mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-14 11:33:42 +02:00
fix/tests: Combined fit now also works when the keys of the x,y & func input dictionaries are not in the same order, build: improvements in performance
This commit is contained in:
parent
32dcb7438c
commit
80371a0898
2 changed files with 129 additions and 35 deletions
|
@ -618,7 +618,7 @@ def test_combined_fit_vs_standard_fit():
|
|||
[item.gamma_method() for item in y_const[key]]
|
||||
y_const_ls = np.concatenate([np.array(o) for o in y_const.values()])
|
||||
x_const_ls = np.arange(0, 20)
|
||||
|
||||
|
||||
def func_const(a,x):
|
||||
return 0 * x + a[0]
|
||||
|
||||
|
@ -633,6 +633,35 @@ def test_combined_fit_vs_standard_fit():
|
|||
assert np.isclose(0.0, (res[0].p_value - res[1].p_value), 1e-14, 1e-8)
|
||||
assert (res[0][0] - res[1][0]).is_zero(atol=1e-8)
|
||||
|
||||
def test_combined_fit_no_autograd():
|
||||
|
||||
def func_exp1(x):
|
||||
return 0.3*np.exp(0.5*x)
|
||||
|
||||
def func_exp2(x):
|
||||
return 0.3*np.exp(0.8*x)
|
||||
|
||||
xvals_b = np.arange(0,6)
|
||||
xvals_a = np.arange(0,8)
|
||||
|
||||
def func_a(a,x):
|
||||
return a[0]*np.exp(a[1]*x)
|
||||
|
||||
def func_b(a,x):
|
||||
return a[0]*np.exp(a[2]*x)
|
||||
|
||||
funcs = {'a':func_a, 'b':func_b}
|
||||
xs = {'a':xvals_a, 'b':xvals_b}
|
||||
ys = {'a':[pe.Obs([np.random.normal(item, item*1.5, 1000)],['ensemble1']) for item in func_exp1(xvals_a)],
|
||||
'b':[pe.Obs([np.random.normal(item, item*1.4, 1000)],['ensemble1']) for item in func_exp2(xvals_b)]}
|
||||
|
||||
for key in funcs.keys():
|
||||
[item.gamma_method() for item in ys[key]]
|
||||
|
||||
with pytest.raises(Exception):
|
||||
pe.least_squares(xs, ys, funcs)
|
||||
|
||||
pe.least_squares(xs, ys, funcs, num_grad=True)
|
||||
|
||||
def test_combined_fit_invalid_fit_functions():
|
||||
def func1(a, x):
|
||||
|
@ -663,6 +692,17 @@ def test_combined_fit_invalid_fit_functions():
|
|||
with pytest.raises(Exception):
|
||||
pe.least_squares({'a':xvals, 'b':xvals}, {'a':yvals, 'b':yvals}, {'a':func_valid, 'b':func})
|
||||
|
||||
def test_combined_fit_invalid_input():
|
||||
xvals =[]
|
||||
yvals =[]
|
||||
err = 0.1
|
||||
def func_valid(a,x):
|
||||
return a[0] + a[1] * x
|
||||
for x in range(1, 8, 2):
|
||||
xvals.append(x)
|
||||
yvals.append(pe.pseudo_Obs(x + np.random.normal(0.0, err), err, 'test1') + pe.pseudo_Obs(0, err / 100, 'test2', samples=87))
|
||||
with pytest.raises(Exception):
|
||||
pe.least_squares({'a':xvals}, {'b':yvals}, {'a':func_valid})
|
||||
|
||||
def test_combined_fit_no_autograd():
|
||||
|
||||
|
@ -732,6 +772,66 @@ def test_combined_fit_num_grad():
|
|||
assert(num[0] == auto[0])
|
||||
assert(num[1] == auto[1])
|
||||
|
||||
def test_combined_fit_dictkeys_no_order():
|
||||
def func_exp1(x):
|
||||
return 0.3*np.exp(0.5*x)
|
||||
|
||||
def func_exp2(x):
|
||||
return 0.3*np.exp(0.8*x)
|
||||
|
||||
xvals_b = np.arange(0,6)
|
||||
xvals_a = np.arange(0,8)
|
||||
|
||||
def func_num_a(a,x):
|
||||
return a[0]*np.exp(a[1]*x)
|
||||
|
||||
def func_num_b(a,x):
|
||||
return a[0]*np.exp(a[2]*x)
|
||||
|
||||
def func_auto_a(a,x):
|
||||
return a[0]*anp.exp(a[1]*x)
|
||||
|
||||
def func_auto_b(a,x):
|
||||
return a[0]*anp.exp(a[2]*x)
|
||||
|
||||
funcs = {'a':func_auto_a, 'b':func_auto_b}
|
||||
funcs_no_order = {'b':func_auto_b, 'a':func_auto_a}
|
||||
xs = {'a':xvals_a, 'b':xvals_b}
|
||||
xs_no_order = {'b':xvals_b, 'a':xvals_a}
|
||||
yobs_a = [pe.Obs([np.random.normal(item, item*1.5, 1000)],['ensemble1']) for item in func_exp1(xvals_a)]
|
||||
yobs_b = [pe.Obs([np.random.normal(item, item*1.4, 1000)],['ensemble1']) for item in func_exp2(xvals_b)]
|
||||
ys = {'a': yobs_a, 'b': yobs_b}
|
||||
ys_no_order = {'b': yobs_b, 'a': yobs_a}
|
||||
|
||||
for key in funcs.keys():
|
||||
[item.gamma_method() for item in ys[key]]
|
||||
[item.gamma_method() for item in ys_no_order[key]]
|
||||
for method_kw in ['Levenberg-Marquardt', 'migrad', 'Powell', 'Nelder-Mead']:
|
||||
order = pe.fits.least_squares(xs, ys, funcs,method = method_kw)
|
||||
no_order_func = pe.fits.least_squares(xs, ys, funcs_no_order,method = method_kw)
|
||||
no_order_x = pe.fits.least_squares(xs_no_order, ys, funcs,method = method_kw)
|
||||
no_order_y = pe.fits.least_squares(xs, ys_no_order, funcs,method = method_kw)
|
||||
no_order_func_x = pe.fits.least_squares(xs_no_order, ys, funcs_no_order,method = method_kw)
|
||||
no_order_func_y = pe.fits.least_squares(xs, ys_no_order, funcs_no_order,method = method_kw)
|
||||
no_order_x_y = pe.fits.least_squares(xs_no_order, ys_no_order, funcs,method = method_kw)
|
||||
|
||||
assert(no_order_func[0] == order[0])
|
||||
assert(no_order_func[1] == order[1])
|
||||
|
||||
assert(no_order_x[0] == order[0])
|
||||
assert(no_order_x[1] == order[1])
|
||||
|
||||
assert(no_order_y[0] == order[0])
|
||||
assert(no_order_y[1] == order[1])
|
||||
|
||||
assert(no_order_func_x[0] == order[0])
|
||||
assert(no_order_func_x[1] == order[1])
|
||||
|
||||
assert(no_order_func_y[0] == order[0])
|
||||
assert(no_order_func_y[1] == order[1])
|
||||
|
||||
assert(no_order_x_y[0] == order[0])
|
||||
assert(no_order_x_y[1] == order[1])
|
||||
|
||||
def fit_general(x, y, func, silent=False, **kwargs):
|
||||
"""Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue