mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-14 19:43:41 +02:00
feat: positive semi-definite estimator for the covariance implemented,
fits.covariance matrix deprecated, covariance can now handle lists of observables.
This commit is contained in:
parent
8e3e34bbea
commit
82419b7a88
5 changed files with 65 additions and 79 deletions
|
@ -251,10 +251,10 @@ def test_covariance_is_variance():
|
|||
dvalue = np.abs(np.random.normal(0, 1))
|
||||
test_obs = pe.pseudo_Obs(value, dvalue, 't')
|
||||
test_obs.gamma_method()
|
||||
assert np.abs(test_obs.dvalue ** 2 - pe.covariance(test_obs, test_obs)) <= 10 * np.finfo(np.float64).eps
|
||||
assert np.abs(test_obs.dvalue ** 2 - pe.covariance([test_obs, test_obs])[0, 1]) <= 10 * np.finfo(np.float64).eps
|
||||
test_obs = test_obs + pe.pseudo_Obs(value, dvalue, 'q', 200)
|
||||
test_obs.gamma_method()
|
||||
assert np.abs(test_obs.dvalue ** 2 - pe.covariance(test_obs, test_obs)) <= 10 * np.finfo(np.float64).eps
|
||||
assert np.abs(test_obs.dvalue ** 2 - pe.covariance([test_obs, test_obs])[0, 1]) <= 10 * np.finfo(np.float64).eps
|
||||
|
||||
|
||||
def test_fft():
|
||||
|
@ -268,21 +268,6 @@ def test_fft():
|
|||
assert np.abs(test_obs1.dvalue - test_obs2.dvalue) <= 10 * max(test_obs1.dvalue, test_obs2.dvalue) * np.finfo(np.float64).eps
|
||||
|
||||
|
||||
def test_covariance_symmetry():
|
||||
value1 = np.random.normal(5, 10)
|
||||
dvalue1 = np.abs(np.random.normal(0, 1))
|
||||
test_obs1 = pe.pseudo_Obs(value1, dvalue1, 't')
|
||||
test_obs1.gamma_method()
|
||||
value2 = np.random.normal(5, 10)
|
||||
dvalue2 = np.abs(np.random.normal(0, 1))
|
||||
test_obs2 = pe.pseudo_Obs(value2, dvalue2, 't')
|
||||
test_obs2.gamma_method()
|
||||
cov_ab = pe.covariance(test_obs1, test_obs2)
|
||||
cov_ba = pe.covariance(test_obs2, test_obs1)
|
||||
assert np.abs(cov_ab - cov_ba) <= 10 * np.finfo(np.float64).eps
|
||||
assert np.abs(cov_ab) < test_obs1.dvalue * test_obs2.dvalue * (1 + 10 * np.finfo(np.float64).eps)
|
||||
|
||||
|
||||
def test_gamma_method_uncorrelated():
|
||||
# Construct pseudo Obs with random shape
|
||||
value = np.random.normal(5, 10)
|
||||
|
@ -629,8 +614,8 @@ def test_covariance_symmetry():
|
|||
dvalue2 = np.abs(np.random.normal(0, 1))
|
||||
test_obs2 = pe.pseudo_Obs(value2, dvalue2, 't')
|
||||
test_obs2.gamma_method()
|
||||
cov_ab = pe.covariance(test_obs1, test_obs2)
|
||||
cov_ba = pe.covariance(test_obs2, test_obs1)
|
||||
cov_ab = pe.covariance([test_obs1, test_obs2])[0, 1]
|
||||
cov_ba = pe.covariance([test_obs2, test_obs1])[0, 1]
|
||||
assert np.abs(cov_ab - cov_ba) <= 10 * np.finfo(np.float64).eps
|
||||
assert np.abs(cov_ab) < test_obs1.dvalue * test_obs2.dvalue * (1 + 10 * np.finfo(np.float64).eps)
|
||||
|
||||
|
@ -643,10 +628,10 @@ def test_covariance_symmetry():
|
|||
idx = [i + 1 for i in range(len(configs)) if configs[i] == 1]
|
||||
a = pe.Obs([zero_arr], ['t'], idl=[idx])
|
||||
a.gamma_method()
|
||||
assert np.isclose(a.dvalue**2, pe.covariance(a, a), atol=100, rtol=1e-4)
|
||||
assert np.isclose(a.dvalue ** 2, pe.covariance([a, a])[0, 1], atol=100, rtol=1e-4)
|
||||
|
||||
cov_ab = pe.covariance(test_obs1, a)
|
||||
cov_ba = pe.covariance(a, test_obs1)
|
||||
cov_ab = pe.covariance([test_obs1, a])[0, 1]
|
||||
cov_ba = pe.covariance([a, test_obs1])[0, 1]
|
||||
assert np.abs(cov_ab - cov_ba) <= 10 * np.finfo(np.float64).eps
|
||||
assert np.abs(cov_ab) < test_obs1.dvalue * a.dvalue * (1 + 10 * np.finfo(np.float64).eps)
|
||||
|
||||
|
@ -704,4 +689,4 @@ def test_merge_idx():
|
|||
new_idx = pe.obs._merge_idx(idl)
|
||||
assert(new_idx[-1] > new_idx[0])
|
||||
for i in range(1, len(new_idx)):
|
||||
assert(new_idx[i - 1] < new_idx[i])
|
||||
assert(new_idx[i - 1] < new_idx[i])
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue