mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-14 19:43:41 +02:00
fix/tests: Combined fit now also works when the keys of the x,y & func input dictionaries are not in the same order, build: improvements in performance
This commit is contained in:
parent
32dcb7438c
commit
80371a0898
2 changed files with 129 additions and 35 deletions
|
@ -102,9 +102,6 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
|
|||
|
||||
OR For a combined fit:
|
||||
|
||||
Do not need to use ordered dictionaries: python version >= 3.7: Dictionary order is guaranteed to be insertion order.
|
||||
(https://docs.python.org/3/library/stdtypes.html#dict-views) Ensures that x, y and func values are mapped correctly.
|
||||
|
||||
x : dict
|
||||
dict of lists.
|
||||
y : dict
|
||||
|
@ -142,7 +139,10 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
|
|||
migrad of iminuit. If no method is specified, Levenberg-Marquard is used.
|
||||
Reliable alternatives are migrad, Powell and Nelder-Mead.
|
||||
tol: float, optional
|
||||
can only be used for combined fits and methods other than Levenberg-Marquard
|
||||
can be used (only for combined fits and methods other than Levenberg-Marquard) to set the tolerance for convergence
|
||||
to a different value to either speed up convergence at the cost of a larger error on the fitted parameters (and possibly
|
||||
invalid estimates for parameter uncertainties) or smaller values to get more accurate parameter values
|
||||
The stopping criterion depends on the method, e.g. migrad: edm_max = 0.002 * tol * errordef (EDM criterion: edm < edm_max)
|
||||
correlated_fit : bool
|
||||
If True, use the full inverse covariance matrix in the definition of the chisquare cost function.
|
||||
For details about how the covariance matrix is estimated see `pyerrors.obs.covariance`.
|
||||
|
@ -705,8 +705,19 @@ def _combined_fit(x, y, func, silent=False, **kwargs):
|
|||
jacobian = auto_jacobian
|
||||
hessian = auto_hessian
|
||||
|
||||
x_all = np.concatenate([np.array(o) for o in x.values()])
|
||||
y_all = np.concatenate([np.array(o) for o in y.values()])
|
||||
key_ls = sorted(list(x.keys()))
|
||||
|
||||
if sorted(list(y.keys())) != key_ls:
|
||||
raise Exception('x and y dictionaries do not contain the same keys.')
|
||||
|
||||
if sorted(list(func.keys())) != key_ls:
|
||||
raise Exception('x and func dictionaries do not contain the same keys.')
|
||||
|
||||
if sorted(list(func.keys())) != sorted(list(y.keys())):
|
||||
raise Exception('y and func dictionaries do not contain the same keys.')
|
||||
|
||||
x_all = np.concatenate([np.array(x[key]) for key in key_ls])
|
||||
y_all = np.concatenate([np.array(y[key]) for key in key_ls])
|
||||
|
||||
y_f = [o.value for o in y_all]
|
||||
dy_f = [o.dvalue for o in y_all]
|
||||
|
@ -716,12 +727,12 @@ def _combined_fit(x, y, func, silent=False, **kwargs):
|
|||
|
||||
# number of fit parameters
|
||||
n_parms_ls = []
|
||||
for key in func.keys():
|
||||
for key in key_ls:
|
||||
if not callable(func[key]):
|
||||
raise TypeError('func (key=' + key + ') is not a function.')
|
||||
if len(x[key]) != len(y[key]):
|
||||
raise Exception('x and y input (key=' + key + ') do not have the same length')
|
||||
for i in range(42):
|
||||
for i in range(100):
|
||||
try:
|
||||
func[key](np.arange(i), x_all.T[0])
|
||||
except TypeError:
|
||||
|
@ -746,15 +757,9 @@ def _combined_fit(x, y, func, silent=False, **kwargs):
|
|||
x0 = [0.1] * n_parms
|
||||
|
||||
def chisqfunc(p):
|
||||
chisq = 0.0
|
||||
for key in func.keys():
|
||||
x_array = np.asarray(x[key])
|
||||
model = anp.array(func[key](p, x_array))
|
||||
y_obs = y[key]
|
||||
y_f = [o.value for o in y_obs]
|
||||
dy_f = [o.dvalue for o in y_obs]
|
||||
C_inv = np.diag(np.diag(np.ones((len(x_array), len(x_array))))) / dy_f / dy_f
|
||||
chisq += anp.sum((y_f - model) @ C_inv @ (y_f - model))
|
||||
func_list = np.concatenate([[func[k]] * len(x[k]) for k in key_ls])
|
||||
model = anp.array([func_list[i](p, x_all[i]) for i in range(len(x_all))])
|
||||
chisq = anp.sum(((y_f - model) / dy_f) ** 2)
|
||||
return chisq
|
||||
|
||||
output.method = kwargs.get('method', 'Levenberg-Marquardt')
|
||||
|
@ -763,7 +768,7 @@ def _combined_fit(x, y, func, silent=False, **kwargs):
|
|||
|
||||
if output.method != 'Levenberg-Marquardt':
|
||||
if output.method == 'migrad':
|
||||
tolerance = 1e-4
|
||||
tolerance = 1e-1 # default value set by iminuit
|
||||
if 'tol' in kwargs:
|
||||
tolerance = kwargs.get('tol')
|
||||
fit_result = iminuit.minimize(chisqfunc, x0, tol=tolerance) # Stopping criterion 0.002 * tol * errordef
|
||||
|
@ -779,7 +784,7 @@ def _combined_fit(x, y, func, silent=False, **kwargs):
|
|||
|
||||
else:
|
||||
def chisqfunc_residuals(p):
|
||||
model = np.concatenate([np.array(func[key](p, np.asarray(x[key]))) for key in func.keys()])
|
||||
model = np.concatenate([np.array(func[key](p, np.asarray(x[key]))) for key in key_ls])
|
||||
chisq = ((y_f - model) / dy_f)
|
||||
return chisq
|
||||
if 'tol' in kwargs:
|
||||
|
@ -809,25 +814,14 @@ def _combined_fit(x, y, func, silent=False, **kwargs):
|
|||
print('fit parameters', fit_result.x)
|
||||
|
||||
def chisqfunc_compact(d):
|
||||
chisq = 0.0
|
||||
list_tmp = []
|
||||
c1 = 0
|
||||
c2 = 0
|
||||
for key in func.keys():
|
||||
x_array = np.asarray(x[key])
|
||||
c2 += len(x_array)
|
||||
model = anp.array(func[key](d[:n_parms], x_array))
|
||||
y_obs = y[key]
|
||||
dy_f = [o.dvalue for o in y_obs]
|
||||
C_inv = np.diag(np.diag(np.ones((len(x_array), len(x_array))))) / dy_f / dy_f
|
||||
list_tmp.append(anp.sum((d[n_parms + c1:n_parms + c2] - model) @ C_inv @ (d[n_parms + c1:n_parms + c2] - model)))
|
||||
c1 += len(x_array)
|
||||
chisq = anp.sum(list_tmp)
|
||||
func_list = np.concatenate([[func[k]] * len(x[k]) for k in key_ls])
|
||||
model = anp.array([func_list[i](d[:n_parms], x_all[i]) for i in range(len(x_all))])
|
||||
chisq = anp.sum(((d[n_parms:] - model) / dy_f) ** 2)
|
||||
return chisq
|
||||
|
||||
def prepare_hat_matrix():
|
||||
hat_vector = []
|
||||
for key in func.keys():
|
||||
for key in key_ls:
|
||||
x_array = np.asarray(x[key])
|
||||
if (len(x_array) != 0):
|
||||
hat_vector.append(jacobian(func[key])(fit_result.x, x_array))
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue