {"1": {"9": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.7320508075688772}}, "df": 2}, "6": {"5": {"1": {"9": {"7": {"6": {"8": {"6": {"5": {"5": {"7": {"9": {"6": {"6": {"5": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"4": {"5": {"3": {"8": {"5": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"1": {"0": {"1": {"0": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"7": {"6": {"2": {"1": {"0": {"4": {"5": {"5": {"1": {"0": {"8": {"3": {"5": {"2": {"docs": {}, "df": 0, "+": {"0": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"1": {"2": {"1": {"2": {"8": {"2": {"1": {"3": {"0": {"0": {"2": {"8": {"8": {"8": {"docs": {"pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"7": {"7": {"5": {"2": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}}, "df": 5, "/": {"7": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "8": {"0": {"4": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"3": {"4": {"1": {"9": {"8": {"5": {"docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"9": {"0": {"4": {"0": {"3": {"6": {"2": {"2": {"5": {"2": {"9": {"5": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "7": {"5": {"7": {"4": {"4": {"8": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"2": {"0": {"6": {"8": {"0": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"8": {"2": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"2": {"0": {"6": {"8": {"0": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"8": {"2": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"0": {"7": {"9": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"1": {"7": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 15}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"7": {"9": {"2": {"5": {"9": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"2": {"2": {"6": {"9": {"3": {"docs": {"pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}}, "df": 13}, "9": {"0": {"0": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}, "6": {"1": {"9": {"3": {"8": {"docs": {"pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"7": {"0": {"1": {"7": {"8": {"5": {"3": {"3": {"0": {"3": {"4": {"6": {"4": {"7": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"5": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"3": {"2": {"5": {"3": {"1": {"9": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"3": {"3": {"7": {"0": {"2": {"2": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"0": {"3": {"5": {"7": {"8": {"5": {"1": {"6": {"0": {"9": {"3": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"3": {"6": {"1": {"1": {"6": {"2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"1": {"9": {"8": {"8": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"0": {"0": {"7": {"1": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"3": {"6": {"5": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"9": {"9": {"2": {"2": {"6": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.logit": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 7}, "docs": {"pyerrors": {"tf": 64.62197768561404}, "pyerrors.correlators": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 12.449899597988733}, "pyerrors.correlators.Corr.__init__": {"tf": 5.196152422706632}, "pyerrors.correlators.Corr.tag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.content": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweighted": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gm": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.item": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.plottable": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.trace": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 11.74734012447073}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.roll": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.deriv": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.fit": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plateau": {"tf": 5}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 9}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.dump": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.print": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sqrt": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.log": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.exp": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.real": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.imag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 6.855654600401044}, "pyerrors.correlators.Corr.N": {"tf": 1.7320508075688772}, "pyerrors.covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.916079783099616}, "pyerrors.covobs.Covobs.name": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.value": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.grad": {"tf": 1.7320508075688772}, "pyerrors.dirac": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaX": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaY": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaZ": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaT": {"tf": 1.7320508075688772}, "pyerrors.dirac.gamma": {"tf": 1.7320508075688772}, "pyerrors.dirac.gamma5": {"tf": 1.7320508075688772}, "pyerrors.dirac.identity": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 4.123105625617661}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 4.123105625617661}, "pyerrors.dirac.Grid_gamma": {"tf": 1.7320508075688772}, "pyerrors.fits": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 5.656854249492381}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gm": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 38.2099463490856}, "pyerrors.fits.total_least_squares": {"tf": 15.937377450509228}, "pyerrors.fits.fit_lin": {"tf": 5.916079783099616}, "pyerrors.fits.qqplot": {"tf": 3.605551275463989}, "pyerrors.fits.residual_plot": {"tf": 3.872983346207417}, "pyerrors.fits.error_band": {"tf": 3.7416573867739413}, "pyerrors.fits.ks_test": {"tf": 5}, "pyerrors.input": {"tf": 4.69041575982343}, "pyerrors.input.bdio": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 6.164414002968976}, "pyerrors.input.bdio.write_ADerrors": {"tf": 6.164414002968976}, "pyerrors.input.bdio.read_mesons": {"tf": 8.12403840463596}, "pyerrors.input.bdio.read_dSdm": {"tf": 7.416198487095663}, "pyerrors.input.dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7.745966692414834}, "pyerrors.input.dobs.write_pobs": {"tf": 8.426149773176359}, "pyerrors.input.dobs.read_pobs": {"tf": 7.280109889280518}, "pyerrors.input.dobs.import_dobs_string": {"tf": 7.280109889280518}, "pyerrors.input.dobs.read_dobs": {"tf": 7.745966692414834}, "pyerrors.input.dobs.create_dobs_string": {"tf": 8.06225774829855}, "pyerrors.input.dobs.write_dobs": {"tf": 8.774964387392123}, "pyerrors.input.hadrons": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 10.198039027185569}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 7.3484692283495345}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 6.855654600401044}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 6.557438524302}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 21.307275752662516}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 6.324555320336759}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 6.324555320336759}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 6.782329983125268}, "pyerrors.input.json": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 6.082762530298219}, "pyerrors.input.json.dump_to_json": {"tf": 7}, "pyerrors.input.json.import_json_string": {"tf": 7.681145747868608}, "pyerrors.input.json.load_json": {"tf": 8.06225774829855}, "pyerrors.input.json.dump_dict_to_json": {"tf": 7.3484692283495345}, "pyerrors.input.json.load_json_dict": {"tf": 7.937253933193772}, "pyerrors.input.misc": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 7.14142842854285}, "pyerrors.input.misc.read_pbp": {"tf": 5.477225575051661}, "pyerrors.input.openQCD": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 8.54400374531753}, "pyerrors.input.openQCD.extract_t0": {"tf": 11}, "pyerrors.input.openQCD.extract_w0": {"tf": 11}, "pyerrors.input.openQCD.read_qtop": {"tf": 10.246950765959598}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 8.888194417315589}, "pyerrors.input.openQCD.qtop_projection": {"tf": 5.656854249492381}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 9.797958971132712}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 10.392304845413264}, "pyerrors.input.pandas": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.to_sql": {"tf": 7}, "pyerrors.input.pandas.read_sql": {"tf": 6.244997998398398}, "pyerrors.input.pandas.dump_df": {"tf": 6.324555320336759}, "pyerrors.input.pandas.load_df": {"tf": 6.244997998398398}, "pyerrors.input.sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.sep": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 11.090536506409418}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 11.313708498984761}, "pyerrors.input.utils": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 5.385164807134504}, "pyerrors.input.utils.check_idl": {"tf": 5.385164807134504}, "pyerrors.input.utils.check_params": {"tf": 6.4031242374328485}, "pyerrors.integrate": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 13.228756555322953}, "pyerrors.linalg": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 4.58257569495584}, "pyerrors.linalg.jack_matmul": {"tf": 4.47213595499958}, "pyerrors.linalg.einsum": {"tf": 4.47213595499958}, "pyerrors.linalg.inv": {"tf": 1.7320508075688772}, "pyerrors.linalg.cholesky": {"tf": 1.7320508075688772}, "pyerrors.linalg.det": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1.7320508075688772}, "pyerrors.linalg.eig": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigv": {"tf": 1.7320508075688772}, "pyerrors.linalg.pinv": {"tf": 1.7320508075688772}, "pyerrors.linalg.svd": {"tf": 1.7320508075688772}, "pyerrors.misc": {"tf": 1.7320508075688772}, "pyerrors.misc.print_config": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 5.0990195135927845}, "pyerrors.misc.dump_object": {"tf": 5.916079783099616}, "pyerrors.misc.load_object": {"tf": 5}, "pyerrors.misc.pseudo_Obs": {"tf": 6.557438524302}, "pyerrors.misc.gen_correlated_data": {"tf": 7.0710678118654755}, "pyerrors.mpm": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 6.324555320336759}, "pyerrors.obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 6.928203230275509}, "pyerrors.obs.Obs.__init__": {"tf": 4.898979485566356}, "pyerrors.obs.Obs.S_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.shape": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.r_values": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.deltas": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweighted": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.value": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cov_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.mc_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_content": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.covobs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.gm": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.details": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.reweight": {"tf": 4.58257569495584}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.47213595499958}, "pyerrors.obs.Obs.is_zero": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_tauint": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rho": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.plot_piechart": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.dump": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 6.164414002968976}, "pyerrors.obs.Obs.sqrt": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.log": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.exp": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_drho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_rho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.real": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.imag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.is_zero": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.conjugate": {"tf": 1.7320508075688772}, "pyerrors.obs.gamma_method": {"tf": 2.449489742783178}, "pyerrors.obs.gm": {"tf": 2.449489742783178}, "pyerrors.obs.derived_observable": {"tf": 6.4031242374328485}, "pyerrors.obs.reweight": {"tf": 5.196152422706632}, "pyerrors.obs.correlate": {"tf": 4.898979485566356}, "pyerrors.obs.covariance": {"tf": 6.6332495807108}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 5.291502622129181}, "pyerrors.obs.sort_corr": {"tf": 17.578395831246947}, "pyerrors.obs.import_jackknife": {"tf": 4.47213595499958}, "pyerrors.obs.import_bootstrap": {"tf": 5.0990195135927845}, "pyerrors.obs.merge_obs": {"tf": 4.242640687119285}, "pyerrors.obs.cov_Obs": {"tf": 5.385164807134504}, "pyerrors.roots": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 10.862780491200215}, "pyerrors.special": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 17.435595774162696}, "pyerrors.special.betainc": {"tf": 23.53720459187964}, "pyerrors.special.betaln": {"tf": 16.852299546352718}, "pyerrors.special.polygamma": {"tf": 13.152946437965905}, "pyerrors.special.psi": {"tf": 15.491933384829668}, "pyerrors.special.digamma": {"tf": 15.491933384829668}, "pyerrors.special.gamma": {"tf": 25.553864678361276}, "pyerrors.special.gammaln": {"tf": 19.390719429665317}, "pyerrors.special.gammainc": {"tf": 17.72004514666935}, "pyerrors.special.gammaincc": {"tf": 17.944358444926362}, "pyerrors.special.gammasgn": {"tf": 18.81488772222678}, "pyerrors.special.rgamma": {"tf": 17.08800749063506}, "pyerrors.special.multigammaln": {"tf": 15.905973720586866}, "pyerrors.special.kn": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 19.261360284258224}, "pyerrors.special.y0": {"tf": 18.81488772222678}, "pyerrors.special.j1": {"tf": 18.681541692269406}, "pyerrors.special.y1": {"tf": 18.601075237738275}, "pyerrors.special.jn": {"tf": 26}, "pyerrors.special.yn": {"tf": 25.768197453450252}, "pyerrors.special.i0": {"tf": 19.82422760159901}, "pyerrors.special.i1": {"tf": 19.924858845171276}, "pyerrors.special.iv": {"tf": 26.30589287593181}, "pyerrors.special.ive": {"tf": 25.278449319529077}, "pyerrors.special.erf": {"tf": 17.029386365926403}, "pyerrors.special.erfc": {"tf": 16.46207763315433}, "pyerrors.special.erfinv": {"tf": 21.563858652847824}, "pyerrors.special.erfcinv": {"tf": 19.44222209522358}, "pyerrors.special.logit": {"tf": 20.346989949375804}, "pyerrors.special.expit": {"tf": 21.142374511865974}, "pyerrors.special.logsumexp": {"tf": 25.317977802344327}, "pyerrors.version": {"tf": 1.7320508075688772}}, "df": 288, "w": {"0": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}}, "df": 2, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}}}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 2.23606797749979}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 7, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 46, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 21}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 12}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 48}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 6}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 52, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 9}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 13}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "z": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}}, "df": 5, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 9}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 13}}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}}}, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "i": {"0": {"docs": {"pyerrors.special.i0": {"tf": 2.6457513110645907}, "pyerrors.special.iv": {"tf": 1}}, "df": 2, "e": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}, "1": {"docs": {"pyerrors.special.i1": {"tf": 2.6457513110645907}, "pyerrors.special.iv": {"tf": 1}}, "df": 2, "e": {"docs": {"pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 2.23606797749979}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 2.449489742783178}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 3}, "pyerrors.special.ive": {"tf": 3}}, "df": 20, "s": {"docs": {"pyerrors": {"tf": 8.12403840463596}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 3}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.4641016151377544}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 4}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.4641016151377544}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gamma": {"tf": 3.1622776601683795}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 2.23606797749979}, "pyerrors.special.rgamma": {"tf": 2}, "pyerrors.special.multigammaln": {"tf": 2.449489742783178}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 2.23606797749979}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 2.23606797749979}, "pyerrors.special.jn": {"tf": 2.449489742783178}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2.8284271247461903}, "pyerrors.special.ive": {"tf": 2.449489742783178}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 4}}, "df": 97, "o": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "c": {"9": {"9": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "t": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 2}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 38, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 12, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 8.366600265340756}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.242640687119285}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.449489742783178}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 2.6457513110645907}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 3.1622776601683795}}, "df": 80, "t": {"1": {"6": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 49, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 6}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 2.449489742783178}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}}, "df": 8}}}}}, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 19}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 2.23606797749979}, "pyerrors.special.erfcinv": {"tf": 2.449489742783178}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 11}}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 3}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 11}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "x": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 2}, "pyerrors.special.gammaln": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 2}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 9, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 25}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 9}, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 22, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}}}, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 2.8284271247461903}, "pyerrors.special.gammaincc": {"tf": 2.8284271247461903}}, "df": 5}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}}}, "f": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.extract_w0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.23606797749979}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 2.6457513110645907}}, "df": 68}, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 3, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 45, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 6}}, "s": {"docs": {"pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 9}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1.4142135623730951}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "d": {"0": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 16, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}, "^": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "|": {"docs": {}, "df": 0, "^": {"2": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}}}}, "}": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 3.3166247903554}, "pyerrors.special.ive": {"tf": 2.6457513110645907}}, "df": 4, "e": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 3.4641016151377544}}, "df": 2}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.logit": {"tf": 2.23606797749979}}, "df": 9, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 6.928203230275509}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 2}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 8}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 17}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 11}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 18}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 10, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}}, "df": 17, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 137}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 30, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 5}}}, "y": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 15}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 9, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 2}}, "df": 12}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 13}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 32, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}}, "df": 4}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 3}}}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.special.gamma": {"tf": 3}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 2.23606797749979}, "pyerrors.special.erfc": {"tf": 2.23606797749979}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 2.6457513110645907}, "pyerrors.special.expit": {"tf": 2.6457513110645907}}, "df": 18}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 9, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "^": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 6, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 8, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 8}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 5}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4}}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 18, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2.449489742783178}, "pyerrors.special.erf": {"tf": 1}}, "df": 20}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 15}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.polygamma": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {"pyerrors.special.gamma": {"tf": 2}}, "df": 1, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 5}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}}, "df": 1}}}}}}}}}}, "i": {"docs": {"pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 3.3166247903554}, "pyerrors.special.digamma": {"tf": 3.3166247903554}}, "df": 3}}, "[": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}, ">": {"1": {"docs": {"pyerrors.special.logit": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "a": {"docs": {"pyerrors": {"tf": 8.426149773176359}, "pyerrors.correlators.Corr": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 5.744562646538029}, "pyerrors.fits.total_least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.6457513110645907}, "pyerrors.input.pandas.dump_df": {"tf": 2.23606797749979}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 3}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 2}, "pyerrors.special.betainc": {"tf": 5.830951894845301}, "pyerrors.special.betaln": {"tf": 3.3166247903554}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 3.1622776601683795}, "pyerrors.special.gammaincc": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 4.123105625617661}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 2.8284271247461903}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 4.69041575982343}}, "df": 107, "n": {"docs": {"pyerrors": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 53, "d": {"docs": {"pyerrors": {"tf": 7.211102550927978}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 3.4641016151377544}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 2}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 2.6457513110645907}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 3}, "pyerrors.special.ive": {"tf": 2.449489742783178}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 98}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 11}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 2}}}}}}, "y": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}}, "df": 5}, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 6}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, ":": {"1": {"0": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"5": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"0": {"4": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 2.23606797749979}}, "df": 78}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 26, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 17}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 6.082762530298219}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 2.449489742783178}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 2}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 3.1622776601683795}, "pyerrors.special.gammainc": {"tf": 2.6457513110645907}, "pyerrors.special.gammaincc": {"tf": 2.6457513110645907}, "pyerrors.special.gammasgn": {"tf": 2.449489742783178}, "pyerrors.special.rgamma": {"tf": 2.449489742783178}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 2}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 2}, "pyerrors.special.jn": {"tf": 3.4641016151377544}, "pyerrors.special.yn": {"tf": 3.4641016151377544}, "pyerrors.special.i0": {"tf": 2.6457513110645907}, "pyerrors.special.i1": {"tf": 2.6457513110645907}, "pyerrors.special.iv": {"tf": 3.4641016151377544}, "pyerrors.special.ive": {"tf": 3.1622776601683795}, "pyerrors.special.erf": {"tf": 2.23606797749979}, "pyerrors.special.erfc": {"tf": 2.23606797749979}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 2.449489742783178}, "pyerrors.special.expit": {"tf": 2.449489742783178}, "pyerrors.special.logsumexp": {"tf": 3.1622776601683795}}, "df": 47, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 23}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 6}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 4}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 6}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 11}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 6}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}}, "df": 7, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 7}}}}}}}}, "s": {"docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 2.6457513110645907}, "pyerrors.special.gammaln": {"tf": 2.23606797749979}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 2}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erf": {"tf": 2}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 2.449489742783178}, "pyerrors.special.expit": {"tf": 2.6457513110645907}, "pyerrors.special.logsumexp": {"tf": 2.23606797749979}}, "df": 55, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 11}, "s": {"docs": {"pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 8, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 36}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 2, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 40, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 4}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 10, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 3}}}, "y": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 8}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 6}}}}}}, "x": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}}, "df": 4}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "i": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 12}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 6}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 42, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}}}, "s": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 2}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.jn": {"tf": 2}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 14}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 4, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 8}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 8}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erfinv": {"tf": 2.23606797749979}, "pyerrors.special.erfcinv": {"tf": 2.23606797749979}}, "df": 12, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 7}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 2}}}, "[": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 2}}}}}, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "+": {"1": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "b": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}, ">": {"0": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "|": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 3.7416573867739413}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 10, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 7.14142842854285}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 5.196152422706632}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 3}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.6457513110645907}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.8284271247461903}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 3.605551275463989}, "pyerrors.special.gammaln": {"tf": 2.449489742783178}, "pyerrors.special.gammainc": {"tf": 2.23606797749979}, "pyerrors.special.gammaincc": {"tf": 2.23606797749979}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 3.872983346207417}, "pyerrors.special.yn": {"tf": 3.605551275463989}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 4.47213595499958}, "pyerrors.special.ive": {"tf": 4.795831523312719}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 2.6457513110645907}, "pyerrors.special.expit": {"tf": 2.449489742783178}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 106, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "m": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 9, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 8, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}}, "df": 17, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 21}}}, "s": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 12}}}}}}}, "r": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 65}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 3, "{": {"1": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "+": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}}}}, "2": {"docs": {"pyerrors.special.y0": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}, "docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.6457513110645907}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 5.291502622129181}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}}, "df": 18, "s": {"docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 7}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}, "p": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 2}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.7320508075688772}}, "df": 33}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 10}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 2.23606797749979}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 2}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 44, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 3}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 18, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "g": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 12, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gamma": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 2.23606797749979}}, "df": 27}}, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 6}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 3}}}}}, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 7, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2}, "pyerrors.special.beta": {"tf": 3.4641016151377544}, "pyerrors.special.betainc": {"tf": 4.358898943540674}, "pyerrors.special.betaln": {"tf": 2.449489742783178}, "pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 3}, "pyerrors.special.gammaln": {"tf": 3}, "pyerrors.special.gammainc": {"tf": 3}, "pyerrors.special.gammaincc": {"tf": 3.1622776601683795}, "pyerrors.special.gammasgn": {"tf": 3.1622776601683795}, "pyerrors.special.rgamma": {"tf": 2.8284271247461903}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 2.8284271247461903}, "pyerrors.special.y0": {"tf": 3}, "pyerrors.special.j1": {"tf": 2.8284271247461903}, "pyerrors.special.y1": {"tf": 3.1622776601683795}, "pyerrors.special.jn": {"tf": 3.1622776601683795}, "pyerrors.special.yn": {"tf": 3}, "pyerrors.special.i0": {"tf": 3}, "pyerrors.special.i1": {"tf": 3.1622776601683795}, "pyerrors.special.iv": {"tf": 3.1622776601683795}, "pyerrors.special.ive": {"tf": 3.3166247903554}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 3}, "pyerrors.special.erfcinv": {"tf": 3}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 50, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 29}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 15, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 28, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 5}}}}}, "w": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 6, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 20, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 2.23606797749979}, "pyerrors.special.erfcinv": {"tf": 2.449489742783178}}, "df": 20, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 6}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}, "f": {"docs": {"pyerrors.special.erf": {"tf": 2.23606797749979}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 3}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 4, "c": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 2}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 2.23606797749979}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 3.3166247903554}}, "df": 3}}}, "x": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}}, "df": 2}}, "i": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}}, "df": 2, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 3.1622776601683795}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 4}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 33, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 13, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}}, "df": 6}}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 3}}, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logit": {"tf": 2}, "pyerrors.special.expit": {"tf": 3.872983346207417}}, "df": 2}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 11}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.8284271247461903}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 5}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}}, "df": 5}}}}}}}}}, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}}, "df": 4}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 10}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"1": {"docs": {"pyerrors": {"tf": 3.4641016151377544}}, "df": 1, "|": {"docs": {}, "df": 0, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "2": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 36, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 6, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "r": {"0": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 14}}}, "y": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 15}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 7, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 10, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 22}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 14, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "q": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 3}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 5}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 6}}}}}}}, "t": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 3}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}}, "df": 17, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 5, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 10}, "s": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 9}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.y1": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 22}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}}, "df": 3}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 12}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "/": {"1": {"6": {"0": {"3": {"7": {"5": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 6}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 3, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 13, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": null}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 31}}}, "s": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 17}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 7}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 6, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 21}}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 11}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"1": {"1": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.7320508075688772}}, "df": 1}, "2": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"1": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 6.6332495807108}, "pyerrors.correlators.Corr": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 3.4641016151377544}}, "df": 31, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 3, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 5}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 27, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.449489742783178}}, "df": 9, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 9, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 9}}}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}}, "df": 7}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.linalg.inv": {"tf": 1}}, "df": 7}}, "v": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 5, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 7}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 1}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 4, "/": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 11, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}}}}, "n": {"docs": {"pyerrors": {"tf": 5.744562646538029}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 42, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 17}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 11}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 6}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}}, "df": 2, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}, "f": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1}}, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "p": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "u": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}}, "df": 7}}}}}}, "o": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 10, "f": {"docs": {"pyerrors": {"tf": 10.44030650891055}, "pyerrors.correlators.Corr": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 5.385164807134504}, "pyerrors.fits.total_least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_pobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.8284271247461903}, "pyerrors.input.dobs.write_dobs": {"tf": 2.8284271247461903}, "pyerrors.input.hadrons.read_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_to_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.8284271247461903}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 3}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.3166247903554}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.3166247903554}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 4.123105625617661}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.input.utils.check_params": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 3.1622776601683795}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1.4142135623730951}, "pyerrors.linalg.eig": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigv": {"tf": 1.4142135623730951}, "pyerrors.linalg.pinv": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2.6457513110645907}, "pyerrors.obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 2.449489742783178}, "pyerrors.obs.reweight": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 3.3166247903554}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 3.7416573867739413}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 2}, "pyerrors.special.betainc": {"tf": 3.605551275463989}, "pyerrors.special.betaln": {"tf": 2.449489742783178}, "pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 2.6457513110645907}, "pyerrors.special.digamma": {"tf": 2.6457513110645907}, "pyerrors.special.gamma": {"tf": 2.449489742783178}, "pyerrors.special.gammaln": {"tf": 3.3166247903554}, "pyerrors.special.gammainc": {"tf": 2.6457513110645907}, "pyerrors.special.gammaincc": {"tf": 2.6457513110645907}, "pyerrors.special.gammasgn": {"tf": 2.6457513110645907}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 3.4641016151377544}, "pyerrors.special.kn": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 3}, "pyerrors.special.y0": {"tf": 3.3166247903554}, "pyerrors.special.j1": {"tf": 2.6457513110645907}, "pyerrors.special.y1": {"tf": 3.3166247903554}, "pyerrors.special.jn": {"tf": 3}, "pyerrors.special.yn": {"tf": 2.6457513110645907}, "pyerrors.special.i0": {"tf": 2.8284271247461903}, "pyerrors.special.i1": {"tf": 2.8284271247461903}, "pyerrors.special.iv": {"tf": 3.605551275463989}, "pyerrors.special.ive": {"tf": 3.605551275463989}, "pyerrors.special.erf": {"tf": 2}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 2.449489742783178}, "pyerrors.special.erfcinv": {"tf": 2.6457513110645907}, "pyerrors.special.logit": {"tf": 2.449489742783178}, "pyerrors.special.expit": {"tf": 2.6457513110645907}, "pyerrors.special.logsumexp": {"tf": 3.4641016151377544}}, "df": 150, "f": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {"pyerrors": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 45, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 39, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 34}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 48}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}, "2": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 9.591663046625438}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.449489742783178}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 2.449489742783178}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 78, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 24, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 21}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3}}, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}, "j": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 22, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 11}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 2}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 2.23606797749979}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 2}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 2}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 2.6457513110645907}}, "df": 76, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.23606797749979}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 2.23606797749979}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 2}, "pyerrors.special.jn": {"tf": 3.1622776601683795}, "pyerrors.special.yn": {"tf": 3.1622776601683795}, "pyerrors.special.i0": {"tf": 2.23606797749979}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 3.1622776601683795}, "pyerrors.special.ive": {"tf": 2.6457513110645907}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.special.jn": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 2.6457513110645907}, "pyerrors.special.iv": {"tf": 3.1622776601683795}, "pyerrors.special.ive": {"tf": 2.23606797749979}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}}, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 4, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"1": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"2": {"2": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "g": {"1": {"4": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "n": {"1": {"2": {"5": {"6": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"1": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 7}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 7, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 18, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 2.23606797749979}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 31, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 50, "s": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}, "m": {"docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.358898943540674}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 2.449489742783178}, "pyerrors.obs.sort_corr": {"tf": 2.8284271247461903}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 26}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 10}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 22}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}}, "df": 5, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 18}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "k": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 10}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "x": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 3}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.kn": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2}}, "df": 6}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 20}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 25, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.8284271247461903}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 10, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 10}}}}}}}}}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 7.681145747868608}}, "df": 1}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.multigammaln": {"tf": 2.449489742783178}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 8}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"1": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}, "d": {"5": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}, "pyerrors.special.multigammaln": {"tf": 3.4641016151377544}}, "df": 4, "a": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "a": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.872983346207417}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 2.8284271247461903}, "pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.8284271247461903}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 3}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 40, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}}, "df": 4}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 2}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 11}}, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.erfc": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 7, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 5}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 4.242640687119285}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 24, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}}, "df": 11}}}}}}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}}, "df": 5}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.7320508075688772}}, "df": 5, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 6}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 11}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 6}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 18}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 7}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5}}}}}}}, "v": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 5}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 8}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 36}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.gm": {"tf": 2}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 43, "s": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 10}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}}, "df": 6}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 5}}, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2}}}}}}}}}}}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 5, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 19}}}, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}}, "df": 7}}}, "+": {"1": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "b": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 2.8284271247461903}, "pyerrors.special.betainc": {"tf": 5.5677643628300215}, "pyerrors.special.betaln": {"tf": 3.3166247903554}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 3.1622776601683795}}, "df": 10, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 13}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "{": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 5}}}}}}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 6.244997998398398}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.7416573867739413}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.6457513110645907}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.449489742783178}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 83, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 15}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.special.beta": {"tf": 3.4641016151377544}, "pyerrors.special.betainc": {"tf": 4}, "pyerrors.special.betaln": {"tf": 3.3166247903554}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 3}, "pyerrors.special.betaln": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 2.8284271247461903}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 4}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 2.23606797749979}, "pyerrors.special.y0": {"tf": 2.23606797749979}, "pyerrors.special.j1": {"tf": 2.23606797749979}, "pyerrors.special.y1": {"tf": 2.449489742783178}, "pyerrors.special.jn": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 2.23606797749979}, "pyerrors.special.i1": {"tf": 2.23606797749979}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2.449489742783178}}, "df": 11}}}}}, "y": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2.23606797749979}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 49, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 10}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.6457513110645907}}, "df": 7}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 4}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 44}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}}}}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 2.6457513110645907}, "pyerrors.obs.import_bootstrap": {"tf": 2}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.betainc": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 2}}, "df": 4}}}, "x": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2, "g": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}}, "df": 4}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "*": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 7, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "2": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.prune": {"tf": 4.47213595499958}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}}, "df": 20, "h": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 16.492422502470642}, "pyerrors.correlators.Corr": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 3}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gm": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 2}, "pyerrors.correlators.Corr.deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.plateau": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 4.795831523312719}, "pyerrors.covobs.Covobs.__init__": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 7.3484692283495345}, "pyerrors.fits.total_least_squares": {"tf": 3.872983346207417}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.7320508075688772}, "pyerrors.fits.residual_plot": {"tf": 2}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 3.605551275463989}, "pyerrors.input.dobs.write_pobs": {"tf": 3.872983346207417}, "pyerrors.input.dobs.read_pobs": {"tf": 3}, "pyerrors.input.dobs.import_dobs_string": {"tf": 3.3166247903554}, "pyerrors.input.dobs.read_dobs": {"tf": 3.3166247903554}, "pyerrors.input.dobs.create_dobs_string": {"tf": 4.58257569495584}, "pyerrors.input.dobs.write_dobs": {"tf": 4.58257569495584}, "pyerrors.input.hadrons.read_hd5": {"tf": 3.4641016151377544}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 3.1622776601683795}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.830951894845301}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 2.8284271247461903}, "pyerrors.input.json.dump_to_json": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 3}, "pyerrors.input.json.load_json": {"tf": 3}, "pyerrors.input.json.dump_dict_to_json": {"tf": 3.3166247903554}, "pyerrors.input.json.load_json_dict": {"tf": 2.6457513110645907}, "pyerrors.input.misc.fit_t0": {"tf": 4.58257569495584}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 3}, "pyerrors.input.openQCD.extract_t0": {"tf": 5.477225575051661}, "pyerrors.input.openQCD.extract_w0": {"tf": 5.477225575051661}, "pyerrors.input.openQCD.read_qtop": {"tf": 4.58257569495584}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 4.358898943540674}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 4.58257569495584}, "pyerrors.input.pandas.to_sql": {"tf": 2.23606797749979}, "pyerrors.input.pandas.read_sql": {"tf": 2.449489742783178}, "pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 2.449489742783178}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4.58257569495584}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 4.898979485566356}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 2.6457513110645907}, "pyerrors.integrate.quad": {"tf": 3.3166247903554}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.23606797749979}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.23606797749979}, "pyerrors.obs.Obs": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.gm": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.3166247903554}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 4.123105625617661}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2.8284271247461903}, "pyerrors.obs.reweight": {"tf": 2.23606797749979}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 5.291502622129181}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 2.449489742783178}, "pyerrors.obs.sort_corr": {"tf": 4.898979485566356}, "pyerrors.obs.import_jackknife": {"tf": 2}, "pyerrors.obs.import_bootstrap": {"tf": 3}, "pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 2.449489742783178}, "pyerrors.special.beta": {"tf": 3.4641016151377544}, "pyerrors.special.betainc": {"tf": 5.477225575051661}, "pyerrors.special.betaln": {"tf": 3}, "pyerrors.special.polygamma": {"tf": 2}, "pyerrors.special.psi": {"tf": 4.58257569495584}, "pyerrors.special.digamma": {"tf": 4.58257569495584}, "pyerrors.special.gamma": {"tf": 5.196152422706632}, "pyerrors.special.gammaln": {"tf": 3.872983346207417}, "pyerrors.special.gammainc": {"tf": 3.4641016151377544}, "pyerrors.special.gammaincc": {"tf": 3.4641016151377544}, "pyerrors.special.gammasgn": {"tf": 3.605551275463989}, "pyerrors.special.rgamma": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 4.58257569495584}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 4}, "pyerrors.special.y0": {"tf": 4}, "pyerrors.special.j1": {"tf": 3.872983346207417}, "pyerrors.special.y1": {"tf": 4.123105625617661}, "pyerrors.special.jn": {"tf": 4.795831523312719}, "pyerrors.special.yn": {"tf": 4}, "pyerrors.special.i0": {"tf": 3.1622776601683795}, "pyerrors.special.i1": {"tf": 3.4641016151377544}, "pyerrors.special.iv": {"tf": 5.196152422706632}, "pyerrors.special.ive": {"tf": 5.385164807134504}, "pyerrors.special.erf": {"tf": 2.8284271247461903}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 3.605551275463989}, "pyerrors.special.erfcinv": {"tf": 3.3166247903554}, "pyerrors.special.logit": {"tf": 2.6457513110645907}, "pyerrors.special.expit": {"tf": 3.1622776601683795}, "pyerrors.special.logsumexp": {"tf": 4.58257569495584}}, "df": 165, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 7, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 18}}, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 6}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}, "y": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "m": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 6.324555320336759}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 51}, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 2.449489742783178}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 54}, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1, "g": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 5}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 2}, "pyerrors.special.erfcinv": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 56}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 2}}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "o": {"docs": {"pyerrors": {"tf": 8.831760866327848}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 3}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.plateau": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4}, "pyerrors.fits.total_least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.7416573867739413}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 3}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 3.1622776601683795}, "pyerrors.input.pandas.to_sql": {"tf": 2.23606797749979}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3.3166247903554}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 3.3166247903554}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2.23606797749979}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2.23606797749979}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.8284271247461903}, "pyerrors.obs.sort_corr": {"tf": 2.449489742783178}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.449489742783178}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gamma": {"tf": 2.8284271247461903}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 2.6457513110645907}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 3}}, "df": 133, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 3}}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 3}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 6, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 8}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 7}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 5}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 2}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "+": {"1": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}}, "df": 2}, "2": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}}, "df": 1}}, "/": {"2": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 6}}}}, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 4}, "z": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 16, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 3.1622776601683795}, "pyerrors.special.betainc": {"tf": 2.23606797749979}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 5.744562646538029}, "pyerrors.special.gammaln": {"tf": 3}, "pyerrors.special.gammainc": {"tf": 3}, "pyerrors.special.gammaincc": {"tf": 3}, "pyerrors.special.gammasgn": {"tf": 3.872983346207417}, "pyerrors.special.rgamma": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 2.8284271247461903}}, "df": 32, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 2.449489742783178}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 2.6457513110645907}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.gammainc": {"tf": 2.23606797749979}, "pyerrors.special.gammaincc": {"tf": 2}}, "df": 2, "c": {"docs": {"pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2.23606797749979}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "+": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "@": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 39}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {"pyerrors": {"tf": 8.306623862918075}, "pyerrors.fits.least_squares": {"tf": 11.357816691600547}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.3166247903554}, "pyerrors.obs.sort_corr": {"tf": 4.58257569495584}, "pyerrors.special.beta": {"tf": 4.242640687119285}, "pyerrors.special.betainc": {"tf": 4.795831523312719}, "pyerrors.special.betaln": {"tf": 4.898979485566356}, "pyerrors.special.polygamma": {"tf": 3.4641016151377544}, "pyerrors.special.psi": {"tf": 3.4641016151377544}, "pyerrors.special.digamma": {"tf": 3.4641016151377544}, "pyerrors.special.gamma": {"tf": 7.615773105863909}, "pyerrors.special.gammaln": {"tf": 4.58257569495584}, "pyerrors.special.gammainc": {"tf": 4}, "pyerrors.special.gammaincc": {"tf": 4}, "pyerrors.special.gammasgn": {"tf": 4.795831523312719}, "pyerrors.special.rgamma": {"tf": 3.872983346207417}, "pyerrors.special.multigammaln": {"tf": 4.47213595499958}, "pyerrors.special.j0": {"tf": 5.477225575051661}, "pyerrors.special.y0": {"tf": 5.477225575051661}, "pyerrors.special.j1": {"tf": 5.477225575051661}, "pyerrors.special.y1": {"tf": 5.477225575051661}, "pyerrors.special.jn": {"tf": 7}, "pyerrors.special.yn": {"tf": 7.14142842854285}, "pyerrors.special.i0": {"tf": 5.477225575051661}, "pyerrors.special.i1": {"tf": 5.477225575051661}, "pyerrors.special.iv": {"tf": 6.928203230275509}, "pyerrors.special.ive": {"tf": 6.48074069840786}, "pyerrors.special.erf": {"tf": 4.898979485566356}, "pyerrors.special.erfc": {"tf": 4.898979485566356}, "pyerrors.special.erfinv": {"tf": 6.708203932499369}, "pyerrors.special.erfcinv": {"tf": 6.244997998398398}, "pyerrors.special.logit": {"tf": 6.244997998398398}, "pyerrors.special.expit": {"tf": 6.244997998398398}, "pyerrors.special.logsumexp": {"tf": 6.244997998398398}}, "df": 34}, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 3}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 10, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}}, "df": 4}}, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 3}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 6}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "/": {"5": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 8}, "8": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}}, "z": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 16, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}}, "^": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "f": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "/": {"0": {"3": {"0": {"6": {"0": {"1": {"7": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"1": {"2": {"0": {"8": {"7": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}}, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 12, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 7}}}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.7320508075688772}}, "df": 6, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 5}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 8}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}}, "df": 6}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 17}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 2.449489742783178}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 3.1622776601683795}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.extract_w0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 3.3166247903554}, "pyerrors.input.utils.sort_names": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 2.449489742783178}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.449489742783178}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 56, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 10}, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 12}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 27}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 28}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}}, "df": 4}}}}}, "m": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 3}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2, "\u2013": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 3, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}}, "df": 14}}}}, "q": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2}}, "df": 2}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 7}}, "t": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}}}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 3}}, "df": 11, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.logsumexp": {"tf": 2.8284271247461903}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 5, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"2": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logit": {"tf": 4.242640687119285}, "pyerrors.special.expit": {"tf": 2.23606797749979}}, "df": 2}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.load_object": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 4}}, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 2}}, "df": 6}}}, "c": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}}, "df": 7}, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}}, "df": 1}, "n": {"docs": {"pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 13, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 11, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}}, "df": 1, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 4}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 6}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.23606797749979}}, "df": 5}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 6, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 9}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 18}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}}}}}}, "b": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 17}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 12}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 6}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 6}}, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 4}, "k": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 2}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 10}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 3}}, "df": 4, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 17}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 24, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 2}}}}, "d": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.6457513110645907}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 2}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 61, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 19, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 9}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 14, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 11}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 10, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {"pyerrors.special.beta": {"tf": 2.8284271247461903}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 2.449489742783178}, "pyerrors.special.rgamma": {"tf": 2.23606797749979}}, "df": 7, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 3}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 28}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 35}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 4, "s": {"1": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 3.1622776601683795}, "pyerrors.obs.import_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 2.6457513110645907}}, "df": 11}}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 37}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 5}}}, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}}, "df": 5, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 2.23606797749979}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 17}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 2}}}}, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 40}, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 20, "s": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 6}}}}, "p": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}}, "df": 10}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}, "e": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 13}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 19}, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 12, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 2}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 4}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.j0": {"tf": 2}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.jn": {"tf": 2}}, "df": 3}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}}, "df": 6}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 12}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}}, "df": 14}}}, "w": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 18, "n": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 6}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 3}, "d": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 5, "{": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 3}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.fits.least_squares": {"tf": 3.4641016151377544}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 2}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.yn": {"tf": 2.23606797749979}}, "df": 23, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 20, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 6, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 50}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}}}}}}}}}, "t": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 43, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 33}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}, "w": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 10}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 6}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 8}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 7}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 5, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 50}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 35, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 10}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.4641016151377544}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 2}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 4.358898943540674}}, "df": 34, "r": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.23606797749979}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 30, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 20, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}, "/": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 3}}}, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 3}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 2.23606797749979}, "pyerrors.special.expit": {"tf": 2.23606797749979}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 49, "s": {"docs": {"pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 2.449489742783178}, "pyerrors.special.digamma": {"tf": 2.449489742783178}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}}, "df": 11}}}, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 11}}}, "x": {"0": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 9}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 9}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 4.795831523312719}, "pyerrors.fits.total_least_squares": {"tf": 3}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 4.58257569495584}, "pyerrors.special.polygamma": {"tf": 2.449489742783178}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 3.7416573867739413}, "pyerrors.special.gammaln": {"tf": 3.4641016151377544}, "pyerrors.special.gammainc": {"tf": 3}, "pyerrors.special.gammaincc": {"tf": 3}, "pyerrors.special.gammasgn": {"tf": 3.605551275463989}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 2.8284271247461903}, "pyerrors.special.y0": {"tf": 3.4641016151377544}, "pyerrors.special.j1": {"tf": 2.6457513110645907}, "pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 2.449489742783178}, "pyerrors.special.i0": {"tf": 2.8284271247461903}, "pyerrors.special.i1": {"tf": 2.8284271247461903}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 2.6457513110645907}, "pyerrors.special.erfc": {"tf": 2.8284271247461903}, "pyerrors.special.erfinv": {"tf": 2.8284271247461903}, "pyerrors.special.erfcinv": {"tf": 2.6457513110645907}, "pyerrors.special.logit": {"tf": 3.3166247903554}, "pyerrors.special.expit": {"tf": 3.605551275463989}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 41, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}}, "df": 7}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}, "[": {"0": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "^": {"2": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1, "/": {"4": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 8}}}}}}, "y": {"0": {"docs": {"pyerrors.special.y0": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 1.7320508075688772}}, "df": 2}, "1": {"docs": {"pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 1.7320508075688772}}, "df": 2}, "docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.358898943540674}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 3}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 2}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 3.4641016151377544}, "pyerrors.special.erfcinv": {"tf": 3.1622776601683795}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 24, "o": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}}, "df": 3}}}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.8284271247461903}}, "df": 2}, "v": {"docs": {"pyerrors.special.y0": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 3.4641016151377544}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.logit": {"tf": 1}}, "df": 1}}}}}}, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 19, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.6457513110645907}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 23, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 14, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 17}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 2}}}}}}}}}}}, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2, "[": {"0": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 9, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.23606797749979}}, "df": 21, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 13}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "t": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 7}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}}}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 6}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 7}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 6, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 12}, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 6}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 2.23606797749979}, "pyerrors.special.gammaincc": {"tf": 2.23606797749979}}, "df": 5}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 15, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 99}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 10}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 6}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.reweight": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "f": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 27}}}}}, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 25, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}, "k": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 3}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 4}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 8, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 2.449489742783178}}, "df": 2}}}}}}, "v": {"1": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "v": {"2": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 4.795831523312719}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 4.242640687119285}, "pyerrors.special.ive": {"tf": 4.242640687119285}}, "df": 8, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 38, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 32}, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 24}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 12}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.449489742783178}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.449489742783178}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 18}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 6}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 2}}}}}}}}}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "/": {"2": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}}}, "u": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 22, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 39}, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}}, "df": 16}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 3, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 2}}}}}}, "j": {"0": {"docs": {"pyerrors.special.j0": {"tf": 2.6457513110645907}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}, "1": {"docs": {"pyerrors.special.j1": {"tf": 2.6457513110645907}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2.8284271247461903}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 20, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 4, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}, "x": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 11}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2.23606797749979}, "pyerrors.input.json.dump_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 12}}}, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "}": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}, "^": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "v": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 3.3166247903554}}, "df": 3, "e": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 3}}, "k": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 2.23606797749979}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 24, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.6457513110645907}}, "df": 3}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.6457513110645907}}, "df": 2}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "\u2013": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"1": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 2.449489742783178}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2.23606797749979}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 20}}}, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}}, "df": 2, "c": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}}, "df": 2}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.input.hadrons.read_hd5": {"tf": 2.8284271247461903}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 24}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 38, "h": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 11}}}}, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 5}}}}}}}, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 7}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}}, "u": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"2": {"docs": {}, "df": 0, "f": {"1": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "z": {"docs": {"pyerrors.special.psi": {"tf": 3}, "pyerrors.special.digamma": {"tf": 3}, "pyerrors.special.gamma": {"tf": 4.123105625617661}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 3.872983346207417}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 4.242640687119285}, "pyerrors.special.ive": {"tf": 4.69041575982343}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 12, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 22, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 5}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}}, "df": 7}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 10}}}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "i": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}, "k": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"pyerrors": {"fullname": "pyerrors", "modulename": "pyerrors", "kind": "module", "doc": "

What is pyerrors?

\n\n

pyerrors is a python package for error computation and propagation of Markov chain Monte Carlo data.\nIt is based on the gamma method arXiv:hep-lat/0306017. Some of its features are:

\n\n
    \n
  • automatic differentiation for exact linear error propagation as suggested in arXiv:1809.01289 (partly based on the autograd package).
  • \n
  • treatment of slow modes in the simulation as suggested in arXiv:1009.5228.
  • \n
  • coherent error propagation for data from different Markov chains.
  • \n
  • non-linear fits with x- and y-errors and exact linear error propagation based on automatic differentiation as introduced in arXiv:1809.01289.
  • \n
  • real and complex matrix operations and their error propagation based on automatic differentiation (Matrix inverse, Cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...).
  • \n
\n\n

More detailed examples can found in the GitHub repository \"badge\".

\n\n

If you use pyerrors for research that leads to a publication please consider citing:

\n\n
    \n
  • Fabian Joswig, Simon Kuberski, Justus T. Kuhlmann, Jan Neuendorf, pyerrors: a python framework for error analysis of Monte Carlo data. Comput.Phys.Commun. 288 (2023) 108750.
  • \n
  • Ulli Wolff, Monte Carlo errors with less errors. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
  • \n
  • Alberto Ramos, Automatic differentiation for error analysis of Monte Carlo data. Comput.Phys.Commun. 238 (2019) 19-35.
  • \n
\n\n

and

\n\n
    \n
  • Stefan Schaefer, Rainer Sommer, Francesco Virotta, Critical slowing down and error analysis in lattice QCD simulations. Nucl.Phys.B 845 (2011) 93-119.
  • \n
\n\n

where applicable.

\n\n

There exist similar publicly available implementations of gamma method error analysis suites in Fortran, Julia and Python.

\n\n

Installation

\n\n

Install the most recent release using pip and pypi:

\n\n
\n
python -m pip install pyerrors     # Fresh install\npython -m pip install -U pyerrors  # Update\n
\n
\n\n

Install the most recent release using conda and conda-forge:

\n\n
\n
conda install -c conda-forge pyerrors  # Fresh install\nconda update -c conda-forge pyerrors   # Update\n
\n
\n\n

Install the current develop version:

\n\n
\n
python -m pip install -U --no-deps --force-reinstall git+https://github.com/fjosw/pyerrors.git@develop\n
\n
\n\n

(Also works for any feature branch).

\n\n

Basic example

\n\n
\n
import numpy as np\nimport pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name']) # Initialize an Obs object\nmy_new_obs = 2 * np.log(my_obs) / my_obs ** 2 # Construct derived Obs object\nmy_new_obs.gamma_method()                     # Estimate the statistical error\nprint(my_new_obs)                             # Print the result to stdout\n> 0.31498(72)\n
\n
\n\n

The Obs class

\n\n

pyerrors introduces a new datatype, Obs, which simplifies error propagation and estimation for auto- and cross-correlated data.\nAn Obs object can be initialized with two arguments, the first is a list containing the samples for an observable from a Monte Carlo chain.\nThe samples can either be provided as python list or as numpy array.\nThe second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble. It is crucial for the correct error propagation that observations from the same Monte Carlo history are labeled with the same name. See Multiple ensembles/replica for details.

\n\n
\n
import pyerrors as pe\n\nmy_obs = pe.Obs([samples], ['ensemble_name'])\n
\n
\n\n

Error propagation

\n\n

When performing mathematical operations on Obs objects the correct error propagation is intrinsically taken care of using a first order Taylor expansion\n$$\\delta_f^i=\\sum_\\alpha \\bar{f}_\\alpha \\delta_\\alpha^i\\,,\\quad \\delta_\\alpha^i=a_\\alpha^i-\\bar{a}_\\alpha\\,,$$\nas introduced in arXiv:hep-lat/0306017.\nThe required derivatives $\\bar{f}_\\alpha$ are evaluated up to machine precision via automatic differentiation as suggested in arXiv:1809.01289.

\n\n

The Obs class is designed such that mathematical numpy functions can be used on Obs just as for regular floats.

\n\n
\n
import numpy as np\nimport pyerrors as pe\n\nmy_obs1 = pe.Obs([samples1], ['ensemble_name'])\nmy_obs2 = pe.Obs([samples2], ['ensemble_name'])\n\nmy_sum = my_obs1 + my_obs2\n\nmy_m_eff = np.log(my_obs1 / my_obs2)\n\niamzero = my_m_eff - my_m_eff\n# Check that value and fluctuations are zero within machine precision\nprint(iamzero == 0.0)\n> True\n
\n
\n\n

Error estimation

\n\n

The error estimation within pyerrors is based on the gamma method introduced in arXiv:hep-lat/0306017.\nAfter having arrived at the derived quantity of interest the gamma_method can be called as detailed in the following example.

\n\n
\n
my_sum.gamma_method()\nprint(my_sum)\n> 1.70(57)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 5.72046658e-01 +/- 7.56746598e-02 (33.650%)\n>  t_int         2.71422900e+00 +/- 6.40320983e-01 S = 2.00\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n
\n\n

The gamma_method is not automatically called after every intermediate step in order to prevent computational overhead.

\n\n

We use the following definition of the integrated autocorrelation time established in Madras & Sokal 1988\n$$\\tau_\\mathrm{int}=\\frac{1}{2}+\\sum_{t=1}^{W}\\rho(t)\\geq \\frac{1}{2}\\,.$$\nThe window $W$ is determined via the automatic windowing procedure described in arXiv:hep-lat/0306017.\nThe standard value for the parameter $S$ of this automatic windowing procedure is $S=2$. Other values for $S$ can be passed to the gamma_method as parameter.

\n\n
\n
my_sum.gamma_method(S=3.0)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 6.30675201e-01 +/- 1.04585650e-01 (37.099%)\n>  t_int         3.29909703e+00 +/- 9.77310102e-01 S = 3.00\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n
\n\n

The integrated autocorrelation time $\\tau_\\mathrm{int}$ and the autocorrelation function $\\rho(W)$ can be monitored via the methods pyerrors.obs.Obs.plot_tauint and pyerrors.obs.Obs.plot_rho.

\n\n

If the parameter $S$ is set to zero it is assumed that the dataset does not exhibit any autocorrelation and the window size is chosen to be zero.\nIn this case the error estimate is identical to the sample standard error.

\n\n

Exponential tails

\n\n

Slow modes in the Monte Carlo history can be accounted for by attaching an exponential tail to the autocorrelation function $\\rho$ as suggested in arXiv:1009.5228. The longest autocorrelation time in the history, $\\tau_\\mathrm{exp}$, can be passed to the gamma_method as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.

\n\n
\n
my_sum.gamma_method(tau_exp=7.2)\nmy_sum.details()\n> Result         1.70000000e+00 +/- 6.28097762e-01 +/- 5.79077524e-02 (36.947%)\n>  t_int         3.27218667e+00 +/- 7.99583654e-01 tau_exp = 7.20,  N_sigma = 1\n> 1000 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble_name' : 1000 configurations (from 1 to 1000)\n
\n
\n\n

For the full API see pyerrors.obs.Obs.gamma_method.

\n\n

Multiple ensembles/replica

\n\n

Error propagation for multiple ensembles (Markov chains with different simulation parameters) is handled automatically. Ensembles are uniquely identified by their name.

\n\n
\n
obs1 = pe.Obs([samples1], ['ensemble1'])\nobs2 = pe.Obs([samples2], ['ensemble2'])\n\nmy_sum = obs1 + obs2\nmy_sum.details()\n> Result   2.00697958e+00\n> 1500 samples in 2 ensembles:\n>   \u00b7 Ensemble 'ensemble1' : 1000 configurations (from 1 to 1000)\n>   \u00b7 Ensemble 'ensemble2' : 500 configurations (from 1 to 500)\n
\n
\n\n

Observables from the same Monte Carlo chain have to be initialized with the same name for correct error propagation. If different names were used in this case the data would be treated as statistically independent resulting in loss of relevant information and a potential over or under estimate of the statistical error.

\n\n

pyerrors identifies multiple replica (independent Markov chains with identical simulation parameters) by the vertical bar | in the name of the data set.

\n\n
\n
obs1 = pe.Obs([samples1], ['ensemble1|r01'])\nobs2 = pe.Obs([samples2], ['ensemble1|r02'])\n\n> my_sum = obs1 + obs2\n> my_sum.details()\n> Result   2.00697958e+00\n> 1500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1'\n>     \u00b7 Replicum 'r01' : 1000 configurations (from 1 to 1000)\n>     \u00b7 Replicum 'r02' : 500 configurations (from 1 to 500)\n
\n
\n\n

Error estimation for multiple ensembles

\n\n

In order to keep track of different error analysis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.

\n\n
\n
pe.Obs.S_dict['ensemble1'] = 2.5\npe.Obs.tau_exp_dict['ensemble2'] = 8.0\npe.Obs.tau_exp_dict['ensemble3'] = 2.0\n
\n
\n\n

In case the gamma_method is called without any parameters it will use the values specified in the dictionaries for the respective ensembles.\nPassing arguments to the gamma_method still dominates over the dictionaries.

\n\n

Irregular Monte Carlo chains

\n\n

Obs objects defined on irregular Monte Carlo chains can be initialized with the parameter idl.

\n\n
\n
# Observable defined on configurations 20 to 519\nobs1 = pe.Obs([samples1], ['ensemble1'], idl=[range(20, 520)])\nobs1.details()\n> Result         9.98319881e-01\n> 500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 500 configurations (from 20 to 519)\n\n# Observable defined on every second configuration between 5 and 1003\nobs2 = pe.Obs([samples2], ['ensemble1'], idl=[range(5, 1005, 2)])\nobs2.details()\n> Result         9.99100712e-01\n> 500 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 500 configurations (from 5 to 1003 in steps of 2)\n\n# Observable defined on configurations 2, 9, 28, 29 and 501\nobs3 = pe.Obs([samples3], ['ensemble1'], idl=[[2, 9, 28, 29, 501]])\nobs3.details()\n> Result         1.01718064e+00\n> 5 samples in 1 ensemble:\n>   \u00b7 Ensemble 'ensemble1' : 5 configurations (irregular range)\n
\n
\n\n

Obs objects defined on regular and irregular histories of the same ensemble can be combined with each other and the correct error propagation and estimation is automatically taken care of.

\n\n

Warning: Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions.\nMake sure to check the autocorrelation time with e.g. pyerrors.obs.Obs.plot_rho or pyerrors.obs.Obs.plot_tauint.

\n\n

For the full API see pyerrors.obs.Obs.

\n\n

Correlators

\n\n

When one is not interested in single observables but correlation functions, pyerrors offers the Corr class which simplifies the corresponding error propagation and provides the user with a set of standard methods. In order to initialize a Corr objects one needs to arrange the data as a list of Obs

\n\n
\n
my_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3])\nprint(my_corr)\n> x0/a  Corr(x0/a)\n> ------------------\n> 0      0.7957(80)\n> 1      0.5156(51)\n> 2      0.3227(33)\n> 3      0.2041(21)\n
\n
\n\n

In case the correlation functions are not defined on the outermost timeslices, for example because of fixed boundary conditions, a padding can be introduced.

\n\n
\n
my_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3], padding=[1, 1])\nprint(my_corr)\n> x0/a  Corr(x0/a)\n> ------------------\n> 0\n> 1      0.7957(80)\n> 2      0.5156(51)\n> 3      0.3227(33)\n> 4      0.2041(21)\n> 5\n
\n
\n\n

The individual entries of a correlator can be accessed via slicing

\n\n
\n
print(my_corr[3])\n> 0.3227(33)\n
\n
\n\n

Error propagation with the Corr class works very similar to Obs objects. Mathematical operations are overloaded and Corr objects can be computed together with other Corr objects, Obs objects or real numbers and integers.

\n\n
\n
my_new_corr = 0.3 * my_corr[2] * my_corr * my_corr + 12 / my_corr\n
\n
\n\n

pyerrors provides the user with a set of regularly used methods for the manipulation of correlator objects:

\n\n
    \n
  • Corr.gamma_method applies the gamma method to all entries of the correlator.
  • \n
  • Corr.m_eff to construct effective masses. Various variants for periodic and fixed temporal boundary conditions are available.
  • \n
  • Corr.deriv returns the first derivative of the correlator as Corr. Different discretizations of the numerical derivative are available.
  • \n
  • Corr.second_deriv returns the second derivative of the correlator as Corr. Different discretizations of the numerical derivative are available.
  • \n
  • Corr.symmetric symmetrizes parity even correlations functions, assuming periodic boundary conditions.
  • \n
  • Corr.anti_symmetric anti-symmetrizes parity odd correlations functions, assuming periodic boundary conditions.
  • \n
  • Corr.T_symmetry averages a correlator with its time symmetry partner, assuming fixed boundary conditions.
  • \n
  • Corr.plateau extracts a plateau value from the correlator in a given range.
  • \n
  • Corr.roll periodically shifts the correlator.
  • \n
  • Corr.reverse reverses the time ordering of the correlator.
  • \n
  • Corr.correlate constructs a disconnected correlation function from the correlator and another Corr or Obs object.
  • \n
  • Corr.reweight reweights the correlator.
  • \n
\n\n

pyerrors can also handle matrices of correlation functions and extract energy states from these matrices via a generalized eigenvalue problem (see pyerrors.correlators.Corr.GEVP).

\n\n

For the full API see pyerrors.correlators.Corr.

\n\n

Complex valued observables

\n\n

pyerrors can handle complex valued observables via the class pyerrors.obs.CObs.\nCObs are initialized with a real and an imaginary part which both can be Obs valued.

\n\n
\n
my_real_part = pe.Obs([samples1], ['ensemble1'])\nmy_imag_part = pe.Obs([samples2], ['ensemble1'])\n\nmy_cobs = pe.CObs(my_real_part, my_imag_part)\nmy_cobs.gamma_method()\nprint(my_cobs)\n> (0.9959(91)+0.659(28)j)\n
\n
\n\n

Elementary mathematical operations are overloaded and samples are properly propagated as for the Obs class.

\n\n
\n
my_derived_cobs = (my_cobs + my_cobs.conjugate()) / np.abs(my_cobs)\nmy_derived_cobs.gamma_method()\nprint(my_derived_cobs)\n> (1.668(23)+0.0j)\n
\n
\n\n

The Covobs class

\n\n

In many projects, auxiliary data that is not based on Monte Carlo chains enters. Examples are experimentally determined mesons masses which are used to set the scale or renormalization constants. These numbers come with an error that has to be propagated through the analysis. The Covobs class allows to define such quantities in pyerrors. Furthermore, external input might consist of correlated quantities. An example are the parameters of an interpolation formula, which are defined via mean values and a covariance matrix between all parameters. The contribution of the interpolation formula to the error of a derived quantity therefore might depend on the complete covariance matrix.

\n\n

This concept is built into the definition of Covobs. In pyerrors, external input is defined by $M$ mean values, a $M\\times M$ covariance matrix, where $M=1$ is permissible, and a name that uniquely identifies the covariance matrix. Below, we define the pion mass, based on its mean value and error, 134.9768(5). Note, that the square of the error enters cov_Obs, since the second argument of this function is the covariance matrix of the Covobs.

\n\n
\n
import pyerrors.obs as pe\n\nmpi = pe.cov_Obs(134.9768, 0.0005**2, 'pi^0 mass')\nmpi.gamma_method()\nmpi.details()\n> Result         1.34976800e+02 +/- 5.00000000e-04 +/- 0.00000000e+00 (0.000%)\n>  pi^0 mass     5.00000000e-04\n> 0 samples in 1 ensemble:\n>   \u00b7 Covobs   'pi^0 mass'\n
\n
\n\n

The resulting object mpi is an Obs that contains a Covobs. In the following, it may be handled as any other Obs. The contribution of the covariance matrix to the error of an Obs is determined from the $M \\times M$ covariance matrix $\\Sigma$ and the gradient of the Obs with respect to the external quantities, which is the $1\\times M$ Jacobian matrix $J$, via\n$$s = \\sqrt{J^T \\Sigma J}\\,,$$\nwhere the Jacobian is computed for each derived quantity via automatic differentiation.

\n\n

Correlated auxiliary data is defined similarly to above, e.g., via

\n\n
\n
RAP = pe.cov_Obs([16.7457, -19.0475], [[3.49591, -6.07560], [-6.07560, 10.5834]], 'R_AP, 1906.03445, (5.3a)')\nprint(RAP)\n> [Obs[16.7(1.9)], Obs[-19.0(3.3)]]\n
\n
\n\n

where RAP now is a list of two Obs that contains the two correlated parameters.

\n\n

Since the gradient of a derived observable with respect to an external covariance matrix is propagated through the entire analysis, the Covobs class allows to quote the derivative of a result with respect to the external quantities. If these derivatives are published together with the result, small shifts in the definition of external quantities, e.g., the definition of the physical point, can be performed a posteriori based on the published information. This may help to compare results of different groups. The gradient of an Obs o with respect to a covariance matrix with the identifying string k may be accessed via

\n\n
\n
o.covobs[k].grad\n
\n
\n\n

Error propagation in iterative algorithms

\n\n

pyerrors supports exact linear error propagation for iterative algorithms like various variants of non-linear least squares fits or root finding. The derivatives required for the error propagation are calculated as described in arXiv:1809.01289.

\n\n

Least squares fits

\n\n

Standard non-linear least square fits with errors on the dependent but not the independent variables can be performed with pyerrors.fits.least_squares. As default solver the Levenberg-Marquardt algorithm implemented in scipy is used.

\n\n

Fit functions have to be of the following form

\n\n
\n
import autograd.numpy as anp\n\ndef func(a, x):\n    return a[1] * anp.exp(-a[0] * x)\n
\n
\n\n

It is important that numerical functions refer to autograd.numpy instead of numpy for the automatic differentiation in iterative algorithms to work properly.

\n\n

Fits can then be performed via

\n\n
\n
fit_result = pe.fits.least_squares(x, y, func)\nprint("\\n", fit_result)\n> Fit with 2 parameters\n> Method: Levenberg-Marquardt\n> `ftol` termination condition is satisfied.\n> chisquare/d.o.f.: 0.9593035785160936\n\n>  Goodness of fit:\n> \u03c7\u00b2/d.o.f. = 0.959304\n> p-value   = 0.5673\n> Fit parameters:\n> 0      0.0548(28)\n> 1      1.933(64)\n
\n
\n\n

where x is a list or numpy.array of floats and y is a list or numpy.array of Obs.

\n\n

Data stored in Corr objects can be fitted directly using the Corr.fit method.

\n\n
\n
my_corr = pe.Corr(y)\nfit_result = my_corr.fit(func, fitrange=[12, 25])\n
\n
\n\n

this can simplify working with absolute fit ranges and takes care of gaps in the data automatically.

\n\n

For fit functions with multiple independent variables the fit function can be of the form

\n\n
\n
def func(a, x):\n    (x1, x2) = x\n    return a[0] * x1 ** 2 + a[1] * x2\n
\n
\n\n

pyerrors also supports correlated fits which can be triggered via the parameter correlated_fit=True.\nDetails about how the required covariance matrix is estimated can be found in pyerrors.obs.covariance.\nDirect visualizations of the performed fits can be triggered via resplot=True or qqplot=True.

\n\n

For all available options including combined fits to multiple datasets see pyerrors.fits.least_squares.

\n\n

Total least squares fits

\n\n

pyerrors can also fit data with errors on both the dependent and independent variables using the total least squares method also referred to as orthogonal distance regression as implemented in scipy, see pyerrors.fits.least_squares. The syntax is identical to the standard least squares case, the only difference being that x also has to be a list or numpy.array of Obs.

\n\n

For the full API see pyerrors.fits for fits and pyerrors.roots for finding roots of functions.

\n\n

Matrix operations

\n\n

pyerrors provides wrappers for Obs- and CObs-valued matrix operations based on numpy.linalg. The supported functions include:

\n\n
    \n
  • inv for the matrix inverse.
  • \n
  • cholseky for the Cholesky decomposition.
  • \n
  • det for the matrix determinant.
  • \n
  • eigh for eigenvalues and eigenvectors of hermitean matrices.
  • \n
  • eig for eigenvalues of general matrices.
  • \n
  • pinv for the Moore-Penrose pseudoinverse.
  • \n
  • svd for the singular-value-decomposition.
  • \n
\n\n

For the full API see pyerrors.linalg.

\n\n

Export data

\n\n

\n\n

The preferred exported file format within pyerrors is json.gz. Files written to this format are valid JSON files that have been compressed using gzip. The structure of the content is inspired by the dobs format of the ALPHA collaboration. The aim of the format is to facilitate the storage of data in a self-contained way such that, even years after the creation of the file, it is possible to extract all necessary information:

\n\n
    \n
  • What observables are stored? Possibly: How exactly are they defined.
  • \n
  • How does each single ensemble or external quantity contribute to the error of the observable?
  • \n
  • Who did write the file when and on which machine?
  • \n
\n\n

This can be achieved by storing all information in one single file. The export routines of pyerrors are written such that as much information as possible is written automatically as described in the following example

\n\n
\n
my_obs = pe.Obs([samples], ["test_ensemble"])\nmy_obs.tag = "My observable"\n\npe.input.json.dump_to_json(my_obs, "test_output_file", description="This file contains a test observable")\n# For a single observable one can equivalently use the class method dump\nmy_obs.dump("test_output_file", description="This file contains a test observable")\n\ncheck = pe.input.json.load_json("test_output_file")\n\nprint(my_obs == check)\n> True\n
\n
\n\n

The format also allows to directly write out the content of Corr objects or lists and arrays of Obs objects by passing the desired data to pyerrors.input.json.dump_to_json.

\n\n

json.gz format specification

\n\n

The first entries of the file provide optional auxiliary information:

\n\n
    \n
  • program is a string that indicates which program was used to write the file.
  • \n
  • version is a string that specifies the version of the format.
  • \n
  • who is a string that specifies the user name of the creator of the file.
  • \n
  • date is a string and contains the creation date of the file.
  • \n
  • host is a string and contains the hostname of the machine where the file has been written.
  • \n
  • description contains information on the content of the file. This field is not filled automatically in pyerrors. The user is advised to provide as detailed information as possible in this field. Examples are: Input files of measurements or simulations, LaTeX formulae or references to publications to specify how the observables have been computed, details on the analysis strategy, ... This field may be any valid JSON type. Strings, arrays or objects (equivalent to dicts in python) are well suited to provide information.
  • \n
\n\n

The only necessary entry of the file is the field\n-obsdata, an array that contains the actual data.

\n\n

Each entry of the array belongs to a single structure of observables. Currently, these structures can be either of Obs, list, numpy.ndarray, Corr. All Obs inside a structure (with dimension > 0) have to be defined on the same set of configurations. Different structures, that are represented by entries of the array obsdata, are treated independently. Each entry of the array obsdata has the following required entries:

\n\n
    \n
  • type is a string that specifies the type of the structure. This allows to parse the content to the correct form after reading the file. It is always possible to interpret the content as list of Obs.
  • \n
  • value is an array that contains the mean values of the Obs inside the structure.\nThe following entries are optional:
  • \n
  • layout is a string that specifies the layout of multi-dimensional structures. Examples are \"2, 2\" for a 2x2 dimensional matrix or \"64, 4, 4\" for a Corr with $T=64$ and 4x4 matrices on each time slices. \"1\" denotes a single Obs. Multi-dimensional structures are stored in row-major format (see below).
  • \n
  • tag is any JSON type. It contains additional information concerning the structure. The tag of an Obs in pyerrors is written here.
  • \n
  • reweighted is a Bool that may be used to specify, whether the Obs in the structure have been reweighted.
  • \n
  • data is an array that contains the data from MC chains. We will define it below.
  • \n
  • cdata is an array that contains the data from external quantities with an error (Covobs in pyerrors). We will define it below.
  • \n
\n\n

The array data contains the data from MC chains. Each entry of the array corresponds to one ensemble and contains:

\n\n
    \n
  • id, a string that contains the name of the ensemble
  • \n
  • replica, an array that contains an entry per replica of the ensemble.
  • \n
\n\n

Each entry of replica contains\nname, a string that contains the name of the replica\ndeltas, an array that contains the actual data.

\n\n

Each entry in deltas corresponds to one configuration of the replica and has $1+N$ many entries. The first entry is an integer that specifies the configuration number that, together with ensemble and replica name, may be used to uniquely identify the configuration on which the data has been obtained. The following N entries specify the deltas, i.e., the deviation of the observable from the mean value on this configuration, of each Obs inside the structure. Multi-dimensional structures are stored in a row-major format. For primary observables, such as correlation functions, $value + delta_i$ matches the primary data obtained on the configuration.

\n\n

The array cdata contains information about the contribution of auxiliary observables, represented by Covobs in pyerrors, to the total error of the observables. Each entry of the array belongs to one auxiliary covariance matrix and contains:

\n\n
    \n
  • id, a string that identifies the covariance matrix
  • \n
  • layout, a string that defines the dimensions of the $M\\times M$ covariance matrix (has to be \"M, M\" or \"1\").
  • \n
  • cov, an array that contains the $M\\times M$ many entries of the covariance matrix, stored in row-major format.
  • \n
  • grad, an array that contains N entries, one for each Obs inside the structure. Each entry itself is an array, that contains the M gradients of the Nth observable with respect to the quantity that corresponds to the Mth diagonal entry of the covariance matrix.
  • \n
\n\n

A JSON schema that may be used to verify the correctness of a file with respect to the format definition is stored in ./examples/json_schema.json. The schema is a self-descriptive format definition and contains an exemplary file.

\n\n

Julia I/O routines for the json.gz format, compatible with ADerrors.jl, can be found here.

\n"}, "pyerrors.correlators": {"fullname": "pyerrors.correlators", "modulename": "pyerrors.correlators", "kind": "module", "doc": "

\n"}, "pyerrors.correlators.Corr": {"fullname": "pyerrors.correlators.Corr", "modulename": "pyerrors.correlators", "qualname": "Corr", "kind": "class", "doc": "

The class for a correlator (time dependent sequence of pe.Obs).

\n\n

Everything, this class does, can be achieved using lists or arrays of Obs.\nBut it is simply more convenient to have a dedicated object for correlators.\nOne often wants to add or multiply correlators of the same length at every timeslice and it is inconvenient\nto iterate over all timeslices for every operation. This is especially true, when dealing with matrices.

\n\n

The correlator can have two types of content: An Obs at every timeslice OR a matrix at every timeslice.\nOther dependency (eg. spatial) are not supported.

\n\n

The Corr class can also deal with missing measurements or paddings for fixed boundary conditions.\nThe missing entries are represented via the None object.

\n\n
Initialization
\n\n

A simple correlator can be initialized with a list or a one-dimensional array of Obs or Cobs

\n\n
\n
corr11 = pe.Corr([obs1, obs2])\ncorr11 = pe.Corr(np.array([obs1, obs2]))\n
\n
\n\n

A matrix-valued correlator can either be initialized via a two-dimensional array of Corr objects

\n\n
\n
matrix_corr = pe.Corr(np.array([[corr11, corr12], [corr21, corr22]]))\n
\n
\n\n

or alternatively via a three-dimensional array of Obs or CObs of shape (T, N, N) where T is\nthe temporal extent of the correlator and N is the dimension of the matrix.

\n"}, "pyerrors.correlators.Corr.__init__": {"fullname": "pyerrors.correlators.Corr.__init__", "modulename": "pyerrors.correlators", "qualname": "Corr.__init__", "kind": "function", "doc": "

Initialize a Corr object.

\n\n
Parameters
\n\n
    \n
  • data_input (list or array):\nlist of Obs or list of arrays of Obs or array of Corrs (see class docstring for details).
  • \n
  • padding (list, optional):\nList with two entries where the first labels the padding\nat the front of the correlator and the second the padding\nat the back.
  • \n
  • prange (list, optional):\nList containing the first and last timeslice of the plateau\nregion identified for this correlator.
  • \n
\n", "signature": "(data_input, padding=[0, 0], prange=None)"}, "pyerrors.correlators.Corr.tag": {"fullname": "pyerrors.correlators.Corr.tag", "modulename": "pyerrors.correlators", "qualname": "Corr.tag", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.content": {"fullname": "pyerrors.correlators.Corr.content", "modulename": "pyerrors.correlators", "qualname": "Corr.content", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.T": {"fullname": "pyerrors.correlators.Corr.T", "modulename": "pyerrors.correlators", "qualname": "Corr.T", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.prange": {"fullname": "pyerrors.correlators.Corr.prange", "modulename": "pyerrors.correlators", "qualname": "Corr.prange", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.reweighted": {"fullname": "pyerrors.correlators.Corr.reweighted", "modulename": "pyerrors.correlators", "qualname": "Corr.reweighted", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.gamma_method": {"fullname": "pyerrors.correlators.Corr.gamma_method", "modulename": "pyerrors.correlators", "qualname": "Corr.gamma_method", "kind": "function", "doc": "

Apply the gamma method to the content of the Corr.

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.gm": {"fullname": "pyerrors.correlators.Corr.gm", "modulename": "pyerrors.correlators", "qualname": "Corr.gm", "kind": "function", "doc": "

Apply the gamma method to the content of the Corr.

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.projected": {"fullname": "pyerrors.correlators.Corr.projected", "modulename": "pyerrors.correlators", "qualname": "Corr.projected", "kind": "function", "doc": "

We need to project the Correlator with a Vector to get a single value at each timeslice.

\n\n

The method can use one or two vectors.\nIf two are specified it returns v1@G@v2 (the order might be very important.)\nBy default it will return the lowest source, which usually means unsmeared-unsmeared (0,0), but it does not have to

\n", "signature": "(self, vector_l=None, vector_r=None, normalize=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.item": {"fullname": "pyerrors.correlators.Corr.item", "modulename": "pyerrors.correlators", "qualname": "Corr.item", "kind": "function", "doc": "

Picks the element [i,j] from every matrix and returns a correlator containing one Obs per timeslice.

\n\n
Parameters
\n\n
    \n
  • i (int):\nFirst index to be picked.
  • \n
  • j (int):\nSecond index to be picked.
  • \n
\n", "signature": "(self, i, j):", "funcdef": "def"}, "pyerrors.correlators.Corr.plottable": {"fullname": "pyerrors.correlators.Corr.plottable", "modulename": "pyerrors.correlators", "qualname": "Corr.plottable", "kind": "function", "doc": "

Outputs the correlator in a plotable format.

\n\n

Outputs three lists containing the timeslice index, the value on each\ntimeslice and the error on each timeslice.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.symmetric": {"fullname": "pyerrors.correlators.Corr.symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.symmetric", "kind": "function", "doc": "

Symmetrize the correlator around x0=0.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.anti_symmetric": {"fullname": "pyerrors.correlators.Corr.anti_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.anti_symmetric", "kind": "function", "doc": "

Anti-symmetrize the correlator around x0=0.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.is_matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.is_matrix_symmetric", "kind": "function", "doc": "

Checks whether a correlator matrices is symmetric on every timeslice.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.trace": {"fullname": "pyerrors.correlators.Corr.trace", "modulename": "pyerrors.correlators", "qualname": "Corr.trace", "kind": "function", "doc": "

Calculates the per-timeslice trace of a correlator matrix.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.matrix_symmetric": {"fullname": "pyerrors.correlators.Corr.matrix_symmetric", "modulename": "pyerrors.correlators", "qualname": "Corr.matrix_symmetric", "kind": "function", "doc": "

Symmetrizes the correlator matrices on every timeslice.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.GEVP": {"fullname": "pyerrors.correlators.Corr.GEVP", "modulename": "pyerrors.correlators", "qualname": "Corr.GEVP", "kind": "function", "doc": "

Solve the generalized eigenvalue problem on the correlator matrix and returns the corresponding eigenvectors.

\n\n

The eigenvectors are sorted according to the descending eigenvalues, the zeroth eigenvector(s) correspond to the\nlargest eigenvalue(s). The eigenvector(s) for the individual states can be accessed via slicing

\n\n
\n
C.GEVP(t0=2)[0]  # Ground state vector(s)\nC.GEVP(t0=2)[:3]  # Vectors for the lowest three states\n
\n
\n\n
Parameters
\n\n
    \n
  • t0 (int):\nThe time t0 for the right hand side of the GEVP according to $G(t)v_i=\\lambda_i G(t_0)v_i$
  • \n
  • ts (int):\nfixed time $G(t_s)v_i=\\lambda_i G(t_0)v_i$ if sort=None.\nIf sort=\"Eigenvector\" it gives a reference point for the sorting method.
  • \n
  • sort (string):\nIf this argument is set, a list of self.T vectors per state is returned. If it is set to None, only one vector is returned.\n
      \n
    • \"Eigenvalue\": The eigenvector is chosen according to which eigenvalue it belongs individually on every timeslice. (default)
    • \n
    • \"Eigenvector\": Use the method described in arXiv:2004.10472 to find the set of v(t) belonging to the state.\nThe reference state is identified by its eigenvalue at $t=t_s$.
    • \n
    • None: The GEVP is solved only at ts, no sorting is necessary
    • \n
  • \n
  • vector_obs (bool):\nIf True, uncertainties are propagated in the eigenvector computation (default False).
  • \n
\n\n
Other Parameters
\n\n
    \n
  • state (int):\nReturns only the vector(s) for a specified state. The lowest state is zero.
  • \n
  • method (str):\nMethod used to solve the GEVP.\n
      \n
    • \"eigh\": Use scipy.linalg.eigh to solve the GEVP. (default for vector_obs=False)
    • \n
    • \"cholesky\": Use manually implemented solution via the Cholesky decomposition. Automatically chosen if vector_obs==True.
    • \n
  • \n
\n", "signature": "(self, t0, ts=None, sort='Eigenvalue', vector_obs=False, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.Eigenvalue": {"fullname": "pyerrors.correlators.Corr.Eigenvalue", "modulename": "pyerrors.correlators", "qualname": "Corr.Eigenvalue", "kind": "function", "doc": "

Determines the eigenvalue of the GEVP by solving and projecting the correlator

\n\n
Parameters
\n\n
    \n
  • state (int):\nThe state one is interested in ordered by energy. The lowest state is zero.
  • \n
  • All other parameters are identical to the ones of Corr.GEVP.
  • \n
\n", "signature": "(self, t0, ts=None, state=0, sort='Eigenvalue', **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.Hankel": {"fullname": "pyerrors.correlators.Corr.Hankel", "modulename": "pyerrors.correlators", "qualname": "Corr.Hankel", "kind": "function", "doc": "

Constructs an NxN Hankel matrix

\n\n

C(t) c(t+1) ... c(t+n-1)\nC(t+1) c(t+2) ... c(t+n)\n.................\nC(t+(n-1)) c(t+n) ... c(t+2(n-1))

\n\n
Parameters
\n\n
    \n
  • N (int):\nDimension of the Hankel matrix
  • \n
  • periodic (bool, optional):\ndetermines whether the matrix is extended periodically
  • \n
\n", "signature": "(self, N, periodic=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.roll": {"fullname": "pyerrors.correlators.Corr.roll", "modulename": "pyerrors.correlators", "qualname": "Corr.roll", "kind": "function", "doc": "

Periodically shift the correlator by dt timeslices

\n\n
Parameters
\n\n
    \n
  • dt (int):\nnumber of timeslices
  • \n
\n", "signature": "(self, dt):", "funcdef": "def"}, "pyerrors.correlators.Corr.reverse": {"fullname": "pyerrors.correlators.Corr.reverse", "modulename": "pyerrors.correlators", "qualname": "Corr.reverse", "kind": "function", "doc": "

Reverse the time ordering of the Corr

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.thin": {"fullname": "pyerrors.correlators.Corr.thin", "modulename": "pyerrors.correlators", "qualname": "Corr.thin", "kind": "function", "doc": "

Thin out a correlator to suppress correlations

\n\n
Parameters
\n\n
    \n
  • spacing (int):\nKeep only every 'spacing'th entry of the correlator
  • \n
  • offset (int):\nOffset the equal spacing
  • \n
\n", "signature": "(self, spacing=2, offset=0):", "funcdef": "def"}, "pyerrors.correlators.Corr.correlate": {"fullname": "pyerrors.correlators.Corr.correlate", "modulename": "pyerrors.correlators", "qualname": "Corr.correlate", "kind": "function", "doc": "

Correlate the correlator with another correlator or Obs

\n\n
Parameters
\n\n
    \n
  • partner (Obs or Corr):\npartner to correlate the correlator with.\nCan either be an Obs which is correlated with all entries of the\ncorrelator or a Corr of same length.
  • \n
\n", "signature": "(self, partner):", "funcdef": "def"}, "pyerrors.correlators.Corr.reweight": {"fullname": "pyerrors.correlators.Corr.reweight", "modulename": "pyerrors.correlators", "qualname": "Corr.reweight", "kind": "function", "doc": "

Reweight the correlator.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl.
  • \n
\n", "signature": "(self, weight, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.T_symmetry": {"fullname": "pyerrors.correlators.Corr.T_symmetry", "modulename": "pyerrors.correlators", "qualname": "Corr.T_symmetry", "kind": "function", "doc": "

Return the time symmetry average of the correlator and its partner

\n\n
Parameters
\n\n
    \n
  • partner (Corr):\nTime symmetry partner of the Corr
  • \n
  • parity (int):\nParity quantum number of the correlator, can be +1 or -1
  • \n
\n", "signature": "(self, partner, parity=1):", "funcdef": "def"}, "pyerrors.correlators.Corr.deriv": {"fullname": "pyerrors.correlators.Corr.deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.deriv", "kind": "function", "doc": "

Return the first derivative of the correlator with respect to x0.

\n\n
Parameters
\n\n
    \n
  • variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice: symmetric, forward, backward, improved, log, default: symmetric
  • \n
\n", "signature": "(self, variant='symmetric'):", "funcdef": "def"}, "pyerrors.correlators.Corr.second_deriv": {"fullname": "pyerrors.correlators.Corr.second_deriv", "modulename": "pyerrors.correlators", "qualname": "Corr.second_deriv", "kind": "function", "doc": "

Return the second derivative of the correlator with respect to x0.

\n\n
Parameters
\n\n
    \n
  • variant (str):\ndecides which definition of the finite differences derivative is used.\nAvailable choice:\n - symmetric (default)\n $$\\tilde{\\partial}^2_0 f(x_0) = f(x_0+1)-2f(x_0)+f(x_0-1)$$\n - big_symmetric\n $$\\partial^2_0 f(x_0) = \\frac{f(x_0+2)-2f(x_0)+f(x_0-2)}{4}$$\n - improved\n $$\\partial^2_0 f(x_0) = \\frac{-f(x_0+2) + 16 * f(x_0+1) - 30 * f(x_0) + 16 * f(x_0-1) - f(x_0-2)}{12}$$\n - log\n $$f(x) = \\tilde{\\partial}^2_0 log(f(x_0))+(\\tilde{\\partial}_0 log(f(x_0)))^2$$
  • \n
\n", "signature": "(self, variant='symmetric'):", "funcdef": "def"}, "pyerrors.correlators.Corr.m_eff": {"fullname": "pyerrors.correlators.Corr.m_eff", "modulename": "pyerrors.correlators", "qualname": "Corr.m_eff", "kind": "function", "doc": "

Returns the effective mass of the correlator as correlator object

\n\n
Parameters
\n\n
    \n
  • variant (str):\nlog : uses the standard effective mass log(C(t) / C(t+1))\ncosh, periodic : Use periodicity of the correlator by solving C(t) / C(t+1) = cosh(m * (t - T/2)) / cosh(m * (t + 1 - T/2)) for m.\nsinh : Use anti-periodicity of the correlator by solving C(t) / C(t+1) = sinh(m * (t - T/2)) / sinh(m * (t + 1 - T/2)) for m.\nSee, e.g., arXiv:1205.5380\narccosh : Uses the explicit form of the symmetrized correlator (not recommended)\nlogsym: uses the symmetric effective mass log(C(t-1) / C(t+1))/2
  • \n
  • guess (float):\nguess for the root finder, only relevant for the root variant
  • \n
\n", "signature": "(self, variant='log', guess=1.0):", "funcdef": "def"}, "pyerrors.correlators.Corr.fit": {"fullname": "pyerrors.correlators.Corr.fit", "modulename": "pyerrors.correlators", "qualname": "Corr.fit", "kind": "function", "doc": "

Fits function to the data

\n\n
Parameters
\n\n
    \n
  • function (obj):\nfunction to fit to the data. See fits.least_squares for details.
  • \n
  • fitrange (list):\nTwo element list containing the timeslices on which the fit is supposed to start and stop.\nCaution: This range is inclusive as opposed to standard python indexing.\nfitrange=[4, 6] corresponds to the three entries 4, 5 and 6.\nIf not specified, self.prange or all timeslices are used.
  • \n
  • silent (bool):\nDecides whether output is printed to the standard output.
  • \n
\n", "signature": "(self, function, fitrange=None, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.plateau": {"fullname": "pyerrors.correlators.Corr.plateau", "modulename": "pyerrors.correlators", "qualname": "Corr.plateau", "kind": "function", "doc": "

Extract a plateau value from a Corr object

\n\n
Parameters
\n\n
    \n
  • plateau_range (list):\nlist with two entries, indicating the first and the last timeslice\nof the plateau region.
  • \n
  • method (str):\nmethod to extract the plateau.\n 'fit' fits a constant to the plateau region\n 'avg', 'average' or 'mean' just average over the given timeslices.
  • \n
  • auto_gamma (bool):\napply gamma_method with default parameters to the Corr. Defaults to None
  • \n
\n", "signature": "(self, plateau_range=None, method='fit', auto_gamma=False):", "funcdef": "def"}, "pyerrors.correlators.Corr.set_prange": {"fullname": "pyerrors.correlators.Corr.set_prange", "modulename": "pyerrors.correlators", "qualname": "Corr.set_prange", "kind": "function", "doc": "

Sets the attribute prange of the Corr object.

\n", "signature": "(self, prange):", "funcdef": "def"}, "pyerrors.correlators.Corr.show": {"fullname": "pyerrors.correlators.Corr.show", "modulename": "pyerrors.correlators", "qualname": "Corr.show", "kind": "function", "doc": "

Plots the correlator using the tag of the correlator as label if available.

\n\n
Parameters
\n\n
    \n
  • x_range (list):\nlist of two values, determining the range of the x-axis e.g. [4, 8].
  • \n
  • comp (Corr or list of Corr):\nCorrelator or list of correlators which are plotted for comparison.\nThe tags of these correlators are used as labels if available.
  • \n
  • logscale (bool):\nSets y-axis to logscale.
  • \n
  • plateau (Obs):\nPlateau value to be visualized in the figure.
  • \n
  • fit_res (Fit_result):\nFit_result object to be visualized.
  • \n
  • fit_key (str):\nKey for the fit function in Fit_result.fit_function (for combined fits).
  • \n
  • ylabel (str):\nLabel for the y-axis.
  • \n
  • save (str):\npath to file in which the figure should be saved.
  • \n
  • auto_gamma (bool):\nApply the gamma method with standard parameters to all correlators and plateau values before plotting.
  • \n
  • hide_sigma (float):\nHides data points from the first value on which is consistent with zero within 'hide_sigma' standard errors.
  • \n
  • references (list):\nList of floating point values that are displayed as horizontal lines for reference.
  • \n
  • title (string):\nOptional title of the figure.
  • \n
\n", "signature": "(\tself,\tx_range=None,\tcomp=None,\ty_range=None,\tlogscale=False,\tplateau=None,\tfit_res=None,\tfit_key=None,\tylabel=None,\tsave=None,\tauto_gamma=False,\thide_sigma=None,\treferences=None,\ttitle=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.spaghetti_plot": {"fullname": "pyerrors.correlators.Corr.spaghetti_plot", "modulename": "pyerrors.correlators", "qualname": "Corr.spaghetti_plot", "kind": "function", "doc": "

Produces a spaghetti plot of the correlator suited to monitor exceptional configurations.

\n\n
Parameters
\n\n
    \n
  • logscale (bool):\nDetermines whether the scale of the y-axis is logarithmic or standard.
  • \n
\n", "signature": "(self, logscale=True):", "funcdef": "def"}, "pyerrors.correlators.Corr.dump": {"fullname": "pyerrors.correlators.Corr.dump", "modulename": "pyerrors.correlators", "qualname": "Corr.dump", "kind": "function", "doc": "

Dumps the Corr into a file of chosen type

\n\n
Parameters
\n\n
    \n
  • filename (str):\nName of the file to be saved.
  • \n
  • datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n", "signature": "(self, filename, datatype='json.gz', **kwargs):", "funcdef": "def"}, "pyerrors.correlators.Corr.print": {"fullname": "pyerrors.correlators.Corr.print", "modulename": "pyerrors.correlators", "qualname": "Corr.print", "kind": "function", "doc": "

\n", "signature": "(self, print_range=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.sqrt": {"fullname": "pyerrors.correlators.Corr.sqrt", "modulename": "pyerrors.correlators", "qualname": "Corr.sqrt", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.log": {"fullname": "pyerrors.correlators.Corr.log", "modulename": "pyerrors.correlators", "qualname": "Corr.log", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.exp": {"fullname": "pyerrors.correlators.Corr.exp", "modulename": "pyerrors.correlators", "qualname": "Corr.exp", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.sin": {"fullname": "pyerrors.correlators.Corr.sin", "modulename": "pyerrors.correlators", "qualname": "Corr.sin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.cos": {"fullname": "pyerrors.correlators.Corr.cos", "modulename": "pyerrors.correlators", "qualname": "Corr.cos", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.tan": {"fullname": "pyerrors.correlators.Corr.tan", "modulename": "pyerrors.correlators", "qualname": "Corr.tan", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.sinh": {"fullname": "pyerrors.correlators.Corr.sinh", "modulename": "pyerrors.correlators", "qualname": "Corr.sinh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.cosh": {"fullname": "pyerrors.correlators.Corr.cosh", "modulename": "pyerrors.correlators", "qualname": "Corr.cosh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.tanh": {"fullname": "pyerrors.correlators.Corr.tanh", "modulename": "pyerrors.correlators", "qualname": "Corr.tanh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsin": {"fullname": "pyerrors.correlators.Corr.arcsin", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arccos": {"fullname": "pyerrors.correlators.Corr.arccos", "modulename": "pyerrors.correlators", "qualname": "Corr.arccos", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arctan": {"fullname": "pyerrors.correlators.Corr.arctan", "modulename": "pyerrors.correlators", "qualname": "Corr.arctan", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arcsinh": {"fullname": "pyerrors.correlators.Corr.arcsinh", "modulename": "pyerrors.correlators", "qualname": "Corr.arcsinh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arccosh": {"fullname": "pyerrors.correlators.Corr.arccosh", "modulename": "pyerrors.correlators", "qualname": "Corr.arccosh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.arctanh": {"fullname": "pyerrors.correlators.Corr.arctanh", "modulename": "pyerrors.correlators", "qualname": "Corr.arctanh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.correlators.Corr.real": {"fullname": "pyerrors.correlators.Corr.real", "modulename": "pyerrors.correlators", "qualname": "Corr.real", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.imag": {"fullname": "pyerrors.correlators.Corr.imag", "modulename": "pyerrors.correlators", "qualname": "Corr.imag", "kind": "variable", "doc": "

\n"}, "pyerrors.correlators.Corr.prune": {"fullname": "pyerrors.correlators.Corr.prune", "modulename": "pyerrors.correlators", "qualname": "Corr.prune", "kind": "function", "doc": "

Project large correlation matrix to lowest states

\n\n

This method can be used to reduce the size of an (N x N) correlation matrix\nto (Ntrunc x Ntrunc) by solving a GEVP at very early times where the noise\nis still small.

\n\n
Parameters
\n\n
    \n
  • Ntrunc (int):\nRank of the target matrix.
  • \n
  • tproj (int):\nTime where the eigenvectors are evaluated, corresponds to ts in the GEVP method.\nThe default value is 3.
  • \n
  • t0proj (int):\nTime where the correlation matrix is inverted. Choosing t0proj=1 is strongly\ndiscouraged for O(a) improved theories, since the correctness of the procedure\ncannot be granted in this case. The default value is 2.
  • \n
  • basematrix (Corr):\nCorrelation matrix that is used to determine the eigenvectors of the\nlowest states based on a GEVP. basematrix is taken to be the Corr itself if\nis is not specified.
  • \n
\n\n
Notes
\n\n

We have the basematrix $C(t)$ and the target matrix $G(t)$. We start by solving\nthe GEVP $$C(t) v_n(t, t_0) = \\lambda_n(t, t_0) C(t_0) v_n(t, t_0)$$ where $t \\equiv t_\\mathrm{proj}$\nand $t_0 \\equiv t_{0, \\mathrm{proj}}$. The target matrix is projected onto the subspace of the\nresulting eigenvectors $v_n, n=1,\\dots,N_\\mathrm{trunc}$ via\n$$G^\\prime_{i, j}(t) = (v_i, G(t) v_j)$$. This allows to reduce the size of a large\ncorrelation matrix and to remove some noise that is added by irrelevant operators.\nThis may allow to use the GEVP on $G(t)$ at late times such that the theoretically motivated\nbound $t_0 \\leq t/2$ holds, since the condition number of $G(t)$ is decreased, compared to $C(t)$.

\n", "signature": "(self, Ntrunc, tproj=3, t0proj=2, basematrix=None):", "funcdef": "def"}, "pyerrors.correlators.Corr.N": {"fullname": "pyerrors.correlators.Corr.N", "modulename": "pyerrors.correlators", "qualname": "Corr.N", "kind": "variable", "doc": "

\n"}, "pyerrors.covobs": {"fullname": "pyerrors.covobs", "modulename": "pyerrors.covobs", "kind": "module", "doc": "

\n"}, "pyerrors.covobs.Covobs": {"fullname": "pyerrors.covobs.Covobs", "modulename": "pyerrors.covobs", "qualname": "Covobs", "kind": "class", "doc": "

\n"}, "pyerrors.covobs.Covobs.__init__": {"fullname": "pyerrors.covobs.Covobs.__init__", "modulename": "pyerrors.covobs", "qualname": "Covobs.__init__", "kind": "function", "doc": "

Initialize Covobs object.

\n\n
Parameters
\n\n
    \n
  • mean (float):\nMean value of the new Obs
  • \n
  • cov (list or array):\n2d Covariance matrix or 1d diagonal entries
  • \n
  • name (str):\nidentifier for the covariance matrix
  • \n
  • pos (int):\nPosition of the variance belonging to mean in cov.\nIs taken to be 1 if cov is 0-dimensional
  • \n
  • grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
  • \n
\n", "signature": "(mean, cov, name, pos=None, grad=None)"}, "pyerrors.covobs.Covobs.name": {"fullname": "pyerrors.covobs.Covobs.name", "modulename": "pyerrors.covobs", "qualname": "Covobs.name", "kind": "variable", "doc": "

\n"}, "pyerrors.covobs.Covobs.value": {"fullname": "pyerrors.covobs.Covobs.value", "modulename": "pyerrors.covobs", "qualname": "Covobs.value", "kind": "variable", "doc": "

\n"}, "pyerrors.covobs.Covobs.errsq": {"fullname": "pyerrors.covobs.Covobs.errsq", "modulename": "pyerrors.covobs", "qualname": "Covobs.errsq", "kind": "function", "doc": "

Return the variance (= square of the error) of the Covobs

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.covobs.Covobs.cov": {"fullname": "pyerrors.covobs.Covobs.cov", "modulename": "pyerrors.covobs", "qualname": "Covobs.cov", "kind": "variable", "doc": "

\n"}, "pyerrors.covobs.Covobs.grad": {"fullname": "pyerrors.covobs.Covobs.grad", "modulename": "pyerrors.covobs", "qualname": "Covobs.grad", "kind": "variable", "doc": "

\n"}, "pyerrors.dirac": {"fullname": "pyerrors.dirac", "modulename": "pyerrors.dirac", "kind": "module", "doc": "

\n"}, "pyerrors.dirac.gammaX": {"fullname": "pyerrors.dirac.gammaX", "modulename": "pyerrors.dirac", "qualname": "gammaX", "kind": "variable", "doc": "

\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j],\n [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, -0.-1.j, 0.+0.j, 0.+0.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaY": {"fullname": "pyerrors.dirac.gammaY", "modulename": "pyerrors.dirac", "qualname": "gammaY", "kind": "variable", "doc": "

\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],\n [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaZ": {"fullname": "pyerrors.dirac.gammaZ", "modulename": "pyerrors.dirac", "qualname": "gammaZ", "kind": "variable", "doc": "

\n", "default_value": "array([[ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gammaT": {"fullname": "pyerrors.dirac.gammaT", "modulename": "pyerrors.dirac", "qualname": "gammaT", "kind": "variable", "doc": "

\n", "default_value": "array([[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n [1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])"}, "pyerrors.dirac.gamma": {"fullname": "pyerrors.dirac.gamma", "modulename": "pyerrors.dirac", "qualname": "gamma", "kind": "variable", "doc": "

\n", "default_value": "array([[[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j],\n [ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, -0.-1.j, 0.+0.j, 0.+0.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j],\n [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [-1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -0.-1.j],\n [-0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j]],\n\n [[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n [ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]])"}, "pyerrors.dirac.gamma5": {"fullname": "pyerrors.dirac.gamma5", "modulename": "pyerrors.dirac", "qualname": "gamma5", "kind": "variable", "doc": "

\n", "default_value": "array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j],\n [ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j]])"}, "pyerrors.dirac.identity": {"fullname": "pyerrors.dirac.identity", "modulename": "pyerrors.dirac", "qualname": "identity", "kind": "variable", "doc": "

\n", "default_value": "array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])"}, "pyerrors.dirac.epsilon_tensor": {"fullname": "pyerrors.dirac.epsilon_tensor", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor", "kind": "function", "doc": "

Rank-3 epsilon tensor

\n\n

Based on https://codegolf.stackexchange.com/a/160375

\n\n
Returns
\n\n
    \n
  • elem (int):\nElement (i,j,k) of the epsilon tensor of rank 3
  • \n
\n", "signature": "(i, j, k):", "funcdef": "def"}, "pyerrors.dirac.epsilon_tensor_rank4": {"fullname": "pyerrors.dirac.epsilon_tensor_rank4", "modulename": "pyerrors.dirac", "qualname": "epsilon_tensor_rank4", "kind": "function", "doc": "

Rank-4 epsilon tensor

\n\n

Extension of https://codegolf.stackexchange.com/a/160375

\n\n
Returns
\n\n
    \n
  • elem (int):\nElement (i,j,k,o) of the epsilon tensor of rank 4
  • \n
\n", "signature": "(i, j, k, o):", "funcdef": "def"}, "pyerrors.dirac.Grid_gamma": {"fullname": "pyerrors.dirac.Grid_gamma", "modulename": "pyerrors.dirac", "qualname": "Grid_gamma", "kind": "function", "doc": "

Returns gamma matrix in Grid labeling.

\n", "signature": "(gamma_tag):", "funcdef": "def"}, "pyerrors.fits": {"fullname": "pyerrors.fits", "modulename": "pyerrors.fits", "kind": "module", "doc": "

\n"}, "pyerrors.fits.Fit_result": {"fullname": "pyerrors.fits.Fit_result", "modulename": "pyerrors.fits", "qualname": "Fit_result", "kind": "class", "doc": "

Represents fit results.

\n\n
Attributes
\n\n
    \n
  • fit_parameters (list):\nresults for the individual fit parameters,\nalso accessible via indices.
  • \n
  • chisquare_by_dof (float):\nreduced chisquare.
  • \n
  • p_value (float):\np-value of the fit
  • \n
  • t2_p_value (float):\nHotelling t-squared p-value for correlated fits.
  • \n
\n", "bases": "collections.abc.Sequence"}, "pyerrors.fits.Fit_result.fit_parameters": {"fullname": "pyerrors.fits.Fit_result.fit_parameters", "modulename": "pyerrors.fits", "qualname": "Fit_result.fit_parameters", "kind": "variable", "doc": "

\n"}, "pyerrors.fits.Fit_result.gamma_method": {"fullname": "pyerrors.fits.Fit_result.gamma_method", "modulename": "pyerrors.fits", "qualname": "Fit_result.gamma_method", "kind": "function", "doc": "

Apply the gamma method to all fit parameters

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.fits.Fit_result.gm": {"fullname": "pyerrors.fits.Fit_result.gm", "modulename": "pyerrors.fits", "qualname": "Fit_result.gm", "kind": "function", "doc": "

Apply the gamma method to all fit parameters

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.fits.least_squares": {"fullname": "pyerrors.fits.least_squares", "modulename": "pyerrors.fits", "qualname": "least_squares", "kind": "function", "doc": "

Performs a non-linear fit to y = func(x).\n ```

\n\n
Parameters
\n\n
    \n
  • For an uncombined fit:
  • \n
  • x (list):\nlist of floats.
  • \n
  • y (list):\nlist of Obs.
  • \n
  • func (object):\nfit function, has to be of the form

    \n\n
    \n
    import autograd.numpy as anp\n\ndef func(a, x):\n    return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
    \n
    \n\n

    For multiple x values func can be of the form

    \n\n
    \n
    def func(a, x):\n    (x1, x2) = x\n    return a[0] * x1 ** 2 + a[1] * x2\n
    \n
    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • OR For a combined fit:
  • \n
  • x (dict):\ndict of lists.
  • \n
  • y (dict):\ndict of lists of Obs.
  • \n
  • funcs (dict):\ndict of objects\nfit functions have to be of the form (here a[0] is the common fit parameter)\n```python\nimport autograd.numpy as anp\nfuncs = {\"a\": func_a,\n \"b\": func_b}

    \n\n

    def func_a(a, x):\n return a[1] * anp.exp(-a[0] * x)

    \n\n

    def func_b(a, x):\n return a[2] * anp.exp(-a[0] * x)

    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • priors (dict or list, optional):\npriors can either be a dictionary with integer keys and the corresponding priors as values or\na list with an entry for every parameter in the fit. The entries can either be\nObs (e.g. results from a previous fit) or strings containing a value and an error formatted like\n0.548(23), 500(40) or 0.5(0.4)
  • \n
  • silent (bool, optional):\nIf True all output to the console is omitted (default False).
  • \n
  • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for\nnon-linear fits with many parameters. In case of correlated fits the guess is used to perform\nan uncorrelated fit which then serves as guess for the correlated fit.
  • \n
  • method (str, optional):\ncan be used to choose an alternative method for the minimization of chisquare.\nThe possible methods are the ones which can be used for scipy.optimize.minimize and\nmigrad of iminuit. If no method is specified, Levenberg\u2013Marquardt is used.\nReliable alternatives are migrad, Powell and Nelder-Mead.
  • \n
  • tol (float, optional):\ncan be used (only for combined fits and methods other than Levenberg\u2013Marquardt) to set the tolerance for convergence\nto a different value to either speed up convergence at the cost of a larger error on the fitted parameters (and possibly\ninvalid estimates for parameter uncertainties) or smaller values to get more accurate parameter values\nThe stopping criterion depends on the method, e.g. migrad: edm_max = 0.002 * tol * errordef (EDM criterion: edm < edm_max)
  • \n
  • correlated_fit (bool):\nIf True, use the full inverse covariance matrix in the definition of the chisquare cost function.\nFor details about how the covariance matrix is estimated see pyerrors.obs.covariance.\nIn practice the correlation matrix is Cholesky decomposed and inverted (instead of the covariance matrix).\nThis procedure should be numerically more stable as the correlation matrix is typically better conditioned (Jacobi preconditioning).
  • \n
  • inv_chol_cov_matrix [array,list], optional: array: shape = (number of y values) X (number of y values)\nlist: for an uncombined fit: [\"\"]\nfor a combined fit: list of keys belonging to the corr_matrix saved in the array, must be the same as the keys of the y dict in alphabetical order\nIf correlated_fit=True is set as well, can provide an inverse covariance matrix (y errors, dy_f included!) of your own choosing for a correlated fit.\nThe matrix must be a lower triangular matrix constructed from a Cholesky decomposition: The function invert_corr_cov_cholesky(corr, inverrdiag) can be\nused to construct it from a correlation matrix (corr) and the errors dy_f of the data points (inverrdiag = np.diag(1 / np.asarray(dy_f))). For the correct\nordering the correlation matrix (corr) can be sorted via the function sort_corr(corr, kl, yd) where kl is the list of keys and yd the y dict.
  • \n
  • expected_chisquare (bool):\nIf True estimates the expected chisquare which is\ncorrected by effects caused by correlated input data (default False).
  • \n
  • resplot (bool):\nIf True, a plot which displays fit, data and residuals is generated (default False).
  • \n
  • qqplot (bool):\nIf True, a quantile-quantile plot of the fit result is generated (default False).
  • \n
  • num_grad (bool):\nUse numerical differentation instead of automatic differentiation to perform the error propagation (default False).
  • \n
  • n_parms (int, optional):\nNumber of fit parameters. Overrides automatic detection of parameter count.\nUseful when autodetection fails. Must match the length of initial_guess or priors (if provided).
  • \n
\n\n
Returns
\n\n
    \n
  • output (Fit_result):\nParameters and information on the fitted result.
  • \n
\n\n
Examples
\n\n
\n
>>> # Example of a correlated (correlated_fit = True, inv_chol_cov_matrix handed over) combined fit, based on a randomly generated data set\n>>> import numpy as np\n>>> from scipy.stats import norm\n>>> from scipy.linalg import cholesky\n>>> import pyerrors as pe\n>>> # generating the random data set\n>>> num_samples = 400\n>>> N = 3\n>>> x = np.arange(N)\n>>> x1 = norm.rvs(size=(N, num_samples)) # generate random numbers\n>>> x2 = norm.rvs(size=(N, num_samples)) # generate random numbers\n>>> r = r1 = r2 = np.zeros((N, N))\n>>> y = {}\n>>> for i in range(N):\n>>>    for j in range(N):\n>>>        r[i, j] = np.exp(-0.8 * np.fabs(i - j)) # element in correlation matrix\n>>> errl = np.sqrt([3.4, 2.5, 3.6]) # set y errors\n>>> for i in range(N):\n>>>    for j in range(N):\n>>>        r[i, j] *= errl[i] * errl[j] # element in covariance matrix\n>>> c = cholesky(r, lower=True)\n>>> y = {'a': np.dot(c, x1), 'b': np.dot(c, x2)} # generate y data with the covariance matrix defined\n>>> # random data set has been generated, now the dictionaries and the inverse covariance matrix to be handed over are built\n>>> x_dict = {}\n>>> y_dict = {}\n>>> chol_inv_dict = {}\n>>> data = []\n>>> for key in y.keys():\n>>>    x_dict[key] = x\n>>>    for i in range(N):\n>>>        data.append(pe.Obs([[i + 1 + o for o in y[key][i]]], ['ens'])) # generate y Obs from the y data\n>>>    [o.gamma_method() for o in data]\n>>>    corr = pe.covariance(data, correlation=True)\n>>>    inverrdiag = np.diag(1 / np.asarray([o.dvalue for o in data]))\n>>>    chol_inv = pe.obs.invert_corr_cov_cholesky(corr, inverrdiag) # gives form of the inverse covariance matrix needed for the combined correlated fit below\n>>> y_dict = {'a': data[:3], 'b': data[3:]}\n>>> # common fit parameter p[0] in combined fit\n>>> def fit1(p, x):\n>>>    return p[0] + p[1] * x\n>>> def fit2(p, x):\n>>>    return p[0] + p[2] * x\n>>> fitf_dict = {'a': fit1, 'b':fit2}\n>>> fitp_inv_cov_combined_fit = pe.least_squares(x_dict,y_dict, fitf_dict, correlated_fit = True, inv_chol_cov_matrix = [chol_inv,['a','b']])\nFit with 3 parameters\nMethod: Levenberg-Marquardt\n`ftol` termination condition is satisfied.\nchisquare/d.o.f.: 0.5388013574561786 # random\nfit parameters [1.11897846 0.96361162 0.92325319] # random\n
\n
\n", "signature": "(x, y, func, priors=None, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.fits.total_least_squares": {"fullname": "pyerrors.fits.total_least_squares", "modulename": "pyerrors.fits", "qualname": "total_least_squares", "kind": "function", "doc": "

Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.

\n\n
Parameters
\n\n
    \n
  • x (list):\nlist of Obs, or a tuple of lists of Obs
  • \n
  • y (list):\nlist of Obs. The dvalues of the Obs are used as x- and yerror for the fit.
  • \n
  • func (object):\nfunc has to be of the form

    \n\n
    \n
    import autograd.numpy as anp\n\ndef func(a, x):\n    return a[0] + a[1] * x + a[2] * anp.sinh(x)\n
    \n
    \n\n

    For multiple x values func can be of the form

    \n\n
    \n
    def func(a, x):\n    (x1, x2) = x\n    return a[0] * x1 ** 2 + a[1] * x2\n
    \n
    \n\n

    It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation\nwill not work.

  • \n
  • silent (bool, optional):\nIf True all output to the console is omitted (default False).
  • \n
  • initial_guess (list):\ncan provide an initial guess for the input parameters. Relevant for non-linear\nfits with many parameters.
  • \n
  • expected_chisquare (bool):\nIf True prints the expected chisquare which is\ncorrected by effects caused by correlated input data.\nThis can take a while as the full correlation matrix\nhas to be calculated (default False).
  • \n
  • num_grad (bool):\nUse numerical differentiation instead of automatic differentiation to perform the error propagation (default False).
  • \n
  • n_parms (int, optional):\nNumber of fit parameters. Overrides automatic detection of parameter count.\nUseful when autodetection fails. Must match the length of initial_guess (if provided).
  • \n
\n\n
Notes
\n\n

Based on the orthogonal distance regression module of scipy.

\n\n
Returns
\n\n
    \n
  • output (Fit_result):\nParameters and information on the fitted result.
  • \n
\n", "signature": "(x, y, func, silent=False, **kwargs):", "funcdef": "def"}, "pyerrors.fits.fit_lin": {"fullname": "pyerrors.fits.fit_lin", "modulename": "pyerrors.fits", "qualname": "fit_lin", "kind": "function", "doc": "

Performs a linear fit to y = n + m * x and returns two Obs n, m.

\n\n
Parameters
\n\n
    \n
  • x (list):\nCan either be a list of floats in which case no xerror is assumed, or\na list of Obs, where the dvalues of the Obs are used as xerror for the fit.
  • \n
  • y (list):\nList of Obs, the dvalues of the Obs are used as yerror for the fit.
  • \n
\n\n
Returns
\n\n
    \n
  • fit_parameters (list[Obs]):\nLIist of fitted observables.
  • \n
\n", "signature": "(x, y, **kwargs):", "funcdef": "def"}, "pyerrors.fits.qqplot": {"fullname": "pyerrors.fits.qqplot", "modulename": "pyerrors.fits", "qualname": "qqplot", "kind": "function", "doc": "

Generates a quantile-quantile plot of the fit result which can be used to\n check if the residuals of the fit are gaussian distributed.

\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(x, o_y, func, p, title=''):", "funcdef": "def"}, "pyerrors.fits.residual_plot": {"fullname": "pyerrors.fits.residual_plot", "modulename": "pyerrors.fits", "qualname": "residual_plot", "kind": "function", "doc": "

Generates a plot which compares the fit to the data and displays the corresponding residuals

\n\n

For uncorrelated data the residuals are expected to be distributed ~N(0,1).

\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(x, y, func, fit_res, title=''):", "funcdef": "def"}, "pyerrors.fits.error_band": {"fullname": "pyerrors.fits.error_band", "modulename": "pyerrors.fits", "qualname": "error_band", "kind": "function", "doc": "

Calculate the error band for an array of sample values x, for given fit function func with optimized parameters beta.

\n\n
Returns
\n\n
    \n
  • err (np.array(Obs)):\nError band for an array of sample values x
  • \n
\n", "signature": "(x, func, beta):", "funcdef": "def"}, "pyerrors.fits.ks_test": {"fullname": "pyerrors.fits.ks_test", "modulename": "pyerrors.fits", "qualname": "ks_test", "kind": "function", "doc": "

Performs a Kolmogorov\u2013Smirnov test for the p-values of all fit object.

\n\n
Parameters
\n\n
    \n
  • objects (list):\nList of fit results to include in the analysis (optional).
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(objects=None):", "funcdef": "def"}, "pyerrors.input": {"fullname": "pyerrors.input", "modulename": "pyerrors.input", "kind": "module", "doc": "

pyerrors includes an input submodule in which input routines and parsers for the output of various numerical programs are contained.

\n\n

Jackknife samples

\n\n

For comparison with other analysis workflows pyerrors can also generate jackknife samples from an Obs object or import jackknife samples into an Obs object.\nSee pyerrors.obs.Obs.export_jackknife and pyerrors.obs.import_jackknife for details.

\n"}, "pyerrors.input.bdio": {"fullname": "pyerrors.input.bdio", "modulename": "pyerrors.input.bdio", "kind": "module", "doc": "

\n"}, "pyerrors.input.bdio.read_ADerrors": {"fullname": "pyerrors.input.bdio.read_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "read_ADerrors", "kind": "function", "doc": "

Extract generic MCMC data from a bdio file

\n\n

read_ADerrors requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path -- path to the bdio file
  • \n
  • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
\n\n
Returns
\n\n
    \n
  • data (List[Obs]):\nExtracted data
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.write_ADerrors": {"fullname": "pyerrors.input.bdio.write_ADerrors", "modulename": "pyerrors.input.bdio", "qualname": "write_ADerrors", "kind": "function", "doc": "

Write Obs to a bdio file according to ADerrors conventions

\n\n

read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path -- path to the bdio file
  • \n
  • bdio_path -- path to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
\n\n
Returns
\n\n
    \n
  • success (int):\nreturns 0 is successful
  • \n
\n", "signature": "(obs_list, file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.read_mesons": {"fullname": "pyerrors.input.bdio.read_mesons", "modulename": "pyerrors.input.bdio", "qualname": "read_mesons", "kind": "function", "doc": "

Extract mesons data from a bdio file and return it as a dictionary

\n\n

The dictionary can be accessed with a tuple consisting of (type, source_position, kappa1, kappa2)

\n\n

read_mesons requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path (str):\npath to the bdio file
  • \n
  • bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
  • start (int):\nThe first configuration to be read (default 1)
  • \n
  • stop (int):\nThe last configuration to be read (default None)
  • \n
  • step (int):\nFixed step size between two measurements (default 1)
  • \n
  • alternative_ensemble_name (str):\nManually overwrite ensemble name
  • \n
\n\n
Returns
\n\n
    \n
  • data (dict):\nExtracted meson data
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.bdio.read_dSdm": {"fullname": "pyerrors.input.bdio.read_dSdm", "modulename": "pyerrors.input.bdio", "qualname": "read_dSdm", "kind": "function", "doc": "

Extract dSdm data from a bdio file and return it as a dictionary

\n\n

The dictionary can be accessed with a tuple consisting of (type, kappa)

\n\n

read_dSdm requires bdio to be compiled into a shared library. This can be achieved by\nadding the flag -fPIC to CC and changing the all target to

\n\n

all: bdio.o $(LIBDIR)\n gcc -shared -Wl,-soname,libbdio.so -o $(BUILDDIR)/libbdio.so $(BUILDDIR)/bdio.o\n cp $(BUILDDIR)/libbdio.so $(LIBDIR)/

\n\n
Parameters
\n\n
    \n
  • file_path (str):\npath to the bdio file
  • \n
  • bdio_path (str):\npath to the shared bdio library libbdio.so (default ./libbdio.so)
  • \n
  • start (int):\nThe first configuration to be read (default 1)
  • \n
  • stop (int):\nThe last configuration to be read (default None)
  • \n
  • step (int):\nFixed step size between two measurements (default 1)
  • \n
  • alternative_ensemble_name (str):\nManually overwrite ensemble name
  • \n
\n", "signature": "(file_path, bdio_path='./libbdio.so', **kwargs):", "funcdef": "def"}, "pyerrors.input.dobs": {"fullname": "pyerrors.input.dobs", "modulename": "pyerrors.input.dobs", "kind": "module", "doc": "

\n"}, "pyerrors.input.dobs.create_pobs_string": {"fullname": "pyerrors.input.dobs.create_pobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_pobs_string", "kind": "function", "doc": "

Export a list of Obs or structures containing Obs to an xml string\naccording to the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
  • \n
\n\n
Returns
\n\n
    \n
  • xml_str (str):\nXML formatted string of the input data
  • \n
\n", "signature": "(obsl, name, spec='', origin='', symbol=[], enstag=None):", "funcdef": "def"}, "pyerrors.input.dobs.write_pobs": {"fullname": "pyerrors.input.dobs.write_pobs", "modulename": "pyerrors.input.dobs", "qualname": "write_pobs", "kind": "function", "doc": "

Export a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure have to be defined on the same ensemble.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • enstag (str):\nEnstag that is written to pobs. If None, the ensemble name is used.
  • \n
  • gz (bool):\nIf True, the output is a gzipped xml. If False, the output is an xml file.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(\tobsl,\tfname,\tname,\tspec='',\torigin='',\tsymbol=[],\tenstag=None,\tgz=True):", "funcdef": "def"}, "pyerrors.input.dobs.read_pobs": {"fullname": "pyerrors.input.dobs.read_pobs", "modulename": "pyerrors.input.dobs", "qualname": "read_pobs", "kind": "function", "doc": "

Import a list of Obs from an xml.gz file in the Zeuthen pobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • separatior_insertion (str or int):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nNone (default): Replica names remain unchanged.
  • \n
\n\n
Returns
\n\n
    \n
  • res (list[Obs]):\nImported data
  • \n
  • or
  • \n
  • res (dict):\nImported data and meta-data
  • \n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=None):", "funcdef": "def"}, "pyerrors.input.dobs.import_dobs_string": {"fullname": "pyerrors.input.dobs.import_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "import_dobs_string", "kind": "function", "doc": "

Import a list of Obs from a string in the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • content (str):\nXML string containing the data
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
  • \n
\n\n
Returns
\n\n
    \n
  • res (list[Obs]):\nImported data
  • \n
  • or
  • \n
  • res (dict):\nImported data and meta-data
  • \n
\n", "signature": "(content, full_output=False, separator_insertion=True):", "funcdef": "def"}, "pyerrors.input.dobs.read_dobs": {"fullname": "pyerrors.input.dobs.read_dobs", "modulename": "pyerrors.input.dobs", "qualname": "read_dobs", "kind": "function", "doc": "

Import a list of Obs from an xml.gz file in the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned as list.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes XML file.
  • \n
  • separatior_insertion (str, int or bool):\nstr: replace all occurences of \"separator_insertion\" within the replica names\nby \"|%s\" % (separator_insertion) when constructing the names of the replica.\nint: Insert the separator \"|\" at the position given by separator_insertion.\nTrue (default): separator \"|\" is inserted after len(ensname), assuming that the\nensemble name is a prefix to the replica name.\nNone or False: No separator is inserted.
  • \n
\n\n
Returns
\n\n
    \n
  • res (list[Obs]):\nImported data
  • \n
  • or
  • \n
  • res (dict):\nImported data and meta-data
  • \n
\n", "signature": "(fname, full_output=False, gz=True, separator_insertion=True):", "funcdef": "def"}, "pyerrors.input.dobs.create_dobs_string": {"fullname": "pyerrors.input.dobs.create_dobs_string", "modulename": "pyerrors.input.dobs", "qualname": "create_dobs_string", "kind": "function", "doc": "

Generate the string for the export of a list of Obs or structures containing Obs\nto a .xml.gz file according to the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically. The separator |is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • who (str):\nProvide the name of the person that exports the data.
  • \n
  • enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
  • \n
\n\n
Returns
\n\n
    \n
  • xml_str (str):\nXML string generated from the data
  • \n
\n", "signature": "(\tobsl,\tname,\tspec='dobs v1.0',\torigin='',\tsymbol=[],\twho=None,\tenstags=None):", "funcdef": "def"}, "pyerrors.input.dobs.write_dobs": {"fullname": "pyerrors.input.dobs.write_dobs", "modulename": "pyerrors.input.dobs", "qualname": "write_dobs", "kind": "function", "doc": "

Export a list of Obs or structures containing Obs to a .xml.gz file\naccording to the Zeuthen dobs format.

\n\n

Tags are not written or recovered automatically. The separator | is removed from the replica names.

\n\n
Parameters
\n\n
    \n
  • obsl (list):\nList of Obs that will be exported.\nThe Obs inside a structure do not have to be defined on the same set of configurations,\nbut the storage requirement is increased, if this is not the case.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • name (str):\nThe name of the observable.
  • \n
  • spec (str):\nOptional string that describes the contents of the file.
  • \n
  • origin (str):\nSpecify where the data has its origin.
  • \n
  • symbol (list):\nA list of symbols that describe the observables to be written. May be empty.
  • \n
  • who (str):\nProvide the name of the person that exports the data.
  • \n
  • enstags (dict):\nProvide alternative enstag for ensembles in the form enstags = {ename: enstag}\nOtherwise, the ensemble name is used.
  • \n
  • gz (bool):\nIf True, the output is a gzipped XML. If False, the output is a XML file.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(\tobsl,\tfname,\tname,\tspec='dobs v1.0',\torigin='',\tsymbol=[],\twho=None,\tenstags=None,\tgz=True):", "funcdef": "def"}, "pyerrors.input.hadrons": {"fullname": "pyerrors.input.hadrons", "modulename": "pyerrors.input.hadrons", "kind": "module", "doc": "

\n"}, "pyerrors.input.hadrons.read_hd5": {"fullname": "pyerrors.input.hadrons.read_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_hd5", "kind": "function", "doc": "

Read hadrons hdf5 file and extract entry based on attributes.

\n\n
Parameters
\n\n
    \n
  • filestem (str):\nFull namestem of the files to read, including the full path.
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • group (str):\nlabel of the group to be extracted.
  • \n
  • attrs (dict or int):\nDictionary containing the attributes. For example

    \n\n
    \n
    attrs = {"gamma_snk": "Gamma5",\n         "gamma_src": "Gamma5"}\n
    \n
    \n\n

    Alternatively an integer can be specified to identify the sub group.\nThis is discouraged as the order in the file is not guaranteed.

  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
  • part (str):\nstring specifying whether to extract the real part ('real'),\nthe imaginary part ('imag') or a complex correlator ('complex').\nDefault 'real'.
  • \n
\n\n
Returns
\n\n
    \n
  • corr (Corr):\nCorrelator of the source sink combination in question.
  • \n
\n", "signature": "(filestem, ens_id, group, attrs=None, idl=None, part='real'):", "funcdef": "def"}, "pyerrors.input.hadrons.read_meson_hd5": {"fullname": "pyerrors.input.hadrons.read_meson_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_meson_hd5", "kind": "function", "doc": "

Read hadrons meson hdf5 file and extract the meson labeled 'meson'

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • meson (str):\nlabel of the meson to be extracted, standard value meson_0 which\ncorresponds to the pseudoscalar pseudoscalar two-point function.
  • \n
  • gammas (tuple of strings):\nInstrad of a meson label one can also provide a tuple of two strings\nindicating the gamma matrices at sink and source (gamma_snk, gamma_src).\n(\"Gamma5\", \"Gamma5\") corresponds to the pseudoscalar pseudoscalar\ntwo-point function. The gammas argument dominateds over meson.
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n\n
Returns
\n\n
    \n
  • corr (Corr):\nCorrelator of the source sink combination in question.
  • \n
\n", "signature": "(path, filestem, ens_id, meson='meson_0', idl=None, gammas=None):", "funcdef": "def"}, "pyerrors.input.hadrons.extract_t0_hd5": {"fullname": "pyerrors.input.hadrons.extract_t0_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "extract_t0_hd5", "kind": "function", "doc": "

Read hadrons FlowObservables hdf5 file and extract t0

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • obs (str):\nlabel of the observable from which t0 should be extracted.\nOptions: 'Clover energy density' and 'Plaquette energy density'
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
  • \n
\n", "signature": "(\tpath,\tfilestem,\tens_id,\tobs='Clover energy density',\tfit_range=5,\tidl=None,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"fullname": "pyerrors.input.hadrons.read_DistillationContraction_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_DistillationContraction_hd5", "kind": "function", "doc": "

Read hadrons DistillationContraction hdf5 files in given directory structure

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the directories to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • diagrams (list):\nList of strings of the diagrams to extract, e.g. [\"direct\", \"box\", \"cross\"].
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n\n
Returns
\n\n
    \n
  • result (dict):\nextracted DistillationContration data
  • \n
\n", "signature": "(path, ens_id, diagrams=['direct'], idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.Npr_matrix": {"fullname": "pyerrors.input.hadrons.Npr_matrix", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix", "kind": "class", "doc": "

ndarray(shape, dtype=float, buffer=None, offset=0,\n strides=None, order=None)

\n\n

An array object represents a multidimensional, homogeneous array\nof fixed-size items. An associated data-type object describes the\nformat of each element in the array (its byte-order, how many bytes it\noccupies in memory, whether it is an integer, a floating point number,\nor something else, etc.)

\n\n

Arrays should be constructed using array, zeros or empty (refer\nto the See Also section below). The parameters given here refer to\na low-level method (ndarray(...)) for instantiating an array.

\n\n

For more information, refer to the numpy module and examine the\nmethods and attributes of an array.

\n\n
Parameters
\n\n
    \n
  • (for the __new__ method; see Notes below)
  • \n
  • shape (tuple of ints):\nShape of created array.
  • \n
  • dtype (data-type, optional):\nAny object that can be interpreted as a numpy data type.
  • \n
  • buffer (object exposing buffer interface, optional):\nUsed to fill the array with data.
  • \n
  • offset (int, optional):\nOffset of array data in buffer.
  • \n
  • strides (tuple of ints, optional):\nStrides of data in memory.
  • \n
  • order ({'C', 'F'}, optional):\nRow-major (C-style) or column-major (Fortran-style) order.
  • \n
\n\n
Attributes
\n\n
    \n
  • T (ndarray):\nTranspose of the array.
  • \n
  • data (buffer):\nThe array's elements, in memory.
  • \n
  • dtype (dtype object):\nDescribes the format of the elements in the array.
  • \n
  • flags (dict):\nDictionary containing information related to memory use, e.g.,\n'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
  • \n
  • flat (numpy.flatiter object):\nFlattened version of the array as an iterator. The iterator\nallows assignments, e.g., x.flat = 3 (See ndarray.flat for\nassignment examples; TODO).
  • \n
  • imag (ndarray):\nImaginary part of the array.
  • \n
  • real (ndarray):\nReal part of the array.
  • \n
  • size (int):\nNumber of elements in the array.
  • \n
  • itemsize (int):\nThe memory use of each array element in bytes.
  • \n
  • nbytes (int):\nThe total number of bytes required to store the array data,\ni.e., itemsize * size.
  • \n
  • ndim (int):\nThe array's number of dimensions.
  • \n
  • shape (tuple of ints):\nShape of the array.
  • \n
  • strides (tuple of ints):\nThe step-size required to move from one element to the next in\nmemory. For example, a contiguous (3, 4) array of type\nint16 in C-order has strides (8, 2). This implies that\nto move from element to element in memory requires jumps of 2 bytes.\nTo move from row-to-row, one needs to jump 8 bytes at a time\n(2 * 4).
  • \n
  • ctypes (ctypes object):\nClass containing properties of the array needed for interaction\nwith ctypes.
  • \n
  • base (ndarray):\nIf the array is a view into another array, that array is its base\n(unless that array is also a view). The base array is where the\narray data is actually stored.
  • \n
\n\n
See Also
\n\n

array: Construct an array.
\nzeros: Create an array, each element of which is zero.
\nempty: Create an array, but leave its allocated memory unchanged (i.e.,\nit contains \"garbage\").
\ndtype: Create a data-type.
\nnumpy.typing.NDArray: An ndarray alias :term:generic <generic type>\nw.r.t. its dtype.type <numpy.dtype.type>.

\n\n
Notes
\n\n

There are two modes of creating an array using __new__:

\n\n
    \n
  1. If buffer is None, then only shape, dtype, and order\nare used.
  2. \n
  3. If buffer is an object exposing the buffer interface, then\nall keywords are interpreted.
  4. \n
\n\n

No __init__ method is needed because the array is fully initialized\nafter the __new__ method.

\n\n
Examples
\n\n

These examples illustrate the low-level ndarray constructor. Refer\nto the See Also section above for easier ways of constructing an\nndarray.

\n\n

First mode, buffer is None:

\n\n
\n
>>> import numpy as np\n>>> np.ndarray(shape=(2,2), dtype=float, order='F')\narray([[0.0e+000, 0.0e+000], # random\n       [     nan, 2.5e-323]])\n
\n
\n\n

Second mode:

\n\n
\n
>>> np.ndarray((2,), buffer=np.array([1,2,3]),\n...            offset=np.int_().itemsize,\n...            dtype=int) # offset = 1*itemsize, i.e. skip first element\narray([2, 3])\n
\n
\n", "bases": "numpy.ndarray"}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"fullname": "pyerrors.input.hadrons.Npr_matrix.g5H", "modulename": "pyerrors.input.hadrons", "qualname": "Npr_matrix.g5H", "kind": "variable", "doc": "

Gamma_5 hermitean conjugate

\n\n

Uses the fact that the propagator is gamma5 hermitean, so just the\nin and out momenta of the propagator are exchanged.

\n"}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"fullname": "pyerrors.input.hadrons.read_ExternalLeg_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_ExternalLeg_hd5", "kind": "function", "doc": "

Read hadrons ExternalLeg hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n\n
Returns
\n\n
    \n
  • result (Npr_matrix):\nread Cobs-matrix
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"fullname": "pyerrors.input.hadrons.read_Bilinear_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Bilinear_hd5", "kind": "function", "doc": "

Read hadrons Bilinear hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
\n\n
Returns
\n\n
    \n
  • result_dict (dict[Npr_matrix]):\nextracted Bilinears
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None):", "funcdef": "def"}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"fullname": "pyerrors.input.hadrons.read_Fourquark_hd5", "modulename": "pyerrors.input.hadrons", "qualname": "read_Fourquark_hd5", "kind": "function", "doc": "

Read hadrons FourquarkFullyConnected hdf5 file and output an array of CObs

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the files to read
  • \n
  • filestem (str):\nnamestem of the files to read
  • \n
  • ens_id (str):\nname of the ensemble, required for internal bookkeeping
  • \n
  • idl (range):\nIf specified only configurations in the given range are read in.
  • \n
  • vertices (list):\nVertex functions to be extracted.
  • \n
\n\n
Returns
\n\n
    \n
  • result_dict (dict):\nextracted fourquark matrizes
  • \n
\n", "signature": "(path, filestem, ens_id, idl=None, vertices=['VA', 'AV']):", "funcdef": "def"}, "pyerrors.input.json": {"fullname": "pyerrors.input.json", "modulename": "pyerrors.input.json", "kind": "module", "doc": "

\n"}, "pyerrors.input.json.create_json_string": {"fullname": "pyerrors.input.json.create_json_string", "modulename": "pyerrors.input.json", "qualname": "create_json_string", "kind": "function", "doc": "

Generate the string for the export of a list of Obs or structures containing Obs\nto a .json(.gz) file

\n\n
Parameters
\n\n
    \n
  • ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
\n\n
Returns
\n\n
    \n
  • json_string (str):\nString for export to .json(.gz) file
  • \n
\n", "signature": "(ol, description='', indent=1):", "funcdef": "def"}, "pyerrors.input.json.dump_to_json": {"fullname": "pyerrors.input.json.dump_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_to_json", "kind": "function", "doc": "

Export a list of Obs or structures containing Obs to a .json(.gz) file.\nDict keys that are not JSON-serializable such as floats are converted to strings.

\n\n
Parameters
\n\n
    \n
  • ol (list):\nList of objects that will be exported. At the moment, these objects can be\neither of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
  • gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
  • \n
\n\n
Returns
\n\n
    \n
  • Null
  • \n
\n", "signature": "(ol, fname, description='', indent=1, gz=True):", "funcdef": "def"}, "pyerrors.input.json.import_json_string": {"fullname": "pyerrors.input.json.import_json_string", "modulename": "pyerrors.input.json", "qualname": "import_json_string", "kind": "function", "doc": "

Reconstruct a list of Obs or structures containing Obs from a json string.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.

\n\n
Parameters
\n\n
    \n
  • json_string (str):\njson string containing the data.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
\n\n
Returns
\n\n
    \n
  • result (list[Obs]):\nreconstructed list of observables from the json string
  • \n
  • or
  • \n
  • result (Obs):\nonly one observable if the list only has one entry
  • \n
  • or
  • \n
  • result (dict):\nif full_output=True
  • \n
\n", "signature": "(json_string, verbose=True, full_output=False):", "funcdef": "def"}, "pyerrors.input.json.load_json": {"fullname": "pyerrors.input.json.load_json", "modulename": "pyerrors.input.json", "qualname": "load_json", "kind": "function", "doc": "

Import a list of Obs or structures containing Obs from a .json(.gz) file.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr\nIf the list contains only one element, it is unpacked from the list.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
\n\n
Returns
\n\n
    \n
  • result (list[Obs]):\nreconstructed list of observables from the json string
  • \n
  • or
  • \n
  • result (Obs):\nonly one observable if the list only has one entry
  • \n
  • or
  • \n
  • result (dict):\nif full_output=True
  • \n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False):", "funcdef": "def"}, "pyerrors.input.json.dump_dict_to_json": {"fullname": "pyerrors.input.json.dump_dict_to_json", "modulename": "pyerrors.input.json", "qualname": "dump_dict_to_json", "kind": "function", "doc": "

Export a dict of Obs or structures containing Obs to a .json(.gz) file

\n\n
Parameters
\n\n
    \n
  • od (dict):\nDict of JSON valid structures and objects that will be exported.\nAt the moment, these objects can be either of: Obs, list, numpy.ndarray, Corr.\nAll Obs inside a structure have to be defined on the same set of configurations.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • description (str):\nOptional string that describes the contents of the json file.
  • \n
  • indent (int):\nSpecify the indentation level of the json file. None or 0 is permissible and\nsaves disk space.
  • \n
  • reps (str):\nSpecify the structure of the placeholder in exported dict to be reps[0-9]+.
  • \n
  • gz (bool):\nIf True, the output is a gzipped json. If False, the output is a json file.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(od, fname, description='', indent=1, reps='DICTOBS', gz=True):", "funcdef": "def"}, "pyerrors.input.json.load_json_dict": {"fullname": "pyerrors.input.json.load_json_dict", "modulename": "pyerrors.input.json", "qualname": "load_json_dict", "kind": "function", "doc": "

Import a dict of Obs or structures containing Obs from a .json(.gz) file.

\n\n

The following structures are supported: Obs, list, numpy.ndarray, Corr

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • verbose (bool):\nPrint additional information that was written to the file.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
  • \n
  • full_output (bool):\nIf True, a dict containing auxiliary information and the data is returned.\nIf False, only the data is returned.
  • \n
  • reps (str):\nSpecify the structure of the placeholder in imported dict to be reps[0-9]+.
  • \n
\n\n
Returns
\n\n
    \n
  • data (Obs / list / Corr):\nRead data
  • \n
  • or
  • \n
  • data (dict):\nRead data and meta-data
  • \n
\n", "signature": "(fname, verbose=True, gz=True, full_output=False, reps='DICTOBS'):", "funcdef": "def"}, "pyerrors.input.misc": {"fullname": "pyerrors.input.misc", "modulename": "pyerrors.input.misc", "kind": "module", "doc": "

\n"}, "pyerrors.input.misc.fit_t0": {"fullname": "pyerrors.input.misc.fit_t0", "modulename": "pyerrors.input.misc", "qualname": "fit_t0", "kind": "function", "doc": "

Compute the root of (flow-based) data based on a dictionary that contains\nthe necessary information in key-value pairs a la (flow time: observable at flow time).

\n\n

It is assumed that the data is monotonically increasing and passes zero from below.\nNo exception is thrown if this is not the case (several roots, no monotonic increase).\nAn exception is thrown if no root can be found in the data.

\n\n

A linear fit in the vicinity of the root is performed to exctract the root from the\ntwo fit parameters.

\n\n
Parameters
\n\n
    \n
  • t2E_dict (dict):\nDictionary with pairs of (flow time: observable at flow time) where the flow times\nare of type float and the observables of type Obs.
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data. (Default: False)
  • \n
  • observable (str):\nKeyword to identify the observable to print the correct ylabel (if plot_fit is True)\nfor the observables 't0' and 'w0'. No y label is printed otherwise. (Default: 't0')
  • \n
\n\n
Returns
\n\n
    \n
  • root (Obs):\nThe root of the data series.
  • \n
\n", "signature": "(t2E_dict, fit_range, plot_fit=False, observable='t0'):", "funcdef": "def"}, "pyerrors.input.misc.read_pbp": {"fullname": "pyerrors.input.misc.read_pbp", "modulename": "pyerrors.input.misc", "qualname": "read_pbp", "kind": "function", "doc": "

Read pbp format from given folder structure.

\n\n
Parameters
\n\n
    \n
  • r_start (list):\nlist which contains the first config to be read for each replicum
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum
  • \n
\n\n
Returns
\n\n
    \n
  • result (list[Obs]):\nlist of observables read
  • \n
\n", "signature": "(path, prefix, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD": {"fullname": "pyerrors.input.openQCD", "modulename": "pyerrors.input.openQCD", "kind": "module", "doc": "

\n"}, "pyerrors.input.openQCD.read_rwms": {"fullname": "pyerrors.input.openQCD.read_rwms", "modulename": "pyerrors.input.openQCD", "qualname": "read_rwms", "kind": "function", "doc": "

Read rwms format from given folder structure. Returns a list of length nrw

\n\n
Parameters
\n\n
    \n
  • path (str):\npath that contains the data files
  • \n
  • prefix (str):\nall files in path that start with prefix are considered as input files.\nMay be used together postfix to consider only special file endings.\nPrefix is ignored, if the keyword 'files' is used.
  • \n
  • version (str):\nversion of openQCD, default 2.0
  • \n
  • names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum
  • \n
  • r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
  • \n
  • postfix (str):\npostfix of the file to read, e.g. '.ms1' for openQCD-files
  • \n
  • files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
  • \n
  • print_err (bool):\nPrint additional information that is useful for debugging.
  • \n
\n\n
Returns
\n\n
    \n
  • rwms (Obs):\nReweighting factors read
  • \n
\n", "signature": "(path, prefix, version='2.0', names=None, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.extract_t0": {"fullname": "pyerrors.input.openQCD.extract_t0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_t0", "kind": "function", "doc": "

Extract t0/a^2 from given .ms.dat files. Returns t0 as Obs.

\n\n

It is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t^2 - c (where c=0.3 by default)\nis fitted with a linear function\nfrom which the exact root is extracted.

\n\n

It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to .ms.dat files
  • \n
  • prefix (str):\nEnsemble prefix
  • \n
  • dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
  • \n
  • xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
  • \n
  • spatial_extent (int):\nspatial extent of the lattice, required for normalization.
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
  • \n
  • postfix (str):\nPostfix of measurement file (Default: ms)
  • \n
  • c (float):\nConstant that defines the flow scale. Default 0.3 for t_0, choose 2./3 for t_1.
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
  • \n
  • plaquette (bool):\nIf true extract the plaquette estimate of t0 instead.
  • \n
  • names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
  • \n
  • files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of t0 is shown together with the data.
  • \n
  • assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
  • \n
\n\n
Returns
\n\n
    \n
  • t0 (Obs):\nExtracted t0
  • \n
\n", "signature": "(\tpath,\tprefix,\tdtr_read,\txmin,\tspatial_extent,\tfit_range=5,\tpostfix='ms',\tc=0.3,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.extract_w0": {"fullname": "pyerrors.input.openQCD.extract_w0", "modulename": "pyerrors.input.openQCD", "qualname": "extract_w0", "kind": "function", "doc": "

Extract w0/a from given .ms.dat files. Returns w0 as Obs.

\n\n

It is assumed that all boundary effects have\nsufficiently decayed at x0=xmin.\nThe data around the zero crossing of t d(t^2)/dt - (where c=0.3 by default)\nis fitted with a linear function\nfrom which the exact root is extracted.

\n\n

It is assumed that one measurement is performed for each config.\nIf this is not the case, the resulting idl, as well as the handling\nof r_start, r_stop and r_step is wrong and the user has to correct\nthis in the resulting observable.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to .ms.dat files
  • \n
  • prefix (str):\nEnsemble prefix
  • \n
  • dtr_read (int):\nDetermines how many trajectories should be skipped\nwhen reading the ms.dat files.\nCorresponds to dtr_cnfg / dtr_ms in the openQCD input file.
  • \n
  • xmin (int):\nFirst timeslice where the boundary\neffects have sufficiently decayed.
  • \n
  • spatial_extent (int):\nspatial extent of the lattice, required for normalization.
  • \n
  • fit_range (int):\nNumber of data points left and right of the zero\ncrossing to be included in the linear fit. (Default: 5)
  • \n
  • postfix (str):\nPostfix of measurement file (Default: ms)
  • \n
  • c (float):\nConstant that defines the flow scale. Default 0.3 for w_0, choose 2./3 for w_1.
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • r_step (int):\ninteger that defines a fixed step size between two measurements (in units of configs)\nIf not given, r_step=1 is assumed.
  • \n
  • plaquette (bool):\nIf true extract the plaquette estimate of w0 instead.
  • \n
  • names (list):\nlist of names that is assigned to the data according according\nto the order in the file list. Use careful, if you do not provide file names!
  • \n
  • files (list):\nlist which contains the filenames to be read. No automatic detection of\nfiles performed if given.
  • \n
  • plot_fit (bool):\nIf true, the fit for the extraction of w0 is shown together with the data.
  • \n
  • assume_thermalization (bool):\nIf True: If the first record divided by the distance between two measurements is larger than\n1, it is assumed that this is due to thermalization and the first measurement belongs\nto the first config (default).\nIf False: The config numbers are assumed to be traj_number // difference
  • \n
\n\n
Returns
\n\n
    \n
  • w0 (Obs):\nExtracted w0
  • \n
\n", "signature": "(\tpath,\tprefix,\tdtr_read,\txmin,\tspatial_extent,\tfit_range=5,\tpostfix='ms',\tc=0.3,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop": {"fullname": "pyerrors.input.openQCD.read_qtop", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop", "kind": "function", "doc": "

Read the topologial charge based on openQCD gradient flow measurements.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath of the measurement files
  • \n
  • prefix (str):\nprefix of the measurement files, e.g. _id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files.
  • \n
  • c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
  • \n
  • dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
  • \n
  • steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
  • \n
  • version (str):\nEither openQCD or sfqcd, depending on the data.
  • \n
  • L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
  • \n
  • postfix (str):\npostfix of the file to read, e.g. '.gfms.dat' for openQCD-files
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
  • \n
  • Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
  • \n
  • integer_charge (bool):\nIf True, the charge is rounded towards the nearest integer on each config.
  • \n
\n\n
Returns
\n\n
    \n
  • result (Obs):\nRead topological charge
  • \n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, version='openQCD', **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_gf_coupling": {"fullname": "pyerrors.input.openQCD.read_gf_coupling", "modulename": "pyerrors.input.openQCD", "qualname": "read_gf_coupling", "kind": "function", "doc": "

Read the gradient flow coupling based on sfqcd gradient flow measurements. See 1607.06423 for details.

\n\n

Note: The current implementation only works for c=0.3 and T=L. The definition of the coupling in 1607.06423 requires projection to topological charge zero which is not done within this function but has to be performed in a separate step.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath of the measurement files
  • \n
  • prefix (str):\nprefix of the measurement files, e.g. _id0_r0.ms.dat.\nIgnored if file names are passed explicitly via keyword files.
  • \n
  • c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L.
  • \n
  • dtr_cnfg (int):\n(optional) parameter that specifies the number of measurements\nbetween two configs.\nIf it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
  • \n
  • steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
  • \n
  • r_start (list):\nlist which contains the first config to be read for each replicum.
  • \n
  • r_stop (list):\nlist which contains the last config to be read for each replicum.
  • \n
  • files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length.
  • \n
  • postfix (str):\npostfix of the file to read, e.g. '.gfms.dat' for openQCD-files
  • \n
  • Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for the coupling. If False, the Wilson flow is used.
  • \n
\n", "signature": "(path, prefix, c, dtr_cnfg=1, Zeuthen_flow=True, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.qtop_projection": {"fullname": "pyerrors.input.openQCD.qtop_projection", "modulename": "pyerrors.input.openQCD", "qualname": "qtop_projection", "kind": "function", "doc": "

Returns the projection to the topological charge sector defined by target.

\n\n
Parameters
\n\n
    \n
  • path (Obs):\nTopological charge.
  • \n
  • target (int):\nSpecifies the topological sector to be reweighted to (default 0)
  • \n
\n\n
Returns
\n\n
    \n
  • reto (Obs):\nprojection to the topological charge sector defined by target
  • \n
\n", "signature": "(qtop, target=0):", "funcdef": "def"}, "pyerrors.input.openQCD.read_qtop_sector": {"fullname": "pyerrors.input.openQCD.read_qtop_sector", "modulename": "pyerrors.input.openQCD", "qualname": "read_qtop_sector", "kind": "function", "doc": "

Constructs reweighting factors to a specified topological sector.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath of the measurement files
  • \n
  • prefix (str):\nprefix of the measurement files, e.g. _id0_r0.ms.dat
  • \n
  • c (double):\nSmearing radius in units of the lattice extent, c = sqrt(8 t0) / L
  • \n
  • target (int):\nSpecifies the topological sector to be reweighted to (default 0)
  • \n
  • dtr_cnfg (int):\n(optional) parameter that specifies the number of trajectories\nbetween two configs.\nif it is not set, the distance between two measurements\nin the file is assumed to be the distance between two configurations.
  • \n
  • steps (int):\n(optional) Distance between two configurations in units of trajectories /\n cycles. Assumed to be the distance between two measurements * dtr_cnfg if not given
  • \n
  • version (str):\nversion string of the openQCD (sfqcd) version used to create\nthe ensemble. Default is 2.0. May also be set to sfqcd.
  • \n
  • L (int):\nspatial length of the lattice in L/a.\nHAS to be set if version != sfqcd, since openQCD does not provide\nthis in the header
  • \n
  • r_start (list):\noffset of the first ensemble, making it easier to match\nlater on with other Obs
  • \n
  • r_stop (list):\nlast configurations that need to be read (per replicum)
  • \n
  • files (list):\nspecify the exact files that need to be read\nfrom path, practical if e.g. only one replicum is needed
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
  • \n
  • Zeuthen_flow (bool):\n(optional) If True, the Zeuthen flow is used for Qtop. Only possible\nfor version=='sfqcd' If False, the Wilson flow is used.
  • \n
\n\n
Returns
\n\n
    \n
  • reto (Obs):\nprojection to the topological charge sector defined by target
  • \n
\n", "signature": "(path, prefix, c, target=0, **kwargs):", "funcdef": "def"}, "pyerrors.input.openQCD.read_ms5_xsf": {"fullname": "pyerrors.input.openQCD.read_ms5_xsf", "modulename": "pyerrors.input.openQCD", "qualname": "read_ms5_xsf", "kind": "function", "doc": "

Read data from files in the specified directory with the specified prefix and quark combination extension, and return a Corr object containing the data.

\n\n
Parameters
\n\n
    \n
  • path (str):\nThe directory to search for the files in.
  • \n
  • prefix (str):\nThe prefix to match the files against.
  • \n
  • qc (str):\nThe quark combination extension to match the files against.
  • \n
  • corr (str):\nThe correlator to extract data for.
  • \n
  • sep (str, optional):\nThe separator to use when parsing the replika names.
  • \n
  • **kwargs: Additional keyword arguments. The following keyword arguments are recognized:

    \n\n
      \n
    • names (List[str]): A list of names to use for the replicas.
    • \n
    • files (List[str]): A list of files to read data from.
    • \n
    • idl (List[List[int]]): A list of idls per replicum, resticting data to the idls given.
    • \n
  • \n
\n\n
Returns
\n\n
    \n
  • Corr: A complex valued Corr object containing the data read from the files. In case of boudary to bulk correlators.
  • \n
  • or
  • \n
  • CObs: A complex valued CObs object containing the data read from the files. In case of boudary to boundary correlators.
  • \n
\n\n
Raises
\n\n
    \n
  • FileNotFoundError: If no files matching the specified prefix and quark combination extension are found in the specified directory.
  • \n
  • IOError: If there is an error reading a file.
  • \n
  • struct.error: If there is an error unpacking binary data.
  • \n
\n", "signature": "(path, prefix, qc, corr, sep='r', **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas": {"fullname": "pyerrors.input.pandas", "modulename": "pyerrors.input.pandas", "kind": "module", "doc": "

\n"}, "pyerrors.input.pandas.to_sql": {"fullname": "pyerrors.input.pandas.to_sql", "modulename": "pyerrors.input.pandas", "qualname": "to_sql", "kind": "function", "doc": "

Write DataFrame including Obs or Corr valued columns to sqlite database.

\n\n
Parameters
\n\n
    \n
  • df (pandas.DataFrame):\nDataframe to be written to the database.
  • \n
  • table_name (str):\nName of the table in the database.
  • \n
  • db (str):\nPath to the sqlite database.
  • \n
  • if exists (str):\nHow to behave if table already exists. Options 'fail', 'replace', 'append'.
  • \n
  • gz (bool):\nIf True the json strings are gzipped.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(df, table_name, db, if_exists='fail', gz=True, **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas.read_sql": {"fullname": "pyerrors.input.pandas.read_sql", "modulename": "pyerrors.input.pandas", "qualname": "read_sql", "kind": "function", "doc": "

Execute SQL query on sqlite database and obtain DataFrame including Obs or Corr valued columns.

\n\n
Parameters
\n\n
    \n
  • sql (str):\nSQL query to be executed.
  • \n
  • db (str):\nPath to the sqlite database.
  • \n
  • auto_gamma (bool):\nIf True applies the gamma_method to all imported Obs objects with the default parameters for\nthe error analysis. Default False.
  • \n
\n\n
Returns
\n\n
    \n
  • data (pandas.DataFrame):\nDataframe with the content of the sqlite database.
  • \n
\n", "signature": "(sql, db, auto_gamma=False, **kwargs):", "funcdef": "def"}, "pyerrors.input.pandas.dump_df": {"fullname": "pyerrors.input.pandas.dump_df", "modulename": "pyerrors.input.pandas", "qualname": "dump_df", "kind": "function", "doc": "

Exports a pandas DataFrame containing Obs valued columns to a (gzipped) csv file.

\n\n

Before making use of pandas to_csv functionality Obs objects are serialized via the standardized\njson format of pyerrors.

\n\n
Parameters
\n\n
    \n
  • df (pandas.DataFrame):\nDataframe to be dumped to a file.
  • \n
  • fname (str):\nFilename of the output file.
  • \n
  • gz (bool):\nIf True, the output is a gzipped csv file. If False, the output is a csv file.
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(df, fname, gz=True):", "funcdef": "def"}, "pyerrors.input.pandas.load_df": {"fullname": "pyerrors.input.pandas.load_df", "modulename": "pyerrors.input.pandas", "qualname": "load_df", "kind": "function", "doc": "

Imports a pandas DataFrame from a csv.(gz) file in which Obs objects are serialized as json strings.

\n\n
Parameters
\n\n
    \n
  • fname (str):\nFilename of the input file.
  • \n
  • auto_gamma (bool):\nIf True applies the gamma_method to all imported Obs objects with the default parameters for\nthe error analysis. Default False.
  • \n
  • gz (bool):\nIf True, assumes that data is gzipped. If False, assumes JSON file.
  • \n
\n\n
Returns
\n\n
    \n
  • data (pandas.DataFrame):\nDataframe with the content of the sqlite database.
  • \n
\n", "signature": "(fname, auto_gamma=False, gz=True):", "funcdef": "def"}, "pyerrors.input.sfcf": {"fullname": "pyerrors.input.sfcf", "modulename": "pyerrors.input.sfcf", "kind": "module", "doc": "

\n"}, "pyerrors.input.sfcf.sep": {"fullname": "pyerrors.input.sfcf.sep", "modulename": "pyerrors.input.sfcf", "qualname": "sep", "kind": "variable", "doc": "

\n", "default_value": "'/'"}, "pyerrors.input.sfcf.read_sfcf": {"fullname": "pyerrors.input.sfcf.read_sfcf", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf", "kind": "function", "doc": "

Read sfcf files from given folder structure.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to the sfcf files.
  • \n
  • prefix (str):\nPrefix of the sfcf files.
  • \n
  • name (str):\nName of the correlation function to read.
  • \n
  • quarks (str):\nLabel of the quarks used in the sfcf input file. e.g. \"quark quark\"\nfor version 0.0 this does NOT need to be given with the typical \" - \"\nthat is present in the output file,\nthis is done automatically for this version
  • \n
  • corr_type (str):\nType of correlation function to read. Can be\n
      \n
    • 'bi' for boundary-inner
    • \n
    • 'bb' for boundary-boundary
    • \n
    • 'bib' for boundary-inner-boundary
    • \n
  • \n
  • noffset (int):\nOffset of the source (only relevant when wavefunctions are used)
  • \n
  • wf (int):\nID of wave function
  • \n
  • wf2 (int):\nID of the second wavefunction\n(only relevant for boundary-to-boundary correlation functions)
  • \n
  • im (bool):\nif True, read imaginary instead of real part\nof the correlation function.
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
  • \n
  • ens_name (str):\nreplaces the name of the ensemble
  • \n
  • version (str):\nversion of SFCF, with which the measurement was done.\nif the compact output option (-c) was specified,\nappend a \"c\" to the version (e.g. \"1.0c\")\nif the append output option (-a) was specified,\nappend an \"a\" to the version
  • \n
  • cfg_separator (str):\nString that separates the ensemble identifier from the configuration number (default 'n').
  • \n
  • replica (list):\nlist of replica to be read, default is all
  • \n
  • files (list):\nlist of files to be read per replica, default is all.\nfor non-compact output format, hand the folders to be read here.
  • \n
  • check_configs (list[list[int]]):\nlist of list of supposed configs, eg. [range(1,1000)]\nfor one replicum with 1000 configs
  • \n
\n\n
Returns
\n\n
    \n
  • result (list[Obs]):\nlist of Observables with length T, observable per timeslice.\nbb-type correlators have length 1.
  • \n
\n", "signature": "(\tpath,\tprefix,\tname,\tquarks='.*',\tcorr_type='bi',\tnoffset=0,\twf=0,\twf2=0,\tversion='1.0c',\tcfg_separator='n',\tcfg_func=None,\tsilent=False,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.sfcf.read_sfcf_multi": {"fullname": "pyerrors.input.sfcf.read_sfcf_multi", "modulename": "pyerrors.input.sfcf", "qualname": "read_sfcf_multi", "kind": "function", "doc": "

Read sfcf files from given folder structure.

\n\n
Parameters
\n\n
    \n
  • path (str):\nPath to the sfcf files.
  • \n
  • prefix (str):\nPrefix of the sfcf files.
  • \n
  • name (str):\nName of the correlation function to read.
  • \n
  • quarks_list (list[str]):\nLabel of the quarks used in the sfcf input file. e.g. \"quark quark\"\nfor version 0.0 this does NOT need to be given with the typical \" - \"\nthat is present in the output file,\nthis is done automatically for this version
  • \n
  • corr_type_list (list[str]):\nType of correlation function to read. Can be\n
      \n
    • 'bi' for boundary-inner
    • \n
    • 'bb' for boundary-boundary
    • \n
    • 'bib' for boundary-inner-boundary
    • \n
  • \n
  • noffset_list (list[int]):\nOffset of the source (only relevant when wavefunctions are used)
  • \n
  • wf_list (int):\nID of wave function
  • \n
  • wf2_list (list[int]):\nID of the second wavefunction\n(only relevant for boundary-to-boundary correlation functions)
  • \n
  • im (bool):\nif True, read imaginary instead of real part\nof the correlation function.
  • \n
  • names (list):\nAlternative labeling for replicas/ensembles.\nHas to have the appropriate length
  • \n
  • ens_name (str):\nreplaces the name of the ensemble
  • \n
  • version (str):\nversion of SFCF, with which the measurement was done.\nif the compact output option (-c) was specified,\nappend a \"c\" to the version (e.g. \"1.0c\")\nif the append output option (-a) was specified,\nappend an \"a\" to the version
  • \n
  • cfg_separator (str):\nString that separates the ensemble identifier from the configuration number (default 'n').
  • \n
  • replica (list):\nlist of replica to be read, default is all
  • \n
  • files (list[list[int]]):\nlist of files to be read per replica, default is all.\nfor non-compact output format, hand the folders to be read here.
  • \n
  • check_configs (list[list[int]]):\nlist of list of supposed configs, eg. [range(1,1000)]\nfor one replicum with 1000 configs
  • \n
  • rep_string (str):\nSeparator of ensemble name and replicum. Example: In \"ensAr0\", \"r\" would be the separator string.
  • \n
\n\n
Returns
\n\n
    \n
  • result (dict[list[Obs]]):\ndict with one of the following properties:\nif keyed_out:\n dict[key] = list[Obs]\n where key has the form name/quarks/offset/wf/wf2\nif not keyed_out:\n dict[name][quarks][offset][wf][wf2] = list[Obs]
  • \n
\n", "signature": "(\tpath,\tprefix,\tname_list,\tquarks_list=['.*'],\tcorr_type_list=['bi'],\tnoffset_list=[0],\twf_list=[0],\twf2_list=[0],\tversion='1.0c',\tcfg_separator='n',\tcfg_func=None,\tsilent=False,\tkeyed_out=False,\t**kwargs):", "funcdef": "def"}, "pyerrors.input.utils": {"fullname": "pyerrors.input.utils", "modulename": "pyerrors.input.utils", "kind": "module", "doc": "

Utilities for the input

\n"}, "pyerrors.input.utils.sort_names": {"fullname": "pyerrors.input.utils.sort_names", "modulename": "pyerrors.input.utils", "qualname": "sort_names", "kind": "function", "doc": "

Sorts a list of names of replika with searches for r and id in the replikum string.\nIf this search fails, a fallback method is used,\nwhere the strings are simply compared and the first diffeing numeral is used for differentiation.

\n\n
Parameters
\n\n
    \n
  • ll (list):\nlist to sort
  • \n
\n\n
Returns
\n\n
    \n
  • ll (list):\nsorted list
  • \n
\n", "signature": "(ll):", "funcdef": "def"}, "pyerrors.input.utils.check_idl": {"fullname": "pyerrors.input.utils.check_idl", "modulename": "pyerrors.input.utils", "qualname": "check_idl", "kind": "function", "doc": "

Checks if list of configurations is contained in an idl

\n\n
Parameters
\n\n
    \n
  • idl (range or list):\nidl of the current replicum
  • \n
  • che (list):\nlist of configurations to be checked against
  • \n
\n\n
Returns
\n\n
    \n
  • miss_str (str):\nstring with integers of which idls are missing
  • \n
\n", "signature": "(idl, che):", "funcdef": "def"}, "pyerrors.input.utils.check_params": {"fullname": "pyerrors.input.utils.check_params", "modulename": "pyerrors.input.utils", "qualname": "check_params", "kind": "function", "doc": "

Check if, for sfcf, the parameter hashes at the end of the parameter files are in fact the expected one.

\n\n
Parameters
\n\n
    \n
  • path (str):\nmeasurement path, same as for sfcf read method
  • \n
  • param_hash (str):\nexpected parameter hash
  • \n
  • prefix (str):\ndata prefix to find the appropriate replicum folders in path
  • \n
  • param_prefix (str):\nprefix of the parameter file. Defaults to 'parameters_'
  • \n
\n\n
Returns
\n\n
    \n
  • nums (dict):\ndictionary of faulty parameter files sorted by the replica paths
  • \n
\n", "signature": "(path, param_hash, prefix, param_prefix='parameters_'):", "funcdef": "def"}, "pyerrors.integrate": {"fullname": "pyerrors.integrate", "modulename": "pyerrors.integrate", "kind": "module", "doc": "

\n"}, "pyerrors.integrate.quad": {"fullname": "pyerrors.integrate.quad", "modulename": "pyerrors.integrate", "qualname": "quad", "kind": "function", "doc": "

Performs a (one-dimensional) numeric integration of f(p, x) from a to b.

\n\n

The integration is performed using scipy.integrate.quad().\nAll parameters that can be passed to scipy.integrate.quad may also be passed to this function.\nThe output is the same as for scipy.integrate.quad, the first element being an Obs.

\n\n
Parameters
\n\n
    \n
  • func (object):\nfunction to integrate, has to be of the form

    \n\n
    \n
    import autograd.numpy as anp\n\ndef func(p, x):\n    return p[0] + p[1] * x + p[2] * anp.sinh(x)\n
    \n
    \n\n

    where x is the integration variable.

  • \n
  • p (list of floats or Obs):\nparameters of the function func.
  • \n
  • a (float or Obs):\nLower limit of integration (use -numpy.inf for -infinity).
  • \n
  • b (float or Obs):\nUpper limit of integration (use -numpy.inf for -infinity).
  • \n
  • All parameters of scipy.integrate.quad
  • \n
\n\n
Returns
\n\n
    \n
  • y (Obs):\nThe integral of func from a to b.
  • \n
  • abserr (float):\nAn estimate of the absolute error in the result.
  • \n
  • infodict (dict):\nA dictionary containing additional information.\nRun scipy.integrate.quad_explain() for more information.
  • \n
  • message: A convergence message.
  • \n
  • explain: Appended only with 'cos' or 'sin' weighting and infinite\nintegration limits, it contains an explanation of the codes in\ninfodict['ierlst']
  • \n
\n", "signature": "(func, p, a, b, **kwargs):", "funcdef": "def"}, "pyerrors.linalg": {"fullname": "pyerrors.linalg", "modulename": "pyerrors.linalg", "kind": "module", "doc": "

\n"}, "pyerrors.linalg.matmul": {"fullname": "pyerrors.linalg.matmul", "modulename": "pyerrors.linalg", "qualname": "matmul", "kind": "function", "doc": "

Matrix multiply all operands.

\n\n
Parameters
\n\n
    \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
  • This implementation is faster compared to standard multiplication via the @ operator.
  • \n
\n", "signature": "(*operands):", "funcdef": "def"}, "pyerrors.linalg.jack_matmul": {"fullname": "pyerrors.linalg.jack_matmul", "modulename": "pyerrors.linalg", "qualname": "jack_matmul", "kind": "function", "doc": "

Matrix multiply both operands making use of the jackknife approximation.

\n\n
Parameters
\n\n
    \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
  • For large matrices this is considerably faster compared to matmul.
  • \n
\n", "signature": "(*operands):", "funcdef": "def"}, "pyerrors.linalg.einsum": {"fullname": "pyerrors.linalg.einsum", "modulename": "pyerrors.linalg", "qualname": "einsum", "kind": "function", "doc": "

Wrapper for numpy.einsum

\n\n
Parameters
\n\n
    \n
  • subscripts (str):\nSubscripts for summation (see numpy documentation for details)
  • \n
  • operands (numpy.ndarray):\nArbitrary number of 2d-numpy arrays which can be real or complex\nObs valued.
  • \n
\n", "signature": "(subscripts, *operands):", "funcdef": "def"}, "pyerrors.linalg.inv": {"fullname": "pyerrors.linalg.inv", "modulename": "pyerrors.linalg", "qualname": "inv", "kind": "function", "doc": "

Inverse of Obs or CObs valued matrices.

\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.cholesky": {"fullname": "pyerrors.linalg.cholesky", "modulename": "pyerrors.linalg", "qualname": "cholesky", "kind": "function", "doc": "

Cholesky decomposition of Obs valued matrices.

\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.det": {"fullname": "pyerrors.linalg.det", "modulename": "pyerrors.linalg", "qualname": "det", "kind": "function", "doc": "

Determinant of Obs valued matrices.

\n", "signature": "(x):", "funcdef": "def"}, "pyerrors.linalg.eigh": {"fullname": "pyerrors.linalg.eigh", "modulename": "pyerrors.linalg", "qualname": "eigh", "kind": "function", "doc": "

Computes the eigenvalues and eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.eig": {"fullname": "pyerrors.linalg.eig", "modulename": "pyerrors.linalg", "qualname": "eig", "kind": "function", "doc": "

Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.eigv": {"fullname": "pyerrors.linalg.eigv", "modulename": "pyerrors.linalg", "qualname": "eigv", "kind": "function", "doc": "

Computes the eigenvectors of a given hermitian matrix of Obs according to np.linalg.eigh.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.pinv": {"fullname": "pyerrors.linalg.pinv", "modulename": "pyerrors.linalg", "qualname": "pinv", "kind": "function", "doc": "

Computes the Moore-Penrose pseudoinverse of a matrix of Obs.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.linalg.svd": {"fullname": "pyerrors.linalg.svd", "modulename": "pyerrors.linalg", "qualname": "svd", "kind": "function", "doc": "

Computes the singular value decomposition of a matrix of Obs.

\n", "signature": "(obs, **kwargs):", "funcdef": "def"}, "pyerrors.misc": {"fullname": "pyerrors.misc", "modulename": "pyerrors.misc", "kind": "module", "doc": "

\n"}, "pyerrors.misc.print_config": {"fullname": "pyerrors.misc.print_config", "modulename": "pyerrors.misc", "qualname": "print_config", "kind": "function", "doc": "

Print information about version of python, pyerrors and dependencies.

\n", "signature": "():", "funcdef": "def"}, "pyerrors.misc.errorbar": {"fullname": "pyerrors.misc.errorbar", "modulename": "pyerrors.misc", "qualname": "errorbar", "kind": "function", "doc": "

pyerrors wrapper for the errorbars method of matplotlib

\n\n
Parameters
\n\n
    \n
  • x (list):\nA list of x-values which can be Obs.
  • \n
  • y (list):\nA list of y-values which can be Obs.
  • \n
  • axes ((matplotlib.pyplot.axes)):\nThe axes to plot on. default is plt.
  • \n
\n", "signature": "(\tx,\ty,\taxes=<module 'matplotlib.pyplot' from '/opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/matplotlib/pyplot.py'>,\t**kwargs):", "funcdef": "def"}, "pyerrors.misc.dump_object": {"fullname": "pyerrors.misc.dump_object", "modulename": "pyerrors.misc", "qualname": "dump_object", "kind": "function", "doc": "

Dump object into pickle file.

\n\n
Parameters
\n\n
    \n
  • obj (object):\nobject to be saved in the pickle file
  • \n
  • name (str):\nname of the file
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n\n
Returns
\n\n
    \n
  • None
  • \n
\n", "signature": "(obj, name, **kwargs):", "funcdef": "def"}, "pyerrors.misc.load_object": {"fullname": "pyerrors.misc.load_object", "modulename": "pyerrors.misc", "qualname": "load_object", "kind": "function", "doc": "

Load object from pickle file.

\n\n
Parameters
\n\n
    \n
  • path (str):\npath to the file
  • \n
\n\n
Returns
\n\n
    \n
  • object (Obs):\nLoaded Object
  • \n
\n", "signature": "(path):", "funcdef": "def"}, "pyerrors.misc.pseudo_Obs": {"fullname": "pyerrors.misc.pseudo_Obs", "modulename": "pyerrors.misc", "qualname": "pseudo_Obs", "kind": "function", "doc": "

Generate an Obs object with given value, dvalue and name for test purposes

\n\n
Parameters
\n\n
    \n
  • value (float):\ncentral value of the Obs to be generated.
  • \n
  • dvalue (float):\nerror of the Obs to be generated.
  • \n
  • name (str):\nname of the ensemble for which the Obs is to be generated.
  • \n
  • samples (int):\nnumber of samples for the Obs (default 1000).
  • \n
\n\n
Returns
\n\n
    \n
  • res (Obs):\nGenerated Observable
  • \n
\n", "signature": "(value, dvalue, name, samples=1000):", "funcdef": "def"}, "pyerrors.misc.gen_correlated_data": {"fullname": "pyerrors.misc.gen_correlated_data", "modulename": "pyerrors.misc", "qualname": "gen_correlated_data", "kind": "function", "doc": "

Generate observables with given covariance and autocorrelation times.

\n\n
Parameters
\n\n
    \n
  • means (list):\nlist containing the mean value of each observable.
  • \n
  • cov (numpy.ndarray):\ncovariance matrix for the data to be generated.
  • \n
  • name (str):\nensemble name for the data to be geneated.
  • \n
  • tau (float or list):\ncan either be a real number or a list with an entry for\nevery dataset.
  • \n
  • samples (int):\nnumber of samples to be generated for each observable.
  • \n
\n\n
Returns
\n\n
    \n
  • corr_obs (list[Obs]):\nGenerated observable list
  • \n
\n", "signature": "(means, cov, name, tau=0.5, samples=1000):", "funcdef": "def"}, "pyerrors.mpm": {"fullname": "pyerrors.mpm", "modulename": "pyerrors.mpm", "kind": "module", "doc": "

\n"}, "pyerrors.mpm.matrix_pencil_method": {"fullname": "pyerrors.mpm.matrix_pencil_method", "modulename": "pyerrors.mpm", "qualname": "matrix_pencil_method", "kind": "function", "doc": "

Matrix pencil method to extract k energy levels from data

\n\n

Implementation of the matrix pencil method based on\neq. (2.17) of Y. Hua, T. K. Sarkar, IEEE Trans. Acoust. 38, 814-824 (1990)

\n\n
Parameters
\n\n
    \n
  • data (list):\ncan be a list of Obs for the analysis of a single correlator, or a list of lists\nof Obs if several correlators are to analyzed at once.
  • \n
  • k (int):\nNumber of states to extract (default 1).
  • \n
  • p (int):\nmatrix pencil parameter which filters noise. The optimal value is expected between\nlen(data)/3 and 2*len(data)/3. The computation is more expensive the closer p is\nto len(data)/2 but could possibly suppress more noise (default len(data)//2).
  • \n
\n\n
Returns
\n\n
    \n
  • energy_levels (list[Obs]):\nExtracted energy levels
  • \n
\n", "signature": "(corrs, k=1, p=None, **kwargs):", "funcdef": "def"}, "pyerrors.obs": {"fullname": "pyerrors.obs", "modulename": "pyerrors.obs", "kind": "module", "doc": "

\n"}, "pyerrors.obs.Obs": {"fullname": "pyerrors.obs.Obs", "modulename": "pyerrors.obs", "qualname": "Obs", "kind": "class", "doc": "

Class for a general observable.

\n\n

Instances of Obs are the basic objects of a pyerrors error analysis.\nThey are initialized with a list which contains arrays of samples for\ndifferent ensembles/replica and another list of same length which contains\nthe names of the ensembles/replica. Mathematical operations can be\nperformed on instances. The result is another instance of Obs. The error of\nan instance can be computed with the gamma_method. Also contains additional\nmethods for output and visualization of the error calculation.

\n\n
Attributes
\n\n
    \n
  • S_global (float):\nStandard value for S (default 2.0)
  • \n
  • S_dict (dict):\nDictionary for S values. If an entry for a given ensemble\nexists this overwrites the standard value for that ensemble.
  • \n
  • tau_exp_global (float):\nStandard value for tau_exp (default 0.0)
  • \n
  • tau_exp_dict (dict):\nDictionary for tau_exp values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
  • \n
  • N_sigma_global (float):\nStandard value for N_sigma (default 1.0)
  • \n
  • N_sigma_dict (dict):\nDictionary for N_sigma values. If an entry for a given ensemble exists\nthis overwrites the standard value for that ensemble.
  • \n
\n"}, "pyerrors.obs.Obs.__init__": {"fullname": "pyerrors.obs.Obs.__init__", "modulename": "pyerrors.obs", "qualname": "Obs.__init__", "kind": "function", "doc": "

Initialize Obs object.

\n\n
Parameters
\n\n
    \n
  • samples (list):\nlist of numpy arrays containing the Monte Carlo samples
  • \n
  • names (list):\nlist of strings labeling the individual samples
  • \n
  • idl (list, optional):\nlist of ranges or lists on which the samples are defined
  • \n
\n", "signature": "(samples, names, idl=None, **kwargs)"}, "pyerrors.obs.Obs.S_global": {"fullname": "pyerrors.obs.Obs.S_global", "modulename": "pyerrors.obs", "qualname": "Obs.S_global", "kind": "variable", "doc": "

\n", "default_value": "2.0"}, "pyerrors.obs.Obs.S_dict": {"fullname": "pyerrors.obs.Obs.S_dict", "modulename": "pyerrors.obs", "qualname": "Obs.S_dict", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "pyerrors.obs.Obs.tau_exp_global": {"fullname": "pyerrors.obs.Obs.tau_exp_global", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_global", "kind": "variable", "doc": "

\n", "default_value": "0.0"}, "pyerrors.obs.Obs.tau_exp_dict": {"fullname": "pyerrors.obs.Obs.tau_exp_dict", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp_dict", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "pyerrors.obs.Obs.N_sigma_global": {"fullname": "pyerrors.obs.Obs.N_sigma_global", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_global", "kind": "variable", "doc": "

\n", "default_value": "1.0"}, "pyerrors.obs.Obs.N_sigma_dict": {"fullname": "pyerrors.obs.Obs.N_sigma_dict", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma_dict", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "pyerrors.obs.Obs.names": {"fullname": "pyerrors.obs.Obs.names", "modulename": "pyerrors.obs", "qualname": "Obs.names", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.shape": {"fullname": "pyerrors.obs.Obs.shape", "modulename": "pyerrors.obs", "qualname": "Obs.shape", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.r_values": {"fullname": "pyerrors.obs.Obs.r_values", "modulename": "pyerrors.obs", "qualname": "Obs.r_values", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.deltas": {"fullname": "pyerrors.obs.Obs.deltas", "modulename": "pyerrors.obs", "qualname": "Obs.deltas", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.N": {"fullname": "pyerrors.obs.Obs.N", "modulename": "pyerrors.obs", "qualname": "Obs.N", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.idl": {"fullname": "pyerrors.obs.Obs.idl", "modulename": "pyerrors.obs", "qualname": "Obs.idl", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.ddvalue": {"fullname": "pyerrors.obs.Obs.ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.ddvalue", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.reweighted": {"fullname": "pyerrors.obs.Obs.reweighted", "modulename": "pyerrors.obs", "qualname": "Obs.reweighted", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.tag": {"fullname": "pyerrors.obs.Obs.tag", "modulename": "pyerrors.obs", "qualname": "Obs.tag", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.value": {"fullname": "pyerrors.obs.Obs.value", "modulename": "pyerrors.obs", "qualname": "Obs.value", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.dvalue": {"fullname": "pyerrors.obs.Obs.dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.dvalue", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_names": {"fullname": "pyerrors.obs.Obs.e_names", "modulename": "pyerrors.obs", "qualname": "Obs.e_names", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.cov_names": {"fullname": "pyerrors.obs.Obs.cov_names", "modulename": "pyerrors.obs", "qualname": "Obs.cov_names", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.mc_names": {"fullname": "pyerrors.obs.Obs.mc_names", "modulename": "pyerrors.obs", "qualname": "Obs.mc_names", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_content": {"fullname": "pyerrors.obs.Obs.e_content", "modulename": "pyerrors.obs", "qualname": "Obs.e_content", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.covobs": {"fullname": "pyerrors.obs.Obs.covobs", "modulename": "pyerrors.obs", "qualname": "Obs.covobs", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.gamma_method": {"fullname": "pyerrors.obs.Obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "Obs.gamma_method", "kind": "function", "doc": "

Estimate the error and related properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
  • \n
  • tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
  • \n
  • N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
  • \n
  • fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
  • \n
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.gm": {"fullname": "pyerrors.obs.Obs.gm", "modulename": "pyerrors.obs", "qualname": "Obs.gm", "kind": "function", "doc": "

Estimate the error and related properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • S (float):\nspecifies a custom value for the parameter S (default 2.0).\nIf set to 0 it is assumed that the data exhibits no\nautocorrelation. In this case the error estimates coincides\nwith the sample standard error.
  • \n
  • tau_exp (float):\npositive value triggers the critical slowing down analysis\n(default 0.0).
  • \n
  • N_sigma (float):\nnumber of standard deviations from zero until the tail is\nattached to the autocorrelation function (default 1).
  • \n
  • fft (bool):\ndetermines whether the fft algorithm is used for the computation\nof the autocorrelation function (default True)
  • \n
\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.details": {"fullname": "pyerrors.obs.Obs.details", "modulename": "pyerrors.obs", "qualname": "Obs.details", "kind": "function", "doc": "

Output detailed properties of the Obs.

\n\n
Parameters
\n\n
    \n
  • ens_content (bool):\nprint details about the ensembles and replica if true.
  • \n
\n", "signature": "(self, ens_content=True):", "funcdef": "def"}, "pyerrors.obs.Obs.reweight": {"fullname": "pyerrors.obs.Obs.reweight", "modulename": "pyerrors.obs", "qualname": "Obs.reweight", "kind": "function", "doc": "

Reweight the obs with given rewighting factors.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl. Default False.
  • \n
\n", "signature": "(self, weight):", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero_within_error": {"fullname": "pyerrors.obs.Obs.is_zero_within_error", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero_within_error", "kind": "function", "doc": "

Checks whether the observable is zero within 'sigma' standard errors.

\n\n
Parameters
\n\n
    \n
  • sigma (int):\nNumber of standard errors used for the check.
  • \n
  • Works only properly when the gamma method was run.
  • \n
\n", "signature": "(self, sigma=1):", "funcdef": "def"}, "pyerrors.obs.Obs.is_zero": {"fullname": "pyerrors.obs.Obs.is_zero", "modulename": "pyerrors.obs", "qualname": "Obs.is_zero", "kind": "function", "doc": "

Checks whether the observable is zero within a given tolerance.

\n\n
Parameters
\n\n
    \n
  • atol (float):\nAbsolute tolerance (for details see numpy documentation).
  • \n
\n", "signature": "(self, atol=1e-10):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_tauint": {"fullname": "pyerrors.obs.Obs.plot_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.plot_tauint", "kind": "function", "doc": "

Plot integrated autocorrelation time for each ensemble.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rho": {"fullname": "pyerrors.obs.Obs.plot_rho", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rho", "kind": "function", "doc": "

Plot normalized autocorrelation function time for each ensemble.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_rep_dist": {"fullname": "pyerrors.obs.Obs.plot_rep_dist", "modulename": "pyerrors.obs", "qualname": "Obs.plot_rep_dist", "kind": "function", "doc": "

Plot replica distribution for each ensemble with more than one replicum.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_history": {"fullname": "pyerrors.obs.Obs.plot_history", "modulename": "pyerrors.obs", "qualname": "Obs.plot_history", "kind": "function", "doc": "

Plot derived Monte Carlo history for each ensemble

\n\n
Parameters
\n\n
    \n
  • expand (bool):\nshow expanded history for irregular Monte Carlo chains (default: True).
  • \n
\n", "signature": "(self, expand=True):", "funcdef": "def"}, "pyerrors.obs.Obs.plot_piechart": {"fullname": "pyerrors.obs.Obs.plot_piechart", "modulename": "pyerrors.obs", "qualname": "Obs.plot_piechart", "kind": "function", "doc": "

Plot piechart which shows the fractional contribution of each\nensemble to the error and returns a dictionary containing the fractions.

\n\n
Parameters
\n\n
    \n
  • save (str):\nsaves the figure to a file named 'save' if.
  • \n
\n", "signature": "(self, save=None):", "funcdef": "def"}, "pyerrors.obs.Obs.dump": {"fullname": "pyerrors.obs.Obs.dump", "modulename": "pyerrors.obs", "qualname": "Obs.dump", "kind": "function", "doc": "

Dump the Obs to a file 'name' of chosen format.

\n\n
Parameters
\n\n
    \n
  • filename (str):\nname of the file to be saved.
  • \n
  • datatype (str):\nFormat of the exported file. Supported formats include\n\"json.gz\" and \"pickle\"
  • \n
  • description (str):\nDescription for output file, only relevant for json.gz format.
  • \n
  • path (str):\nspecifies a custom path for the file (default '.')
  • \n
\n", "signature": "(self, filename, datatype='json.gz', description='', **kwargs):", "funcdef": "def"}, "pyerrors.obs.Obs.export_jackknife": {"fullname": "pyerrors.obs.Obs.export_jackknife", "modulename": "pyerrors.obs", "qualname": "Obs.export_jackknife", "kind": "function", "doc": "

Export jackknife samples from the Obs

\n\n
Returns
\n\n
    \n
  • numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N jackknife samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived jackknife samples\nshould agree with samples from a full jackknife analysis up to O(1/N).
  • \n
\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.export_bootstrap": {"fullname": "pyerrors.obs.Obs.export_bootstrap", "modulename": "pyerrors.obs", "qualname": "Obs.export_bootstrap", "kind": "function", "doc": "

Export bootstrap samples from the Obs

\n\n
Parameters
\n\n
    \n
  • samples (int):\nNumber of bootstrap samples to generate.
  • \n
  • random_numbers (np.ndarray):\nArray of shape (samples, length) containing the random numbers to generate the bootstrap samples.\nIf not provided the bootstrap samples are generated bashed on the md5 hash of the enesmble name.
  • \n
  • save_rng (str):\nSave the random numbers to a file if a path is specified.
  • \n
\n\n
Returns
\n\n
    \n
  • numpy.ndarray: Returns a numpy array of length N + 1 where N is the number of samples\nfor the given ensemble and replicum. The zeroth entry of the array contains\nthe mean value of the Obs, entries 1 to N contain the N import_bootstrap samples\nderived from the Obs. The current implementation only works for observables\ndefined on exactly one ensemble and replicum. The derived bootstrap samples\nshould agree with samples from a full bootstrap analysis up to O(1/N).
  • \n
\n", "signature": "(self, samples=500, random_numbers=None, save_rng=None):", "funcdef": "def"}, "pyerrors.obs.Obs.sqrt": {"fullname": "pyerrors.obs.Obs.sqrt", "modulename": "pyerrors.obs", "qualname": "Obs.sqrt", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.log": {"fullname": "pyerrors.obs.Obs.log", "modulename": "pyerrors.obs", "qualname": "Obs.log", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.exp": {"fullname": "pyerrors.obs.Obs.exp", "modulename": "pyerrors.obs", "qualname": "Obs.exp", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sin": {"fullname": "pyerrors.obs.Obs.sin", "modulename": "pyerrors.obs", "qualname": "Obs.sin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.cos": {"fullname": "pyerrors.obs.Obs.cos", "modulename": "pyerrors.obs", "qualname": "Obs.cos", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.tan": {"fullname": "pyerrors.obs.Obs.tan", "modulename": "pyerrors.obs", "qualname": "Obs.tan", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arcsin": {"fullname": "pyerrors.obs.Obs.arcsin", "modulename": "pyerrors.obs", "qualname": "Obs.arcsin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arccos": {"fullname": "pyerrors.obs.Obs.arccos", "modulename": "pyerrors.obs", "qualname": "Obs.arccos", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arctan": {"fullname": "pyerrors.obs.Obs.arctan", "modulename": "pyerrors.obs", "qualname": "Obs.arctan", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.sinh": {"fullname": "pyerrors.obs.Obs.sinh", "modulename": "pyerrors.obs", "qualname": "Obs.sinh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.cosh": {"fullname": "pyerrors.obs.Obs.cosh", "modulename": "pyerrors.obs", "qualname": "Obs.cosh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.tanh": {"fullname": "pyerrors.obs.Obs.tanh", "modulename": "pyerrors.obs", "qualname": "Obs.tanh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arcsinh": {"fullname": "pyerrors.obs.Obs.arcsinh", "modulename": "pyerrors.obs", "qualname": "Obs.arcsinh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arccosh": {"fullname": "pyerrors.obs.Obs.arccosh", "modulename": "pyerrors.obs", "qualname": "Obs.arccosh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.arctanh": {"fullname": "pyerrors.obs.Obs.arctanh", "modulename": "pyerrors.obs", "qualname": "Obs.arctanh", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.Obs.N_sigma": {"fullname": "pyerrors.obs.Obs.N_sigma", "modulename": "pyerrors.obs", "qualname": "Obs.N_sigma", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.S": {"fullname": "pyerrors.obs.Obs.S", "modulename": "pyerrors.obs", "qualname": "Obs.S", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_ddvalue": {"fullname": "pyerrors.obs.Obs.e_ddvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_ddvalue", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_drho": {"fullname": "pyerrors.obs.Obs.e_drho", "modulename": "pyerrors.obs", "qualname": "Obs.e_drho", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_dtauint": {"fullname": "pyerrors.obs.Obs.e_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_dtauint", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_dvalue": {"fullname": "pyerrors.obs.Obs.e_dvalue", "modulename": "pyerrors.obs", "qualname": "Obs.e_dvalue", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_n_dtauint": {"fullname": "pyerrors.obs.Obs.e_n_dtauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_dtauint", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_n_tauint": {"fullname": "pyerrors.obs.Obs.e_n_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_n_tauint", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_rho": {"fullname": "pyerrors.obs.Obs.e_rho", "modulename": "pyerrors.obs", "qualname": "Obs.e_rho", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_tauint": {"fullname": "pyerrors.obs.Obs.e_tauint", "modulename": "pyerrors.obs", "qualname": "Obs.e_tauint", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.e_windowsize": {"fullname": "pyerrors.obs.Obs.e_windowsize", "modulename": "pyerrors.obs", "qualname": "Obs.e_windowsize", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.Obs.tau_exp": {"fullname": "pyerrors.obs.Obs.tau_exp", "modulename": "pyerrors.obs", "qualname": "Obs.tau_exp", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.CObs": {"fullname": "pyerrors.obs.CObs", "modulename": "pyerrors.obs", "qualname": "CObs", "kind": "class", "doc": "

Class for a complex valued observable.

\n"}, "pyerrors.obs.CObs.__init__": {"fullname": "pyerrors.obs.CObs.__init__", "modulename": "pyerrors.obs", "qualname": "CObs.__init__", "kind": "function", "doc": "

\n", "signature": "(real, imag=0.0)"}, "pyerrors.obs.CObs.tag": {"fullname": "pyerrors.obs.CObs.tag", "modulename": "pyerrors.obs", "qualname": "CObs.tag", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.real": {"fullname": "pyerrors.obs.CObs.real", "modulename": "pyerrors.obs", "qualname": "CObs.real", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.imag": {"fullname": "pyerrors.obs.CObs.imag", "modulename": "pyerrors.obs", "qualname": "CObs.imag", "kind": "variable", "doc": "

\n"}, "pyerrors.obs.CObs.gamma_method": {"fullname": "pyerrors.obs.CObs.gamma_method", "modulename": "pyerrors.obs", "qualname": "CObs.gamma_method", "kind": "function", "doc": "

Executes the gamma_method for the real and the imaginary part.

\n", "signature": "(self, **kwargs):", "funcdef": "def"}, "pyerrors.obs.CObs.is_zero": {"fullname": "pyerrors.obs.CObs.is_zero", "modulename": "pyerrors.obs", "qualname": "CObs.is_zero", "kind": "function", "doc": "

Checks whether both real and imaginary part are zero within machine precision.

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.CObs.conjugate": {"fullname": "pyerrors.obs.CObs.conjugate", "modulename": "pyerrors.obs", "qualname": "CObs.conjugate", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "pyerrors.obs.gamma_method": {"fullname": "pyerrors.obs.gamma_method", "modulename": "pyerrors.obs", "qualname": "gamma_method", "kind": "function", "doc": "

Vectorized version of the gamma_method applicable to lists or arrays of Obs.

\n\n

See docstring of pe.Obs.gamma_method for details.

\n", "signature": "(x, **kwargs):", "funcdef": "def"}, "pyerrors.obs.gm": {"fullname": "pyerrors.obs.gm", "modulename": "pyerrors.obs", "qualname": "gm", "kind": "function", "doc": "

Vectorized version of the gamma_method applicable to lists or arrays of Obs.

\n\n

See docstring of pe.Obs.gamma_method for details.

\n", "signature": "(x, **kwargs):", "funcdef": "def"}, "pyerrors.obs.derived_observable": {"fullname": "pyerrors.obs.derived_observable", "modulename": "pyerrors.obs", "qualname": "derived_observable", "kind": "function", "doc": "

Construct a derived Obs according to func(data, **kwargs) using automatic differentiation.

\n\n
Parameters
\n\n
    \n
  • func (object):\narbitrary function of the form func(data, **kwargs). For the\nautomatic differentiation to work, all numpy functions have to have\nthe autograd wrapper (use 'import autograd.numpy as anp').
  • \n
  • data (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
  • \n
  • num_grad (bool):\nif True, numerical derivatives are used instead of autograd\n(default False). To control the numerical differentiation the\nkwargs of numdifftools.step_generators.MaxStepGenerator\ncan be used.
  • \n
  • man_grad (list):\nmanually supply a list or an array which contains the jacobian\nof func. Use cautiously, supplying the wrong derivative will\nnot be intercepted.
  • \n
\n\n
Notes
\n\n

For simple mathematical operations it can be practical to use anonymous\nfunctions. For the ratio of two observables one can e.g. use

\n\n

new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2])

\n", "signature": "(func, data, array_mode=False, **kwargs):", "funcdef": "def"}, "pyerrors.obs.reweight": {"fullname": "pyerrors.obs.reweight", "modulename": "pyerrors.obs", "qualname": "reweight", "kind": "function", "doc": "

Reweight a list of observables.

\n\n
Parameters
\n\n
    \n
  • weight (Obs):\nReweighting factor. An Observable that has to be defined on a superset of the\nconfigurations in obs[i].idl for all i.
  • \n
  • obs (list):\nlist of Obs, e.g. [obs1, obs2, obs3].
  • \n
  • all_configs (bool):\nif True, the reweighted observables are normalized by the average of\nthe reweighting factor on all configurations in weight.idl and not\non the configurations in obs[i].idl. Default False.
  • \n
\n", "signature": "(weight, obs, **kwargs):", "funcdef": "def"}, "pyerrors.obs.correlate": {"fullname": "pyerrors.obs.correlate", "modulename": "pyerrors.obs", "qualname": "correlate", "kind": "function", "doc": "

Correlate two observables.

\n\n
Parameters
\n\n
    \n
  • obs_a (Obs):\nFirst observable
  • \n
  • obs_b (Obs):\nSecond observable
  • \n
\n\n
Notes
\n\n

Keep in mind to only correlate primary observables which have not been reweighted\nyet. The reweighting has to be applied after correlating the observables.\nOnly works if a single ensemble is present in the Obs.\nCurrently only works if ensemble content is identical (this is not strictly necessary).

\n", "signature": "(obs_a, obs_b):", "funcdef": "def"}, "pyerrors.obs.covariance": {"fullname": "pyerrors.obs.covariance", "modulename": "pyerrors.obs", "qualname": "covariance", "kind": "function", "doc": "

Calculates the error covariance matrix of a set of observables.

\n\n

WARNING: This function should be used with care, especially for observables with support on multiple\n ensembles with differing autocorrelations. See the notes below for details.

\n\n

The gamma method has to be applied first to all observables.

\n\n
Parameters
\n\n
    \n
  • obs (list or numpy.ndarray):\nList or one dimensional array of Obs
  • \n
  • visualize (bool):\nIf True plots the corresponding normalized correlation matrix (default False).
  • \n
  • correlation (bool):\nIf True the correlation matrix instead of the error covariance matrix is returned (default False).
  • \n
  • smooth (None or int):\nIf smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue\nsmoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the\nlargest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely\nsmall ones.
  • \n
\n\n
Notes
\n\n

The error covariance is defined such that it agrees with the squared standard error for two identical observables\n$$\\operatorname{cov}(a,a)=\\sum_{s=1}^N\\delta_a^s\\delta_a^s/N^2=\\Gamma_{aa}(0)/N=\\operatorname{var}(a)/N=\\sigma_a^2$$\nin the absence of autocorrelation.\nThe error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite\n$$\\sum_{i,j}v_i\\Gamma_{ij}(0)v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i,j}v_i\\delta_i^s\\delta_j^s v_j=\\frac{1}{N}\\sum_{s=1}^N\\sum_{i}|v_i\\delta_i^s|^2\\geq 0\\,,$$ for every $v\\in\\mathbb{R}^M$, while such an identity does not hold for larger windows/lags.\nFor observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements.\n$$\\tau_{\\mathrm{int}, ij}=\\sqrt{\\tau_{\\mathrm{int}, i}\\times \\tau_{\\mathrm{int}, j}}$$\nThis construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors).

\n", "signature": "(obs, visualize=False, correlation=False, smooth=None, **kwargs):", "funcdef": "def"}, "pyerrors.obs.invert_corr_cov_cholesky": {"fullname": "pyerrors.obs.invert_corr_cov_cholesky", "modulename": "pyerrors.obs", "qualname": "invert_corr_cov_cholesky", "kind": "function", "doc": "

Constructs a lower triangular matrix chol via the Cholesky decomposition of the correlation matrix corr\n and then returns the inverse covariance matrix chol_inv as a lower triangular matrix by solving chol * x = inverrdiag.

\n\n
Parameters
\n\n
    \n
  • corr (np.ndarray):\ncorrelation matrix
  • \n
  • inverrdiag (np.ndarray):\ndiagonal matrix, the entries are the inverse errors of the data points considered
  • \n
\n", "signature": "(corr, inverrdiag):", "funcdef": "def"}, "pyerrors.obs.sort_corr": {"fullname": "pyerrors.obs.sort_corr", "modulename": "pyerrors.obs", "qualname": "sort_corr", "kind": "function", "doc": "

Reorders a correlation matrix to match the alphabetical order of its underlying y data.

\n\n

The ordering of the input correlation matrix corr is given by the list of keys kl.\nThe input dictionary yd (with the same keys kl) must contain the corresponding y data\nthat the correlation matrix is based on.\nThis function sorts the list of keys kl alphabetically and sorts the matrix corr\naccording to this alphabetical order such that the sorted matrix corr_sorted corresponds\nto the y data yd when arranged in an alphabetical order by its keys.

\n\n
Parameters
\n\n
    \n
  • corr (np.ndarray):\nA square correlation matrix constructed using the order of the y data specified by kl.\nThe dimensions of corr should match the total number of y data points in yd combined.
  • \n
  • kl (list of str):\nA list of keys that denotes the order in which the y data from yd was used to build the\ninput correlation matrix corr.
  • \n
  • yd (dict of list):\nA dictionary where each key corresponds to a unique identifier, and its value is a list of\ny data points. The total number of y data points across all keys must match the dimensions\nof corr. The lists in the dictionary can be lists of Obs.
  • \n
\n\n
Returns
\n\n
    \n
  • np.ndarray: A new, sorted correlation matrix that corresponds to the y data from yd when arranged alphabetically by its keys.
  • \n
\n\n
Example
\n\n
\n
>>> import numpy as np\n>>> import pyerrors as pe\n>>> corr = np.array([[1, 0.2, 0.3], [0.2, 1, 0.4], [0.3, 0.4, 1]])\n>>> kl = ['b', 'a']\n>>> yd = {'a': [1, 2], 'b': [3]}\n>>> sorted_corr = pe.obs.sort_corr(corr, kl, yd)\n>>> print(sorted_corr)\narray([[1. , 0.3, 0.4],\n       [0.3, 1. , 0.2],\n       [0.4, 0.2, 1. ]])\n
\n
\n", "signature": "(corr, kl, yd):", "funcdef": "def"}, "pyerrors.obs.import_jackknife": {"fullname": "pyerrors.obs.import_jackknife", "modulename": "pyerrors.obs", "qualname": "import_jackknife", "kind": "function", "doc": "

Imports jackknife samples and returns an Obs

\n\n
Parameters
\n\n
    \n
  • jacks (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N jackknife samples as first to Nth entry.
  • \n
  • name (str):\nname of the ensemble the samples are defined on.
  • \n
\n", "signature": "(jacks, name, idl=None):", "funcdef": "def"}, "pyerrors.obs.import_bootstrap": {"fullname": "pyerrors.obs.import_bootstrap", "modulename": "pyerrors.obs", "qualname": "import_bootstrap", "kind": "function", "doc": "

Imports bootstrap samples and returns an Obs

\n\n
Parameters
\n\n
    \n
  • boots (numpy.ndarray):\nnumpy array containing the mean value as zeroth entry and\nthe N bootstrap samples as first to Nth entry.
  • \n
  • name (str):\nname of the ensemble the samples are defined on.
  • \n
  • random_numbers (np.ndarray):\nArray of shape (samples, length) containing the random numbers to generate the bootstrap samples,\nwhere samples is the number of bootstrap samples and length is the length of the original Monte Carlo\nchain to be reconstructed.
  • \n
\n", "signature": "(boots, name, random_numbers):", "funcdef": "def"}, "pyerrors.obs.merge_obs": {"fullname": "pyerrors.obs.merge_obs", "modulename": "pyerrors.obs", "qualname": "merge_obs", "kind": "function", "doc": "

Combine all observables in list_of_obs into one new observable.\nThis allows to merge Obs that have been computed on multiple replica\nof the same ensemble.\nIf you like to merge Obs that are based on several ensembles, please\naverage them yourself.

\n\n
Parameters
\n\n
    \n
  • list_of_obs (list):\nlist of the Obs object to be combined
  • \n
\n\n
Notes
\n\n

It is not possible to combine obs which are based on the same replicum

\n", "signature": "(list_of_obs):", "funcdef": "def"}, "pyerrors.obs.cov_Obs": {"fullname": "pyerrors.obs.cov_Obs", "modulename": "pyerrors.obs", "qualname": "cov_Obs", "kind": "function", "doc": "

Create an Obs based on mean(s) and a covariance matrix

\n\n
Parameters
\n\n
    \n
  • mean (list of floats or float):\nN mean value(s) of the new Obs
  • \n
  • cov (list or array):\n2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance
  • \n
  • name (str):\nidentifier for the covariance matrix
  • \n
  • grad (list or array):\nGradient of the Covobs wrt. the means belonging to cov.
  • \n
\n", "signature": "(means, cov, name, grad=None):", "funcdef": "def"}, "pyerrors.roots": {"fullname": "pyerrors.roots", "modulename": "pyerrors.roots", "kind": "module", "doc": "

\n"}, "pyerrors.roots.find_root": {"fullname": "pyerrors.roots.find_root", "modulename": "pyerrors.roots", "qualname": "find_root", "kind": "function", "doc": "

Finds the root of the function func(x, d) where d is an Obs.

\n\n
Parameters
\n\n
    \n
  • d (Obs):\nObs passed to the function.
  • \n
  • func (object):\nFunction to be minimized. Any numpy functions have to use the autograd.numpy wrapper.\nExample:

    \n\n
    \n
    import autograd.numpy as anp\ndef root_func(x, d):\n    return anp.exp(-x ** 2) - d\n
    \n
  • \n
  • guess (float):\nInitial guess for the minimization.

  • \n
\n\n
Returns
\n\n
    \n
  • res (Obs):\nObs valued root of the function.
  • \n
\n", "signature": "(d, func, guess=1.0, **kwargs):", "funcdef": "def"}, "pyerrors.special": {"fullname": "pyerrors.special", "modulename": "pyerrors.special", "kind": "module", "doc": "

\n"}, "pyerrors.special.beta": {"fullname": "pyerrors.special.beta", "modulename": "pyerrors.special", "qualname": "beta", "kind": "function", "doc": "

beta(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

beta(a, b, out=None)

\n\n

Beta function.

\n\n

This function is defined in 1 as

\n\n

$$B(a, b) = \\int_0^1 t^{a-1}(1-t)^{b-1}dt\n = \\frac{\\Gamma(a)\\Gamma(b)}{\\Gamma(a+b)},$$

\n\n

where \\( \\Gamma \\) is the gamma function.

\n\n
Parameters
\n\n
    \n
  • a, b (array_like):\nReal-valued arguments
  • \n
  • out (ndarray, optional):\nOptional output array for the function result
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Value of the beta function
  • \n
\n\n
See Also
\n\n

gamma: the gamma function
\nbetainc: the regularized incomplete beta function
\nbetaln: the natural logarithm of the absolute\nvalue of the beta function

\n\n
References
\n\n
Examples
\n\n
\n
>>> import scipy.special as sc\n
\n
\n\n

The beta function relates to the gamma function by the\ndefinition given above:

\n\n
\n
>>> sc.beta(2, 3)\n0.08333333333333333\n>>> sc.gamma(2)*sc.gamma(3)/sc.gamma(2 + 3)\n0.08333333333333333\n
\n
\n\n

As this relationship demonstrates, the beta function\nis symmetric:

\n\n
\n
>>> sc.beta(1.7, 2.4)\n0.16567527689031739\n>>> sc.beta(2.4, 1.7)\n0.16567527689031739\n
\n
\n\n

This function satisfies \\( B(1, b) = 1/b \\):

\n\n
\n
>>> sc.beta(1, 4)\n0.25\n
\n
\n\n
\n
\n
    \n
  1. \n

    NIST Digital Library of Mathematical Functions,\nEq. 5.12.1. https://dlmf.nist.gov/5.12 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.betainc": {"fullname": "pyerrors.special.betainc", "modulename": "pyerrors.special", "qualname": "betainc", "kind": "function", "doc": "

betainc(a, b, x, out=None)

\n\n

Regularized incomplete beta function.

\n\n

Computes the regularized incomplete beta function, defined as 1:

\n\n

$$I_x(a, b) = \\frac{\\Gamma(a+b)}{\\Gamma(a)\\Gamma(b)} \\int_0^x\nt^{a-1}(1-t)^{b-1}dt,$$

\n\n

for \\( 0 \\leq x \\leq 1 \\).

\n\n

This function is the cumulative distribution function for the beta\ndistribution; its range is [0, 1].

\n\n
Parameters
\n\n
    \n
  • a, b (array_like):\nPositive, real-valued parameters
  • \n
  • x (array_like):\nReal-valued such that \\( 0 \\leq x \\leq 1 \\),\nthe upper limit of integration
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Value of the regularized incomplete beta function
  • \n
\n\n
See Also
\n\n

beta()`\nbeta`, `function` \nbetaincinv()\ninverse, of, the, regularized, incomplete, beta, function
\nbetaincc()`\ncomplement`, `of`, `the`, `regularized`, `incomplete`, `beta`, `function` \nscipy.stats.beta()\nbeta, distribution

\n\n
Notes
\n\n

The term regularized in the name of this function refers to the\nscaling of the function by the gamma function terms shown in the\nformula. When not qualified as regularized, the name incomplete\nbeta function often refers to just the integral expression,\nwithout the gamma terms. One can use the function beta from\nscipy.special to get this \"nonregularized\" incomplete beta\nfunction by multiplying the result of betainc(a, b, x) by\nbeta(a, b).

\n\n

betainc(a, b, x) is treated as a two parameter family of functions\nof a single variable x, rather than as a function of three variables.\nThis impacts only the limiting cases a = 0, b = 0, a = inf,\nb = inf.

\n\n

In general

\n\n

$$\\lim_{(a, b) \\rightarrow (a_0, b_0)} \\mathrm{betainc}(a, b, x)$$

\n\n

is treated as a pointwise limit in x. Thus for example,\nbetainc(0, b, 0) equals 0 for b > 0, although it would be\nindeterminate when considering the simultaneous limit (a, x) -> (0+, 0+).

\n\n

This function wraps the ibeta routine from the\nBoost Math C++ library 2.

\n\n

betainc has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u26d4
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
References
\n\n
Examples
\n\n

Let \\( B(a, b) \\) be the beta function.

\n\n
\n
>>> import scipy.special as sc\n
\n
\n\n

The coefficient in terms of gamma is equal to\n\\( 1/B(a, b) \\). Also, when \\( x=1 \\)\nthe integral is equal to \\( B(a, b) \\).\nTherefore, \\( I_{x=1}(a, b) = 1 \\) for any \\( a, b \\).

\n\n
\n
>>> sc.betainc(0.2, 3.5, 1.0)\n1.0\n
\n
\n\n

It satisfies\n\\( I_x(a, b) = x^a F(a, 1-b, a+1, x)/ (aB(a, b)) \\),\nwhere \\( F \\) is the hypergeometric function hyp2f1:

\n\n
\n
>>> a, b, x = 1.4, 3.1, 0.5\n>>> x**a * sc.hyp2f1(a, 1 - b, a + 1, x)/(a * sc.beta(a, b))\n0.8148904036225295\n>>> sc.betainc(a, b, x)\n0.8148904036225296\n
\n
\n\n

This functions satisfies the relationship\n\\( I_x(a, b) = 1 - I_{1-x}(b, a) \\):

\n\n
\n
>>> sc.betainc(2.2, 3.1, 0.4)\n0.49339638807619446\n>>> 1 - sc.betainc(3.1, 2.2, 1 - 0.4)\n0.49339638807619446\n
\n
\n\n
\n
\n
    \n
  1. \n

    NIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/8.17 

    \n
  2. \n\n
  3. \n

    The Boost Developers. \"Boost C++ Libraries\". https://www.boost.org/

    \n
  4. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.betaln": {"fullname": "pyerrors.special.betaln", "modulename": "pyerrors.special", "qualname": "betaln", "kind": "function", "doc": "

betaln(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

betaln(a, b, out=None)

\n\n

Natural logarithm of absolute value of beta function.

\n\n

Computes ln(abs(beta(a, b))).

\n\n
Parameters
\n\n
    \n
  • a, b (array_like):\nPositive, real-valued parameters
  • \n
  • out (ndarray, optional):\nOptional output array for function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Value of the betaln function
  • \n
\n\n
See Also
\n\n

gamma: the gamma function
\nbetainc: the regularized incomplete beta function
\nbeta: the beta function

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> from scipy.special import betaln, beta\n
\n
\n\n

Verify that, for moderate values of a and b, betaln(a, b)\nis the same as log(beta(a, b)):

\n\n
\n
>>> betaln(3, 4)\n-4.0943445622221\n
\n
\n\n
\n
>>> np.log(beta(3, 4))\n-4.0943445622221\n
\n
\n\n

In the following beta(a, b) underflows to 0, so we can't compute\nthe logarithm of the actual value.

\n\n
\n
>>> a = 400\n>>> b = 900\n>>> beta(a, b)\n0.0\n
\n
\n\n

We can compute the logarithm of beta(a, b) by using betaln:

\n\n
\n
>>> betaln(a, b)\n-804.3069951764146\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.polygamma": {"fullname": "pyerrors.special.polygamma", "modulename": "pyerrors.special", "qualname": "polygamma", "kind": "function", "doc": "

Polygamma functions.

\n\n

Defined as \\( \\psi^{(n)}(x) \\) where \\( \\psi \\) is the\ndigamma function. See [dlmf]_ for details.

\n\n
Parameters
\n\n
    \n
  • n (array_like):\nThe order of the derivative of the digamma function; must be\nintegral
  • \n
  • x (array_like):\nReal valued input
  • \n
\n\n
Returns
\n\n
    \n
  • ndarray: Function results
  • \n
\n\n
See Also
\n\n

digamma

\n\n
References
\n\n

.. [dlmf] NIST, Digital Library of Mathematical Functions,\n https://dlmf.nist.gov/5.15

\n\n
Examples
\n\n
\n
>>> from scipy import special\n>>> x = [2, 3, 25.5]\n>>> special.polygamma(1, x)\narray([ 0.64493407,  0.39493407,  0.03999467])\n>>> special.polygamma(0, x) == special.psi(x)\narray([ True,  True,  True], dtype=bool)\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.psi": {"fullname": "pyerrors.special.psi", "modulename": "pyerrors.special", "qualname": "psi", "kind": "function", "doc": "

psi(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

psi(z, out=None)

\n\n

The digamma function.

\n\n

The logarithmic derivative of the gamma function evaluated at z.

\n\n
Parameters
\n\n
    \n
  • z (array_like):\nReal or complex argument.
  • \n
  • out (ndarray, optional):\nArray for the computed values of psi.
  • \n
\n\n
Returns
\n\n
    \n
  • digamma (scalar or ndarray):\nComputed values of psi.
  • \n
\n\n
Notes
\n\n

For large values not close to the negative real axis, psi is\ncomputed using the asymptotic series (5.11.2) from 1. For small\narguments not close to the negative real axis, the recurrence\nrelation (5.5.2) from 2 is used until the argument is large\nenough to use the asymptotic series. For values close to the\nnegative real axis, the reflection formula (5.5.4) from 3 is\nused first. Note that psi has a family of zeros on the\nnegative real axis which occur between the poles at nonpositive\nintegers. Around the zeros the reflection formula suffers from\ncancellation and the implementation loses precision. The sole\npositive zero and the first negative zero, however, are handled\nseparately by precomputing series expansions using 4, so the\nfunction should maintain full accuracy around the origin.

\n\n
References
\n\n
Examples
\n\n
\n
>>> from scipy.special import psi\n>>> z = 3 + 4j\n>>> psi(z)\n(1.55035981733341+1.0105022091860445j)\n
\n
\n\n

Verify psi(z) = psi(z + 1) - 1/z:

\n\n
\n
>>> psi(z + 1) - 1/z\n(1.55035981733341+1.0105022091860445j)\n
\n
\n\n
\n
\n
    \n
  1. \n

    NIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 

    \n
  2. \n\n
  3. \n

    NIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 

    \n
  4. \n\n
  5. \n

    NIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 

    \n
  6. \n\n
  7. \n

    Fredrik Johansson and others.\n\"mpmath: a Python library for arbitrary-precision floating-point arithmetic\"\n(Version 0.19) http://mpmath.org/ 

    \n
  8. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.digamma": {"fullname": "pyerrors.special.digamma", "modulename": "pyerrors.special", "qualname": "digamma", "kind": "function", "doc": "

psi(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

psi(z, out=None)

\n\n

The digamma function.

\n\n

The logarithmic derivative of the gamma function evaluated at z.

\n\n
Parameters
\n\n
    \n
  • z (array_like):\nReal or complex argument.
  • \n
  • out (ndarray, optional):\nArray for the computed values of psi.
  • \n
\n\n
Returns
\n\n
    \n
  • digamma (scalar or ndarray):\nComputed values of psi.
  • \n
\n\n
Notes
\n\n

For large values not close to the negative real axis, psi is\ncomputed using the asymptotic series (5.11.2) from 1. For small\narguments not close to the negative real axis, the recurrence\nrelation (5.5.2) from 2 is used until the argument is large\nenough to use the asymptotic series. For values close to the\nnegative real axis, the reflection formula (5.5.4) from 3 is\nused first. Note that psi has a family of zeros on the\nnegative real axis which occur between the poles at nonpositive\nintegers. Around the zeros the reflection formula suffers from\ncancellation and the implementation loses precision. The sole\npositive zero and the first negative zero, however, are handled\nseparately by precomputing series expansions using 4, so the\nfunction should maintain full accuracy around the origin.

\n\n
References
\n\n
Examples
\n\n
\n
>>> from scipy.special import psi\n>>> z = 3 + 4j\n>>> psi(z)\n(1.55035981733341+1.0105022091860445j)\n
\n
\n\n

Verify psi(z) = psi(z + 1) - 1/z:

\n\n
\n
>>> psi(z + 1) - 1/z\n(1.55035981733341+1.0105022091860445j)\n
\n
\n\n
\n
\n
    \n
  1. \n

    NIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 

    \n
  2. \n\n
  3. \n

    NIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 

    \n
  4. \n\n
  5. \n

    NIST Digital Library of Mathematical Functions\nhttps://dlmf.nist.gov/5 

    \n
  6. \n\n
  7. \n

    Fredrik Johansson and others.\n\"mpmath: a Python library for arbitrary-precision floating-point arithmetic\"\n(Version 0.19) http://mpmath.org/ 

    \n
  8. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gamma": {"fullname": "pyerrors.special.gamma", "modulename": "pyerrors.special", "qualname": "gamma", "kind": "function", "doc": "

gamma(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

gamma(z, out=None)

\n\n

gamma function.

\n\n

The gamma function is defined as

\n\n

$$\\Gamma(z) = \\int_0^\\infty t^{z-1} e^{-t} dt$$

\n\n

for \\( \\Re(z) > 0 \\) and is extended to the rest of the complex\nplane by analytic continuation. See [dlmf]_ for more details.

\n\n
Parameters
\n\n
    \n
  • z (array_like):\nReal or complex valued argument
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Values of the gamma function
  • \n
\n\n
Notes
\n\n

The gamma function is often referred to as the generalized\nfactorial since \\( \\Gamma(n + 1) = n! \\) for natural numbers\n\\( n \\). More generally it satisfies the recurrence relation\n\\( \\Gamma(z + 1) = z \\cdot \\Gamma(z) \\) for complex \\( z \\),\nwhich, combined with the fact that \\( \\Gamma(1) = 1 \\), implies\nthe above identity for \\( z = n \\).

\n\n

The gamma function has poles at non-negative integers and the sign\nof infinity as z approaches each pole depends upon the direction in\nwhich the pole is approached. For this reason, the consistent thing\nis for gamma(z) to return NaN at negative integers, and to return\n-inf when x = -0.0 and +inf when x = 0.0, using the signbit of zero\nto signify the direction in which the origin is being approached. This\nis for instance what is recommended for the gamma function in annex F\nentry 9.5.4 of the Iso C 99 standard [isoc99]_.

\n\n

Prior to SciPy version 1.15, scipy.special.gamma(z) returned +inf\nat each pole. This was fixed in version 1.15, but with the following\nconsequence. Expressions where gamma appears in the denominator\nsuch as

\n\n

gamma(u) * gamma(v) / (gamma(w) * gamma(x))

\n\n

no longer evaluate to 0 if the numerator is well defined but there is a\npole in the denominator. Instead such expressions evaluate to NaN. We\nrecommend instead using the function rgamma for the reciprocal gamma\nfunction in such cases. The above expression could for instance be written\nas

\n\n

gamma(u) * gamma(v) * (rgamma(w) * rgamma(x))

\n\n
References
\n\n

.. [dlmf] NIST Digital Library of Mathematical Functions\n https://dlmf.nist.gov/5.2#E1\n.. [isoc99] https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> from scipy.special import gamma, factorial\n
\n
\n\n
\n
>>> gamma([0, 0.5, 1, 5])\narray([         inf,   1.77245385,   1.        ,  24.        ])\n
\n
\n\n
\n
>>> z = 2.5 + 1j\n>>> gamma(z)\n(0.77476210455108352+0.70763120437959293j)\n>>> gamma(z+1), z*gamma(z)  # Recurrence property\n((1.2292740569981171+2.5438401155000685j),\n (1.2292740569981158+2.5438401155000658j))\n
\n
\n\n
\n
>>> gamma(0.5)**2  # gamma(0.5) = sqrt(pi)\n3.1415926535897927\n
\n
\n\n

Plot gamma(x) for real x

\n\n
\n
>>> x = np.linspace(-3.5, 5.5, 2251)\n>>> y = gamma(x)\n
\n
\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> plt.plot(x, y, 'b', alpha=0.6, label='gamma(x)')\n>>> k = np.arange(1, 7)\n>>> plt.plot(k, factorial(k-1), 'k*', alpha=0.6,\n...          label='(x-1)!, x = 1, 2, ...')\n>>> plt.xlim(-3.5, 5.5)\n>>> plt.ylim(-10, 25)\n>>> plt.grid()\n>>> plt.xlabel('x')\n>>> plt.legend(loc='lower right')\n>>> plt.show()\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gammaln": {"fullname": "pyerrors.special.gammaln", "modulename": "pyerrors.special", "qualname": "gammaln", "kind": "function", "doc": "

gammaln(x, out=None)

\n\n

Logarithm of the absolute value of the gamma function.

\n\n

Defined as

\n\n

$$\\ln(\\lvert\\Gamma(x)\\rvert)$$

\n\n

where \\( \\Gamma \\) is the gamma function. For more details on\nthe gamma function, see [dlmf]_.

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nReal argument
  • \n
  • out (ndarray, optional):\nOptional output array for the function results
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Values of the log of the absolute value of gamma
  • \n
\n\n
See Also
\n\n

gammasgn()`\nsign`, `of`, `the`, `gamma`, `function` \nloggamma()\nprincipal, branch, of, the, logarithm, of, the, gamma, function

\n\n
Notes
\n\n

It is the same function as the Python standard library function\nmath.lgamma().

\n\n

When used in conjunction with gammasgn, this function is useful\nfor working in logspace on the real axis without having to deal\nwith complex numbers via the relation exp(gammaln(x)) =\ngammasgn(x) * gamma(x).

\n\n

For complex-valued log-gamma, use loggamma instead of gammaln.

\n\n

gammaln has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
References
\n\n

.. [dlmf] NIST Digital Library of Mathematical Functions\n https://dlmf.nist.gov/5

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> import scipy.special as sc\n
\n
\n\n

It has two positive zeros.

\n\n
\n
>>> sc.gammaln([1, 2])\narray([0., 0.])\n
\n
\n\n

It has poles at nonpositive integers.

\n\n
\n
>>> sc.gammaln([0, -1, -2, -3, -4])\narray([inf, inf, inf, inf, inf])\n
\n
\n\n

It asymptotically approaches x * log(x) (Stirling's formula).

\n\n
\n
>>> x = np.array([1e10, 1e20, 1e40, 1e80])\n>>> sc.gammaln(x)\narray([2.20258509e+11, 4.50517019e+21, 9.11034037e+41, 1.83206807e+82])\n>>> x * np.log(x)\narray([2.30258509e+11, 4.60517019e+21, 9.21034037e+41, 1.84206807e+82])\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gammainc": {"fullname": "pyerrors.special.gammainc", "modulename": "pyerrors.special", "qualname": "gammainc", "kind": "function", "doc": "

gammainc(a, x, out=None)

\n\n

Regularized lower incomplete gamma function.

\n\n

It is defined as

\n\n

$$P(a, x) = \\frac{1}{\\Gamma(a)} \\int_0^x t^{a - 1}e^{-t} dt$$

\n\n

for \\( a > 0 \\) and \\( x \\geq 0 \\). See [dlmf]_ for details.

\n\n
Parameters
\n\n
    \n
  • a (array_like):\nPositive parameter
  • \n
  • x (array_like):\nNonnegative argument
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Values of the lower incomplete gamma function
  • \n
\n\n
See Also
\n\n

gammaincc()`\nregularized`, `upper`, `incomplete`, `gamma`, `function` \ngammaincinv()\ninverse, of, the, regularized, lower, incomplete, gamma, function
\n`gammainccinv()\ninverse,of,the,regularized,upper,incomplete,gamma,function`

\n\n
Notes
\n\n

The function satisfies the relation gammainc(a, x) +\ngammaincc(a, x) = 1 where gammaincc is the regularized upper\nincomplete gamma function.

\n\n

The implementation largely follows that of [boost]_.

\n\n

gammainc has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
References
\n\n

.. [dlmf] NIST Digital Library of Mathematical functions\n https://dlmf.nist.gov/8.2#E4\n.. [boost] Maddock et. al., \"Incomplete Gamma Functions\",\n https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html

\n\n
Examples
\n\n
\n
>>> import scipy.special as sc\n
\n
\n\n

It is the CDF of the gamma distribution, so it starts at 0 and\nmonotonically increases to 1.

\n\n
\n
>>> sc.gammainc(0.5, [0, 1, 10, 100])\narray([0.        , 0.84270079, 0.99999226, 1.        ])\n
\n
\n\n

It is equal to one minus the upper incomplete gamma function.

\n\n
\n
>>> a, x = 0.5, 0.4\n>>> sc.gammainc(a, x)\n0.6289066304773024\n>>> 1 - sc.gammaincc(a, x)\n0.6289066304773024\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gammaincc": {"fullname": "pyerrors.special.gammaincc", "modulename": "pyerrors.special", "qualname": "gammaincc", "kind": "function", "doc": "

gammaincc(a, x, out=None)

\n\n

Regularized upper incomplete gamma function.

\n\n

It is defined as

\n\n

$$Q(a, x) = \\frac{1}{\\Gamma(a)} \\int_x^\\infty t^{a - 1}e^{-t} dt$$

\n\n

for \\( a > 0 \\) and \\( x \\geq 0 \\). See [dlmf]_ for details.

\n\n
Parameters
\n\n
    \n
  • a (array_like):\nPositive parameter
  • \n
  • x (array_like):\nNonnegative argument
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Values of the upper incomplete gamma function
  • \n
\n\n
See Also
\n\n

gammainc()`\nregularized`, `lower`, `incomplete`, `gamma`, `function` \ngammaincinv()\ninverse, of, the, regularized, lower, incomplete, gamma, function
\n`gammainccinv()\ninverse,of,the,regularized,upper,incomplete,gamma,function`

\n\n
Notes
\n\n

The function satisfies the relation gammainc(a, x) +\ngammaincc(a, x) = 1 where gammainc is the regularized lower\nincomplete gamma function.

\n\n

The implementation largely follows that of [boost]_.

\n\n

gammaincc has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
References
\n\n

.. [dlmf] NIST Digital Library of Mathematical functions\n https://dlmf.nist.gov/8.2#E4\n.. [boost] Maddock et. al., \"Incomplete Gamma Functions\",\n https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html

\n\n
Examples
\n\n
\n
>>> import scipy.special as sc\n
\n
\n\n

It is the survival function of the gamma distribution, so it\nstarts at 1 and monotonically decreases to 0.

\n\n
\n
>>> sc.gammaincc(0.5, [0, 1, 10, 100, 1000])\narray([1.00000000e+00, 1.57299207e-01, 7.74421643e-06, 2.08848758e-45,\n       0.00000000e+00])\n
\n
\n\n

It is equal to one minus the lower incomplete gamma function.

\n\n
\n
>>> a, x = 0.5, 0.4\n>>> sc.gammaincc(a, x)\n0.37109336952269756\n>>> 1 - sc.gammainc(a, x)\n0.37109336952269756\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.gammasgn": {"fullname": "pyerrors.special.gammasgn", "modulename": "pyerrors.special", "qualname": "gammasgn", "kind": "function", "doc": "

gammasgn(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

gammasgn(x, out=None)

\n\n

Sign of the gamma function.

\n\n

It is defined as

\n\n

$$\\text{gammasgn}(x) =\n\\begin{cases}\n +1 & \\Gamma(x) > 0 \\\n -1 & \\Gamma(x) < 0\n\\end{cases}$$

\n\n

where \\( \\Gamma \\) is the gamma function; see gamma. This\ndefinition is complete since the gamma function is never zero;\nsee the discussion after [dlmf]_.

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nReal argument
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Sign of the gamma function
  • \n
\n\n
See Also
\n\n

gamma: the gamma function
\ngammaln: log of the absolute value of the gamma function
\nloggamma: analytic continuation of the log of the gamma function

\n\n
Notes
\n\n

The gamma function can be computed as gammasgn(x) *\nnp.exp(gammaln(x)).

\n\n
References
\n\n

.. [dlmf] NIST Digital Library of Mathematical Functions\n https://dlmf.nist.gov/5.2#E1

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> import scipy.special as sc\n
\n
\n\n

It is 1 for x > 0.

\n\n
\n
>>> sc.gammasgn([1, 2, 3, 4])\narray([1., 1., 1., 1.])\n
\n
\n\n

It alternates between -1 and 1 for negative integers.

\n\n
\n
>>> sc.gammasgn([-0.5, -1.5, -2.5, -3.5])\narray([-1.,  1., -1.,  1.])\n
\n
\n\n

It can be used to compute the gamma function.

\n\n
\n
>>> x = [1.5, 0.5, -0.5, -1.5]\n>>> sc.gammasgn(x) * np.exp(sc.gammaln(x))\narray([ 0.88622693,  1.77245385, -3.5449077 ,  2.3632718 ])\n>>> sc.gamma(x)\narray([ 0.88622693,  1.77245385, -3.5449077 ,  2.3632718 ])\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.rgamma": {"fullname": "pyerrors.special.rgamma", "modulename": "pyerrors.special", "qualname": "rgamma", "kind": "function", "doc": "

rgamma(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

rgamma(z, out=None)

\n\n

Reciprocal of the gamma function.

\n\n

Defined as \\( 1 / \\Gamma(z) \\), where \\( \\Gamma \\) is the\ngamma function. For more on the gamma function see gamma.

\n\n
Parameters
\n\n
    \n
  • z (array_like):\nReal or complex valued input
  • \n
  • out (ndarray, optional):\nOptional output array for the function results
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Function results
  • \n
\n\n
See Also
\n\n

gamma,, gammaln,, loggamma

\n\n
Notes
\n\n

The gamma function has no zeros and has simple poles at\nnonpositive integers, so rgamma is an entire function with zeros\nat the nonpositive integers. See the discussion in [dlmf]_ for\nmore details.

\n\n
References
\n\n

.. [dlmf] Nist, Digital Library of Mathematical functions,\n https://dlmf.nist.gov/5.2#i

\n\n
Examples
\n\n
\n
>>> import scipy.special as sc\n
\n
\n\n

It is the reciprocal of the gamma function.

\n\n
\n
>>> sc.rgamma([1, 2, 3, 4])\narray([1.        , 1.        , 0.5       , 0.16666667])\n>>> 1 / sc.gamma([1, 2, 3, 4])\narray([1.        , 1.        , 0.5       , 0.16666667])\n
\n
\n\n

It is zero at nonpositive integers.

\n\n
\n
>>> sc.rgamma([0, -1, -2, -3])\narray([0., 0., 0., 0.])\n
\n
\n\n

It rapidly underflows to zero along the positive real axis.

\n\n
\n
>>> sc.rgamma([10, 100, 179])\narray([2.75573192e-006, 1.07151029e-156, 0.00000000e+000])\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.multigammaln": {"fullname": "pyerrors.special.multigammaln", "modulename": "pyerrors.special", "qualname": "multigammaln", "kind": "function", "doc": "

Returns the log of multivariate gamma, also sometimes called the\ngeneralized gamma.

\n\n
Parameters
\n\n
    \n
  • a (ndarray):\nThe multivariate gamma is computed for each item of a.
  • \n
  • d (int):\nThe dimension of the space of integration.
  • \n
\n\n
Returns
\n\n
    \n
  • res (ndarray):\nThe values of the log multivariate gamma at the given points a.
  • \n
\n\n
Notes
\n\n

The formal definition of the multivariate gamma of dimension d for a real\na is

\n\n

$$\\Gamma_d(a) = \\int_{A>0} e^{-tr(A)} |A|^{a - (d+1)/2} dA$$

\n\n

with the condition \\( a > (d-1)/2 \\), and \\( A > 0 \\) being the set of\nall the positive definite matrices of dimension d. Note that a is a\nscalar: the integrand only is multivariate, the argument is not (the\nfunction is defined over a subset of the real set).

\n\n

This can be proven to be equal to the much friendlier equation

\n\n

$$\\Gamma_d(a) = \\pi^{d(d-1)/4} \\prod_{i=1}^{d} \\Gamma(a - (i-1)/2).$$

\n\n
References
\n\n

R. J. Muirhead, Aspects of multivariate statistical theory (Wiley Series in\nprobability and mathematical statistics).

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> from scipy.special import multigammaln, gammaln\n>>> a = 23.5\n>>> d = 10\n>>> multigammaln(a, d)\n454.1488605074416\n
\n
\n\n

Verify that the result agrees with the logarithm of the equation\nshown above:

\n\n
\n
>>> d*(d-1)/4*np.log(np.pi) + gammaln(a - 0.5*np.arange(0, d)).sum()\n454.1488605074416\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.kn": {"fullname": "pyerrors.special.kn", "modulename": "pyerrors.special", "qualname": "kn", "kind": "function", "doc": "

Modified Bessel function of the second kind of integer order n

\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.j0": {"fullname": "pyerrors.special.j0", "modulename": "pyerrors.special", "qualname": "j0", "kind": "function", "doc": "

j0(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

j0(x, out=None)

\n\n

Bessel function of the first kind of order 0.

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nArgument (float).
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • J (scalar or ndarray):\nValue of the Bessel function of the first kind of order 0 at x.
  • \n
\n\n
See Also
\n\n

jv: Bessel function of real order and complex argument.
\nspherical_jn: spherical Bessel functions.

\n\n
Notes
\n\n

The domain is divided into the intervals [0, 5] and (5, infinity). In the\nfirst interval the following rational approximation is used:

\n\n

$$J_0(x) \\approx (w - r_1^2)(w - r_2^2) \\frac{P_3(w)}{Q_8(w)},$$

\n\n

where \\( w = x^2 \\) and \\( r_1 \\), \\( r_2 \\) are the zeros of\n\\( J_0 \\), and \\( P_3 \\) and \\( Q_8 \\) are polynomials of degrees 3\nand 8, respectively.

\n\n

In the second interval, the Hankel asymptotic expansion is employed with\ntwo rational functions of degree 6/6 and 7/7.

\n\n

This function is a wrapper for the Cephes 1 routine j0.\nIt should not be confused with the spherical Bessel functions (see\nspherical_jn).

\n\n
References
\n\n
Examples
\n\n

Calculate the function at one point:

\n\n
\n
>>> from scipy.special import j0\n>>> j0(1.)\n0.7651976865579665\n
\n
\n\n

Calculate the function at several points:

\n\n
\n
>>> import numpy as np\n>>> j0(np.array([-2., 0., 4.]))\narray([ 0.22389078,  1.        , -0.39714981])\n
\n
\n\n

Plot the function from -20 to 20.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-20., 20., 1000)\n>>> y = j0(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Cephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.y0": {"fullname": "pyerrors.special.y0", "modulename": "pyerrors.special", "qualname": "y0", "kind": "function", "doc": "

y0(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

y0(x, out=None)

\n\n

Bessel function of the second kind of order 0.

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nArgument (float).
  • \n
  • out (ndarray, optional):\nOptional output array for the function results
  • \n
\n\n
Returns
\n\n
    \n
  • Y (scalar or ndarray):\nValue of the Bessel function of the second kind of order 0 at x.
  • \n
\n\n
See Also
\n\n

j0: Bessel function of the first kind of order 0
\nyv: Bessel function of the first kind

\n\n
Notes
\n\n

The domain is divided into the intervals [0, 5] and (5, infinity). In the\nfirst interval a rational approximation \\( R(x) \\) is employed to\ncompute,

\n\n

$$Y_0(x) = R(x) + \\frac{2 \\log(x) J_0(x)}{\\pi},$$

\n\n

where \\( J_0 \\) is the Bessel function of the first kind of order 0.

\n\n

In the second interval, the Hankel asymptotic expansion is employed with\ntwo rational functions of degree 6/6 and 7/7.

\n\n

This function is a wrapper for the Cephes 1 routine y0.

\n\n
References
\n\n
Examples
\n\n

Calculate the function at one point:

\n\n
\n
>>> from scipy.special import y0\n>>> y0(1.)\n0.08825696421567697\n
\n
\n\n

Calculate at several points:

\n\n
\n
>>> import numpy as np\n>>> y0(np.array([0.5, 2., 3.]))\narray([-0.44451873,  0.51037567,  0.37685001])\n
\n
\n\n

Plot the function from 0 to 10.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(0., 10., 1000)\n>>> y = y0(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Cephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.j1": {"fullname": "pyerrors.special.j1", "modulename": "pyerrors.special", "qualname": "j1", "kind": "function", "doc": "

j1(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

j1(x, out=None)

\n\n

Bessel function of the first kind of order 1.

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nArgument (float).
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • J (scalar or ndarray):\nValue of the Bessel function of the first kind of order 1 at x.
  • \n
\n\n
See Also
\n\n

jv: Bessel function of the first kind
\nspherical_jn: spherical Bessel functions.

\n\n
Notes
\n\n

The domain is divided into the intervals [0, 8] and (8, infinity). In the\nfirst interval a 24 term Chebyshev expansion is used. In the second, the\nasymptotic trigonometric representation is employed using two rational\nfunctions of degree 5/5.

\n\n

This function is a wrapper for the Cephes 1 routine j1.\nIt should not be confused with the spherical Bessel functions (see\nspherical_jn).

\n\n
References
\n\n
Examples
\n\n

Calculate the function at one point:

\n\n
\n
>>> from scipy.special import j1\n>>> j1(1.)\n0.44005058574493355\n
\n
\n\n

Calculate the function at several points:

\n\n
\n
>>> import numpy as np\n>>> j1(np.array([-2., 0., 4.]))\narray([-0.57672481,  0.        , -0.06604333])\n
\n
\n\n

Plot the function from -20 to 20.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-20., 20., 1000)\n>>> y = j1(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Cephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.y1": {"fullname": "pyerrors.special.y1", "modulename": "pyerrors.special", "qualname": "y1", "kind": "function", "doc": "

y1(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

y1(x, out=None)

\n\n

Bessel function of the second kind of order 1.

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nArgument (float).
  • \n
  • out (ndarray, optional):\nOptional output array for the function results
  • \n
\n\n
Returns
\n\n
    \n
  • Y (scalar or ndarray):\nValue of the Bessel function of the second kind of order 1 at x.
  • \n
\n\n
See Also
\n\n

j1: Bessel function of the first kind of order 1
\nyn: Bessel function of the second kind
\nyv: Bessel function of the second kind

\n\n
Notes
\n\n

The domain is divided into the intervals [0, 8] and (8, infinity). In the\nfirst interval a 25 term Chebyshev expansion is used, and computing\n\\( J_1 \\) (the Bessel function of the first kind) is required. In the\nsecond, the asymptotic trigonometric representation is employed using two\nrational functions of degree 5/5.

\n\n

This function is a wrapper for the Cephes 1 routine y1.

\n\n
References
\n\n
Examples
\n\n

Calculate the function at one point:

\n\n
\n
>>> from scipy.special import y1\n>>> y1(1.)\n-0.7812128213002888\n
\n
\n\n

Calculate at several points:

\n\n
\n
>>> import numpy as np\n>>> y1(np.array([0.5, 2., 3.]))\narray([-1.47147239, -0.10703243,  0.32467442])\n
\n
\n\n

Plot the function from 0 to 10.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(0., 10., 1000)\n>>> y = y1(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Cephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.jn": {"fullname": "pyerrors.special.jn", "modulename": "pyerrors.special", "qualname": "jn", "kind": "function", "doc": "

jv(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

jv(v, z, out=None)

\n\n

Bessel function of the first kind of real order and complex argument.

\n\n
Parameters
\n\n
    \n
  • v (array_like):\nOrder (float).
  • \n
  • z (array_like):\nArgument (float or complex).
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • J (scalar or ndarray):\nValue of the Bessel function, \\( J_v(z) \\).
  • \n
\n\n
See Also
\n\n

jve: \\( J_v \\) with leading exponential behavior stripped off.
\nspherical_jn: spherical Bessel functions.
\nj0: faster version of this function for order 0.
\nj1: faster version of this function for order 1.

\n\n
Notes
\n\n

For positive v values, the computation is carried out using the AMOS\n1 zbesj routine, which exploits the connection to the modified\nBessel function \\( I_v \\),

\n\n

$$J_v(z) = \\exp(v\\pi\\imath/2) I_v(-\\imath z)\\qquad (\\Im z > 0)

\n\n

J_v(z) = \\exp(-v\\pi\\imath/2) I_v(\\imath z)\\qquad (\\Im z < 0)$$

\n\n

For negative v values the formula,

\n\n

$$J_{-v}(z) = J_v(z) \\cos(\\pi v) - Y_v(z) \\sin(\\pi v)$$

\n\n

is used, where \\( Y_v(z) \\) is the Bessel function of the second\nkind, computed using the AMOS routine zbesy. Note that the second\nterm is exactly zero for integer v; to improve accuracy the second\nterm is explicitly omitted for v values such that v = floor(v).

\n\n

Not to be confused with the spherical Bessel functions (see spherical_jn).

\n\n
References
\n\n
Examples
\n\n

Evaluate the function of order 0 at one point.

\n\n
\n
>>> from scipy.special import jv\n>>> jv(0, 1.)\n0.7651976865579666\n
\n
\n\n

Evaluate the function at one point for different orders.

\n\n
\n
>>> jv(0, 1.), jv(1, 1.), jv(1.5, 1.)\n(0.7651976865579666, 0.44005058574493355, 0.24029783912342725)\n
\n
\n\n

The evaluation for different orders can be carried out in one call by\nproviding a list or NumPy array as argument for the v parameter:

\n\n
\n
>>> jv([0, 1, 1.5], 1.)\narray([0.76519769, 0.44005059, 0.24029784])\n
\n
\n\n

Evaluate the function at several points for order 0 by providing an\narray for z.

\n\n
\n
>>> import numpy as np\n>>> points = np.array([-2., 0., 3.])\n>>> jv(0, points)\narray([ 0.22389078,  1.        , -0.26005195])\n
\n
\n\n

If z is an array, the order parameter v must be broadcastable to\nthe correct shape if different orders shall be computed in one call.\nTo calculate the orders 0 and 1 for an 1D array:

\n\n
\n
>>> orders = np.array([[0], [1]])\n>>> orders.shape\n(2, 1)\n
\n
\n\n
\n
>>> jv(orders, points)\narray([[ 0.22389078,  1.        , -0.26005195],\n       [-0.57672481,  0.        ,  0.33905896]])\n
\n
\n\n

Plot the functions of order 0 to 3 from -10 to 10.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-10., 10., 1000)\n>>> for i in range(4):\n...     ax.plot(x, jv(i, x), label=f'$J_{i!r}$')\n>>> ax.legend()\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\nof a Complex Argument and Nonnegative Order\",\nhttp://netlib.org/amos/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.yn": {"fullname": "pyerrors.special.yn", "modulename": "pyerrors.special", "qualname": "yn", "kind": "function", "doc": "

yn(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

yn(n, x, out=None)

\n\n

Bessel function of the second kind of integer order and real argument.

\n\n
Parameters
\n\n
    \n
  • n (array_like):\nOrder (integer).
  • \n
  • x (array_like):\nArgument (float).
  • \n
  • out (ndarray, optional):\nOptional output array for the function results
  • \n
\n\n
Returns
\n\n
    \n
  • Y (scalar or ndarray):\nValue of the Bessel function, \\( Y_n(x) \\).
  • \n
\n\n
See Also
\n\n

yv: For real order and real or complex argument.
\ny0: faster implementation of this function for order 0
\ny1: faster implementation of this function for order 1

\n\n
Notes
\n\n

Wrapper for the Cephes 1 routine yn.

\n\n

The function is evaluated by forward recurrence on n, starting with\nvalues computed by the Cephes routines y0 and y1. If n = 0 or 1,\nthe routine for y0 or y1 is called directly.

\n\n
References
\n\n
Examples
\n\n

Evaluate the function of order 0 at one point.

\n\n
\n
>>> from scipy.special import yn\n>>> yn(0, 1.)\n0.08825696421567697\n
\n
\n\n

Evaluate the function at one point for different orders.

\n\n
\n
>>> yn(0, 1.), yn(1, 1.), yn(2, 1.)\n(0.08825696421567697, -0.7812128213002888, -1.6506826068162546)\n
\n
\n\n

The evaluation for different orders can be carried out in one call by\nproviding a list or NumPy array as argument for the v parameter:

\n\n
\n
>>> yn([0, 1, 2], 1.)\narray([ 0.08825696, -0.78121282, -1.65068261])\n
\n
\n\n

Evaluate the function at several points for order 0 by providing an\narray for z.

\n\n
\n
>>> import numpy as np\n>>> points = np.array([0.5, 3., 8.])\n>>> yn(0, points)\narray([-0.44451873,  0.37685001,  0.22352149])\n
\n
\n\n

If z is an array, the order parameter v must be broadcastable to\nthe correct shape if different orders shall be computed in one call.\nTo calculate the orders 0 and 1 for an 1D array:

\n\n
\n
>>> orders = np.array([[0], [1]])\n>>> orders.shape\n(2, 1)\n
\n
\n\n
\n
>>> yn(orders, points)\narray([[-0.44451873,  0.37685001,  0.22352149],\n       [-1.47147239,  0.32467442, -0.15806046]])\n
\n
\n\n

Plot the functions of order 0 to 3 from 0 to 10.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(0., 10., 1000)\n>>> for i in range(4):\n...     ax.plot(x, yn(i, x), label=f'$Y_{i!r}$')\n>>> ax.set_ylim(-3, 1)\n>>> ax.legend()\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Cephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.i0": {"fullname": "pyerrors.special.i0", "modulename": "pyerrors.special", "qualname": "i0", "kind": "function", "doc": "

i0(x, out=None)

\n\n

Modified Bessel function of order 0.

\n\n

Defined as,

\n\n

$$I_0(x) = \\sum_{k=0}^\\infty \\frac{(x^2/4)^k}{(k!)^2} = J_0(\\imath x),$$

\n\n

where \\( J_0 \\) is the Bessel function of the first kind of order 0.

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nArgument (float)
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • I (scalar or ndarray):\nValue of the modified Bessel function of order 0 at x.
  • \n
\n\n
See Also
\n\n

iv()`\nModified`, `Bessel`, `function`, `of`, `any`, `order` \ni0e()\nExponentially, scaled, modified, Bessel, function, of, order, 0

\n\n
Notes
\n\n

The range is partitioned into the two intervals [0, 8] and (8, infinity).\nChebyshev polynomial expansions are employed in each interval.

\n\n

This function is a wrapper for the Cephes 1 routine i0.

\n\n

i0 has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
References
\n\n
Examples
\n\n

Calculate the function at one point:

\n\n
\n
>>> from scipy.special import i0\n>>> i0(1.)\n1.2660658777520082\n
\n
\n\n

Calculate at several points:

\n\n
\n
>>> import numpy as np\n>>> i0(np.array([-2., 0., 3.5]))\narray([2.2795853 , 1.        , 7.37820343])\n
\n
\n\n

Plot the function from -10 to 10.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-10., 10., 1000)\n>>> y = i0(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Cephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.i1": {"fullname": "pyerrors.special.i1", "modulename": "pyerrors.special", "qualname": "i1", "kind": "function", "doc": "

i1(x, out=None)

\n\n

Modified Bessel function of order 1.

\n\n

Defined as,

\n\n

$$I_1(x) = \\frac{1}{2}x \\sum_{k=0}^\\infty \\frac{(x^2/4)^k}{k! (k + 1)!}\n = -\\imath J_1(\\imath x),$$

\n\n

where \\( J_1 \\) is the Bessel function of the first kind of order 1.

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nArgument (float)
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • I (scalar or ndarray):\nValue of the modified Bessel function of order 1 at x.
  • \n
\n\n
See Also
\n\n

iv()`\nModified`, `Bessel`, `function`, `of`, `the`, `first`, `kind` \ni1e()\nExponentially, scaled, modified, Bessel, function, of, order, 1

\n\n
Notes
\n\n

The range is partitioned into the two intervals [0, 8] and (8, infinity).\nChebyshev polynomial expansions are employed in each interval.

\n\n

This function is a wrapper for the Cephes 1 routine i1.

\n\n

i1 has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
References
\n\n
Examples
\n\n

Calculate the function at one point:

\n\n
\n
>>> from scipy.special import i1\n>>> i1(1.)\n0.5651591039924851\n
\n
\n\n

Calculate the function at several points:

\n\n
\n
>>> import numpy as np\n>>> i1(np.array([-2., 0., 6.]))\narray([-1.59063685,  0.        , 61.34193678])\n
\n
\n\n

Plot the function between -10 and 10.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-10., 10., 1000)\n>>> y = i1(x)\n>>> ax.plot(x, y)\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Cephes Mathematical Functions Library,\nhttp://www.netlib.org/cephes/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.iv": {"fullname": "pyerrors.special.iv", "modulename": "pyerrors.special", "qualname": "iv", "kind": "function", "doc": "

iv(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

iv(v, z, out=None)

\n\n

Modified Bessel function of the first kind of real order.

\n\n
Parameters
\n\n
    \n
  • v (array_like):\nOrder. If z is of real type and negative, v must be integer\nvalued.
  • \n
  • z (array_like of float or complex):\nArgument.
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Values of the modified Bessel function.
  • \n
\n\n
See Also
\n\n

ive: This function with leading exponential behavior stripped off.
\ni0: Faster version of this function for order 0.
\ni1: Faster version of this function for order 1.

\n\n
Notes
\n\n

For real z and \\( v \\in [-50, 50] \\), the evaluation is carried out\nusing Temme's method 1. For larger orders, uniform asymptotic\nexpansions are applied.

\n\n

For complex z and positive v, the AMOS 2 zbesi routine is\ncalled. It uses a power series for small z, the asymptotic expansion\nfor large abs(z), the Miller algorithm normalized by the Wronskian\nand a Neumann series for intermediate magnitudes, and the uniform\nasymptotic expansions for \\( I_v(z) \\) and \\( J_v(z) \\) for large\norders. Backward recurrence is used to generate sequences or reduce\norders when necessary.

\n\n

The calculations above are done in the right half plane and continued\ninto the left half plane by the formula,

\n\n

$$I_v(z \\exp(\\pm\\imath\\pi)) = \\exp(\\pm\\pi v) I_v(z)$$

\n\n

(valid when the real part of z is positive). For negative v, the\nformula

\n\n

$$I_{-v}(z) = I_v(z) + \\frac{2}{\\pi} \\sin(\\pi v) K_v(z)$$

\n\n

is used, where \\( K_v(z) \\) is the modified Bessel function of the\nsecond kind, evaluated using the AMOS routine zbesk.

\n\n
References
\n\n
Examples
\n\n

Evaluate the function of order 0 at one point.

\n\n
\n
>>> from scipy.special import iv\n>>> iv(0, 1.)\n1.2660658777520084\n
\n
\n\n

Evaluate the function at one point for different orders.

\n\n
\n
>>> iv(0, 1.), iv(1, 1.), iv(1.5, 1.)\n(1.2660658777520084, 0.565159103992485, 0.2935253263474798)\n
\n
\n\n

The evaluation for different orders can be carried out in one call by\nproviding a list or NumPy array as argument for the v parameter:

\n\n
\n
>>> iv([0, 1, 1.5], 1.)\narray([1.26606588, 0.5651591 , 0.29352533])\n
\n
\n\n

Evaluate the function at several points for order 0 by providing an\narray for z.

\n\n
\n
>>> import numpy as np\n>>> points = np.array([-2., 0., 3.])\n>>> iv(0, points)\narray([2.2795853 , 1.        , 4.88079259])\n
\n
\n\n

If z is an array, the order parameter v must be broadcastable to\nthe correct shape if different orders shall be computed in one call.\nTo calculate the orders 0 and 1 for an 1D array:

\n\n
\n
>>> orders = np.array([[0], [1]])\n>>> orders.shape\n(2, 1)\n
\n
\n\n
\n
>>> iv(orders, points)\narray([[ 2.2795853 ,  1.        ,  4.88079259],\n       [-1.59063685,  0.        ,  3.95337022]])\n
\n
\n\n

Plot the functions of order 0 to 3 from -5 to 5.

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-5., 5., 1000)\n>>> for i in range(4):\n...     ax.plot(x, iv(i, x), label=f'$I_{i!r}$')\n>>> ax.legend()\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Temme, Journal of Computational Physics, vol 21, 343 (1976) 

    \n
  2. \n\n
  3. \n

    Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\nof a Complex Argument and Nonnegative Order\",\nhttp://netlib.org/amos/ 

    \n
  4. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.ive": {"fullname": "pyerrors.special.ive", "modulename": "pyerrors.special", "qualname": "ive", "kind": "function", "doc": "

ive(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

ive(v, z, out=None)

\n\n

Exponentially scaled modified Bessel function of the first kind.

\n\n

Defined as::

\n\n
ive(v, z) = iv(v, z) * exp(-abs(z.real))\n
\n\n

For imaginary numbers without a real part, returns the unscaled\nBessel function of the first kind iv.

\n\n
Parameters
\n\n
    \n
  • v (array_like of float):\nOrder.
  • \n
  • z (array_like of float or complex):\nArgument.
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Values of the exponentially scaled modified Bessel function.
  • \n
\n\n
See Also
\n\n

iv: Modified Bessel function of the first kind
\ni0e: Faster implementation of this function for order 0
\ni1e: Faster implementation of this function for order 1

\n\n
Notes
\n\n

For positive v, the AMOS 1 zbesi routine is called. It uses a\npower series for small z, the asymptotic expansion for large\nabs(z), the Miller algorithm normalized by the Wronskian and a\nNeumann series for intermediate magnitudes, and the uniform asymptotic\nexpansions for \\( I_v(z) \\) and \\( J_v(z) \\) for large orders.\nBackward recurrence is used to generate sequences or reduce orders when\nnecessary.

\n\n

The calculations above are done in the right half plane and continued\ninto the left half plane by the formula,

\n\n

$$I_v(z \\exp(\\pm\\imath\\pi)) = \\exp(\\pm\\pi v) I_v(z)$$

\n\n

(valid when the real part of z is positive). For negative v, the\nformula

\n\n

$$I_{-v}(z) = I_v(z) + \\frac{2}{\\pi} \\sin(\\pi v) K_v(z)$$

\n\n

is used, where \\( K_v(z) \\) is the modified Bessel function of the\nsecond kind, evaluated using the AMOS routine zbesk.

\n\n

ive is useful for large arguments z: for these, iv easily overflows,\nwhile ive does not due to the exponential scaling.

\n\n
References
\n\n
Examples
\n\n

In the following example iv returns infinity whereas ive still returns\na finite number.

\n\n
\n
>>> from scipy.special import iv, ive\n>>> import numpy as np\n>>> import matplotlib.pyplot as plt\n>>> iv(3, 1000.), ive(3, 1000.)\n(inf, 0.01256056218254712)\n
\n
\n\n

Evaluate the function at one point for different orders by\nproviding a list or NumPy array as argument for the v parameter:

\n\n
\n
>>> ive([0, 1, 1.5], 1.)\narray([0.46575961, 0.20791042, 0.10798193])\n
\n
\n\n

Evaluate the function at several points for order 0 by providing an\narray for z.

\n\n
\n
>>> points = np.array([-2., 0., 3.])\n>>> ive(0, points)\narray([0.30850832, 1.        , 0.24300035])\n
\n
\n\n

Evaluate the function at several points for different orders by\nproviding arrays for both v for z. Both arrays have to be\nbroadcastable to the correct shape. To calculate the orders 0, 1\nand 2 for a 1D array of points:

\n\n
\n
>>> ive([[0], [1], [2]], points)\narray([[ 0.30850832,  1.        ,  0.24300035],\n       [-0.21526929,  0.        ,  0.19682671],\n       [ 0.09323903,  0.        ,  0.11178255]])\n
\n
\n\n

Plot the functions of order 0 to 3 from -5 to 5.

\n\n
\n
>>> fig, ax = plt.subplots()\n>>> x = np.linspace(-5., 5., 1000)\n>>> for i in range(4):\n...     ax.plot(x, ive(i, x), label=fr'$I_{i!r}(z)\\cdot e^{{-|z|}}$')\n>>> ax.legend()\n>>> ax.set_xlabel(r"$z$")\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\nof a Complex Argument and Nonnegative Order\",\nhttp://netlib.org/amos/ 

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.erf": {"fullname": "pyerrors.special.erf", "modulename": "pyerrors.special", "qualname": "erf", "kind": "function", "doc": "

erf(z, out=None)

\n\n

Returns the error function of complex argument.

\n\n

It is defined as 2/sqrt(pi)*integral(exp(-t**2), t=0..z).

\n\n
Parameters
\n\n
    \n
  • x (ndarray):\nInput array.
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • res (scalar or ndarray):\nThe values of the error function at the given points x.
  • \n
\n\n
See Also
\n\n

erfc()`,`,erfinv(),, erfcinv()`,`,wofz(),, erfcx()`,`,erfi()\n..

\n\n
Notes
\n\n

The cumulative of the unit normal distribution is given by\nPhi(z) = 1/2[1 + erf(z/sqrt(2))].

\n\n

erf has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
References
\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> from scipy import special\n>>> import matplotlib.pyplot as plt\n>>> x = np.linspace(-3, 3)\n>>> plt.plot(x, special.erf(x))\n>>> plt.xlabel('$x$')\n>>> plt.ylabel('$erf(x)$')\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.erfc": {"fullname": "pyerrors.special.erfc", "modulename": "pyerrors.special", "qualname": "erfc", "kind": "function", "doc": "

erfc(x, out=None)

\n\n

Complementary error function, 1 - erf(x).

\n\n
Parameters
\n\n
    \n
  • x (array_like):\nReal or complex valued argument
  • \n
  • out (ndarray, optional):\nOptional output array for the function results
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: Values of the complementary error function
  • \n
\n\n
See Also
\n\n

erf()`,`,erfi(),, erfcx()`,`,dawsn(),, `wofz()\n..`

\n\n
Notes
\n\n

erfc has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
References
\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> from scipy import special\n>>> import matplotlib.pyplot as plt\n>>> x = np.linspace(-3, 3)\n>>> plt.plot(x, special.erfc(x))\n>>> plt.xlabel('$x$')\n>>> plt.ylabel('$erfc(x)$')\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.erfinv": {"fullname": "pyerrors.special.erfinv", "modulename": "pyerrors.special", "qualname": "erfinv", "kind": "function", "doc": "

erfinv(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

erfinv(y, out=None)

\n\n

Inverse of the error function.

\n\n

Computes the inverse of the error function.

\n\n

In the complex domain, there is no unique complex number w satisfying\nerf(w)=z. This indicates a true inverse function would be multivalued.\nWhen the domain restricts to the real, -1 < x < 1, there is a unique real\nnumber satisfying erf(erfinv(x)) = x.

\n\n
Parameters
\n\n
    \n
  • y (ndarray):\nArgument at which to evaluate. Domain: [-1, 1]
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • erfinv (scalar or ndarray):\nThe inverse of erf of y, element-wise
  • \n
\n\n
See Also
\n\n

erf: Error function of a complex argument
\nerfc: Complementary error function, 1 - erf(x)
\nerfcinv: Inverse of the complementary error function

\n\n
Notes
\n\n

This function wraps the erf_inv routine from the\nBoost Math C++ library 1.

\n\n
References
\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> import matplotlib.pyplot as plt\n>>> from scipy.special import erfinv, erf\n
\n
\n\n
\n
>>> erfinv(0.5)\n0.4769362762044699\n
\n
\n\n
\n
>>> y = np.linspace(-1.0, 1.0, num=9)\n>>> x = erfinv(y)\n>>> x\narray([       -inf, -0.81341985, -0.47693628, -0.22531206,  0.        ,\n        0.22531206,  0.47693628,  0.81341985,         inf])\n
\n
\n\n

Verify that erf(erfinv(y)) is y.

\n\n
\n
>>> erf(x)\narray([-1.  , -0.75, -0.5 , -0.25,  0.  ,  0.25,  0.5 ,  0.75,  1.  ])\n
\n
\n\n

Plot the function:

\n\n
\n
>>> y = np.linspace(-1, 1, 200)\n>>> fig, ax = plt.subplots()\n>>> ax.plot(y, erfinv(y))\n>>> ax.grid(True)\n>>> ax.set_xlabel('y')\n>>> ax.set_title('erfinv(y)')\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
  1. \n

    The Boost Developers. \"Boost C++ Libraries\". https://www.boost.org/

    \n
  2. \n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.erfcinv": {"fullname": "pyerrors.special.erfcinv", "modulename": "pyerrors.special", "qualname": "erfcinv", "kind": "function", "doc": "

erfcinv(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])

\n\n

erfcinv(y, out=None)

\n\n

Inverse of the complementary error function.

\n\n

Computes the inverse of the complementary error function.

\n\n

In the complex domain, there is no unique complex number w satisfying\nerfc(w)=z. This indicates a true inverse function would be multivalued.\nWhen the domain restricts to the real, 0 < x < 2, there is a unique real\nnumber satisfying erfc(erfcinv(x)) = erfcinv(erfc(x)).

\n\n

It is related to inverse of the error function by erfcinv(1-x) = erfinv(x)

\n\n
Parameters
\n\n
    \n
  • y (ndarray):\nArgument at which to evaluate. Domain: [0, 2]
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • erfcinv (scalar or ndarray):\nThe inverse of erfc of y, element-wise
  • \n
\n\n
See Also
\n\n

erf: Error function of a complex argument
\nerfc: Complementary error function, 1 - erf(x)
\nerfinv: Inverse of the error function

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> import matplotlib.pyplot as plt\n>>> from scipy.special import erfcinv\n
\n
\n\n
\n
>>> erfcinv(0.5)\n0.4769362762044699\n
\n
\n\n
\n
>>> y = np.linspace(0.0, 2.0, num=11)\n>>> erfcinv(y)\narray([        inf,  0.9061938 ,  0.59511608,  0.37080716,  0.17914345,\n       -0.        , -0.17914345, -0.37080716, -0.59511608, -0.9061938 ,\n              -inf])\n
\n
\n\n

Plot the function:

\n\n
\n
>>> y = np.linspace(0, 2, 200)\n>>> fig, ax = plt.subplots()\n>>> ax.plot(y, erfcinv(y))\n>>> ax.grid(True)\n>>> ax.set_xlabel('y')\n>>> ax.set_title('erfcinv(y)')\n>>> plt.show()\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.logit": {"fullname": "pyerrors.special.logit", "modulename": "pyerrors.special", "qualname": "logit", "kind": "function", "doc": "

logit(x, out=None)

\n\n

Logit ufunc for ndarrays.

\n\n

The logit function is defined as logit(p) = log(p/(1-p)).\nNote that logit(0) = -inf, logit(1) = inf, and logit(p)\nfor p<0 or p>1 yields nan.

\n\n
Parameters
\n\n
    \n
  • x (ndarray):\nThe ndarray to apply logit to element-wise.
  • \n
  • out (ndarray, optional):\nOptional output array for the function results
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: An ndarray of the same shape as x. Its entries\nare logit of the corresponding entry of x.
  • \n
\n\n
See Also
\n\n

`expit()\n..`

\n\n
Notes
\n\n

As a ufunc logit takes a number of optional\nkeyword arguments. For more information\nsee ufuncs

\n\n

New in version 0.10.0.

\n\n

logit has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> from scipy.special import logit, expit\n
\n
\n\n
\n
>>> logit([0, 0.25, 0.5, 0.75, 1])\narray([       -inf, -1.09861229,  0.        ,  1.09861229,         inf])\n
\n
\n\n

expit is the inverse of logit:

\n\n
\n
>>> expit(logit([0.1, 0.75, 0.999]))\narray([ 0.1  ,  0.75 ,  0.999])\n
\n
\n\n

Plot logit(x) for x in [0, 1]:

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> x = np.linspace(0, 1, 501)\n>>> y = logit(x)\n>>> plt.plot(x, y)\n>>> plt.grid()\n>>> plt.ylim(-6, 6)\n>>> plt.xlabel('x')\n>>> plt.title('logit(x)')\n>>> plt.show()\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.expit": {"fullname": "pyerrors.special.expit", "modulename": "pyerrors.special", "qualname": "expit", "kind": "function", "doc": "

expit(x, out=None)

\n\n

Expit (a.k.a. logistic sigmoid) ufunc for ndarrays.

\n\n

The expit function, also known as the logistic sigmoid function, is\ndefined as expit(x) = 1/(1+exp(-x)). It is the inverse of the\nlogit function.

\n\n
Parameters
\n\n
    \n
  • x (ndarray):\nThe ndarray to apply expit to element-wise.
  • \n
  • out (ndarray, optional):\nOptional output array for the function values
  • \n
\n\n
Returns
\n\n
    \n
  • scalar or ndarray: An ndarray of the same shape as x. Its entries\nare expit of the corresponding entry of x.
  • \n
\n\n
See Also
\n\n

`logit()\n..`

\n\n
Notes
\n\n

As a ufunc expit takes a number of optional\nkeyword arguments. For more information\nsee ufuncs

\n\n

New in version 0.10.0.

\n\n

expit has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> from scipy.special import expit, logit\n
\n
\n\n
\n
>>> expit([-np.inf, -1.5, 0, 1.5, np.inf])\narray([ 0.        ,  0.18242552,  0.5       ,  0.81757448,  1.        ])\n
\n
\n\n

logit is the inverse of expit:

\n\n
\n
>>> logit(expit([-2.5, 0, 3.1, 5.0]))\narray([-2.5,  0. ,  3.1,  5. ])\n
\n
\n\n

Plot expit(x) for x in [-6, 6]:

\n\n
\n
>>> import matplotlib.pyplot as plt\n>>> x = np.linspace(-6, 6, 121)\n>>> y = expit(x)\n>>> plt.plot(x, y)\n>>> plt.grid()\n>>> plt.xlim(-6, 6)\n>>> plt.xlabel('x')\n>>> plt.title('expit(x)')\n>>> plt.show()\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.special.logsumexp": {"fullname": "pyerrors.special.logsumexp", "modulename": "pyerrors.special", "qualname": "logsumexp", "kind": "function", "doc": "

Compute the log of the sum of exponentials of input elements.

\n\n
Parameters
\n\n
    \n
  • a (array_like):\nInput array.
  • \n
  • axis (None or int or tuple of ints, optional):\nAxis or axes over which the sum is taken. By default axis is None,\nand all elements are summed.

    \n\n

    New in version 0.11.0.

  • \n
  • b (array-like, optional):\nScaling factor for exp(a) must be of the same shape as a or\nbroadcastable to a. These values may be negative in order to\nimplement subtraction.

    \n\n

    New in version 0.12.0.

  • \n
  • keepdims (bool, optional):\nIf this is set to True, the axes which are reduced are left in the\nresult as dimensions with size one. With this option, the result\nwill broadcast correctly against the original array.

    \n\n

    New in version 0.15.0.

  • \n
  • return_sign (bool, optional):\nIf this is set to True, the result will be a pair containing sign\ninformation; if False, results that are negative will be returned\nas NaN. Default is False (no sign information).

    \n\n

    New in version 0.16.0.

  • \n
\n\n
Returns
\n\n
    \n
  • res (ndarray):\nThe result, np.log(np.sum(np.exp(a))) calculated in a numerically\nmore stable way. If b is given then np.log(np.sum(b*np.exp(a)))\nis returned. If return_sign is True, res contains the log of\nthe absolute value of the argument.
  • \n
  • sgn (ndarray):\nIf return_sign is True, this will be an array of floating-point\nnumbers matching res containing +1, 0, -1 (for real-valued inputs)\nor a complex phase (for complex inputs). This gives the sign of the\nargument of the logarithm in res.\nIf return_sign is False, only one result is returned.
  • \n
\n\n
See Also
\n\n

numpy.logaddexp`\n..` \nnumpy.logaddexp2\n..

\n\n
Notes
\n\n

NumPy has a logaddexp function which is very similar to logsumexp, but\nonly handles two arguments. logaddexp.reduce is similar to this\nfunction, but may be less stable.

\n\n

The logarithm is a multivalued function: for each \\( x \\) there is an\ninfinite number of \\( z \\) such that \\( exp(z) = x \\). The convention\nis to return the \\( z \\) whose imaginary part lies in \\( (-pi, pi] \\).

\n\n

logsumexp has experimental support for Python Array API Standard compatible\nbackends in addition to NumPy. Please consider testing these features\nby setting an environment variable SCIPY_ARRAY_API=1 and providing\nCuPy, PyTorch, JAX, or Dask arrays as array arguments. The following\ncombinations of backend and device (or other capability) are supported.

\n\n

==================== ==================== ====================\nLibrary CPU GPU\n==================== ==================== ====================\nNumPy \u2705 n/a
\nCuPy n/a \u2705
\nPyTorch \u2705 \u2705
\nJAX \u2705 \u2705
\nDask \u2705 n/a
\n==================== ==================== ====================

\n\n

See :ref:dev-arrayapi for more information.

\n\n
Examples
\n\n
\n
>>> import numpy as np\n>>> from scipy.special import logsumexp\n>>> a = np.arange(10)\n>>> logsumexp(a)\n9.4586297444267107\n>>> np.log(np.sum(np.exp(a)))\n9.4586297444267107\n
\n
\n\n

With weights

\n\n
\n
>>> a = np.arange(10)\n>>> b = np.arange(10, 0, -1)\n>>> logsumexp(a, b=b)\n9.9170178533034665\n>>> np.log(np.sum(b*np.exp(a)))\n9.9170178533034647\n
\n
\n\n

Returning a sign flag

\n\n
\n
>>> logsumexp([1,2],b=[1,-1],return_sign=True)\n(1.5413248546129181, -1.0)\n
\n
\n\n

Notice that logsumexp does not directly support masked arrays. To use it\non a masked array, convert the mask into zero weights:

\n\n
\n
>>> a = np.ma.array([np.log(2), 2, np.log(3)],\n...                  mask=[False, True, False])\n>>> b = (~a.mask).astype(int)\n>>> logsumexp(a.data, b=b), np.log(5)\n1.6094379124341005, 1.6094379124341005\n
\n
\n", "signature": "(*args, **kwargs):", "funcdef": "def"}, "pyerrors.version": {"fullname": "pyerrors.version", "modulename": "pyerrors.version", "kind": "module", "doc": "

\n"}}, "docInfo": {"pyerrors": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 8400}, "pyerrors.correlators": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 367}, "pyerrors.correlators.Corr.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 100}, "pyerrors.correlators.Corr.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.content": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.T": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prange": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.gm": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.projected": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 64}, "pyerrors.correlators.Corr.item": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.plottable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 31}, "pyerrors.correlators.Corr.symmetric": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.anti_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 13}, "pyerrors.correlators.Corr.trace": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 12}, "pyerrors.correlators.Corr.matrix_symmetric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.correlators.Corr.GEVP": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 58, "bases": 0, "doc": 417}, "pyerrors.correlators.Corr.Eigenvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 59}, "pyerrors.correlators.Corr.Hankel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 67}, "pyerrors.correlators.Corr.roll": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 26}, "pyerrors.correlators.Corr.reverse": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.correlators.Corr.thin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 43}, "pyerrors.correlators.Corr.correlate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 53}, "pyerrors.correlators.Corr.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 79}, "pyerrors.correlators.Corr.T_symmetry": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 51}, "pyerrors.correlators.Corr.deriv": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 47}, "pyerrors.correlators.Corr.second_deriv": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 126}, "pyerrors.correlators.Corr.m_eff": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 148}, "pyerrors.correlators.Corr.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 110}, "pyerrors.correlators.Corr.plateau": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 92}, "pyerrors.correlators.Corr.set_prange": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 11}, "pyerrors.correlators.Corr.show": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 161, "bases": 0, "doc": 263}, "pyerrors.correlators.Corr.spaghetti_plot": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 42}, "pyerrors.correlators.Corr.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 69}, "pyerrors.correlators.Corr.print": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.correlators.Corr.prune": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 325}, "pyerrors.correlators.Corr.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 100}, "pyerrors.covobs.Covobs.name": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.errsq": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 12}, "pyerrors.covobs.Covobs.cov": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.covobs.Covobs.grad": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaX": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaY": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaZ": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gammaT": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 210, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.gamma5": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.identity": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.dirac.epsilon_tensor": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 40}, "pyerrors.dirac.epsilon_tensor_rank4": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 41}, "pyerrors.dirac.Grid_gamma": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 12, "bases": 0, "doc": 9}, "pyerrors.fits": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 75}, "pyerrors.fits.Fit_result.fit_parameters": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.fits.Fit_result.gamma_method": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 10}, "pyerrors.fits.Fit_result.gm": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 10}, "pyerrors.fits.least_squares": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 2747}, "pyerrors.fits.total_least_squares": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 511}, "pyerrors.fits.fit_lin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 110}, "pyerrors.fits.qqplot": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 39}, "pyerrors.fits.residual_plot": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 45}, "pyerrors.fits.error_band": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 48}, "pyerrors.fits.ks_test": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 52}, "pyerrors.input": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 81}, "pyerrors.input.bdio": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.bdio.read_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 122}, "pyerrors.input.bdio.write_ADerrors": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 126}, "pyerrors.input.bdio.read_mesons": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 211}, "pyerrors.input.bdio.read_dSdm": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 191}, "pyerrors.input.dobs": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.dobs.create_pobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 186}, "pyerrors.input.dobs.write_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 214}, "pyerrors.input.dobs.read_pobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 164}, "pyerrors.input.dobs.import_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 184}, "pyerrors.input.dobs.read_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 207}, "pyerrors.input.dobs.create_dobs_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 82, "bases": 0, "doc": 229}, "pyerrors.input.dobs.write_dobs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 99, "bases": 0, "doc": 252}, "pyerrors.input.hadrons": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.hadrons.read_hd5": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 242}, "pyerrors.input.hadrons.read_meson_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 185}, "pyerrors.input.hadrons.extract_t0_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 73, "bases": 0, "doc": 157}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 106}, "pyerrors.input.hadrons.Npr_matrix": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 1093}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 30}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 99}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 99}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 60, "bases": 0, "doc": 112}, "pyerrors.input.json": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.json.create_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 138}, "pyerrors.input.json.dump_to_json": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 174}, "pyerrors.input.json.import_json_string": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 168}, "pyerrors.input.json.load_json": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 188}, "pyerrors.input.json.dump_dict_to_json": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 63, "bases": 0, "doc": 184}, "pyerrors.input.json.load_json_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 172}, "pyerrors.input.misc": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.misc.fit_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 250}, "pyerrors.input.misc.read_pbp": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 75}, "pyerrors.input.openQCD": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.openQCD.read_rwms": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 271}, "pyerrors.input.openQCD.extract_t0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 518}, "pyerrors.input.openQCD.extract_w0": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 520}, "pyerrors.input.openQCD.read_qtop": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 53, "bases": 0, "doc": 383}, "pyerrors.input.openQCD.read_gf_coupling": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 345}, "pyerrors.input.openQCD.qtop_projection": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 72}, "pyerrors.input.openQCD.read_qtop_sector": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 363}, "pyerrors.input.openQCD.read_ms5_xsf": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 308}, "pyerrors.input.pandas": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.pandas.to_sql": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 54, "bases": 0, "doc": 113}, "pyerrors.input.pandas.read_sql": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 105}, "pyerrors.input.pandas.dump_df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 111}, "pyerrors.input.pandas.load_df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 115}, "pyerrors.input.sfcf": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.sfcf.sep": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 5, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.input.sfcf.read_sfcf": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 151, "bases": 0, "doc": 421}, "pyerrors.input.sfcf.read_sfcf_multi": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 189, "bases": 0, "doc": 458}, "pyerrors.input.utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "pyerrors.input.utils.sort_names": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 81}, "pyerrors.input.utils.check_idl": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 70}, "pyerrors.input.utils.check_params": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 114}, "pyerrors.integrate": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.integrate.quad": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 374}, "pyerrors.linalg": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.linalg.matmul": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 54}, "pyerrors.linalg.jack_matmul": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 58}, "pyerrors.linalg.einsum": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 52}, "pyerrors.linalg.inv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "pyerrors.linalg.cholesky": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 9}, "pyerrors.linalg.det": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 8}, "pyerrors.linalg.eigh": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 20}, "pyerrors.linalg.eig": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 17}, "pyerrors.linalg.eigv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 18}, "pyerrors.linalg.pinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.linalg.svd": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 13}, "pyerrors.misc": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.misc.print_config": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 12}, "pyerrors.misc.errorbar": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 69}, "pyerrors.misc.dump_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "pyerrors.misc.load_object": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 42}, "pyerrors.misc.pseudo_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 105}, "pyerrors.misc.gen_correlated_data": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 127}, "pyerrors.mpm": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.mpm.matrix_pencil_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 165}, "pyerrors.obs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 238}, "pyerrors.obs.Obs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 62}, "pyerrors.obs.Obs.S_global": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S_dict": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_global": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.names": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.shape": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.r_values": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.deltas": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.idl": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.ddvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.reweighted": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.value": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.dvalue": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cov_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.mc_names": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_content": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.covobs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.gm": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 133}, "pyerrors.obs.Obs.details": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.reweight": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 85}, "pyerrors.obs.Obs.is_zero_within_error": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 50}, "pyerrors.obs.Obs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 34}, "pyerrors.obs.Obs.plot_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_rep_dist": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 14}, "pyerrors.obs.Obs.plot_history": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 35}, "pyerrors.obs.Obs.plot_piechart": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 47}, "pyerrors.obs.Obs.dump": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 89}, "pyerrors.obs.Obs.export_jackknife": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 101}, "pyerrors.obs.Obs.export_bootstrap": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 185}, "pyerrors.obs.Obs.sqrt": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.log": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.exp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsin": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccos": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctan": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.sinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.cosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arcsinh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arccosh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.arctanh": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.N_sigma": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.S": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_ddvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_drho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dtauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_dvalue": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_dtauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_n_tauint": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_rho": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_tauint": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.e_windowsize": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.Obs.tau_exp": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "pyerrors.obs.CObs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.tag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.real": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.imag": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.obs.CObs.gamma_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 14}, "pyerrors.obs.CObs.is_zero": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 15}, "pyerrors.obs.CObs.conjugate": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "pyerrors.obs.gamma_method": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 28}, "pyerrors.obs.gm": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 28}, "pyerrors.obs.derived_observable": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 184}, "pyerrors.obs.reweight": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 99}, "pyerrors.obs.correlate": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 87}, "pyerrors.obs.covariance": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 374}, "pyerrors.obs.invert_corr_cov_cholesky": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 84}, "pyerrors.obs.sort_corr": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 630}, "pyerrors.obs.import_jackknife": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 61}, "pyerrors.obs.import_bootstrap": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 107}, "pyerrors.obs.merge_obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 89}, "pyerrors.obs.cov_Obs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 90}, "pyerrors.roots": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.roots.find_root": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 189}, "pyerrors.special": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "pyerrors.special.beta": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 519}, "pyerrors.special.betainc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1132}, "pyerrors.special.betaln": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 476}, "pyerrors.special.polygamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 277}, "pyerrors.special.psi": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 534}, "pyerrors.special.digamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 534}, "pyerrors.special.gamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1217}, "pyerrors.special.gammaln": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 701}, "pyerrors.special.gammainc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 619}, "pyerrors.special.gammaincc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 636}, "pyerrors.special.gammasgn": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 620}, "pyerrors.special.rgamma": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 509}, "pyerrors.special.multigammaln": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 494}, "pyerrors.special.kn": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 13}, "pyerrors.special.j0": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 670}, "pyerrors.special.y0": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 628}, "pyerrors.special.j1": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 600}, "pyerrors.special.y1": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 609}, "pyerrors.special.jn": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1211}, "pyerrors.special.yn": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1096}, "pyerrors.special.i0": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 695}, "pyerrors.special.i1": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 703}, "pyerrors.special.iv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1281}, "pyerrors.special.ive": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1217}, "pyerrors.special.erf": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 502}, "pyerrors.special.erfc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 451}, "pyerrors.special.erfinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 784}, "pyerrors.special.erfcinv": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 658}, "pyerrors.special.logit": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 725}, "pyerrors.special.expit": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 761}, "pyerrors.special.logsumexp": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 1222}, "pyerrors.version": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}}, "length": 288, "save": true}, "index": {"qualname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 57, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.name": {"tf": 1}, "pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 8}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"0": {"docs": {"pyerrors.special.i0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.identity": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}, "t": {"0": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "docs": {"pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {"pyerrors.special.psi": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 20}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.dirac.gamma5": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 8, "x": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.dirac.gammaY": {"tf": 1}}, "df": 1}, "z": {"docs": {"pyerrors.dirac.gammaZ": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.dirac.gammaT": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1, "c": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}}, "df": 6}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "s": {"5": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 4}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}, "p": {"docs": {"pyerrors.input.sfcf.sep": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}, "v": {"docs": {"pyerrors.linalg.eigv": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1, "c": {"docs": {"pyerrors.special.erfc": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erfcinv": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erfinv": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.digamma": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 7}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logit": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.name": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}, "n": {"docs": {"pyerrors.special.kn": {"tf": 1}}, "df": 1}}, "w": {"0": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"0": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.j1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 68, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}, "y": {"0": {"docs": {"pyerrors.special.y0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.y1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}}}}, "fullname": {"root": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.name": {"tf": 1}, "pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.covobs.Covobs.grad": {"tf": 1}, "pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.sep": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.shape": {"tf": 1}, "pyerrors.obs.Obs.r_values": {"tf": 1}, "pyerrors.obs.Obs.deltas": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}, "pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}, "pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.covobs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}, "pyerrors.version": {"tf": 1}}, "df": 288}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 7, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.linalg.pinv": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {"pyerrors.special.psi": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 57, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.prange": {"tf": 1}, "pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.correlators.Corr.N": {"tf": 1}}, "df": 56}}}, "e": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.content": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.covobs.Covobs.cov": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs": {"tf": 1}, "pyerrors.covobs.Covobs": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.name": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.value": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.grad": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1}}, "df": 9}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"0": {"docs": {"pyerrors.special.i0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input": {"tf": 1}, "pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.sep": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 56}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {"pyerrors.linalg.inv": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.imag": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.identity": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.idl": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}, "t": {"0": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 3}, "docs": {"pyerrors.correlators.Corr.T": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.tag": {"tf": 1}, "pyerrors.obs.Obs.tag": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}}, "df": 2}}, "u": {"docs": {"pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweighted": {"tf": 1}, "pyerrors.obs.Obs.reweighted": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.real": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 20}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.roots": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"4": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}}}}}, "g": {"5": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.dirac.gamma5": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 8, "x": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.dirac.gammaY": {"tf": 1}}, "df": 1}, "z": {"docs": {"pyerrors.dirac.gammaZ": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.dirac.gammaT": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1, "c": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.grad": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}}, "df": 6}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.misc": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 10}}}, "s": {"5": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.mpm": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}, "c": {"docs": {"pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.S": {"tf": 1}}, "df": 3, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 4}}, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1}, "p": {"docs": {"pyerrors.input.sfcf.sep": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.shape": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 32}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 5}}}}}, "f": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf": {"tf": 1}, "pyerrors.input.sfcf.sep": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.linalg.svd": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {"pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.e_content": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_drho": {"tf": 1}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_rho": {"tf": 1}, "pyerrors.obs.Obs.e_tauint": {"tf": 1}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg.eig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}}, "df": 1}, "v": {"docs": {"pyerrors.linalg.eigv": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.tau_exp": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1, "c": {"docs": {"pyerrors.special.erfc": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erfcinv": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erfinv": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 10}}}}}}, "d": {"5": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.linalg.det": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.details": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.deltas": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.dirac": {"tf": 1}, "pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 11}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 5}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.digamma": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 8}}}, "f": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.ddvalue": {"tf": 1}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.dvalue": {"tf": 1}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.e_drho": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.e_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.fits": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}}, "df": 12}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logit": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.linalg": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 12}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}, "pyerrors.obs.Obs.N": {"tf": 1}, "pyerrors.obs.Obs.N_sigma": {"tf": 1}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.name": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.names": {"tf": 1}, "pyerrors.obs.Obs.e_names": {"tf": 1}, "pyerrors.obs.Obs.cov_names": {"tf": 1}, "pyerrors.obs.Obs.mc_names": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.value": {"tf": 1}, "pyerrors.obs.Obs.value": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs.r_values": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.version": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}, "n": {"docs": {"pyerrors.special.kn": {"tf": 1}}, "df": 1}}, "w": {"0": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.e_windowsize": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"0": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.j1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 9}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.shape": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.r_values": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.deltas": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweighted": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tag": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.value": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cov_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.mc_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_content": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.covobs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sqrt": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.log": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.exp": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsin": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccos": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctan": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.sinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.cosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arccosh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.arctanh": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.S": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_drho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}, "pyerrors.obs.CObs.tag": {"tf": 1}, "pyerrors.obs.CObs.real": {"tf": 1}, "pyerrors.obs.CObs.imag": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 87, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 4}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 3}}}}, "y": {"0": {"docs": {"pyerrors.special.y0": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.special.y1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"0": {"docs": {"pyerrors.dirac.gammaX": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaY": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaZ": {"tf": 5.291502622129181}, "pyerrors.dirac.gammaT": {"tf": 5.291502622129181}, "pyerrors.dirac.gamma": {"tf": 10.583005244258363}, "pyerrors.dirac.gamma5": {"tf": 5.291502622129181}, "pyerrors.dirac.identity": {"tf": 5.291502622129181}, "pyerrors.obs.Obs.S_global": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 10}, "1": {"docs": {"pyerrors.dirac.gammaX": {"tf": 2}, "pyerrors.dirac.gammaY": {"tf": 2}, "pyerrors.dirac.gammaZ": {"tf": 2}, "pyerrors.dirac.gammaT": {"tf": 2}, "pyerrors.dirac.gamma": {"tf": 4}, "pyerrors.dirac.gamma5": {"tf": 2}, "pyerrors.dirac.identity": {"tf": 2}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1}}, "df": 8}, "2": {"docs": {"pyerrors.obs.Obs.S_global": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.dirac.gammaX": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaY": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaZ": {"tf": 2.23606797749979}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 4.123105625617661}, "pyerrors.dirac.gamma5": {"tf": 2.23606797749979}, "pyerrors.dirac.identity": {"tf": 1}, "pyerrors.input.sfcf.sep": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S_dict": {"tf": 1}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1}}, "df": 11, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.dirac.gammaX": {"tf": 1}, "pyerrors.dirac.gammaY": {"tf": 1}, "pyerrors.dirac.gammaZ": {"tf": 1}, "pyerrors.dirac.gammaT": {"tf": 1}, "pyerrors.dirac.gamma": {"tf": 1}, "pyerrors.dirac.gamma5": {"tf": 1}, "pyerrors.dirac.identity": {"tf": 1}}, "df": 7}}}}}, "j": {"docs": {"pyerrors.dirac.gammaX": {"tf": 4}, "pyerrors.dirac.gammaY": {"tf": 4}, "pyerrors.dirac.gammaZ": {"tf": 4}, "pyerrors.dirac.gammaT": {"tf": 4}, "pyerrors.dirac.gamma": {"tf": 8}, "pyerrors.dirac.gamma5": {"tf": 4}, "pyerrors.dirac.identity": {"tf": 4}}, "df": 7}, "x": {"2": {"7": {"docs": {"pyerrors.input.sfcf.sep": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "signature": {"root": {"0": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 17, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "x": {"6": {"4": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"3": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 12, "e": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}, "2": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 3}, "3": {"9": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.8284271247461903}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.misc.errorbar": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}}, "df": 38}, "docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}, "5": {"0": {"0": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 4}, "docs": {"pyerrors.correlators.Corr.__init__": {"tf": 5.744562646538029}, "pyerrors.correlators.Corr.gamma_method": {"tf": 4}, "pyerrors.correlators.Corr.gm": {"tf": 4}, "pyerrors.correlators.Corr.projected": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.item": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.plottable": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.trace": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 6.782329983125268}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 6.782329983125268}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.roll": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reverse": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.thin": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.69041575982343}, "pyerrors.correlators.Corr.deriv": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.fit": {"tf": 6}, "pyerrors.correlators.Corr.plateau": {"tf": 6}, "pyerrors.correlators.Corr.set_prange": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.show": {"tf": 11.313708498984761}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.dump": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr.print": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.sqrt": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.log": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.exp": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.sin": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.cos": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.tan": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.sinh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.cosh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.tanh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arcsin": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arccos": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arctan": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arcsinh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arccosh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.arctanh": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.prune": {"tf": 6.164414002968976}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.656854249492381}, "pyerrors.covobs.Covobs.errsq": {"tf": 3.1622776601683795}, "pyerrors.dirac.epsilon_tensor": {"tf": 4.242640687119285}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 4.69041575982343}, "pyerrors.dirac.Grid_gamma": {"tf": 3.1622776601683795}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 4}, "pyerrors.fits.Fit_result.gm": {"tf": 4}, "pyerrors.fits.least_squares": {"tf": 6.324555320336759}, "pyerrors.fits.total_least_squares": {"tf": 5.656854249492381}, "pyerrors.fits.fit_lin": {"tf": 4.47213595499958}, "pyerrors.fits.qqplot": {"tf": 5.656854249492381}, "pyerrors.fits.residual_plot": {"tf": 5.656854249492381}, "pyerrors.fits.error_band": {"tf": 4.242640687119285}, "pyerrors.fits.ks_test": {"tf": 3.7416573867739413}, "pyerrors.input.bdio.read_ADerrors": {"tf": 5.0990195135927845}, "pyerrors.input.bdio.write_ADerrors": {"tf": 5.477225575051661}, "pyerrors.input.bdio.read_mesons": {"tf": 5.0990195135927845}, "pyerrors.input.bdio.read_dSdm": {"tf": 5.0990195135927845}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7.14142842854285}, "pyerrors.input.dobs.write_pobs": {"tf": 8.426149773176359}, "pyerrors.input.dobs.read_pobs": {"tf": 5.830951894845301}, "pyerrors.input.dobs.import_dobs_string": {"tf": 5.0990195135927845}, "pyerrors.input.dobs.read_dobs": {"tf": 5.830951894845301}, "pyerrors.input.dobs.create_dobs_string": {"tf": 8.12403840463596}, "pyerrors.input.dobs.write_dobs": {"tf": 8.94427190999916}, "pyerrors.input.hadrons.read_hd5": {"tf": 6.6332495807108}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 6.6332495807108}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 7.54983443527075}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 6}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 6.855654600401044}, "pyerrors.input.json.create_json_string": {"tf": 5.291502622129181}, "pyerrors.input.json.dump_to_json": {"tf": 6.324555320336759}, "pyerrors.input.json.import_json_string": {"tf": 5.0990195135927845}, "pyerrors.input.json.load_json": {"tf": 5.830951894845301}, "pyerrors.input.json.dump_dict_to_json": {"tf": 7.0710678118654755}, "pyerrors.input.json.load_json_dict": {"tf": 6.6332495807108}, "pyerrors.input.misc.fit_t0": {"tf": 5.656854249492381}, "pyerrors.input.misc.read_pbp": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.read_rwms": {"tf": 6.164414002968976}, "pyerrors.input.openQCD.extract_t0": {"tf": 8.18535277187245}, "pyerrors.input.openQCD.extract_w0": {"tf": 8.18535277187245}, "pyerrors.input.openQCD.read_qtop": {"tf": 6.48074069840786}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 6.324555320336759}, "pyerrors.input.openQCD.qtop_projection": {"tf": 4.242640687119285}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 5.656854249492381}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 6.164414002968976}, "pyerrors.input.pandas.to_sql": {"tf": 6.48074069840786}, "pyerrors.input.pandas.read_sql": {"tf": 5.291502622129181}, "pyerrors.input.pandas.dump_df": {"tf": 4.69041575982343}, "pyerrors.input.pandas.load_df": {"tf": 5.0990195135927845}, "pyerrors.input.sfcf.read_sfcf": {"tf": 10.862780491200215}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 12.12435565298214}, "pyerrors.input.utils.sort_names": {"tf": 3.1622776601683795}, "pyerrors.input.utils.check_idl": {"tf": 3.7416573867739413}, "pyerrors.input.utils.check_params": {"tf": 5.291502622129181}, "pyerrors.integrate.quad": {"tf": 5.291502622129181}, "pyerrors.linalg.matmul": {"tf": 3.4641016151377544}, "pyerrors.linalg.jack_matmul": {"tf": 3.4641016151377544}, "pyerrors.linalg.einsum": {"tf": 4}, "pyerrors.linalg.inv": {"tf": 3.1622776601683795}, "pyerrors.linalg.cholesky": {"tf": 3.1622776601683795}, "pyerrors.linalg.det": {"tf": 3.1622776601683795}, "pyerrors.linalg.eigh": {"tf": 4}, "pyerrors.linalg.eig": {"tf": 4}, "pyerrors.linalg.eigv": {"tf": 4}, "pyerrors.linalg.pinv": {"tf": 4}, "pyerrors.linalg.svd": {"tf": 4}, "pyerrors.misc.print_config": {"tf": 2.6457513110645907}, "pyerrors.misc.errorbar": {"tf": 6.855654600401044}, "pyerrors.misc.dump_object": {"tf": 4.47213595499958}, "pyerrors.misc.load_object": {"tf": 3.1622776601683795}, "pyerrors.misc.pseudo_Obs": {"tf": 5.0990195135927845}, "pyerrors.misc.gen_correlated_data": {"tf": 5.830951894845301}, "pyerrors.mpm.matrix_pencil_method": {"tf": 5.656854249492381}, "pyerrors.obs.Obs.__init__": {"tf": 5.0990195135927845}, "pyerrors.obs.Obs.gamma_method": {"tf": 4}, "pyerrors.obs.Obs.gm": {"tf": 4}, "pyerrors.obs.Obs.details": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.reweight": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.is_zero": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_tauint": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_rho": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.plot_piechart": {"tf": 4.242640687119285}, "pyerrors.obs.Obs.dump": {"tf": 6.324555320336759}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 5.830951894845301}, "pyerrors.obs.Obs.sqrt": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.log": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.exp": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sin": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.cos": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.tan": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arcsin": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arccos": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arctan": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.sinh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.cosh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.tanh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arcsinh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arccosh": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.arctanh": {"tf": 3.1622776601683795}, "pyerrors.obs.CObs.__init__": {"tf": 4}, "pyerrors.obs.CObs.gamma_method": {"tf": 4}, "pyerrors.obs.CObs.is_zero": {"tf": 3.1622776601683795}, "pyerrors.obs.CObs.conjugate": {"tf": 3.1622776601683795}, "pyerrors.obs.gamma_method": {"tf": 4}, "pyerrors.obs.gm": {"tf": 4}, "pyerrors.obs.derived_observable": {"tf": 5.291502622129181}, "pyerrors.obs.reweight": {"tf": 4.47213595499958}, "pyerrors.obs.correlate": {"tf": 3.7416573867739413}, "pyerrors.obs.covariance": {"tf": 6.324555320336759}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 3.7416573867739413}, "pyerrors.obs.sort_corr": {"tf": 4.242640687119285}, "pyerrors.obs.import_jackknife": {"tf": 4.69041575982343}, "pyerrors.obs.import_bootstrap": {"tf": 4.242640687119285}, "pyerrors.obs.merge_obs": {"tf": 3.1622776601683795}, "pyerrors.obs.cov_Obs": {"tf": 5.0990195135927845}, "pyerrors.roots.find_root": {"tf": 5.291502622129181}, "pyerrors.special.beta": {"tf": 4.242640687119285}, "pyerrors.special.betainc": {"tf": 4.242640687119285}, "pyerrors.special.betaln": {"tf": 4.242640687119285}, "pyerrors.special.polygamma": {"tf": 4.242640687119285}, "pyerrors.special.psi": {"tf": 4.242640687119285}, "pyerrors.special.digamma": {"tf": 4.242640687119285}, "pyerrors.special.gamma": {"tf": 4.242640687119285}, "pyerrors.special.gammaln": {"tf": 4.242640687119285}, "pyerrors.special.gammainc": {"tf": 4.242640687119285}, "pyerrors.special.gammaincc": {"tf": 4.242640687119285}, "pyerrors.special.gammasgn": {"tf": 4.242640687119285}, "pyerrors.special.rgamma": {"tf": 4.242640687119285}, "pyerrors.special.multigammaln": {"tf": 4.242640687119285}, "pyerrors.special.kn": {"tf": 4.242640687119285}, "pyerrors.special.j0": {"tf": 4.242640687119285}, "pyerrors.special.y0": {"tf": 4.242640687119285}, "pyerrors.special.j1": {"tf": 4.242640687119285}, "pyerrors.special.y1": {"tf": 4.242640687119285}, "pyerrors.special.jn": {"tf": 4.242640687119285}, "pyerrors.special.yn": {"tf": 4.242640687119285}, "pyerrors.special.i0": {"tf": 4.242640687119285}, "pyerrors.special.i1": {"tf": 4.242640687119285}, "pyerrors.special.iv": {"tf": 4.242640687119285}, "pyerrors.special.ive": {"tf": 4.242640687119285}, "pyerrors.special.erf": {"tf": 4.242640687119285}, "pyerrors.special.erfc": {"tf": 4.242640687119285}, "pyerrors.special.erfinv": {"tf": 4.242640687119285}, "pyerrors.special.erfcinv": {"tf": 4.242640687119285}, "pyerrors.special.logit": {"tf": 4.242640687119285}, "pyerrors.special.expit": {"tf": 4.242640687119285}, "pyerrors.special.logsumexp": {"tf": 4.242640687119285}}, "df": 200, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7, "l": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 10}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 22}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.print": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 11}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "y": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 36}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 14, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.correlators.Corr.sqrt": {"tf": 1}, "pyerrors.correlators.Corr.log": {"tf": 1}, "pyerrors.correlators.Corr.exp": {"tf": 1}, "pyerrors.correlators.Corr.sin": {"tf": 1}, "pyerrors.correlators.Corr.cos": {"tf": 1}, "pyerrors.correlators.Corr.tan": {"tf": 1}, "pyerrors.correlators.Corr.sinh": {"tf": 1}, "pyerrors.correlators.Corr.cosh": {"tf": 1}, "pyerrors.correlators.Corr.tanh": {"tf": 1}, "pyerrors.correlators.Corr.arcsin": {"tf": 1}, "pyerrors.correlators.Corr.arccos": {"tf": 1}, "pyerrors.correlators.Corr.arctan": {"tf": 1}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1}, "pyerrors.correlators.Corr.arccosh": {"tf": 1}, "pyerrors.correlators.Corr.arctanh": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.Obs.sqrt": {"tf": 1}, "pyerrors.obs.Obs.log": {"tf": 1}, "pyerrors.obs.Obs.exp": {"tf": 1}, "pyerrors.obs.Obs.sin": {"tf": 1}, "pyerrors.obs.Obs.cos": {"tf": 1}, "pyerrors.obs.Obs.tan": {"tf": 1}, "pyerrors.obs.Obs.arcsin": {"tf": 1}, "pyerrors.obs.Obs.arccos": {"tf": 1}, "pyerrors.obs.Obs.arctan": {"tf": 1}, "pyerrors.obs.Obs.sinh": {"tf": 1}, "pyerrors.obs.Obs.cosh": {"tf": 1}, "pyerrors.obs.Obs.tanh": {"tf": 1}, "pyerrors.obs.Obs.arcsinh": {"tf": 1}, "pyerrors.obs.Obs.arccosh": {"tf": 1}, "pyerrors.obs.Obs.arctanh": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.conjugate": {"tf": 1}}, "df": 80}}, "p": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}}}}}}}, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 4}}}}}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 80}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}, "v": {"1": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.449489742783178}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 3}}}, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.print": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.obs.CObs.__init__": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 21}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 10, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}, "j": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 17}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}, "u": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 8, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 12, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}, "j": {"docs": {"pyerrors.misc.dump_object": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 6}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"3": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 13}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "v": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31}}}}, "x": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 13, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "v": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}}, "df": 7, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}}, "df": 1}}}, "c": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "doc": {"root": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "+": {"0": {"0": {"0": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "6": {"9": {"7": {"9": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"0": {"5": {"0": {"2": {"2": {"0": {"9": {"1": {"8": {"6": {"0": {"4": {"4": {"5": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 2}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"5": {"6": {"0": {"5": {"6": {"2": {"1": {"8": {"2": {"5": {"4": {"7": {"1": {"2": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"8": {"0": {"6": {"4": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"4": {"4": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"9": {"4": {"6": {"7": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"8": {"5": {"6": {"5": {"0": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"4": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"4": {"2": {"3": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"4": {"3": {"3": {"3": {"docs": {"pyerrors.special.j1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}, "7": {"1": {"5": {"1": {"0": {"2": {"9": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"6": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"3": {"docs": {"pyerrors.special.beta": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"2": {"5": {"6": {"9": {"6": {"4": {"2": {"1": {"5": {"6": {"7": {"6": {"9": {"7": {"docs": {"pyerrors.special.y0": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"7": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"2": {"3": {"9": {"0": {"3": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"3": {"4": {"4": {"5": {"6": {"2": {"2": {"2": {"2": {"1": {"docs": {"pyerrors.special.betaln": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"6": {"1": {"2": {"2": {"9": {"docs": {"pyerrors.special.logit": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.4641016151377544}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.gm": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2}, "pyerrors.obs.sort_corr": {"tf": 3.4641016151377544}, "pyerrors.special.beta": {"tf": 2.23606797749979}, "pyerrors.special.betainc": {"tf": 4.795831523312719}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.polygamma": {"tf": 2}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 3.605551275463989}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 3.4641016151377544}, "pyerrors.special.gammaincc": {"tf": 3.1622776601683795}, "pyerrors.special.gammasgn": {"tf": 2.8284271247461903}, "pyerrors.special.rgamma": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 3}, "pyerrors.special.y0": {"tf": 3.872983346207417}, "pyerrors.special.j1": {"tf": 2.449489742783178}, "pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.jn": {"tf": 5.196152422706632}, "pyerrors.special.yn": {"tf": 5.196152422706632}, "pyerrors.special.i0": {"tf": 3}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 4}, "pyerrors.special.ive": {"tf": 4.69041575982343}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 4.242640687119285}, "pyerrors.special.erfcinv": {"tf": 4.123105625617661}, "pyerrors.special.logit": {"tf": 4.123105625617661}, "pyerrors.special.expit": {"tf": 3.1622776601683795}, "pyerrors.special.logsumexp": {"tf": 3.3166247903554}}, "df": 60, "+": {"1": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"0": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "c": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 1}, "^": {"1": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "x": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}}, "df": 2}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}}}, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}}}}}}, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 2}}}}}}}}}, "1": {"0": {"0": {"0": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.7320508075688772}}, "df": 15}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 3}, "4": {"7": {"2": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"3": {"2": {"4": {"3": {"docs": {"pyerrors.special.y1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"8": {"1": {"9": {"3": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"7": {"5": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 15}, "1": {"0": {"3": {"4": {"0": {"3": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"4": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"7": {"8": {"2": {"5": {"5": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"7": {"8": {"4": {"6": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "2": {"1": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "3": {"4": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "4": {"1": {"5": {"9": {"2": {"6": {"5": {"3": {"5": {"8": {"9": {"7": {"9": {"2": {"7": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"8": {"6": {"0": {"5": {"0": {"7": {"4": {"4": {"1": {"6": {"docs": {"pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 2}, "8": {"0": {"6": {"0": {"4": {"6": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}, "6": {"0": {"7": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 15}, "5": {"6": {"7": {"5": {"2": {"7": {"6": {"8": {"9": {"0": {"3": {"1": {"7": {"3": {"9": {"docs": {"pyerrors.special.beta": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"6": {"6": {"6": {"6": {"7": {"docs": {"pyerrors.special.rgamma": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}, "7": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"1": {"4": {"3": {"4": {"5": {"docs": {"pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}, "8": {"2": {"4": {"2": {"5": {"5": {"2": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"8": {"2": {"6": {"7": {"1": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"0": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.6457513110645907}, "pyerrors.special.beta": {"tf": 2.8284271247461903}, "pyerrors.special.betainc": {"tf": 4.795831523312719}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.449489742783178}, "pyerrors.special.digamma": {"tf": 2.449489742783178}, "pyerrors.special.gamma": {"tf": 4.242640687119285}, "pyerrors.special.gammaln": {"tf": 2.23606797749979}, "pyerrors.special.gammainc": {"tf": 2.449489742783178}, "pyerrors.special.gammaincc": {"tf": 2.6457513110645907}, "pyerrors.special.gammasgn": {"tf": 4.358898943540674}, "pyerrors.special.rgamma": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 2}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.jn": {"tf": 4}, "pyerrors.special.yn": {"tf": 4.123105625617661}, "pyerrors.special.i0": {"tf": 2.23606797749979}, "pyerrors.special.i1": {"tf": 3.4641016151377544}, "pyerrors.special.iv": {"tf": 4.47213595499958}, "pyerrors.special.ive": {"tf": 3}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 3.4641016151377544}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 3.1622776601683795}, "pyerrors.special.expit": {"tf": 2.6457513110645907}, "pyerrors.special.logsumexp": {"tf": 3.3166247903554}}, "df": 56, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}, "e": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "+": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 6}, "*": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"2": {"docs": {}, "df": 0, "[": {"1": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}, "z": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}, "e": {"1": {"0": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"0": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"0": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"0": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "^": {"2": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "2": {"0": {"0": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 2}, "1": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "5": {"8": {"5": {"0": {"9": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"1": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "7": {"9": {"1": {"0": {"4": {"2": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.j1": {"tf": 2}}, "df": 3}, "1": {"0": {"3": {"4": {"0": {"3": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"4": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"6": {"9": {"2": {"9": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}, "2": {"3": {"5": {"2": {"1": {"4": {"9": {"docs": {"pyerrors.special.yn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"0": {"7": {"8": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "3": {"1": {"2": {"0": {"6": {"docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"2": {"7": {"4": {"0": {"5": {"6": {"9": {"9": {"8": {"1": {"1": {"5": {"8": {"docs": {}, "df": 0, "+": {"2": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "7": {"1": {"docs": {}, "df": 0, "+": {"2": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 3}, "4": {"0": {"2": {"9": {"7": {"8": {"3": {"9": {"1": {"2": {"3": {"4": {"2": {"7": {"2": {"5": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"0": {"0": {"0": {"3": {"5": {"docs": {"pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}}, "df": 2}, "5": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}}, "df": 7}, "6": {"0": {"0": {"5": {"1": {"9": {"5": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"6": {"5": {"8": {"7": {"7": {"7": {"5": {"2": {"0": {"0": {"8": {"2": {"docs": {"pyerrors.special.i0": {"tf": 1}}, "df": 1}, "4": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"1": {"8": {"6": {"6": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"5": {"8": {"5": {"3": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"7": {"7": {"6": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "9": {"3": {"5": {"2": {"5": {"3": {"2": {"6": {"3": {"4": {"7": {"4": {"7": {"9": {"8": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"9": {"7": {"0": {"3": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.23606797749979}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 2.23606797749979}, "pyerrors.special.betainc": {"tf": 2.449489742783178}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 2}, "pyerrors.special.rgamma": {"tf": 2}, "pyerrors.special.multigammaln": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 2}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 45, "x": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "f": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "#": {"docs": {}, "df": 0, "e": {"1": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 2}, "4": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "i": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}, "^": {"2": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}}}}}}, "3": {"0": {"2": {"5": {"8": {"5": {"0": {"9": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"1": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"5": {"2": {"0": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"5": {"1": {"7": {"6": {"4": {"1": {"4": {"6": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"5": {"0": {"8": {"3": {"2": {"docs": {"pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "1": {"4": {"9": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"7": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "4": {"6": {"7": {"4": {"4": {"2": {"docs": {"pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"9": {"0": {"5": {"8": {"9": {"6": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2}}, "df": 1}, "4": {"1": {"9": {"3": {"6": {"7": {"8": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "9": {"7": {"6": {"8": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "6": {"3": {"2": {"7": {"1": {"8": {"docs": {"pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "7": {"0": {"8": {"0": {"7": {"1": {"6": {"docs": {"pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"0": {"9": {"3": {"3": {"6": {"9": {"5": {"2": {"2": {"6": {"9": {"7": {"5": {"6": {"docs": {"pyerrors.special.gammaincc": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"8": {"5": {"0": {"0": {"1": {"docs": {"pyerrors.special.y0": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"2": {"0": {"3": {"4": {"3": {"docs": {"pyerrors.special.i0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "9": {"4": {"9": {"3": {"4": {"0": {"7": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"4": {"9": {"8": {"1": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 7.745966692414834}, "pyerrors.fits.least_squares": {"tf": 4.242640687119285}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.8284271247461903}, "pyerrors.special.gamma": {"tf": 3.4641016151377544}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 2}, "pyerrors.special.erfc": {"tf": 2}, "pyerrors.special.erfinv": {"tf": 2}, "pyerrors.special.erfcinv": {"tf": 2}, "pyerrors.special.logit": {"tf": 2}, "pyerrors.special.expit": {"tf": 2}}, "df": 15}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.23606797749979}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 2}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 2}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 33, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "4": {"0": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}}, "df": 2}, "3": {"2": {"0": {"9": {"8": {"3": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "4": {"0": {"0": {"5": {"0": {"5": {"8": {"5": {"7": {"4": {"4": {"9": {"3": {"3": {"5": {"5": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"1": {"8": {"7": {"3": {"docs": {"pyerrors.special.y0": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"4": {"docs": {"pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"6": {"2": {"9": {"7": {"4": {"4": {"4": {"2": {"6": {"7": {"1": {"0": {"7": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}, "6": {"5": {"7": {"5": {"9": {"6": {"1": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"4": {"7": {"2": {"3": {"9": {"docs": {"pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"9": {"3": {"6": {"2": {"7": {"6": {"2": {"0": {"4": {"4": {"6": {"9": {"9": {"docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"3": {"9": {"6": {"3": {"8": {"8": {"0": {"7": {"6": {"1": {"9": {"4": {"4": {"6": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"9": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 2}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1}}, "df": 26, "x": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "5": {"0": {"0": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}}, "df": 2}, "5": {"1": {"7": {"0": {"1": {"9": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"2": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"0": {"3": {"7": {"5": {"6": {"7": {"docs": {"pyerrors.special.y0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"6": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"0": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "8": {"0": {"1": {"3": {"5": {"7": {"4": {"5": {"6": {"1": {"7": {"8": {"6": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"3": {"2": {"4": {"8": {"5": {"4": {"6": {"1": {"2": {"9": {"1": {"8": {"1": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"4": {"0": {"1": {"1": {"5": {"5": {"0": {"0": {"0": {"6": {"5": {"8": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "8": {"5": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"9": {"0": {"7": {"7": {"docs": {"pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"0": {"3": {"5": {"9": {"8": {"1": {"7": {"3": {"3": {"3": {"4": {"1": {"docs": {}, "df": 0, "+": {"1": {"docs": {"pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"5": {"1": {"5": {"9": {"1": {"0": {"3": {"9": {"9": {"2": {"4": {"8": {"5": {"1": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"6": {"5": {"9": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"9": {"9": {"2": {"0": {"7": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"2": {"4": {"8": {"1": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "8": {"3": {"4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"6": {"3": {"6": {"8": {"5": {"docs": {"pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"1": {"6": {"0": {"8": {"docs": {"pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 3.4641016151377544}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 2.8284271247461903}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.449489742783178}, "pyerrors.special.ive": {"tf": 2.23606797749979}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 2.6457513110645907}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "/": {"5": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "6": {"0": {"5": {"1": {"7": {"0": {"1": {"9": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"2": {"1": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"3": {"7": {"9": {"1": {"2": {"4": {"3": {"4": {"1": {"0": {"0": {"5": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 3}, "2": {"8": {"9": {"0": {"6": {"6": {"3": {"0": {"4": {"7": {"7": {"3": {"0": {"2": {"4": {"docs": {"pyerrors.special.gammainc": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"4": {"9": {"3": {"4": {"0": {"7": {"docs": {"pyerrors.special.polygamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "5": {"0": {"6": {"8": {"2": {"6": {"0": {"6": {"8": {"1": {"6": {"2": {"5": {"4": {"6": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"8": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 2.449489742783178}}, "df": 7, "/": {"6": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"3": {"1": {"2": {"0": {"4": {"3": {"7": {"9": {"5": {"9": {"2": {"9": {"3": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "1": {"4": {"2": {"2": {"9": {"0": {"0": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"0": {"0": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"4": {"6": {"6": {"5": {"8": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"4": {"2": {"1": {"6": {"4": {"3": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"5": {"7": {"3": {"1": {"9": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.7320508075688772}}, "df": 2}, "6": {"5": {"1": {"9": {"7": {"6": {"8": {"6": {"5": {"5": {"7": {"9": {"6": {"6": {"5": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"4": {"5": {"3": {"8": {"5": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"1": {"0": {"1": {"0": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"7": {"6": {"2": {"1": {"0": {"4": {"5": {"5": {"1": {"0": {"8": {"3": {"5": {"2": {"docs": {}, "df": 0, "+": {"0": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"1": {"2": {"1": {"2": {"8": {"2": {"1": {"3": {"0": {"0": {"2": {"8": {"8": {"8": {"docs": {"pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"7": {"7": {"5": {"2": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}}, "df": 5, "/": {"7": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "8": {"0": {"4": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"3": {"4": {"1": {"9": {"8": {"5": {"docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"9": {"0": {"4": {"0": {"3": {"6": {"2": {"2": {"5": {"2": {"9": {"5": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "6": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "7": {"5": {"7": {"4": {"4": {"8": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"2": {"0": {"6": {"8": {"0": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"8": {"2": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"2": {"0": {"6": {"8": {"0": {"7": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "+": {"8": {"2": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"0": {"7": {"9": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"1": {"7": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 15}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"7": {"9": {"2": {"5": {"9": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"2": {"2": {"6": {"9": {"3": {"docs": {"pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}}, "df": 13}, "9": {"0": {"0": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}, "6": {"1": {"9": {"3": {"8": {"docs": {"pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"7": {"0": {"1": {"7": {"8": {"5": {"3": {"3": {"0": {"3": {"4": {"6": {"4": {"7": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"5": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"3": {"2": {"5": {"3": {"1": {"9": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}}, "df": 1}, "4": {"7": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"3": {"3": {"7": {"0": {"2": {"2": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"0": {"3": {"5": {"7": {"8": {"5": {"1": {"6": {"0": {"9": {"3": {"6": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"3": {"6": {"1": {"1": {"6": {"2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"8": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"1": {"9": {"8": {"8": {"1": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"0": {"0": {"7": {"1": {"2": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"3": {"6": {"5": {"4": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"9": {"9": {"2": {"2": {"6": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"pyerrors.special.logit": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 7}, "docs": {"pyerrors": {"tf": 64.62197768561404}, "pyerrors.correlators": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 12.449899597988733}, "pyerrors.correlators.Corr.__init__": {"tf": 5.196152422706632}, "pyerrors.correlators.Corr.tag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.content": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweighted": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gm": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.item": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.plottable": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.trace": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 11.74734012447073}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.Hankel": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.roll": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.correlate": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.reweight": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.deriv": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.m_eff": {"tf": 5.830951894845301}, "pyerrors.correlators.Corr.fit": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plateau": {"tf": 5}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 9}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.dump": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.print": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sqrt": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.log": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.exp": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.sinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.cosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.tanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsin": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccos": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctan": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arccosh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.arctanh": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.real": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.imag": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 6.855654600401044}, "pyerrors.correlators.Corr.N": {"tf": 1.7320508075688772}, "pyerrors.covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 5.916079783099616}, "pyerrors.covobs.Covobs.name": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.value": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.cov": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.grad": {"tf": 1.7320508075688772}, "pyerrors.dirac": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaX": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaY": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaZ": {"tf": 1.7320508075688772}, "pyerrors.dirac.gammaT": {"tf": 1.7320508075688772}, "pyerrors.dirac.gamma": {"tf": 1.7320508075688772}, "pyerrors.dirac.gamma5": {"tf": 1.7320508075688772}, "pyerrors.dirac.identity": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 4.123105625617661}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 4.123105625617661}, "pyerrors.dirac.Grid_gamma": {"tf": 1.7320508075688772}, "pyerrors.fits": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 5.656854249492381}, "pyerrors.fits.Fit_result.fit_parameters": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gm": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 38.2099463490856}, "pyerrors.fits.total_least_squares": {"tf": 15.937377450509228}, "pyerrors.fits.fit_lin": {"tf": 5.916079783099616}, "pyerrors.fits.qqplot": {"tf": 3.605551275463989}, "pyerrors.fits.residual_plot": {"tf": 3.872983346207417}, "pyerrors.fits.error_band": {"tf": 3.7416573867739413}, "pyerrors.fits.ks_test": {"tf": 5}, "pyerrors.input": {"tf": 4.69041575982343}, "pyerrors.input.bdio": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 6.164414002968976}, "pyerrors.input.bdio.write_ADerrors": {"tf": 6.164414002968976}, "pyerrors.input.bdio.read_mesons": {"tf": 8.12403840463596}, "pyerrors.input.bdio.read_dSdm": {"tf": 7.416198487095663}, "pyerrors.input.dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 7.745966692414834}, "pyerrors.input.dobs.write_pobs": {"tf": 8.426149773176359}, "pyerrors.input.dobs.read_pobs": {"tf": 7.280109889280518}, "pyerrors.input.dobs.import_dobs_string": {"tf": 7.280109889280518}, "pyerrors.input.dobs.read_dobs": {"tf": 7.745966692414834}, "pyerrors.input.dobs.create_dobs_string": {"tf": 8.06225774829855}, "pyerrors.input.dobs.write_dobs": {"tf": 8.774964387392123}, "pyerrors.input.hadrons": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 10.198039027185569}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 7.3484692283495345}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 6.855654600401044}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 6.557438524302}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 21.307275752662516}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 6.324555320336759}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 6.324555320336759}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 6.782329983125268}, "pyerrors.input.json": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 6.082762530298219}, "pyerrors.input.json.dump_to_json": {"tf": 7}, "pyerrors.input.json.import_json_string": {"tf": 7.681145747868608}, "pyerrors.input.json.load_json": {"tf": 8.06225774829855}, "pyerrors.input.json.dump_dict_to_json": {"tf": 7.3484692283495345}, "pyerrors.input.json.load_json_dict": {"tf": 7.937253933193772}, "pyerrors.input.misc": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 7.14142842854285}, "pyerrors.input.misc.read_pbp": {"tf": 5.477225575051661}, "pyerrors.input.openQCD": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 8.54400374531753}, "pyerrors.input.openQCD.extract_t0": {"tf": 11}, "pyerrors.input.openQCD.extract_w0": {"tf": 11}, "pyerrors.input.openQCD.read_qtop": {"tf": 10.246950765959598}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 8.888194417315589}, "pyerrors.input.openQCD.qtop_projection": {"tf": 5.656854249492381}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 9.797958971132712}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 10.392304845413264}, "pyerrors.input.pandas": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.to_sql": {"tf": 7}, "pyerrors.input.pandas.read_sql": {"tf": 6.244997998398398}, "pyerrors.input.pandas.dump_df": {"tf": 6.324555320336759}, "pyerrors.input.pandas.load_df": {"tf": 6.244997998398398}, "pyerrors.input.sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.sep": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 11.090536506409418}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 11.313708498984761}, "pyerrors.input.utils": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 5.385164807134504}, "pyerrors.input.utils.check_idl": {"tf": 5.385164807134504}, "pyerrors.input.utils.check_params": {"tf": 6.4031242374328485}, "pyerrors.integrate": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 13.228756555322953}, "pyerrors.linalg": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 4.58257569495584}, "pyerrors.linalg.jack_matmul": {"tf": 4.47213595499958}, "pyerrors.linalg.einsum": {"tf": 4.47213595499958}, "pyerrors.linalg.inv": {"tf": 1.7320508075688772}, "pyerrors.linalg.cholesky": {"tf": 1.7320508075688772}, "pyerrors.linalg.det": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1.7320508075688772}, "pyerrors.linalg.eig": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigv": {"tf": 1.7320508075688772}, "pyerrors.linalg.pinv": {"tf": 1.7320508075688772}, "pyerrors.linalg.svd": {"tf": 1.7320508075688772}, "pyerrors.misc": {"tf": 1.7320508075688772}, "pyerrors.misc.print_config": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 5.0990195135927845}, "pyerrors.misc.dump_object": {"tf": 5.916079783099616}, "pyerrors.misc.load_object": {"tf": 5}, "pyerrors.misc.pseudo_Obs": {"tf": 6.557438524302}, "pyerrors.misc.gen_correlated_data": {"tf": 7.0710678118654755}, "pyerrors.mpm": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 6.324555320336759}, "pyerrors.obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 6.928203230275509}, "pyerrors.obs.Obs.__init__": {"tf": 4.898979485566356}, "pyerrors.obs.Obs.S_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_global": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma_dict": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.shape": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.r_values": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.deltas": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweighted": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.value": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cov_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.mc_names": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_content": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.covobs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.gm": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.details": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.reweight": {"tf": 4.58257569495584}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 4.47213595499958}, "pyerrors.obs.Obs.is_zero": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_tauint": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rho": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.plot_piechart": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.dump": {"tf": 5.744562646538029}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 6.164414002968976}, "pyerrors.obs.Obs.sqrt": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.log": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.exp": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsin": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccos": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctan": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.sinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.cosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arcsinh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arccosh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.arctanh": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.N_sigma": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.S": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_ddvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_drho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_dvalue": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_dtauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_n_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_rho": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_tauint": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.e_windowsize": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.tau_exp": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.tag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.real": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.imag": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.is_zero": {"tf": 1.7320508075688772}, "pyerrors.obs.CObs.conjugate": {"tf": 1.7320508075688772}, "pyerrors.obs.gamma_method": {"tf": 2.449489742783178}, "pyerrors.obs.gm": {"tf": 2.449489742783178}, "pyerrors.obs.derived_observable": {"tf": 6.4031242374328485}, "pyerrors.obs.reweight": {"tf": 5.196152422706632}, "pyerrors.obs.correlate": {"tf": 4.898979485566356}, "pyerrors.obs.covariance": {"tf": 6.6332495807108}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 5.291502622129181}, "pyerrors.obs.sort_corr": {"tf": 17.578395831246947}, "pyerrors.obs.import_jackknife": {"tf": 4.47213595499958}, "pyerrors.obs.import_bootstrap": {"tf": 5.0990195135927845}, "pyerrors.obs.merge_obs": {"tf": 4.242640687119285}, "pyerrors.obs.cov_Obs": {"tf": 5.385164807134504}, "pyerrors.roots": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 10.862780491200215}, "pyerrors.special": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 17.435595774162696}, "pyerrors.special.betainc": {"tf": 23.53720459187964}, "pyerrors.special.betaln": {"tf": 16.852299546352718}, "pyerrors.special.polygamma": {"tf": 13.152946437965905}, "pyerrors.special.psi": {"tf": 15.491933384829668}, "pyerrors.special.digamma": {"tf": 15.491933384829668}, "pyerrors.special.gamma": {"tf": 25.553864678361276}, "pyerrors.special.gammaln": {"tf": 19.390719429665317}, "pyerrors.special.gammainc": {"tf": 17.72004514666935}, "pyerrors.special.gammaincc": {"tf": 17.944358444926362}, "pyerrors.special.gammasgn": {"tf": 18.81488772222678}, "pyerrors.special.rgamma": {"tf": 17.08800749063506}, "pyerrors.special.multigammaln": {"tf": 15.905973720586866}, "pyerrors.special.kn": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 19.261360284258224}, "pyerrors.special.y0": {"tf": 18.81488772222678}, "pyerrors.special.j1": {"tf": 18.681541692269406}, "pyerrors.special.y1": {"tf": 18.601075237738275}, "pyerrors.special.jn": {"tf": 26}, "pyerrors.special.yn": {"tf": 25.768197453450252}, "pyerrors.special.i0": {"tf": 19.82422760159901}, "pyerrors.special.i1": {"tf": 19.924858845171276}, "pyerrors.special.iv": {"tf": 26.30589287593181}, "pyerrors.special.ive": {"tf": 25.278449319529077}, "pyerrors.special.erf": {"tf": 17.029386365926403}, "pyerrors.special.erfc": {"tf": 16.46207763315433}, "pyerrors.special.erfinv": {"tf": 21.563858652847824}, "pyerrors.special.erfcinv": {"tf": 19.44222209522358}, "pyerrors.special.logit": {"tf": 20.346989949375804}, "pyerrors.special.expit": {"tf": 21.142374511865974}, "pyerrors.special.logsumexp": {"tf": 25.317977802344327}, "pyerrors.version": {"tf": 1.7320508075688772}}, "df": 288, "w": {"0": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}}, "df": 2, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 1}}}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 2.23606797749979}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 7, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 46, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 21}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 12}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 48}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 6}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 52, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 9}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 13}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "z": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}}, "df": 5, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 9}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 13}}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}}}, "l": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "i": {"0": {"docs": {"pyerrors.special.i0": {"tf": 2.6457513110645907}, "pyerrors.special.iv": {"tf": 1}}, "df": 2, "e": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}, "1": {"docs": {"pyerrors.special.i1": {"tf": 2.6457513110645907}, "pyerrors.special.iv": {"tf": 1}}, "df": 2, "e": {"docs": {"pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 2.23606797749979}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 2.449489742783178}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 3}, "pyerrors.special.ive": {"tf": 3}}, "df": 20, "s": {"docs": {"pyerrors": {"tf": 8.12403840463596}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 3}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.4641016151377544}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 4}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.4641016151377544}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 3}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gamma": {"tf": 3.1622776601683795}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 2.23606797749979}, "pyerrors.special.rgamma": {"tf": 2}, "pyerrors.special.multigammaln": {"tf": 2.449489742783178}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 2.23606797749979}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 2.23606797749979}, "pyerrors.special.jn": {"tf": 2.449489742783178}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2.8284271247461903}, "pyerrors.special.ive": {"tf": 2.449489742783178}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 4}}, "df": 97, "o": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "c": {"9": {"9": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "t": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 2}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 38, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 12, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 8.366600265340756}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.242640687119285}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.449489742783178}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 2.6457513110645907}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 3.1622776601683795}}, "df": 80, "t": {"1": {"6": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 49, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 6}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 2.449489742783178}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}}, "df": 8}}}}}, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 19}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}, "v": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 2.23606797749979}, "pyerrors.special.erfcinv": {"tf": 2.449489742783178}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 11}}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 3}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 11}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "x": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 2}, "pyerrors.special.gammaln": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 2}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 9, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 25}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 9}, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 22, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}}}, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 2.8284271247461903}, "pyerrors.special.gammaincc": {"tf": 2.8284271247461903}}, "df": 5}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}}}, "f": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.extract_w0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.23606797749979}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 2.6457513110645907}}, "df": 68}, "m": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 3, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 45, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 6}}, "s": {"docs": {"pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 3}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 9}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1.4142135623730951}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "d": {"0": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "r": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 16, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}}, "/": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}, "^": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "|": {"docs": {}, "df": 0, "^": {"2": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "docs": {}, "df": 0}}}}, "}": {"docs": {}, "df": 0, "|": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 3.3166247903554}, "pyerrors.special.ive": {"tf": 2.6457513110645907}}, "df": 4, "e": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 3.4641016151377544}}, "df": 2}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.logit": {"tf": 2.23606797749979}}, "df": 9, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 6.928203230275509}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 2}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 8}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 17}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 11}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 18}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 10, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}}, "df": 17, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 137}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 30, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 5}}}, "y": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 15}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 9, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 2}}, "df": 12}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 13}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 32, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}}, "df": 4}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 3}}}, "t": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.special.gamma": {"tf": 3}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 2.23606797749979}, "pyerrors.special.erfc": {"tf": 2.23606797749979}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 2.6457513110645907}, "pyerrors.special.expit": {"tf": 2.6457513110645907}}, "df": 18}}, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 9, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "^": {"0": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.477225575051661}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 6, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 8, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 8}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 5}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4}}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 18, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2.449489742783178}, "pyerrors.special.erf": {"tf": 1}}, "df": 20}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 15}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.polygamma": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {"pyerrors.special.gamma": {"tf": 2}}, "df": 1, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 5}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}}, "df": 1}}}}}}}}}}, "i": {"docs": {"pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 3.3166247903554}, "pyerrors.special.digamma": {"tf": 3.3166247903554}}, "df": 3}}, "[": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "b": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}, ">": {"1": {"docs": {"pyerrors.special.logit": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "a": {"docs": {"pyerrors": {"tf": 8.426149773176359}, "pyerrors.correlators.Corr": {"tf": 3}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 5.744562646538029}, "pyerrors.fits.total_least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.fit_lin": {"tf": 1.7320508075688772}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.6457513110645907}, "pyerrors.input.pandas.dump_df": {"tf": 2.23606797749979}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 3}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 2}, "pyerrors.special.betainc": {"tf": 5.830951894845301}, "pyerrors.special.betaln": {"tf": 3.3166247903554}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 3.1622776601683795}, "pyerrors.special.gammaincc": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 4.123105625617661}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 2.8284271247461903}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 4.69041575982343}}, "df": 107, "n": {"docs": {"pyerrors": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.8284271247461903}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 53, "d": {"docs": {"pyerrors": {"tf": 7.211102550927978}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 3.4641016151377544}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 2}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 2.6457513110645907}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 3}, "pyerrors.special.ive": {"tf": 2.449489742783178}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 98}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 11}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 2}}}}}}, "y": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}}, "df": 5}, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 6}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, ":": {"1": {"0": {"0": {"9": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"5": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"9": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"0": {"4": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 2.23606797749979}}, "df": 78}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 26, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 17}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 4.47213595499958}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 6.082762530298219}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 2.449489742783178}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 2}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 3.1622776601683795}, "pyerrors.special.gammainc": {"tf": 2.6457513110645907}, "pyerrors.special.gammaincc": {"tf": 2.6457513110645907}, "pyerrors.special.gammasgn": {"tf": 2.449489742783178}, "pyerrors.special.rgamma": {"tf": 2.449489742783178}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 2}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 2}, "pyerrors.special.jn": {"tf": 3.4641016151377544}, "pyerrors.special.yn": {"tf": 3.4641016151377544}, "pyerrors.special.i0": {"tf": 2.6457513110645907}, "pyerrors.special.i1": {"tf": 2.6457513110645907}, "pyerrors.special.iv": {"tf": 3.4641016151377544}, "pyerrors.special.ive": {"tf": 3.1622776601683795}, "pyerrors.special.erf": {"tf": 2.23606797749979}, "pyerrors.special.erfc": {"tf": 2.23606797749979}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 2.449489742783178}, "pyerrors.special.expit": {"tf": 2.449489742783178}, "pyerrors.special.logsumexp": {"tf": 3.1622776601683795}}, "df": 47, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 23}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 6}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 4}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 6}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 5, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 11}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 6}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}}, "df": 7, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 7}}}}}}}}, "s": {"docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 2.6457513110645907}, "pyerrors.special.gammaln": {"tf": 2.23606797749979}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 2}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erf": {"tf": 2}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 2.449489742783178}, "pyerrors.special.expit": {"tf": 2.6457513110645907}, "pyerrors.special.logsumexp": {"tf": 2.23606797749979}}, "df": 55, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 11}, "s": {"docs": {"pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 8, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 36}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 2, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 40, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 4}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 10, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 3}}}, "y": {"docs": {"pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 8}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 6}}}}}}, "x": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}}, "df": 4}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "i": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 12}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 6}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 42, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}}}, "s": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}}, "df": 2}, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.jn": {"tf": 2}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 14}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 4, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 8}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 8}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erfinv": {"tf": 2.23606797749979}, "pyerrors.special.erfcinv": {"tf": 2.23606797749979}}, "df": 12, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 7}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 2}}}, "[": {"0": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 2}}}}}, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "/": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "a": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "+": {"1": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "b": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}, ">": {"0": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "|": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 3.7416573867739413}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 10, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 7.14142842854285}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 5.196152422706632}, "pyerrors.fits.total_least_squares": {"tf": 2}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.7320508075688772}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 3}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 3.872983346207417}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.6457513110645907}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.8284271247461903}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 3.605551275463989}, "pyerrors.special.gammaln": {"tf": 2.449489742783178}, "pyerrors.special.gammainc": {"tf": 2.23606797749979}, "pyerrors.special.gammaincc": {"tf": 2.23606797749979}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 3.872983346207417}, "pyerrors.special.yn": {"tf": 3.605551275463989}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 4.47213595499958}, "pyerrors.special.ive": {"tf": 4.795831523312719}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 2.6457513110645907}, "pyerrors.special.expit": {"tf": 2.449489742783178}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 106, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "m": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 9, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 8, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}}, "df": 17, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 21}}}, "s": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 12}}}}}}}, "r": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 4.58257569495584}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 65}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 3, "{": {"1": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "+": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}}}}, "2": {"docs": {"pyerrors.special.y0": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}, "docs": {}, "df": 0, "f": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.6457513110645907}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 5.291502622129181}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}}, "df": 18, "s": {"docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 7}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}, "p": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 2}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.7320508075688772}}, "df": 33}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 10}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.23606797749979}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 2.23606797749979}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 2}, "pyerrors.misc.load_object": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 44, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 3}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 18, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "g": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 12, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gamma": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 2.23606797749979}}, "df": 27}}, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 6}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 3}}}}}, "^": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 3}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 7, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.fit": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2}, "pyerrors.special.beta": {"tf": 3.4641016151377544}, "pyerrors.special.betainc": {"tf": 4.358898943540674}, "pyerrors.special.betaln": {"tf": 2.449489742783178}, "pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 3}, "pyerrors.special.gammaln": {"tf": 3}, "pyerrors.special.gammainc": {"tf": 3}, "pyerrors.special.gammaincc": {"tf": 3.1622776601683795}, "pyerrors.special.gammasgn": {"tf": 3.1622776601683795}, "pyerrors.special.rgamma": {"tf": 2.8284271247461903}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 2.8284271247461903}, "pyerrors.special.y0": {"tf": 3}, "pyerrors.special.j1": {"tf": 2.8284271247461903}, "pyerrors.special.y1": {"tf": 3.1622776601683795}, "pyerrors.special.jn": {"tf": 3.1622776601683795}, "pyerrors.special.yn": {"tf": 3}, "pyerrors.special.i0": {"tf": 3}, "pyerrors.special.i1": {"tf": 3.1622776601683795}, "pyerrors.special.iv": {"tf": 3.1622776601683795}, "pyerrors.special.ive": {"tf": 3.3166247903554}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 3}, "pyerrors.special.erfcinv": {"tf": 3}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 50, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 29}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 15, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 28, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 5}}}}}, "w": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 6, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 20, "r": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 6.164414002968976}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 2.23606797749979}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 2.23606797749979}, "pyerrors.special.erfcinv": {"tf": 2.449489742783178}}, "df": 20, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 6}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.errorbar": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}, "f": {"docs": {"pyerrors.special.erf": {"tf": 2.23606797749979}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 3}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 4, "c": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 2}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 2.23606797749979}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 3.3166247903554}}, "df": 3}}}, "x": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}}, "df": 2}}, "i": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}}, "df": 2, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 3.1622776601683795}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 4}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 33, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 13, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}}, "df": 6}}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 3}}, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 5}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logit": {"tf": 2}, "pyerrors.special.expit": {"tf": 3.872983346207417}}, "df": 2}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 11}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.8284271247461903}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 6}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors.obs.CObs.gamma_method": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 5}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}}, "df": 5}}}}}}}}}, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}}, "df": 4}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 10}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"1": {"docs": {"pyerrors": {"tf": 3.4641016151377544}}, "df": 1, "|": {"docs": {}, "df": 0, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "2": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 5.5677643628300215}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 36, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 6, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "r": {"0": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 14}}}, "y": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 15}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 7, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 10, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 22}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 14, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "q": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 3}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 5}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 6}}}}}}}, "t": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2, "c": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 3}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}}, "df": 17, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 5, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 10}, "s": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 9}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.y1": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 22}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}}, "df": 3}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.fits.residual_plot": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 12}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}, "/": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "/": {"1": {"6": {"0": {"3": {"7": {"5": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 6}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 3, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 13, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": null}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 31}}}, "s": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 17}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 7}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}}, "df": 6, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}}, "df": 21}}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 11}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"1": {"1": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.7320508075688772}}, "df": 1}, "2": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"1": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"pyerrors": {"tf": 6.6332495807108}, "pyerrors.correlators.Corr": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 3.4641016151377544}}, "df": 31, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}}, "df": 3, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 5}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 2}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 27, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.449489742783178}}, "df": 9, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 9, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 9}}}, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}}, "df": 7}}}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.linalg.inv": {"tf": 1}}, "df": 7}}, "v": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.covobs.Covobs.__init__": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}}, "df": 5, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 2}}, "df": 7}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 2, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 1}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.plot_history": {"tf": 1}}, "df": 2}, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 5}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}}, "df": 4, "/": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 11, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}}}}, "n": {"docs": {"pyerrors": {"tf": 5.744562646538029}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 42, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 17}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 3, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 11}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}}, "df": 6}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}}, "df": 2, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}, "f": {"docs": {"pyerrors.special.gammainc": {"tf": 1}}, "df": 1}}, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}, "p": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4, "u": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}}, "df": 7}}}}}}, "o": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 10, "f": {"docs": {"pyerrors": {"tf": 10.44030650891055}, "pyerrors.correlators.Corr": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.6457513110645907}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 5.385164807134504}, "pyerrors.fits.total_least_squares": {"tf": 3.605551275463989}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_pobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.8284271247461903}, "pyerrors.input.dobs.write_dobs": {"tf": 2.8284271247461903}, "pyerrors.input.hadrons.read_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.6457513110645907}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.0990195135927845}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 2.6457513110645907}, "pyerrors.input.json.dump_to_json": {"tf": 2.6457513110645907}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.8284271247461903}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 3}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.3166247903554}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.3166247903554}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 4.123105625617661}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.input.utils.check_params": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 3.1622776601683795}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1.4142135623730951}, "pyerrors.linalg.eig": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigv": {"tf": 1.4142135623730951}, "pyerrors.linalg.pinv": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1.4142135623730951}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.7320508075688772}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2.6457513110645907}, "pyerrors.obs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.gm": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 2.449489742783178}, "pyerrors.obs.reweight": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 3.3166247903554}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 3.7416573867739413}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 2}, "pyerrors.special.betainc": {"tf": 3.605551275463989}, "pyerrors.special.betaln": {"tf": 2.449489742783178}, "pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 2.6457513110645907}, "pyerrors.special.digamma": {"tf": 2.6457513110645907}, "pyerrors.special.gamma": {"tf": 2.449489742783178}, "pyerrors.special.gammaln": {"tf": 3.3166247903554}, "pyerrors.special.gammainc": {"tf": 2.6457513110645907}, "pyerrors.special.gammaincc": {"tf": 2.6457513110645907}, "pyerrors.special.gammasgn": {"tf": 2.6457513110645907}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 3.4641016151377544}, "pyerrors.special.kn": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 3}, "pyerrors.special.y0": {"tf": 3.3166247903554}, "pyerrors.special.j1": {"tf": 2.6457513110645907}, "pyerrors.special.y1": {"tf": 3.3166247903554}, "pyerrors.special.jn": {"tf": 3}, "pyerrors.special.yn": {"tf": 2.6457513110645907}, "pyerrors.special.i0": {"tf": 2.8284271247461903}, "pyerrors.special.i1": {"tf": 2.8284271247461903}, "pyerrors.special.iv": {"tf": 3.605551275463989}, "pyerrors.special.ive": {"tf": 3.605551275463989}, "pyerrors.special.erf": {"tf": 2}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 2.449489742783178}, "pyerrors.special.erfcinv": {"tf": 2.6457513110645907}, "pyerrors.special.logit": {"tf": 2.449489742783178}, "pyerrors.special.expit": {"tf": 2.6457513110645907}, "pyerrors.special.logsumexp": {"tf": 3.4641016151377544}}, "df": 150, "f": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {"pyerrors": {"tf": 5.291502622129181}, "pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 45, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 39, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 34}}, "t": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 3}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 48}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "s": {"1": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}, "2": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4}, "3": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 9.591663046625438}, "pyerrors.correlators.Corr": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 2}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.449489742783178}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 2.449489742783178}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}}, "df": 78, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 24, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 2.449489742783178}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 21}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "[": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}}, "df": 3}}, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}, "j": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 22, "s": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 11}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.__init__": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2}, "pyerrors.input.dobs.read_dobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 2}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 2.23606797749979}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 2}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 2}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 2.6457513110645907}}, "df": 76, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.23606797749979}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 2.23606797749979}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 2}, "pyerrors.special.jn": {"tf": 3.1622776601683795}, "pyerrors.special.yn": {"tf": 3.1622776601683795}, "pyerrors.special.i0": {"tf": 2.23606797749979}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 3.1622776601683795}, "pyerrors.special.ive": {"tf": 2.6457513110645907}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.special.jn": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 2.6457513110645907}, "pyerrors.special.iv": {"tf": 3.1622776601683795}, "pyerrors.special.ive": {"tf": 2.23606797749979}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}}, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 4, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"1": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"2": {"2": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "g": {"1": {"4": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "n": {"1": {"2": {"5": {"6": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"1": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 7}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 7, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 18, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 5}}}}, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 2.23606797749979}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 31, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 50, "s": {"docs": {"pyerrors.correlators.Corr.plottable": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 2}}, "m": {"docs": {"pyerrors": {"tf": 4.242640687119285}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.358898943540674}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 3}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 2.449489742783178}, "pyerrors.obs.sort_corr": {"tf": 2.8284271247461903}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 26}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 10}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 22}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}}, "df": 5, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 18}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.CObs.is_zero": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 4}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "k": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 10}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "x": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 3}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betaln": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.kn": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.i0": {"tf": 2}, "pyerrors.special.i1": {"tf": 2}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2}}, "df": 6}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 20}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3, "a": {"docs": {"pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 4.795831523312719}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.plateau": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 25, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.8284271247461903}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}}, "df": 10, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 8, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 10}}}}}}}}}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 7.681145747868608}}, "df": 1}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.matmul": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.multigammaln": {"tf": 2.449489742783178}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 8}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.roots.find_root": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "s": {"1": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}, "d": {"5": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 2.23606797749979}, "pyerrors.special.multigammaln": {"tf": 3.4641016151377544}}, "df": 4, "a": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1, "t": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5, "a": {"docs": {"pyerrors": {"tf": 5}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.872983346207417}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 2.8284271247461903}, "pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.8284271247461903}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 3}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 40, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1.7320508075688772}}, "df": 4}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 2}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 11}}, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.erfc": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 7, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 5}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 4.242640687119285}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 24, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.7320508075688772}}, "df": 11}}}}}}, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "]": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}}, "df": 5}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.7320508075688772}}, "df": 5, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 6}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 11}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 6}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}, "s": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.obs.Obs.details": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 18}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}, "s": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 7}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5}}}}}}}, "v": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}, "c": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.misc.print_config": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}}, "df": 5}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 8}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 5}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 8}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3.3166247903554}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 36}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 2}, "pyerrors.input.bdio.read_dSdm": {"tf": 2}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 2}, "pyerrors.obs.Obs.gm": {"tf": 2}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 43, "s": {"docs": {"pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 5, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 10}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}}, "df": 6}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 5}}, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}}, "df": 2}}}}}}}}}}}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}, "f": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors.correlators.Corr.dump": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 5, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 19}}}, "r": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}, "b": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}}, "df": 7}}}, "+": {"1": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "b": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 2.8284271247461903}, "pyerrors.special.betainc": {"tf": 5.5677643628300215}, "pyerrors.special.betaln": {"tf": 3.3166247903554}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 3.1622776601683795}}, "df": 10, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 13}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "{": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.error_band": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 5}}}}}}}}}}}}, "e": {"docs": {"pyerrors": {"tf": 6.244997998398398}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.7416573867739413}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.6457513110645907}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.449489742783178}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 2}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 83, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 15}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"pyerrors.fits.error_band": {"tf": 1}, "pyerrors.special.beta": {"tf": 3.4641016151377544}, "pyerrors.special.betainc": {"tf": 4}, "pyerrors.special.betaln": {"tf": 3.3166247903554}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 3}, "pyerrors.special.betaln": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 2.8284271247461903}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 4}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 2.23606797749979}, "pyerrors.special.y0": {"tf": 2.23606797749979}, "pyerrors.special.j1": {"tf": 2.23606797749979}, "pyerrors.special.y1": {"tf": 2.449489742783178}, "pyerrors.special.jn": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 2.23606797749979}, "pyerrors.special.i1": {"tf": 2.23606797749979}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2.449489742783178}}, "df": 11}}}}}, "y": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 2.23606797749979}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 49, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 10}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 3.1622776601683795}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.6457513110645907}}, "df": 7}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 4}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 44}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}}}}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 2.6457513110645907}, "pyerrors.obs.import_bootstrap": {"tf": 2}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.betainc": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 2}}, "df": 4}}}, "x": {"docs": {"pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}}, "df": 1}}, "i": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2, "g": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}}, "df": 4}}}, "b": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "*": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "t": {"0": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 7, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "2": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.prune": {"tf": 4.47213595499958}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}}, "df": 20, "h": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1, "e": {"docs": {"pyerrors": {"tf": 16.492422502470642}, "pyerrors.correlators.Corr": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 3}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gm": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.projected": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 5.0990195135927845}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.thin": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.correlate": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.reweight": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 2}, "pyerrors.correlators.Corr.deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.plateau": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.set_prange": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 3.605551275463989}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 4.795831523312719}, "pyerrors.covobs.Covobs.__init__": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.errsq": {"tf": 1.7320508075688772}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 7.3484692283495345}, "pyerrors.fits.total_least_squares": {"tf": 3.872983346207417}, "pyerrors.fits.fit_lin": {"tf": 2.449489742783178}, "pyerrors.fits.qqplot": {"tf": 1.7320508075688772}, "pyerrors.fits.residual_plot": {"tf": 2}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 3.605551275463989}, "pyerrors.input.dobs.write_pobs": {"tf": 3.872983346207417}, "pyerrors.input.dobs.read_pobs": {"tf": 3}, "pyerrors.input.dobs.import_dobs_string": {"tf": 3.3166247903554}, "pyerrors.input.dobs.read_dobs": {"tf": 3.3166247903554}, "pyerrors.input.dobs.create_dobs_string": {"tf": 4.58257569495584}, "pyerrors.input.dobs.write_dobs": {"tf": 4.58257569495584}, "pyerrors.input.hadrons.read_hd5": {"tf": 3.4641016151377544}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 3.3166247903554}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 3.1622776601683795}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 5.830951894845301}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 2}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 2.8284271247461903}, "pyerrors.input.json.dump_to_json": {"tf": 3}, "pyerrors.input.json.import_json_string": {"tf": 3}, "pyerrors.input.json.load_json": {"tf": 3}, "pyerrors.input.json.dump_dict_to_json": {"tf": 3.3166247903554}, "pyerrors.input.json.load_json_dict": {"tf": 2.6457513110645907}, "pyerrors.input.misc.fit_t0": {"tf": 4.58257569495584}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 3}, "pyerrors.input.openQCD.extract_t0": {"tf": 5.477225575051661}, "pyerrors.input.openQCD.extract_w0": {"tf": 5.477225575051661}, "pyerrors.input.openQCD.read_qtop": {"tf": 4.58257569495584}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 4.47213595499958}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 4.358898943540674}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 4.58257569495584}, "pyerrors.input.pandas.to_sql": {"tf": 2.23606797749979}, "pyerrors.input.pandas.read_sql": {"tf": 2.449489742783178}, "pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 2.449489742783178}, "pyerrors.input.sfcf.read_sfcf": {"tf": 4.58257569495584}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 4.898979485566356}, "pyerrors.input.utils": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 2.6457513110645907}, "pyerrors.integrate.quad": {"tf": 3.3166247903554}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.linalg.pinv": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1.7320508075688772}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2.23606797749979}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2.23606797749979}, "pyerrors.obs.Obs": {"tf": 3.1622776601683795}, "pyerrors.obs.Obs.__init__": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.gm": {"tf": 3.4641016151377544}, "pyerrors.obs.Obs.details": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 2}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 3.3166247903554}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 4.123105625617661}, "pyerrors.obs.CObs.gamma_method": {"tf": 1.7320508075688772}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2.8284271247461903}, "pyerrors.obs.reweight": {"tf": 2.23606797749979}, "pyerrors.obs.correlate": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 5.291502622129181}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 2.449489742783178}, "pyerrors.obs.sort_corr": {"tf": 4.898979485566356}, "pyerrors.obs.import_jackknife": {"tf": 2}, "pyerrors.obs.import_bootstrap": {"tf": 3}, "pyerrors.obs.merge_obs": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 2.449489742783178}, "pyerrors.special.beta": {"tf": 3.4641016151377544}, "pyerrors.special.betainc": {"tf": 5.477225575051661}, "pyerrors.special.betaln": {"tf": 3}, "pyerrors.special.polygamma": {"tf": 2}, "pyerrors.special.psi": {"tf": 4.58257569495584}, "pyerrors.special.digamma": {"tf": 4.58257569495584}, "pyerrors.special.gamma": {"tf": 5.196152422706632}, "pyerrors.special.gammaln": {"tf": 3.872983346207417}, "pyerrors.special.gammainc": {"tf": 3.4641016151377544}, "pyerrors.special.gammaincc": {"tf": 3.4641016151377544}, "pyerrors.special.gammasgn": {"tf": 3.605551275463989}, "pyerrors.special.rgamma": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 4.58257569495584}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 4}, "pyerrors.special.y0": {"tf": 4}, "pyerrors.special.j1": {"tf": 3.872983346207417}, "pyerrors.special.y1": {"tf": 4.123105625617661}, "pyerrors.special.jn": {"tf": 4.795831523312719}, "pyerrors.special.yn": {"tf": 4}, "pyerrors.special.i0": {"tf": 3.1622776601683795}, "pyerrors.special.i1": {"tf": 3.4641016151377544}, "pyerrors.special.iv": {"tf": 5.196152422706632}, "pyerrors.special.ive": {"tf": 5.385164807134504}, "pyerrors.special.erf": {"tf": 2.8284271247461903}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 3.605551275463989}, "pyerrors.special.erfcinv": {"tf": 3.3166247903554}, "pyerrors.special.logit": {"tf": 2.6457513110645907}, "pyerrors.special.expit": {"tf": 3.1622776601683795}, "pyerrors.special.logsumexp": {"tf": 4.58257569495584}}, "df": 165, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 7, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 18}}, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 6}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}}, "y": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "m": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 6.324555320336759}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2}, "pyerrors.input.dobs.write_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 51}, "n": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 2.449489742783178}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 54}, "n": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}}, "df": 1, "g": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 5}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.1622776601683795}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 2}, "pyerrors.special.erfcinv": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 56}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {"pyerrors.correlators.Corr.trace": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 2}}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "o": {"docs": {"pyerrors": {"tf": 8.831760866327848}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 3}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.plateau": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 3.1622776601683795}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.7320508075688772}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4}, "pyerrors.fits.total_least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_mesons": {"tf": 2.6457513110645907}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.7416573867739413}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.create_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_t0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.extract_w0": {"tf": 3.4641016151377544}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.8284271247461903}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 3}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 3.605551275463989}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 3.1622776601683795}, "pyerrors.input.pandas.to_sql": {"tf": 2.23606797749979}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.dump_df": {"tf": 2}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 3.3166247903554}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 3.3166247903554}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 2.449489742783178}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.mpm.matrix_pencil_method": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2.23606797749979}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2.23606797749979}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 2.8284271247461903}, "pyerrors.obs.sort_corr": {"tf": 2.449489742783178}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.449489742783178}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gamma": {"tf": 2.8284271247461903}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 2.23606797749979}, "pyerrors.special.ive": {"tf": 2.6457513110645907}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 3}}, "df": 133, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 3}}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 2}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 1, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 3}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 6, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 8}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 7}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reverse": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.trace": {"tf": 1}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}}, "df": 13, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1}}, "df": 5}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 1, "}": {"docs": {}, "df": 0, "^": {"2": {"docs": {"pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 2}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.8284271247461903}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "+": {"1": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 2}}, "df": 2}, "2": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}}, "df": 1}}, "/": {"2": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 2}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 6}}}}, "^": {"2": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 4}, "z": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "g": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 2}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 16, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"5": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 4.358898943540674}, "pyerrors.correlators.Corr.gamma_method": {"tf": 1}, "pyerrors.correlators.Corr.gm": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.Fit_result.gamma_method": {"tf": 1}, "pyerrors.fits.Fit_result.gm": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 3.1622776601683795}, "pyerrors.special.betainc": {"tf": 2.23606797749979}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 5.744562646538029}, "pyerrors.special.gammaln": {"tf": 3}, "pyerrors.special.gammainc": {"tf": 3}, "pyerrors.special.gammaincc": {"tf": 3}, "pyerrors.special.gammasgn": {"tf": 3.872983346207417}, "pyerrors.special.rgamma": {"tf": 3.1622776601683795}, "pyerrors.special.multigammaln": {"tf": 2.8284271247461903}}, "df": 32, "s": {"docs": {"pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 1, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 2.449489742783178}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gammaln": {"tf": 2.6457513110645907}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.gammainc": {"tf": 2.23606797749979}, "pyerrors.special.gammaincc": {"tf": 2}}, "df": 2, "c": {"docs": {"pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2.23606797749979}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "+": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "@": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 39}, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {"pyerrors": {"tf": 8.306623862918075}, "pyerrors.fits.least_squares": {"tf": 11.357816691600547}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.3166247903554}, "pyerrors.obs.sort_corr": {"tf": 4.58257569495584}, "pyerrors.special.beta": {"tf": 4.242640687119285}, "pyerrors.special.betainc": {"tf": 4.795831523312719}, "pyerrors.special.betaln": {"tf": 4.898979485566356}, "pyerrors.special.polygamma": {"tf": 3.4641016151377544}, "pyerrors.special.psi": {"tf": 3.4641016151377544}, "pyerrors.special.digamma": {"tf": 3.4641016151377544}, "pyerrors.special.gamma": {"tf": 7.615773105863909}, "pyerrors.special.gammaln": {"tf": 4.58257569495584}, "pyerrors.special.gammainc": {"tf": 4}, "pyerrors.special.gammaincc": {"tf": 4}, "pyerrors.special.gammasgn": {"tf": 4.795831523312719}, "pyerrors.special.rgamma": {"tf": 3.872983346207417}, "pyerrors.special.multigammaln": {"tf": 4.47213595499958}, "pyerrors.special.j0": {"tf": 5.477225575051661}, "pyerrors.special.y0": {"tf": 5.477225575051661}, "pyerrors.special.j1": {"tf": 5.477225575051661}, "pyerrors.special.y1": {"tf": 5.477225575051661}, "pyerrors.special.jn": {"tf": 7}, "pyerrors.special.yn": {"tf": 7.14142842854285}, "pyerrors.special.i0": {"tf": 5.477225575051661}, "pyerrors.special.i1": {"tf": 5.477225575051661}, "pyerrors.special.iv": {"tf": 6.928203230275509}, "pyerrors.special.ive": {"tf": 6.48074069840786}, "pyerrors.special.erf": {"tf": 4.898979485566356}, "pyerrors.special.erfc": {"tf": 4.898979485566356}, "pyerrors.special.erfinv": {"tf": 6.708203932499369}, "pyerrors.special.erfcinv": {"tf": 6.244997998398398}, "pyerrors.special.logit": {"tf": 6.244997998398398}, "pyerrors.special.expit": {"tf": 6.244997998398398}, "pyerrors.special.logsumexp": {"tf": 6.244997998398398}}, "df": 34}, "e": {"docs": {}, "df": 0, "q": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 3}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 10, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.gen_correlated_data": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}}, "df": 4}}, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 3}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 6}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "/": {"5": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 8}, "8": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}}, "z": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 16, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 10}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.roots.find_root": {"tf": 1.4142135623730951}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}}}}}, "^": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}, "f": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}, "l": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "/": {"0": {"3": {"0": {"6": {"0": {"1": {"7": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"1": {"2": {"0": {"8": {"7": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}}}, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "r": {"docs": {"pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 12, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 7}}}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.7320508075688772}}, "df": 6, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 5}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 8}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}}, "df": 6}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 17}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.__init__": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 2.449489742783178}, "pyerrors.covobs.Covobs.__init__": {"tf": 1.4142135623730951}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 3.3166247903554}, "pyerrors.fits.total_least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.fit_lin": {"tf": 2.23606797749979}, "pyerrors.fits.ks_test": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.23606797749979}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 2}, "pyerrors.input.json.import_json_string": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json": {"tf": 2.449489742783178}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_rwms": {"tf": 3.1622776601683795}, "pyerrors.input.openQCD.extract_t0": {"tf": 3}, "pyerrors.input.openQCD.extract_w0": {"tf": 3}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 3.3166247903554}, "pyerrors.input.utils.sort_names": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_idl": {"tf": 2}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 2.23606797749979}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.__init__": {"tf": 2.449489742783178}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.obs.reweight": {"tf": 1.7320508075688772}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.449489742783178}, "pyerrors.obs.merge_obs": {"tf": 2}, "pyerrors.obs.cov_Obs": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 56, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 10}, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 12}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 27}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 28}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}}, "df": 4}}}}}, "m": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 3}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2, "\u2013": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}}, "l": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 1}}}}, "n": {"docs": {"pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}}, "df": 3, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.7320508075688772}}, "df": 14}}}}, "q": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2}}, "df": 2}, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 7}}, "t": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}}}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 3}}, "df": 11, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.logsumexp": {"tf": 2.8284271247461903}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 5, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"2": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.logit": {"tf": 4.242640687119285}, "pyerrors.special.expit": {"tf": 2.23606797749979}}, "df": 2}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.misc.load_object": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}}, "df": 4}}, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 2}}, "df": 6}}}, "c": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}}, "df": 7}, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}}, "df": 1}, "n": {"docs": {"pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.obs.cov_Obs": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 13, "o": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.write_ADerrors": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_mesons": {"tf": 2.23606797749979}, "pyerrors.input.bdio.read_dSdm": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 11, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}}, "df": 1, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}}, "df": 4}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 6}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.23606797749979}}, "df": 5}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {"pyerrors": {"tf": 3.605551275463989}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 6, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.einsum": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 9}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.bdio.write_ADerrors": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 18}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 3}}}}}}, "b": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.linalg.einsum": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 17}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 12}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.linalg.svd": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 6}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}}, "df": 6}}, "h": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}}, "df": 4}, "k": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}}, "df": 2}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 10}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 7}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 3}}, "df": 4, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 17}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 9, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"pyerrors.special.multigammaln": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1.7320508075688772}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 4}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 24, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 11, "s": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.yn": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 2}}}}, "d": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.dump": {"tf": 1.7320508075688772}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_pobs": {"tf": 2.23606797749979}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.write_dobs": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.json.create_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 2}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2.23606797749979}, "pyerrors.input.pandas.to_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.8284271247461903}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.6457513110645907}, "pyerrors.input.utils.check_idl": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_params": {"tf": 2}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 61, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}}, "df": 19, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 9}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 14, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}}, "df": 11}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 10, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {"pyerrors.special.beta": {"tf": 2.8284271247461903}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.gammaln": {"tf": 2}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 2}, "pyerrors.special.gammasgn": {"tf": 2.449489742783178}, "pyerrors.special.rgamma": {"tf": 2.23606797749979}}, "df": 7, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 3}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 28}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 35}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}}, "df": 4, "s": {"1": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "3": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 3.872983346207417}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.input": {"tf": 1.7320508075688772}, "pyerrors.misc.pseudo_Obs": {"tf": 1.4142135623730951}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 2}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2.23606797749979}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 3.1622776601683795}, "pyerrors.obs.import_jackknife": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 2.6457513110645907}}, "df": 11}}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.correlate": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 37}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "s": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 5}}}, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_rho": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}}, "df": 5, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 5}, "s": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 2.23606797749979}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 17}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}}, "df": 2}}}}, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 40}, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 20, "s": {"docs": {"pyerrors.correlators.Corr.set_prange": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11}}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}}, "df": 3}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 6}}}}, "p": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 2}, "pyerrors.input.dobs.import_dobs_string": {"tf": 2.449489742783178}, "pyerrors.input.dobs.read_dobs": {"tf": 2.449489742783178}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}}, "df": 10}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}}, "df": 3}}}, "e": {"docs": {"pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 13}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 19}, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 10}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 12, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 2}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.thin": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {"pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 4}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.j0": {"tf": 2}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.jn": {"tf": 2}}, "df": 3}}}}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.is_matrix_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}}, "df": 6}, "z": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.matrix_symmetric": {"tf": 1}}, "df": 2}, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.roll": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.6457513110645907}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 12}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}}, "df": 4}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}}, "df": 14}}}, "w": {"docs": {"pyerrors.obs.Obs.plot_history": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 18, "n": {"docs": {"pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}}, "df": 6}, "s": {"docs": {"pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 3}, "d": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 5, "{": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "\\": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.read_sql": {"tf": 1.7320508075688772}, "pyerrors.input.pandas.load_df": {"tf": 1}}, "df": 3}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.23606797749979}, "pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}}, "df": 3}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.Hankel": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.prune": {"tf": 2.8284271247461903}, "pyerrors.fits.least_squares": {"tf": 3.4641016151377544}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 2}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 2}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.yn": {"tf": 2.23606797749979}}, "df": 23, "o": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 20, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 6, "e": {"docs": {"pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 50}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}}}}}}}}}, "t": {"docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 43, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 33}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 7}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.4142135623730951}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}, "w": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 10}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 6}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 8}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.gammasgn": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 7}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 5, "p": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 3.4641016151377544}, "pyerrors.fits.least_squares": {"tf": 2.6457513110645907}, "pyerrors.fits.total_least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.449489742783178}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.7320508075688772}, "pyerrors.linalg.matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1.4142135623730951}, "pyerrors.linalg.einsum": {"tf": 2}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 50}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.roll": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 35, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 10}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.integrate.quad": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.json.dump_to_json": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 3.4641016151377544}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2.23606797749979}, "pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eig": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammasgn": {"tf": 1.7320508075688772}, "pyerrors.special.multigammaln": {"tf": 2}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.7320508075688772}, "pyerrors.special.j1": {"tf": 1.7320508075688772}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 2}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 2}, "pyerrors.special.logsumexp": {"tf": 4.358898943540674}}, "df": 34, "r": {"docs": {"pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 2}, "pyerrors.input.dobs.write_dobs": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.23606797749979}, "pyerrors.misc.dump_object": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 30, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 20, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 6}}}}, "/": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "f": {"2": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}, "d": {"docs": {"pyerrors.obs.Obs.plot_tauint": {"tf": 1}, "pyerrors.obs.Obs.plot_rho": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}}, "df": 3}}}, "n": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 3}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 3.605551275463989}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 1.4142135623730951}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1.7320508075688772}, "pyerrors.special.erfcinv": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 2.23606797749979}, "pyerrors.special.expit": {"tf": 2.23606797749979}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 49, "s": {"docs": {"pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}}, "df": 2}}, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.polygamma": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 2.449489742783178}, "pyerrors.special.digamma": {"tf": 2.449489742783178}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1.4142135623730951}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}}, "df": 11}}}, "/": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.betainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1.7320508075688772}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1.7320508075688772}, "pyerrors.special.logit": {"tf": 1.7320508075688772}, "pyerrors.special.expit": {"tf": 1.7320508075688772}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 11}}}, "x": {"0": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.symmetric": {"tf": 1}, "pyerrors.correlators.Corr.anti_symmetric": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 7}, "1": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 9}, "2": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 9}, "docs": {"pyerrors": {"tf": 2.8284271247461903}, "pyerrors.correlators.Corr.second_deriv": {"tf": 4.123105625617661}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 4.795831523312719}, "pyerrors.fits.total_least_squares": {"tf": 3}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 4.58257569495584}, "pyerrors.special.polygamma": {"tf": 2.449489742783178}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 3.7416573867739413}, "pyerrors.special.gammaln": {"tf": 3.4641016151377544}, "pyerrors.special.gammainc": {"tf": 3}, "pyerrors.special.gammaincc": {"tf": 3}, "pyerrors.special.gammasgn": {"tf": 3.605551275463989}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 2.8284271247461903}, "pyerrors.special.y0": {"tf": 3.4641016151377544}, "pyerrors.special.j1": {"tf": 2.6457513110645907}, "pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 2.449489742783178}, "pyerrors.special.i0": {"tf": 2.8284271247461903}, "pyerrors.special.i1": {"tf": 2.8284271247461903}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erf": {"tf": 2.6457513110645907}, "pyerrors.special.erfc": {"tf": 2.8284271247461903}, "pyerrors.special.erfinv": {"tf": 2.8284271247461903}, "pyerrors.special.erfcinv": {"tf": 2.6457513110645907}, "pyerrors.special.logit": {"tf": 3.3166247903554}, "pyerrors.special.expit": {"tf": 3.605551275463989}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 41, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.write_dobs": {"tf": 1.7320508075688772}}, "df": 7}, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 2}}}, "[": {"0": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "1": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "^": {"2": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1, "/": {"4": {"docs": {"pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 8}}}}}}, "y": {"0": {"docs": {"pyerrors.special.y0": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 1.7320508075688772}}, "df": 2}, "1": {"docs": {"pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.yn": {"tf": 1.7320508075688772}}, "df": 2}, "docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.spaghetti_plot": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 4.358898943540674}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 3}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 2}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.y1": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 3.4641016151377544}, "pyerrors.special.erfcinv": {"tf": 3.1622776601683795}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 24, "o": {"docs": {}, "df": 0, "u": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 5, "r": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.obs.merge_obs": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"pyerrors.obs.correlate": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}}, "df": 3}}}, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.8284271247461903}}, "df": 2}, "v": {"docs": {"pyerrors.special.y0": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 3}, "n": {"docs": {"pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 3.4641016151377544}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.logit": {"tf": 1}}, "df": 1}}}}}}, "r": {"0": {"1": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}, "1": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}, "docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.extract_w0": {"tf": 2.6457513110645907}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 2}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 19, "e": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.obs.CObs.gamma_method": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 2.23606797749979}, "pyerrors.special.digamma": {"tf": 2.23606797749979}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1.7320508075688772}, "pyerrors.special.iv": {"tf": 2}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 31}, "d": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1.7320508075688772}, "pyerrors.input.bdio.read_dSdm": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 2}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 2}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 2}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 2}, "pyerrors.input.openQCD.read_rwms": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 2}, "pyerrors.input.openQCD.extract_w0": {"tf": 2}, "pyerrors.input.openQCD.read_qtop": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 2.23606797749979}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 2}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.6457513110645907}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.6457513110645907}, "pyerrors.input.utils.check_params": {"tf": 1}}, "df": 23, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.read_dobs": {"tf": 1.7320508075688772}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.7320508075688772}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.Obs.details": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 14, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.read_pbp": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.obs.Obs.plot_rep_dist": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.merge_obs": {"tf": 1}}, "df": 17}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.input.utils.sort_names": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr": {"tf": 1}}, "df": 2}}, "s": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 2}}}}}}}}}}}, "s": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2, "[": {"0": {"docs": {"pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 9, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1.7320508075688772}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2.23606797749979}}, "df": 21, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}}, "df": 4}}}, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 13}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.j0": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "t": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 7}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 3}}}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 6}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1}}, "df": 7}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 4}, "s": {"docs": {"pyerrors.special.beta": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 6, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 12}, "s": {"docs": {"pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}}, "df": 6}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 2.6457513110645907}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 2.23606797749979}, "pyerrors.special.gammaincc": {"tf": 2.23606797749979}}, "df": 5}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.correlators.Corr.__init__": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.T_symmetry": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.bdio.read_dSdm": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 2.449489742783178}}, "df": 15, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.item": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.m_eff": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.dirac.Grid_gamma": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.input.bdio.read_ADerrors": {"tf": 1}, "pyerrors.input.bdio.write_ADerrors": {"tf": 1.4142135623730951}, "pyerrors.input.bdio.read_mesons": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.misc.read_pbp": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.sort_names": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.input.utils.check_params": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.misc.dump_object": {"tf": 1}, "pyerrors.misc.load_object": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs.plot_piechart": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.4142135623730951}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 2}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 99}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_pobs": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.read_dobs": {"tf": 1.4142135623730951}, "pyerrors.input.json.import_json_string": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json": {"tf": 1.4142135623730951}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 10}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reverse": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}}, "df": 4, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.input.openQCD.qtop_projection": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.correlators.Corr.reweight": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.reweight": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 6}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.reweight": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "f": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 11, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 2}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 2, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 27}}}}}, "s": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4, "d": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.input.hadrons.read_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.input.utils.check_idl": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 25, "s": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.obs.Obs.__init__": {"tf": 1}}, "df": 2}}}, "k": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.dirac.epsilon_tensor": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1.4142135623730951}}, "df": 3}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1.7320508075688772}, "pyerrors.obs.import_bootstrap": {"tf": 1.4142135623730951}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.special.rgamma": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors.obs.derived_observable": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}}, "df": 4}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 2.449489742783178}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1.7320508075688772}}, "df": 6, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.7320508075688772}}, "df": 2}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 8, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.gammaln": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.special.gamma": {"tf": 1.7320508075688772}, "pyerrors.special.rgamma": {"tf": 2.449489742783178}}, "df": 2}}}}}}, "v": {"1": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "v": {"2": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}, "docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.prune": {"tf": 2.23606797749979}, "pyerrors.obs.covariance": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 4.795831523312719}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 4.242640687119285}, "pyerrors.special.ive": {"tf": 4.242640687119285}}, "df": 8, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 3.1622776601683795}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.plottable": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.linalg.svd": {"tf": 1}, "pyerrors.misc.pseudo_Obs": {"tf": 1.7320508075688772}, "pyerrors.misc.gen_correlated_data": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1}, "pyerrors.obs.Obs": {"tf": 2.449489742783178}, "pyerrors.obs.Obs.gamma_method": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gm": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}, "pyerrors.obs.cov_Obs": {"tf": 1}, "pyerrors.special.beta": {"tf": 1.4142135623730951}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 38, "s": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.show": {"tf": 1.7320508075688772}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.error_band": {"tf": 1.4142135623730951}, "pyerrors.fits.ks_test": {"tf": 1}, "pyerrors.misc.errorbar": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 2}, "pyerrors.special.digamma": {"tf": 2}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 32}, "d": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.read_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.linalg.einsum": {"tf": 1}, "pyerrors.linalg.inv": {"tf": 1}, "pyerrors.linalg.cholesky": {"tf": 1}, "pyerrors.linalg.det": {"tf": 1}, "pyerrors.obs.CObs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 24}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.input": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.covobs.Covobs.__init__": {"tf": 1}, "pyerrors.covobs.Covobs.errsq": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 12, "s": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.special.betainc": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.Fit_result": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.linalg.matmul": {"tf": 1}, "pyerrors.obs.invert_corr_cov_cholesky": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 12}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.obs.Obs": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.7320508075688772}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 2.23606797749979}, "pyerrors.input.sfcf.read_sfcf": {"tf": 2.449489742783178}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 2.449489742783178}, "pyerrors.misc.print_config": {"tf": 1}, "pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 2}}, "df": 18}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 6}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.json.load_json_dict": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 2.449489742783178}}, "df": 2, "s": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.gamma_method": {"tf": 1}, "pyerrors.obs.gm": {"tf": 1}}, "df": 2}}}}}}}}}, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "/": {"2": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}}}, "u": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 2.23606797749979}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.GEVP": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.m_eff": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 1.4142135623730951}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 2}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 22, "d": {"docs": {"pyerrors": {"tf": 3}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.deriv": {"tf": 1}, "pyerrors.correlators.Corr.second_deriv": {"tf": 1}, "pyerrors.correlators.Corr.fit": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.fits.fit_lin": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_rwms": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.input.utils.sort_names": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 39}, "r": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.correlators.Corr.m_eff": {"tf": 1.7320508075688772}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 4}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.total_least_squares": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 5}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}}, "df": 16}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 5, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.7320508075688772}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.integrate.quad": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 2}, "pyerrors.special.gammaincc": {"tf": 1.7320508075688772}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.gamma": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1.4142135623730951}, "pyerrors.special.erfcinv": {"tf": 1.4142135623730951}}, "df": 3, "l": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2}}, "df": 1}}}}}, "t": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 6}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.obs.sort_corr": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.projected": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.ive": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.fits.residual_plot": {"tf": 1}}, "df": 2}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 2}}}}}}, "j": {"0": {"docs": {"pyerrors.special.j0": {"tf": 2.6457513110645907}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}, "1": {"docs": {"pyerrors.special.j1": {"tf": 2.6457513110645907}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}}, "df": 3}, "docs": {"pyerrors": {"tf": 2}, "pyerrors.correlators.Corr.item": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.prune": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 2.449489742783178}, "pyerrors.obs.covariance": {"tf": 1.7320508075688772}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.multigammaln": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 2.8284271247461903}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 20, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.iv": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.plateau": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}}, "df": 4, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.obs.derived_observable": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.input": {"tf": 2.23606797749979}, "pyerrors.linalg.jack_matmul": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 2}, "pyerrors.obs.import_jackknife": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "s": {"docs": {"pyerrors.obs.import_jackknife": {"tf": 1}}, "df": 1}}}, "x": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1.4142135623730951}, "pyerrors.special.gammainc": {"tf": 1.4142135623730951}, "pyerrors.special.gammaincc": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1.4142135623730951}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.erf": {"tf": 1.4142135623730951}, "pyerrors.special.erfc": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1.4142135623730951}, "pyerrors.special.expit": {"tf": 1.4142135623730951}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 11}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 3.7416573867739413}, "pyerrors.correlators.Corr.dump": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 2.23606797749979}, "pyerrors.input.json.dump_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.import_json_string": {"tf": 2}, "pyerrors.input.json.load_json": {"tf": 1.7320508075688772}, "pyerrors.input.json.dump_dict_to_json": {"tf": 2.449489742783178}, "pyerrors.input.json.load_json_dict": {"tf": 1.4142135623730951}, "pyerrors.input.pandas.to_sql": {"tf": 1}, "pyerrors.input.pandas.dump_df": {"tf": 1}, "pyerrors.input.pandas.load_df": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.dump": {"tf": 1.4142135623730951}}, "df": 12}}}, "l": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}, "}": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.obs.covariance": {"tf": 1.4142135623730951}}, "df": 1}}, "^": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "v": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.jn": {"tf": 3.3166247903554}}, "df": 3, "e": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}}, "n": {"docs": {"pyerrors.special.j0": {"tf": 1.4142135623730951}, "pyerrors.special.j1": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 3}}, "k": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}, "pyerrors.mpm.matrix_pencil_method": {"tf": 1.7320508075688772}, "pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 2.23606797749979}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1.7320508075688772}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 24, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.correlators.Corr.thin": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}}, "df": 3, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1.7320508075688772}, "pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 1}}, "df": 5, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 2.23606797749979}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.obs.sort_corr": {"tf": 2.6457513110645907}}, "df": 3}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.misc.fit_t0": {"tf": 1}, "pyerrors.input.openQCD.read_rwms": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.4142135623730951}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}}, "df": 7, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.obs.sort_corr": {"tf": 2.6457513110645907}}, "df": 2}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "\u2013": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {"pyerrors.fits.ks_test": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"1": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "2": {"docs": {"pyerrors.input.bdio.read_mesons": {"tf": 1}}, "df": 1}, "docs": {"pyerrors.input.bdio.read_dSdm": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betaln": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}, "pyerrors.special.kn": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.7320508075688772}, "pyerrors.special.y0": {"tf": 2.449489742783178}, "pyerrors.special.j1": {"tf": 2}, "pyerrors.special.y1": {"tf": 2.6457513110645907}, "pyerrors.special.jn": {"tf": 1.7320508075688772}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 1.7320508075688772}, "pyerrors.special.ive": {"tf": 2.23606797749979}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}}, "df": 20}}}, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.special.i1": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.special.expit": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {"pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.j0": {"tf": 1.4142135623730951}}, "df": 2, "c": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.integrate.quad": {"tf": 2.23606797749979}}, "df": 2}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 2.23606797749979}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 2.449489742783178}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.qqplot": {"tf": 1.4142135623730951}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"pyerrors.correlators.Corr.T_symmetry": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {"pyerrors.input.openQCD.read_ms5_xsf": {"tf": 1.7320508075688772}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 4}, "pyerrors.input.hadrons.read_hd5": {"tf": 2.8284271247461903}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors.input.pandas.read_sql": {"tf": 1.4142135623730951}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.special.jn": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.obs.Obs.plot_history": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"pyerrors": {"tf": 2.449489742783178}, "pyerrors.correlators.Corr": {"tf": 1.4142135623730951}, "pyerrors.correlators.Corr.projected": {"tf": 1}, "pyerrors.correlators.Corr.prune": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.json.create_json_string": {"tf": 1}, "pyerrors.input.json.dump_to_json": {"tf": 1}, "pyerrors.input.json.dump_dict_to_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}, "pyerrors.obs.derived_observable": {"tf": 1.4142135623730951}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.merge_obs": {"tf": 1}, "pyerrors.roots.find_root": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 24}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 3}, "s": {"docs": {"pyerrors.special.logsumexp": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.fits.least_squares": {"tf": 1.4142135623730951}}, "df": 1}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.Hankel": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {"pyerrors": {"tf": 2.6457513110645907}, "pyerrors.correlators.Corr.reweight": {"tf": 1}, "pyerrors.fits.least_squares": {"tf": 1.4142135623730951}, "pyerrors.fits.total_least_squares": {"tf": 1.4142135623730951}, "pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.json.import_json_string": {"tf": 1}, "pyerrors.input.json.load_json": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1.4142135623730951}, "pyerrors.integrate.quad": {"tf": 1}, "pyerrors.obs.Obs.reweight": {"tf": 1}, "pyerrors.obs.reweight": {"tf": 1}, "pyerrors.obs.correlate": {"tf": 1}, "pyerrors.obs.covariance": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1.7320508075688772}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}, "pyerrors.special.erf": {"tf": 1}, "pyerrors.special.erfc": {"tf": 1}, "pyerrors.special.logit": {"tf": 1}, "pyerrors.special.expit": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.4142135623730951}}, "df": 38, "h": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1.4142135623730951}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.utils.check_params": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}}}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.iv": {"tf": 1.4142135623730951}, "pyerrors.special.ive": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix.g5H": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.linalg.eigh": {"tf": 1}, "pyerrors.linalg.eigv": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {"pyerrors": {"tf": 1.4142135623730951}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf": {"tf": 1}, "pyerrors.input.sfcf.read_sfcf_multi": {"tf": 1}}, "df": 5}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.input.openQCD.read_qtop": {"tf": 1}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors": {"tf": 2}, "pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.openQCD.extract_t0": {"tf": 1}, "pyerrors.input.openQCD.extract_w0": {"tf": 1}, "pyerrors.input.pandas.to_sql": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"pyerrors": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.correlators.Corr.show": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"pyerrors.obs.covariance": {"tf": 1}}, "df": 1, "s": {"docs": {"pyerrors.correlators.Corr.prune": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"pyerrors.fits.Fit_result": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"pyerrors.input.hadrons.Npr_matrix": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.dirac.epsilon_tensor": {"tf": 1}, "pyerrors.dirac.epsilon_tensor_rank4": {"tf": 1}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "f": {"docs": {"pyerrors.special.beta": {"tf": 1}, "pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.polygamma": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.7320508075688772}, "pyerrors.special.digamma": {"tf": 1.7320508075688772}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1}}, "df": 11}}}}, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.special.betainc": {"tf": 1}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}, "pyerrors.special.erfinv": {"tf": 1}}, "df": 5}}}}}}}, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.special.psi": {"tf": 1}, "pyerrors.special.digamma": {"tf": 1}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {"pyerrors.special.j0": {"tf": 1}, "pyerrors.special.y0": {"tf": 1}, "pyerrors.special.j1": {"tf": 1}, "pyerrors.special.y1": {"tf": 1}, "pyerrors.special.yn": {"tf": 1}, "pyerrors.special.i0": {"tf": 1}, "pyerrors.special.i1": {"tf": 1}}, "df": 7}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"pyerrors.special.jn": {"tf": 1}, "pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 3}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"pyerrors.special.gammainc": {"tf": 1}, "pyerrors.special.gammaincc": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"pyerrors.input.hadrons.read_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_meson_hd5": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_DistillationContraction_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_ExternalLeg_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Bilinear_hd5": {"tf": 1}, "pyerrors.input.hadrons.read_Fourquark_hd5": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}}, "u": {"docs": {}, "df": 0, "a": {"docs": {"pyerrors.mpm.matrix_pencil_method": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "p": {"2": {"docs": {}, "df": 0, "f": {"1": {"docs": {"pyerrors.special.betainc": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"pyerrors.special.betainc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "z": {"docs": {"pyerrors.special.psi": {"tf": 3}, "pyerrors.special.digamma": {"tf": 3}, "pyerrors.special.gamma": {"tf": 4.123105625617661}, "pyerrors.special.rgamma": {"tf": 1.7320508075688772}, "pyerrors.special.jn": {"tf": 3.872983346207417}, "pyerrors.special.yn": {"tf": 1.4142135623730951}, "pyerrors.special.iv": {"tf": 4.242640687119285}, "pyerrors.special.ive": {"tf": 4.69041575982343}, "pyerrors.special.erf": {"tf": 1.7320508075688772}, "pyerrors.special.erfinv": {"tf": 1}, "pyerrors.special.erfcinv": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1.7320508075688772}}, "df": 12, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"pyerrors": {"tf": 1.7320508075688772}, "pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.correlators.Corr.Eigenvalue": {"tf": 1}, "pyerrors.correlators.Corr.show": {"tf": 1}, "pyerrors.input.hadrons.extract_t0_hd5": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1}, "pyerrors.input.misc.fit_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_t0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.extract_w0": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1}, "pyerrors.obs.Obs.gamma_method": {"tf": 1}, "pyerrors.obs.Obs.gm": {"tf": 1}, "pyerrors.obs.Obs.is_zero_within_error": {"tf": 1}, "pyerrors.obs.Obs.is_zero": {"tf": 1}, "pyerrors.obs.CObs.is_zero": {"tf": 1}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gamma": {"tf": 1}, "pyerrors.special.gammasgn": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.jn": {"tf": 1}, "pyerrors.special.logsumexp": {"tf": 1}}, "df": 22, "t": {"docs": {}, "df": 0, "h": {"docs": {"pyerrors.correlators.Corr.GEVP": {"tf": 1}, "pyerrors.obs.Obs.export_jackknife": {"tf": 1}, "pyerrors.obs.Obs.export_bootstrap": {"tf": 1}, "pyerrors.obs.import_jackknife": {"tf": 1}, "pyerrors.obs.import_bootstrap": {"tf": 1}}, "df": 5}}, "s": {"docs": {"pyerrors.fits.least_squares": {"tf": 1}, "pyerrors.input.hadrons.Npr_matrix": {"tf": 1.4142135623730951}, "pyerrors.special.psi": {"tf": 1.4142135623730951}, "pyerrors.special.digamma": {"tf": 1.4142135623730951}, "pyerrors.special.gammaln": {"tf": 1}, "pyerrors.special.rgamma": {"tf": 1.4142135623730951}, "pyerrors.special.j0": {"tf": 1}}, "df": 7}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"pyerrors.input.dobs.create_pobs_string": {"tf": 1}, "pyerrors.input.dobs.write_pobs": {"tf": 1}, "pyerrors.input.dobs.read_pobs": {"tf": 1}, "pyerrors.input.dobs.import_dobs_string": {"tf": 1}, "pyerrors.input.dobs.read_dobs": {"tf": 1}, "pyerrors.input.dobs.create_dobs_string": {"tf": 1}, "pyerrors.input.dobs.write_dobs": {"tf": 1}, "pyerrors.input.openQCD.read_qtop": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_gf_coupling": {"tf": 1.4142135623730951}, "pyerrors.input.openQCD.read_qtop_sector": {"tf": 1.4142135623730951}}, "df": 10}}}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "j": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "y": {"docs": {"pyerrors.special.jn": {"tf": 1}}, "df": 1}, "i": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}, "k": {"docs": {"pyerrors.special.iv": {"tf": 1}, "pyerrors.special.ive": {"tf": 1}}, "df": 2}}}}, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"pyerrors.special.erf": {"tf": 1}}, "df": 1}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough.