mirror of
				https://github.com/fjosw/pyerrors.git
				synced 2025-11-04 01:25:46 +01:00 
			
		
		
		
	feat: Check for symmetry and positive-semidefiniteness of covariance matrices in the initialization of covobs
This commit is contained in:
		
					parent
					
						
							
								24a0df6a2a
							
						
					
				
			
			
				commit
				
					
						751d28711f
					
				
			
		
					 2 changed files with 35 additions and 3 deletions
				
			
		| 
						 | 
				
			
			@ -45,6 +45,16 @@ class Covobs:
 | 
			
		|||
        return float(np.dot(np.transpose(self.grad), np.dot(self.cov, self.grad)))
 | 
			
		||||
 | 
			
		||||
    def _set_cov(self, cov):
 | 
			
		||||
        """ Set the covariance matrix of the covobs
 | 
			
		||||
 | 
			
		||||
        Parameters
 | 
			
		||||
        ----------
 | 
			
		||||
        cov : list or array
 | 
			
		||||
            Has to be either of:
 | 
			
		||||
            0 dimensional number: variance of a single covobs,
 | 
			
		||||
            1 dimensional list or array of lenght N: variances of multiple covobs
 | 
			
		||||
            2 dimensional list or array (N x N): Symmetric, positive-semidefinite covariance matrix
 | 
			
		||||
        """
 | 
			
		||||
        self._cov = np.array(cov)
 | 
			
		||||
        if self._cov.ndim == 0:
 | 
			
		||||
            self.N = 1
 | 
			
		||||
| 
						 | 
				
			
			@ -59,7 +69,26 @@ class Covobs:
 | 
			
		|||
        else:
 | 
			
		||||
            raise Exception('Covariance matrix has to be a 2 dimensional square matrix!')
 | 
			
		||||
 | 
			
		||||
        for i in range(self.N):
 | 
			
		||||
            for j in range(i):
 | 
			
		||||
                if not self._cov[i][j] == self._cov[j][i]:
 | 
			
		||||
                    raise Exception('Covariance matrix is non-symmetric for (%d, %d' % (i, j))
 | 
			
		||||
 | 
			
		||||
        evals = np.linalg.eigvalsh(self._cov)
 | 
			
		||||
        for ev in evals:
 | 
			
		||||
            if ev < 0:
 | 
			
		||||
                raise Exception('Covariance matrix is not positive-semidefinite!')
 | 
			
		||||
 | 
			
		||||
    def _set_grad(self, grad):
 | 
			
		||||
        """ Set the gradient of the covobs
 | 
			
		||||
 | 
			
		||||
        Parameters
 | 
			
		||||
        ----------
 | 
			
		||||
        grad : list or array
 | 
			
		||||
            Has to be either of:
 | 
			
		||||
            0 dimensional number: gradient w.r.t. a single covobs,
 | 
			
		||||
            1 dimensional list or array of lenght N: gradient w.r.t. multiple covobs
 | 
			
		||||
        """
 | 
			
		||||
        self._grad = np.array(grad)
 | 
			
		||||
        if self._grad.ndim in [0, 1]:
 | 
			
		||||
            self._grad = np.reshape(self._grad, (self.N, 1))
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -78,9 +78,8 @@ def test_covobs_init():
 | 
			
		|||
    covobs = pe.cov_Obs(0.5, 0.002, 'test')
 | 
			
		||||
    covobs = pe.cov_Obs([1, 2], [0.1, 0.2], 'test')
 | 
			
		||||
    covobs = pe.cov_Obs([1, 2], np.array([0.1, 0.2]), 'test')
 | 
			
		||||
    covobs = pe.cov_Obs([1, 2], [[0.1, 0.2], [0.1, 0.2]], 'test')
 | 
			
		||||
    covobs = pe.cov_Obs([1, 2], np.array([[0.1, 0.2], [0.1, 0.2]]), 'test')
 | 
			
		||||
 | 
			
		||||
    covobs = pe.cov_Obs([1, 2], [[0.21, 0.2], [0.2, 0.21]], 'test')
 | 
			
		||||
    covobs = pe.cov_Obs([1, 2], np.array([[0.21, 0.2], [0.2, 0.21]]), 'test')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_covobs_exceptions():
 | 
			
		||||
| 
						 | 
				
			
			@ -92,3 +91,7 @@ def test_covobs_exceptions():
 | 
			
		|||
        covobs = pe.cov_Obs([0.5, 0.1], np.array([[2, 1, 3], [1, 2, 3]]), 'test')
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
        covobs = pe.cov_Obs([0.5, 0.1], np.random.random((2, 2, 2)), 'test')
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
        covobs = pe.cov_Obs([1.5, 0.1], [[1., .2,], [.3, .5]] , 'test')
 | 
			
		||||
    with pytest.raises(Exception):
 | 
			
		||||
        covobs = pe.cov_Obs([1.5, 0.1], [[8, 4,], [4, -2]] , 'test')
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue