mirror of
				https://github.com/fjosw/pyerrors.git
				synced 2025-11-04 09:35:45 +01:00 
			
		
		
		
	feat: positive semi-definite estimator for the covariance implemented,
fits.covariance matrix deprecated, covariance can now handle lists of observables.
This commit is contained in:
		
					parent
					
						
							
								8e3e34bbea
							
						
					
				
			
			
				commit
				
					
						82419b7a88
					
				
			
		
					 5 changed files with 65 additions and 79 deletions
				
			
		| 
						 | 
				
			
			@ -239,7 +239,7 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
 | 
			
		|||
        if kwargs.get('covariance') is not None:
 | 
			
		||||
            cov = kwargs.get('covariance')
 | 
			
		||||
        else:
 | 
			
		||||
            cov = covariance_matrix(np.concatenate((y, x.ravel())))
 | 
			
		||||
            cov = covariance(np.concatenate((y, x.ravel())))
 | 
			
		||||
 | 
			
		||||
        number_of_x_parameters = int(m / x_f.shape[-1])
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -455,7 +455,7 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
 | 
			
		|||
        x0 = [0.1] * n_parms
 | 
			
		||||
 | 
			
		||||
    if kwargs.get('correlated_fit') is True:
 | 
			
		||||
        cov = covariance_matrix(y)
 | 
			
		||||
        cov = covariance(y)
 | 
			
		||||
        covdiag = np.diag(1. / np.sqrt(np.diag(cov)))
 | 
			
		||||
        corr = np.copy(cov)
 | 
			
		||||
        for i in range(len(y)):
 | 
			
		||||
| 
						 | 
				
			
			@ -527,7 +527,7 @@ def _standard_fit(x, y, func, silent=False, **kwargs):
 | 
			
		|||
    if kwargs.get('expected_chisquare') is True:
 | 
			
		||||
        if kwargs.get('correlated_fit') is not True:
 | 
			
		||||
            W = np.diag(1 / np.asarray(dy_f))
 | 
			
		||||
            cov = covariance_matrix(y)
 | 
			
		||||
            cov = covariance(y)
 | 
			
		||||
            A = W @ jacobian(func)(fit_result.x, x)
 | 
			
		||||
            P_phi = A @ np.linalg.inv(A.T @ A) @ A.T
 | 
			
		||||
            expected_chisquare = np.trace((np.identity(x.shape[-1]) - P_phi) @ W @ cov @ W)
 | 
			
		||||
| 
						 | 
				
			
			@ -651,33 +651,9 @@ def residual_plot(x, y, func, fit_res):
 | 
			
		|||
    plt.draw()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def covariance_matrix(y):
 | 
			
		||||
    """Returns the covariance matrix of y.
 | 
			
		||||
 | 
			
		||||
    Parameters
 | 
			
		||||
    ----------
 | 
			
		||||
    y : list or numpy.ndarray
 | 
			
		||||
        List or one dimensional array of Obs
 | 
			
		||||
    """
 | 
			
		||||
    length = len(y)
 | 
			
		||||
    cov = np.zeros((length, length))
 | 
			
		||||
    for i, item in enumerate(y):
 | 
			
		||||
        for j, jtem in enumerate(y[:i + 1]):
 | 
			
		||||
            if i == j:
 | 
			
		||||
                cov[i, j] = item.dvalue ** 2
 | 
			
		||||
            else:
 | 
			
		||||
                cov[i, j] = covariance(item, jtem)
 | 
			
		||||
    cov = cov + cov.T - np.diag(np.diag(cov))
 | 
			
		||||
    eigenvalues = np.linalg.eigh(cov)[0]
 | 
			
		||||
    if not np.all(eigenvalues >= 0):
 | 
			
		||||
        warnings.warn("Covariance matrix is not positive semi-definite", RuntimeWarning)
 | 
			
		||||
        print("Eigenvalues of the covariance matrix:", eigenvalues)
 | 
			
		||||
    return cov
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def error_band(x, func, beta):
 | 
			
		||||
    """Returns the error band for an array of sample values x, for given fit function func with optimized parameters beta."""
 | 
			
		||||
    cov = covariance_matrix(beta)
 | 
			
		||||
    cov = covariance(beta)
 | 
			
		||||
    if np.any(np.abs(cov - cov.T) > 1000 * np.finfo(np.float64).eps):
 | 
			
		||||
        warnings.warn("Covariance matrix is not symmetric within floating point precision", RuntimeWarning)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1332,20 +1332,50 @@ def correlate(obs_a, obs_b):
 | 
			
		|||
    return o
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def covariance(obs1, obs2, correlation=False, **kwargs):
 | 
			
		||||
    """Calculates the covariance of two observables.
 | 
			
		||||
def covariance(obs, window=min, correlation=False, **kwargs):
 | 
			
		||||
    """Calculates the covariance matrix of a set of observables.
 | 
			
		||||
 | 
			
		||||
    covariance(obs, obs) is equal to obs.dvalue ** 2
 | 
			
		||||
    covariance([obs, obs])[0,1] is equal to obs.dvalue ** 2
 | 
			
		||||
    The gamma method has to be applied first to both observables.
 | 
			
		||||
 | 
			
		||||
    If abs(covariance(obs1, obs2)) > obs1.dvalue * obs2.dvalue, the covariance
 | 
			
		||||
    is constrained to the maximum value.
 | 
			
		||||
 | 
			
		||||
    Parameters
 | 
			
		||||
    ----------
 | 
			
		||||
    obs : list or numpy.ndarray
 | 
			
		||||
        List or one dimensional array of Obs
 | 
			
		||||
    window: function or dict
 | 
			
		||||
        Function which selects the window for each ensemble, examples 'min', 'max', 'np.mean', 'np.median'
 | 
			
		||||
        Alternatively a dictionary with an entry for every ensemble can be manually specified.
 | 
			
		||||
    correlation : bool
 | 
			
		||||
        if true the correlation instead of the covariance is returned (default False)
 | 
			
		||||
    """
 | 
			
		||||
    if isinstance(window, dict):
 | 
			
		||||
        window_dict = window
 | 
			
		||||
    else:
 | 
			
		||||
        window_dict = {}
 | 
			
		||||
        names = sorted(set([item for sublist in [o.mc_names for o in obs] for item in sublist]))
 | 
			
		||||
        for name in names:
 | 
			
		||||
            window_list = []
 | 
			
		||||
            for ob in obs:
 | 
			
		||||
                if ob.e_windowsize.get(name) is not None:
 | 
			
		||||
                    window_list.append(ob.e_windowsize[name])
 | 
			
		||||
            window_dict[name] = int(window(window_list))
 | 
			
		||||
 | 
			
		||||
    length = len(obs)
 | 
			
		||||
    cov = np.zeros((length, length))
 | 
			
		||||
    for i, item in enumerate(obs):
 | 
			
		||||
        for j, jtem in enumerate(obs[:i + 1]):
 | 
			
		||||
            cov[i, j] = _covariance_element(item, jtem, window_dict)
 | 
			
		||||
    cov = cov + cov.T - np.diag(np.diag(cov))
 | 
			
		||||
    eigenvalues = np.linalg.eigh(cov)[0]
 | 
			
		||||
    if not np.all(eigenvalues >= 0):
 | 
			
		||||
        warnings.warn("Covariance matrix is not positive semi-definite", RuntimeWarning)
 | 
			
		||||
        print("Eigenvalues of the covariance matrix:", eigenvalues)
 | 
			
		||||
    return cov
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _covariance_element(obs1, obs2, window_dict, correlation=False, **kwargs):
 | 
			
		||||
    """TODO
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def expand_deltas(deltas, idx, shape, new_idx):
 | 
			
		||||
        """Expand deltas defined on idx to a contiguous range [new_idx[0], new_idx[-1]].
 | 
			
		||||
| 
						 | 
				
			
			@ -1398,21 +1428,16 @@ def covariance(obs1, obs2, correlation=False, **kwargs):
 | 
			
		|||
        if e_name not in obs2.mc_names:
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        window = window_dict[e_name]
 | 
			
		||||
 | 
			
		||||
        idl_d = {}
 | 
			
		||||
        r_length = []
 | 
			
		||||
        for r_name in obs1.e_content[e_name]:
 | 
			
		||||
            if r_name not in obs2.e_content[e_name]:
 | 
			
		||||
                continue
 | 
			
		||||
            idl_d[r_name] = _merge_idx([obs1.idl[r_name], obs2.idl[r_name]])
 | 
			
		||||
            if isinstance(idl_d[r_name], range):
 | 
			
		||||
                r_length.append(len(idl_d[r_name]))
 | 
			
		||||
            else:
 | 
			
		||||
                r_length.append((idl_d[r_name][-1] - idl_d[r_name][0] + 1))
 | 
			
		||||
        # TODO: Is a check needed if the length of an ensemble is zero?
 | 
			
		||||
 | 
			
		||||
        if not r_length:
 | 
			
		||||
            return 0.
 | 
			
		||||
 | 
			
		||||
        w_max = max(r_length) // 2
 | 
			
		||||
        w_max = window + 1
 | 
			
		||||
        e_gamma[e_name] = np.zeros(w_max)
 | 
			
		||||
 | 
			
		||||
        for r_name in obs1.e_content[e_name]:
 | 
			
		||||
| 
						 | 
				
			
			@ -1438,11 +1463,10 @@ def covariance(obs1, obs2, correlation=False, **kwargs):
 | 
			
		|||
        e_rho[e_name] = e_gamma[e_name][:w_max] / e_gamma[e_name][0]
 | 
			
		||||
        e_n_tauint[e_name] = np.cumsum(np.concatenate(([0.5], e_rho[e_name][1:])))
 | 
			
		||||
        # Make sure no entry of tauint is smaller than 0.5
 | 
			
		||||
        e_n_tauint[e_name][e_n_tauint[e_name] < 0.5] = 0.500000000001
 | 
			
		||||
        e_n_tauint[e_name][e_n_tauint[e_name] < 0.5] = 0.5 + np.finfo(np.float64).eps
 | 
			
		||||
 | 
			
		||||
        window = min(obs1.e_windowsize[e_name], obs2.e_windowsize[e_name])
 | 
			
		||||
        # Bias correction hep-lat/0306017 eq. (49)
 | 
			
		||||
        e_dvalue[e_name] = 2 * (e_n_tauint[e_name][window] + obs1.tau_exp[e_name] * np.abs(e_rho[e_name][window + 1])) * (1 + (2 * window + 1) / e_N) * e_gamma[e_name][0] / e_N
 | 
			
		||||
        e_dvalue[e_name] = 2 * (e_n_tauint[e_name][window]) * (1 + (2 * window + 1) / e_N) * e_gamma[e_name][0] / e_N
 | 
			
		||||
 | 
			
		||||
        dvalue += e_dvalue[e_name]
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1453,8 +1477,9 @@ def covariance(obs1, obs2, correlation=False, **kwargs):
 | 
			
		|||
 | 
			
		||||
        dvalue += float(np.dot(np.transpose(obs1.covobs[e_name].grad), np.dot(obs1.covobs[e_name].cov, obs2.covobs[e_name].grad)))
 | 
			
		||||
 | 
			
		||||
    if np.abs(dvalue / obs1.dvalue / obs2.dvalue) > 1.0:
 | 
			
		||||
        dvalue = np.sign(dvalue) * obs1.dvalue * obs2.dvalue
 | 
			
		||||
    # TODO: Check if this is needed.
 | 
			
		||||
    # if np.abs(dvalue / obs1.dvalue / obs2.dvalue) > 1.0:
 | 
			
		||||
    #    dvalue = np.sign(dvalue) * obs1.dvalue * obs2.dvalue
 | 
			
		||||
 | 
			
		||||
    if correlation:
 | 
			
		||||
        dvalue = dvalue / obs1.dvalue / obs2.dvalue
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -39,8 +39,8 @@ def test_covobs():
 | 
			
		|||
        assert(np.isclose(oc.value, op.value, rtol=1e-14, atol=1e-14))
 | 
			
		||||
 | 
			
		||||
    [o.gamma_method() for o in cl]
 | 
			
		||||
    assert(pe.covariance(cl[0], cl[1]) == cov[0][1])
 | 
			
		||||
    assert(pe.covariance(cl[0], cl[1]) == cov[1][0])
 | 
			
		||||
    assert(pe.covariance([cl[0], cl[1]])[0, 1] == cov[0][1])
 | 
			
		||||
    assert(pe.covariance([cl[0], cl[1]])[0, 1] == cov[1][0])
 | 
			
		||||
 | 
			
		||||
    do = cl[0] * cl[1]
 | 
			
		||||
    assert(np.array_equal(do.covobs['rAP'].grad, np.transpose([pi[1], pi[0]]).reshape(2, 1)))
 | 
			
		||||
| 
						 | 
				
			
			@ -89,7 +89,7 @@ def test_covobs_covariance():
 | 
			
		|||
    x = [a + b, a - b]
 | 
			
		||||
    [o.gamma_method() for o in x]
 | 
			
		||||
 | 
			
		||||
    covariance = pe.fits.covariance_matrix(x)
 | 
			
		||||
    covariance = pe.covariance(x)
 | 
			
		||||
 | 
			
		||||
    assert covariance[0, 0] == covariance[1, 1]
 | 
			
		||||
    assert covariance[0, 1] == a.dvalue ** 2 - b.dvalue ** 2
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -60,7 +60,7 @@ def test_least_squares():
 | 
			
		|||
        beta[i].gamma_method(S=1.0)
 | 
			
		||||
        assert math.isclose(beta[i].value, popt[i], abs_tol=1e-5)
 | 
			
		||||
        assert math.isclose(pcov[i, i], beta[i].dvalue ** 2, abs_tol=1e-3)
 | 
			
		||||
    assert math.isclose(pe.covariance(beta[0], beta[1]), pcov[0, 1], abs_tol=1e-3)
 | 
			
		||||
    assert math.isclose(pe.covariance([beta[0], beta[1]])[0, 1], pcov[0, 1], abs_tol=1e-3)
 | 
			
		||||
 | 
			
		||||
    chi2_pyerrors = np.sum(((f(x, *[o.value for o in beta]) - y) / yerr) ** 2) / (len(x) - 2)
 | 
			
		||||
    chi2_scipy = np.sum(((f(x, *popt) - y) / yerr) ** 2) / (len(x) - 2)
 | 
			
		||||
| 
						 | 
				
			
			@ -81,7 +81,7 @@ def test_least_squares():
 | 
			
		|||
        betac[i].gamma_method(S=1.0)
 | 
			
		||||
        assert math.isclose(betac[i].value, popt[i], abs_tol=1e-5)
 | 
			
		||||
        assert math.isclose(pcov[i, i], betac[i].dvalue ** 2, abs_tol=1e-3)
 | 
			
		||||
    assert math.isclose(pe.covariance(betac[0], betac[1]), pcov[0, 1], abs_tol=1e-3)
 | 
			
		||||
    assert math.isclose(pe.covariance([betac[0], betac[1]])[0, 1], pcov[0, 1], abs_tol=1e-3)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_alternative_solvers():
 | 
			
		||||
| 
						 | 
				
			
			@ -195,7 +195,7 @@ def test_total_least_squares():
 | 
			
		|||
        beta[i].gamma_method(S=1.0)
 | 
			
		||||
        assert math.isclose(beta[i].value, output.beta[i], rel_tol=1e-5)
 | 
			
		||||
        assert math.isclose(output.cov_beta[i, i], beta[i].dvalue ** 2, rel_tol=2.5e-1), str(output.cov_beta[i, i]) + ' ' + str(beta[i].dvalue ** 2)
 | 
			
		||||
    assert math.isclose(pe.covariance(beta[0], beta[1]), output.cov_beta[0, 1], rel_tol=2.5e-1)
 | 
			
		||||
    assert math.isclose(pe.covariance([beta[0], beta[1]])[0, 1], output.cov_beta[0, 1], rel_tol=2.5e-1)
 | 
			
		||||
 | 
			
		||||
    out = pe.total_least_squares(ox, oy, func, const_par=[beta[1]])
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -218,7 +218,7 @@ def test_total_least_squares():
 | 
			
		|||
        betac[i].gamma_method(S=1.0)
 | 
			
		||||
        assert math.isclose(betac[i].value, output.beta[i], rel_tol=1e-3)
 | 
			
		||||
        assert math.isclose(output.cov_beta[i, i], betac[i].dvalue ** 2, rel_tol=2.5e-1), str(output.cov_beta[i, i]) + ' ' + str(betac[i].dvalue ** 2)
 | 
			
		||||
    assert math.isclose(pe.covariance(betac[0], betac[1]), output.cov_beta[0, 1], rel_tol=2.5e-1)
 | 
			
		||||
    assert math.isclose(pe.covariance([betac[0], betac[1]])[0, 1], output.cov_beta[0, 1], rel_tol=2.5e-1)
 | 
			
		||||
 | 
			
		||||
    outc = pe.total_least_squares(oxc, oyc, func, const_par=[betac[1]])
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -233,7 +233,7 @@ def test_total_least_squares():
 | 
			
		|||
        betac[i].gamma_method(S=1.0)
 | 
			
		||||
        assert math.isclose(betac[i].value, output.beta[i], rel_tol=1e-3)
 | 
			
		||||
        assert math.isclose(output.cov_beta[i, i], betac[i].dvalue ** 2, rel_tol=2.5e-1), str(output.cov_beta[i, i]) + ' ' + str(betac[i].dvalue ** 2)
 | 
			
		||||
    assert math.isclose(pe.covariance(betac[0], betac[1]), output.cov_beta[0, 1], rel_tol=2.5e-1)
 | 
			
		||||
    assert math.isclose(pe.covariance([betac[0], betac[1]])[0, 1], output.cov_beta[0, 1], rel_tol=2.5e-1)
 | 
			
		||||
 | 
			
		||||
    outc = pe.total_least_squares(oxc, oy, func, const_par=[betac[1]])
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -251,10 +251,10 @@ def test_covariance_is_variance():
 | 
			
		|||
    dvalue = np.abs(np.random.normal(0, 1))
 | 
			
		||||
    test_obs = pe.pseudo_Obs(value, dvalue, 't')
 | 
			
		||||
    test_obs.gamma_method()
 | 
			
		||||
    assert np.abs(test_obs.dvalue ** 2 - pe.covariance(test_obs, test_obs)) <= 10 * np.finfo(np.float64).eps
 | 
			
		||||
    assert np.abs(test_obs.dvalue ** 2 - pe.covariance([test_obs, test_obs])[0, 1]) <= 10 * np.finfo(np.float64).eps
 | 
			
		||||
    test_obs = test_obs + pe.pseudo_Obs(value, dvalue, 'q', 200)
 | 
			
		||||
    test_obs.gamma_method()
 | 
			
		||||
    assert np.abs(test_obs.dvalue ** 2 - pe.covariance(test_obs, test_obs)) <= 10 * np.finfo(np.float64).eps
 | 
			
		||||
    assert np.abs(test_obs.dvalue ** 2 - pe.covariance([test_obs, test_obs])[0, 1]) <= 10 * np.finfo(np.float64).eps
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_fft():
 | 
			
		||||
| 
						 | 
				
			
			@ -268,21 +268,6 @@ def test_fft():
 | 
			
		|||
    assert np.abs(test_obs1.dvalue - test_obs2.dvalue) <= 10 * max(test_obs1.dvalue, test_obs2.dvalue) * np.finfo(np.float64).eps
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_covariance_symmetry():
 | 
			
		||||
    value1 = np.random.normal(5, 10)
 | 
			
		||||
    dvalue1 = np.abs(np.random.normal(0, 1))
 | 
			
		||||
    test_obs1 = pe.pseudo_Obs(value1, dvalue1, 't')
 | 
			
		||||
    test_obs1.gamma_method()
 | 
			
		||||
    value2 = np.random.normal(5, 10)
 | 
			
		||||
    dvalue2 = np.abs(np.random.normal(0, 1))
 | 
			
		||||
    test_obs2 = pe.pseudo_Obs(value2, dvalue2, 't')
 | 
			
		||||
    test_obs2.gamma_method()
 | 
			
		||||
    cov_ab = pe.covariance(test_obs1, test_obs2)
 | 
			
		||||
    cov_ba = pe.covariance(test_obs2, test_obs1)
 | 
			
		||||
    assert np.abs(cov_ab - cov_ba) <= 10 * np.finfo(np.float64).eps
 | 
			
		||||
    assert np.abs(cov_ab) < test_obs1.dvalue * test_obs2.dvalue * (1 + 10 * np.finfo(np.float64).eps)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_gamma_method_uncorrelated():
 | 
			
		||||
    # Construct pseudo Obs with random shape
 | 
			
		||||
    value = np.random.normal(5, 10)
 | 
			
		||||
| 
						 | 
				
			
			@ -629,8 +614,8 @@ def test_covariance_symmetry():
 | 
			
		|||
    dvalue2 = np.abs(np.random.normal(0, 1))
 | 
			
		||||
    test_obs2 = pe.pseudo_Obs(value2, dvalue2, 't')
 | 
			
		||||
    test_obs2.gamma_method()
 | 
			
		||||
    cov_ab = pe.covariance(test_obs1, test_obs2)
 | 
			
		||||
    cov_ba = pe.covariance(test_obs2, test_obs1)
 | 
			
		||||
    cov_ab = pe.covariance([test_obs1, test_obs2])[0, 1]
 | 
			
		||||
    cov_ba = pe.covariance([test_obs2, test_obs1])[0, 1]
 | 
			
		||||
    assert np.abs(cov_ab - cov_ba) <= 10 * np.finfo(np.float64).eps
 | 
			
		||||
    assert np.abs(cov_ab) < test_obs1.dvalue * test_obs2.dvalue * (1 + 10 * np.finfo(np.float64).eps)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -643,10 +628,10 @@ def test_covariance_symmetry():
 | 
			
		|||
    idx = [i + 1 for i in range(len(configs)) if configs[i] == 1]
 | 
			
		||||
    a = pe.Obs([zero_arr], ['t'], idl=[idx])
 | 
			
		||||
    a.gamma_method()
 | 
			
		||||
    assert np.isclose(a.dvalue**2, pe.covariance(a, a), atol=100, rtol=1e-4)
 | 
			
		||||
    assert np.isclose(a.dvalue ** 2, pe.covariance([a, a])[0, 1], atol=100, rtol=1e-4)
 | 
			
		||||
 | 
			
		||||
    cov_ab = pe.covariance(test_obs1, a)
 | 
			
		||||
    cov_ba = pe.covariance(a, test_obs1)
 | 
			
		||||
    cov_ab = pe.covariance([test_obs1, a])[0, 1]
 | 
			
		||||
    cov_ba = pe.covariance([a, test_obs1])[0, 1]
 | 
			
		||||
    assert np.abs(cov_ab - cov_ba) <= 10 * np.finfo(np.float64).eps
 | 
			
		||||
    assert np.abs(cov_ab) < test_obs1.dvalue * a.dvalue * (1 + 10 * np.finfo(np.float64).eps)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue