Merge branch 'develop' into documentation

This commit is contained in:
fjosw 2022-09-30 15:26:17 +00:00
commit 8148b3a2ca
7 changed files with 432 additions and 72 deletions

View file

@ -29,6 +29,7 @@ jobs:
- name: Install
run: |
sudo apt-get update
sudo apt-get install dvipng texlive-latex-extra texlive-fonts-recommended cm-super
python -m pip install --upgrade pip
pip install wheel

View file

@ -1,4 +1,4 @@
[![flake8](https://github.com/fjosw/pyerrors/actions/workflows/flake8.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/flake8.yml) [![pytest](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml) [![](https://img.shields.io/badge/python-3.7+-blue.svg)](https://www.python.org/downloads/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![flake8](https://github.com/fjosw/pyerrors/actions/workflows/flake8.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/flake8.yml) [![pytest](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml/badge.svg)](https://github.com/fjosw/pyerrors/actions/workflows/pytest.yml) [![](https://img.shields.io/badge/python-3.7+-blue.svg)](https://www.python.org/downloads/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![arXiv](https://img.shields.io/badge/arXiv-2209.14371-b31b1b.svg)](https://arxiv.org/abs/2209.14371)
# pyerrors
`pyerrors` is a python package for error computation and propagation of Markov chain Monte Carlo data.

View file

@ -58,7 +58,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"From this we can construct `Obs`, which are the basic object of `pyerrors`. For each sample we give to the obs, we also have to specify an ensemble/replica name. In this example we assume that both datasets originate from the same gauge field ensemble labeled 'ens1'."
"From this we can construct `Obs`, which are the basic object of `pyerrors`. For each sample we give to the obs, we also have to specify an ensemble/replica name. In this example we assume that both datasets originate from the same gauge field ensemble labeled 'ensemble1'."
]
},
{

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1,378 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data management"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import pyerrors as pe"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For the data management example we reuse the data from the correlator example."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data has been written using pyerrors 2.0.0.\n",
"Format version 0.1\n",
"Written by fjosw on 2022-01-06 11:11:19 +0100 on host XPS139305, Linux-5.11.0-44-generic-x86_64-with-glibc2.29\n",
"\n",
"Description: Test data for the correlator example\n"
]
}
],
"source": [
"correlator_data = pe.input.json.load_json(\"./data/correlator_test\")\n",
"my_correlator = pe.Corr(correlator_data)\n",
"my_correlator.gamma_method()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import autograd.numpy as anp\n",
"def func_exp(a, x):\n",
" return a[1] * anp.exp(-a[0] * x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this example we perform uncorrelated fits of a single exponential function to the correlator and vary the range of the fit. The fit result can be conveniently stored in a pandas DataFrame together with the corresponding metadata."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"rows = []\n",
"for t_start in range(12, 17):\n",
" for t_stop in range(30, 32):\n",
" fr = my_correlator.fit(func_exp, [t_start, t_stop], silent=True)\n",
" fr.gamma_method()\n",
" row = {\"t_start\": t_start,\n",
" \"t_stop\": t_stop,\n",
" \"datapoints\": t_stop - t_start + 1,\n",
" \"chisquare_by_dof\": fr.chisquare_by_dof,\n",
" \"mass\": fr[0]}\n",
" rows.append(row)\n",
"my_df = pd.DataFrame(rows)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>t_start</th>\n",
" <th>t_stop</th>\n",
" <th>datapoints</th>\n",
" <th>chisquare_by_dof</th>\n",
" <th>mass</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>12</td>\n",
" <td>30</td>\n",
" <td>19</td>\n",
" <td>0.057872</td>\n",
" <td>0.2218(12)</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>12</td>\n",
" <td>31</td>\n",
" <td>20</td>\n",
" <td>0.063951</td>\n",
" <td>0.2221(11)</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>13</td>\n",
" <td>30</td>\n",
" <td>18</td>\n",
" <td>0.051577</td>\n",
" <td>0.2215(12)</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>13</td>\n",
" <td>31</td>\n",
" <td>19</td>\n",
" <td>0.060901</td>\n",
" <td>0.2219(11)</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>14</td>\n",
" <td>30</td>\n",
" <td>17</td>\n",
" <td>0.052349</td>\n",
" <td>0.2213(13)</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>14</td>\n",
" <td>31</td>\n",
" <td>18</td>\n",
" <td>0.063640</td>\n",
" <td>0.2218(13)</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>15</td>\n",
" <td>30</td>\n",
" <td>16</td>\n",
" <td>0.056088</td>\n",
" <td>0.2213(16)</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>15</td>\n",
" <td>31</td>\n",
" <td>17</td>\n",
" <td>0.067552</td>\n",
" <td>0.2218(17)</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>16</td>\n",
" <td>30</td>\n",
" <td>15</td>\n",
" <td>0.059969</td>\n",
" <td>0.2214(21)</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>16</td>\n",
" <td>31</td>\n",
" <td>16</td>\n",
" <td>0.070874</td>\n",
" <td>0.2220(20)</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" t_start t_stop datapoints chisquare_by_dof mass\n",
"0 12 30 19 0.057872 0.2218(12)\n",
"1 12 31 20 0.063951 0.2221(11)\n",
"2 13 30 18 0.051577 0.2215(12)\n",
"3 13 31 19 0.060901 0.2219(11)\n",
"4 14 30 17 0.052349 0.2213(13)\n",
"5 14 31 18 0.063640 0.2218(13)\n",
"6 15 30 16 0.056088 0.2213(16)\n",
"7 15 31 17 0.067552 0.2218(17)\n",
"8 16 30 15 0.059969 0.2214(21)\n",
"9 16 31 16 0.070874 0.2220(20)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"my_df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The content of this pandas DataFrame can be inserted into a relational database, making use of the `JSON` serialization of `pyerrors` objects. In this example we use an SQLite database."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"pe.input.pandas.to_sql(my_df, \"mass_table\", \"my_db.sqlite\", if_exists='fail')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"At a later stage of the analysis the content of the database can be reconstructed into a DataFrame via SQL queries.\n",
"In this example we extract `t_start`, `t_stop` and the fitted mass for all fits which start at times larger than 14."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"new_df = pe.input.pandas.read_sql(f\"SELECT t_start, t_stop, mass FROM mass_table WHERE t_start > 14\",\n",
" \"my_db.sqlite\",\n",
" auto_gamma=True)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>t_start</th>\n",
" <th>t_stop</th>\n",
" <th>mass</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>15</td>\n",
" <td>30</td>\n",
" <td>0.2213(16)</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>15</td>\n",
" <td>31</td>\n",
" <td>0.2218(17)</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>16</td>\n",
" <td>30</td>\n",
" <td>0.2214(21)</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>16</td>\n",
" <td>31</td>\n",
" <td>0.2220(20)</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" t_start t_stop mass\n",
"0 15 30 0.2213(16)\n",
"1 15 31 0.2218(17)\n",
"2 16 30 0.2214(21)\n",
"3 16 31 0.2220(20)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"new_df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The storage of intermediate analysis results in relational databases allows for a convenient and scalable way of splitting up a detailed analysis in multiple independent steps."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View file

@ -11,6 +11,7 @@ It is based on the gamma method [arXiv:hep-lat/0306017](https://arxiv.org/abs/he
More detailed examples can found in the [GitHub repository](https://github.com/fjosw/pyerrors/tree/develop/examples) [![badge](https://img.shields.io/badge/-try%20it%20out-579ACA.svg?logo=)](https://mybinder.org/v2/gh/fjosw/pyerrors/HEAD?labpath=examples).
If you use `pyerrors` for research that leads to a publication please consider citing:
Fabian Joswig, Simon Kuberski, Justus T. Kuhlmann, Jan Neuendorf, *pyerrors: a python framework for error analysis of Monte Carlo data*. [arXiv:2209.14371 [hep-lat]].
- Ulli Wolff, *Monte Carlo errors with less errors*. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
- Alberto Ramos, *Automatic differentiation for error analysis of Monte Carlo data*. Comput.Phys.Commun. 238 (2019) 19-35.

View file

@ -25,7 +25,7 @@ setup(name='pyerrors',
license="MIT",
packages=find_packages(),
python_requires='>=3.6.0',
install_requires=['numpy>=1.19', 'autograd>=1.4', 'numdifftools', 'matplotlib>=3.3', 'scipy>=1.5', 'iminuit>=2', 'h5py>=3', 'lxml>=4', 'python-rapidjson>=1', 'pandas>=1.1', 'pysqlite3>=0.4'],
install_requires=['numpy>=1.19', 'autograd>=1.5', 'numdifftools', 'matplotlib>=3.3', 'scipy>=1.5', 'iminuit>=2', 'h5py>=3', 'lxml>=4', 'python-rapidjson>=1', 'pandas>=1.1', 'pysqlite3>=0.4'],
classifiers=[
'Development Status :: 5 - Production/Stable',
'Intended Audience :: Science/Research',