diff --git a/docs/pyerrors/obs.html b/docs/pyerrors/obs.html index 9fb087b0..74afdeb6 100644 --- a/docs/pyerrors/obs.html +++ b/docs/pyerrors/obs.html @@ -598,1285 +598,1301 @@ 399 print('Result\t %3.8e +/- %3.8e +/- %3.8e (%3.3f%%)' % (self.value, self._dvalue, self.ddvalue, percentage)) 400 if len(self.e_names) > 1: 401 print(' Ensemble errors:') - 402 for e_name in self.mc_names: - 403 if len(self.e_names) > 1: - 404 print('', e_name, '\t %3.8e +/- %3.8e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name])) - 405 if self.tau_exp[e_name] > 0: - 406 print(' t_int\t %3.8e +/- %3.8e tau_exp = %3.2f, N_sigma = %1.0i' % (self.e_tauint[e_name], self.e_dtauint[e_name], self.tau_exp[e_name], self.N_sigma[e_name])) - 407 else: - 408 print(' t_int\t %3.8e +/- %3.8e S = %3.2f' % (self.e_tauint[e_name], self.e_dtauint[e_name], self.S[e_name])) - 409 for e_name in self.cov_names: - 410 print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name])) - 411 if ens_content is True: - 412 if len(self.e_names) == 1: - 413 print(self.N, 'samples in', len(self.e_names), 'ensemble:') - 414 else: - 415 print(self.N, 'samples in', len(self.e_names), 'ensembles:') - 416 my_string_list = [] - 417 for key, value in sorted(self.e_content.items()): - 418 if key not in self.covobs: - 419 my_string = ' ' + "\u00B7 Ensemble '" + key + "' " - 420 if len(value) == 1: - 421 my_string += f': {self.shape[value[0]]} configurations' - 422 if isinstance(self.idl[value[0]], range): - 423 my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')' - 424 else: - 425 my_string += ' (irregular range)' - 426 else: - 427 sublist = [] - 428 for v in value: - 429 my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' " - 430 my_substring += f': {self.shape[v]} configurations' - 431 if isinstance(self.idl[v], range): - 432 my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')' - 433 else: - 434 my_substring += ' (irregular range)' - 435 sublist.append(my_substring) - 436 - 437 my_string += '\n' + '\n'.join(sublist) - 438 else: - 439 my_string = ' ' + "\u00B7 Covobs '" + key + "' " - 440 my_string_list.append(my_string) - 441 print('\n'.join(my_string_list)) - 442 - 443 def reweight(self, weight): - 444 """Reweight the obs with given rewighting factors. - 445 - 446 Parameters - 447 ---------- - 448 weight : Obs - 449 Reweighting factor. An Observable that has to be defined on a superset of the - 450 configurations in obs[i].idl for all i. - 451 all_configs : bool - 452 if True, the reweighted observables are normalized by the average of - 453 the reweighting factor on all configurations in weight.idl and not - 454 on the configurations in obs[i].idl. Default False. - 455 """ - 456 return reweight(weight, [self])[0] - 457 - 458 def is_zero_within_error(self, sigma=1): - 459 """Checks whether the observable is zero within 'sigma' standard errors. - 460 - 461 Parameters - 462 ---------- - 463 sigma : int - 464 Number of standard errors used for the check. - 465 - 466 Works only properly when the gamma method was run. - 467 """ - 468 return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue - 469 - 470 def is_zero(self, atol=1e-10): - 471 """Checks whether the observable is zero within a given tolerance. - 472 - 473 Parameters - 474 ---------- - 475 atol : float - 476 Absolute tolerance (for details see numpy documentation). - 477 """ - 478 return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values()) - 479 - 480 def plot_tauint(self, save=None): - 481 """Plot integrated autocorrelation time for each ensemble. - 482 - 483 Parameters - 484 ---------- - 485 save : str - 486 saves the figure to a file named 'save' if. - 487 """ - 488 if not hasattr(self, 'e_dvalue'): - 489 raise Exception('Run the gamma method first.') + 402 e_content = self.e_content + 403 for e_name in self.mc_names: + 404 if isinstance(self.idl[e_content[e_name][0]], range): + 405 gap = self.idl[e_content[e_name][0]].step + 406 else: + 407 gap = np.min(np.diff(self.idl[e_content[e_name][0]])) + 408 + 409 if len(self.e_names) > 1: + 410 print('', e_name, '\t %3.6e +/- %3.6e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name])) + 411 tau_string = " \N{GREEK SMALL LETTER TAU}_int\t " + _format_uncertainty(self.e_tauint[e_name], self.e_dtauint[e_name]) + 412 tau_string += f" in units of {gap} config" + 413 if gap > 1: + 414 tau_string += "s" + 415 if self.tau_exp[e_name] > 0: + 416 tau_string = f"{tau_string: <45}" + '\t(\N{GREEK SMALL LETTER TAU}_exp=%3.2f, N_\N{GREEK SMALL LETTER SIGMA}=%1.0i)' % (self.tau_exp[e_name], self.N_sigma[e_name]) + 417 else: + 418 tau_string = f"{tau_string: <45}" + '\t(S=%3.2f)' % (self.S[e_name]) + 419 print(tau_string) + 420 for e_name in self.cov_names: + 421 print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name])) + 422 if ens_content is True: + 423 if len(self.e_names) == 1: + 424 print(self.N, 'samples in', len(self.e_names), 'ensemble:') + 425 else: + 426 print(self.N, 'samples in', len(self.e_names), 'ensembles:') + 427 my_string_list = [] + 428 for key, value in sorted(self.e_content.items()): + 429 if key not in self.covobs: + 430 my_string = ' ' + "\u00B7 Ensemble '" + key + "' " + 431 if len(value) == 1: + 432 my_string += f': {self.shape[value[0]]} configurations' + 433 if isinstance(self.idl[value[0]], range): + 434 my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')' + 435 else: + 436 my_string += f' (irregular range from {self.idl[value[0]][0]} to {self.idl[value[0]][-1]})' + 437 else: + 438 sublist = [] + 439 for v in value: + 440 my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' " + 441 my_substring += f': {self.shape[v]} configurations' + 442 if isinstance(self.idl[v], range): + 443 my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')' + 444 else: + 445 my_substring += f' (irregular range from {self.idl[v][0]} to {self.idl[v][-1]})' + 446 sublist.append(my_substring) + 447 + 448 my_string += '\n' + '\n'.join(sublist) + 449 else: + 450 my_string = ' ' + "\u00B7 Covobs '" + key + "' " + 451 my_string_list.append(my_string) + 452 print('\n'.join(my_string_list)) + 453 + 454 def reweight(self, weight): + 455 """Reweight the obs with given rewighting factors. + 456 + 457 Parameters + 458 ---------- + 459 weight : Obs + 460 Reweighting factor. An Observable that has to be defined on a superset of the + 461 configurations in obs[i].idl for all i. + 462 all_configs : bool + 463 if True, the reweighted observables are normalized by the average of + 464 the reweighting factor on all configurations in weight.idl and not + 465 on the configurations in obs[i].idl. Default False. + 466 """ + 467 return reweight(weight, [self])[0] + 468 + 469 def is_zero_within_error(self, sigma=1): + 470 """Checks whether the observable is zero within 'sigma' standard errors. + 471 + 472 Parameters + 473 ---------- + 474 sigma : int + 475 Number of standard errors used for the check. + 476 + 477 Works only properly when the gamma method was run. + 478 """ + 479 return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue + 480 + 481 def is_zero(self, atol=1e-10): + 482 """Checks whether the observable is zero within a given tolerance. + 483 + 484 Parameters + 485 ---------- + 486 atol : float + 487 Absolute tolerance (for details see numpy documentation). + 488 """ + 489 return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values()) 490 - 491 for e, e_name in enumerate(self.mc_names): - 492 fig = plt.figure() - 493 plt.xlabel(r'$W$') - 494 plt.ylabel(r'$\tau_\mathrm{int}$') - 495 length = int(len(self.e_n_tauint[e_name])) - 496 if self.tau_exp[e_name] > 0: - 497 base = self.e_n_tauint[e_name][self.e_windowsize[e_name]] - 498 x_help = np.arange(2 * self.tau_exp[e_name]) - 499 y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base - 500 x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]) - 501 plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',') - 502 plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]], - 503 yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor']) - 504 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 - 505 label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2)) - 506 else: - 507 label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)) - 508 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) - 509 - 510 plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label) - 511 plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--') - 512 plt.legend() - 513 plt.xlim(-0.5, xmax) - 514 ylim = plt.ylim() - 515 plt.ylim(bottom=0.0, top=max(1.0, ylim[1])) - 516 plt.draw() - 517 if save: - 518 fig.savefig(save + "_" + str(e)) - 519 - 520 def plot_rho(self, save=None): - 521 """Plot normalized autocorrelation function time for each ensemble. - 522 - 523 Parameters - 524 ---------- - 525 save : str - 526 saves the figure to a file named 'save' if. - 527 """ - 528 if not hasattr(self, 'e_dvalue'): - 529 raise Exception('Run the gamma method first.') - 530 for e, e_name in enumerate(self.mc_names): - 531 fig = plt.figure() - 532 plt.xlabel('W') - 533 plt.ylabel('rho') - 534 length = int(len(self.e_drho[e_name])) - 535 plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2) - 536 plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',') - 537 if self.tau_exp[e_name] > 0: - 538 plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]], - 539 [self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1) - 540 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 - 541 plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2))) - 542 else: - 543 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) - 544 plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))) - 545 plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1) - 546 plt.xlim(-0.5, xmax) - 547 plt.draw() - 548 if save: - 549 fig.savefig(save + "_" + str(e)) - 550 - 551 def plot_rep_dist(self): - 552 """Plot replica distribution for each ensemble with more than one replicum.""" - 553 if not hasattr(self, 'e_dvalue'): - 554 raise Exception('Run the gamma method first.') - 555 for e, e_name in enumerate(self.mc_names): - 556 if len(self.e_content[e_name]) == 1: - 557 print('No replica distribution for a single replicum (', e_name, ')') - 558 continue - 559 r_length = [] - 560 sub_r_mean = 0 - 561 for r, r_name in enumerate(self.e_content[e_name]): - 562 r_length.append(len(self.deltas[r_name])) - 563 sub_r_mean += self.shape[r_name] * self.r_values[r_name] - 564 e_N = np.sum(r_length) - 565 sub_r_mean /= e_N - 566 arr = np.zeros(len(self.e_content[e_name])) - 567 for r, r_name in enumerate(self.e_content[e_name]): - 568 arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1)) - 569 plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name])) - 570 plt.title('Replica distribution' + e_name + ' (mean=0, var=1)') - 571 plt.draw() - 572 - 573 def plot_history(self, expand=True): - 574 """Plot derived Monte Carlo history for each ensemble - 575 - 576 Parameters - 577 ---------- - 578 expand : bool - 579 show expanded history for irregular Monte Carlo chains (default: True). - 580 """ - 581 for e, e_name in enumerate(self.mc_names): - 582 plt.figure() - 583 r_length = [] - 584 tmp = [] - 585 tmp_expanded = [] - 586 for r, r_name in enumerate(self.e_content[e_name]): - 587 tmp.append(self.deltas[r_name] + self.r_values[r_name]) - 588 if expand: - 589 tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name]) + self.r_values[r_name]) - 590 r_length.append(len(tmp_expanded[-1])) - 591 else: - 592 r_length.append(len(tmp[-1])) - 593 e_N = np.sum(r_length) - 594 x = np.arange(e_N) - 595 y_test = np.concatenate(tmp, axis=0) - 596 if expand: - 597 y = np.concatenate(tmp_expanded, axis=0) - 598 else: - 599 y = y_test - 600 plt.errorbar(x, y, fmt='.', markersize=3) - 601 plt.xlim(-0.5, e_N - 0.5) - 602 plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})') - 603 plt.draw() - 604 - 605 def plot_piechart(self, save=None): - 606 """Plot piechart which shows the fractional contribution of each - 607 ensemble to the error and returns a dictionary containing the fractions. - 608 - 609 Parameters - 610 ---------- - 611 save : str - 612 saves the figure to a file named 'save' if. - 613 """ - 614 if not hasattr(self, 'e_dvalue'): - 615 raise Exception('Run the gamma method first.') - 616 if np.isclose(0.0, self._dvalue, atol=1e-15): - 617 raise Exception('Error is 0.0') - 618 labels = self.e_names - 619 sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 - 620 fig1, ax1 = plt.subplots() - 621 ax1.pie(sizes, labels=labels, startangle=90, normalize=True) - 622 ax1.axis('equal') - 623 plt.draw() - 624 if save: - 625 fig1.savefig(save) - 626 - 627 return dict(zip(self.e_names, sizes)) - 628 - 629 def dump(self, filename, datatype="json.gz", description="", **kwargs): - 630 """Dump the Obs to a file 'name' of chosen format. - 631 - 632 Parameters - 633 ---------- - 634 filename : str - 635 name of the file to be saved. - 636 datatype : str - 637 Format of the exported file. Supported formats include - 638 "json.gz" and "pickle" - 639 description : str - 640 Description for output file, only relevant for json.gz format. - 641 path : str - 642 specifies a custom path for the file (default '.') - 643 """ - 644 if 'path' in kwargs: - 645 file_name = kwargs.get('path') + '/' + filename - 646 else: - 647 file_name = filename - 648 - 649 if datatype == "json.gz": - 650 from .input.json import dump_to_json - 651 dump_to_json([self], file_name, description=description) - 652 elif datatype == "pickle": - 653 with open(file_name + '.p', 'wb') as fb: - 654 pickle.dump(self, fb) - 655 else: - 656 raise Exception("Unknown datatype " + str(datatype)) - 657 - 658 def export_jackknife(self): - 659 """Export jackknife samples from the Obs - 660 - 661 Returns - 662 ------- - 663 numpy.ndarray - 664 Returns a numpy array of length N + 1 where N is the number of samples - 665 for the given ensemble and replicum. The zeroth entry of the array contains - 666 the mean value of the Obs, entries 1 to N contain the N jackknife samples - 667 derived from the Obs. The current implementation only works for observables - 668 defined on exactly one ensemble and replicum. The derived jackknife samples - 669 should agree with samples from a full jackknife analysis up to O(1/N). - 670 """ + 491 def plot_tauint(self, save=None): + 492 """Plot integrated autocorrelation time for each ensemble. + 493 + 494 Parameters + 495 ---------- + 496 save : str + 497 saves the figure to a file named 'save' if. + 498 """ + 499 if not hasattr(self, 'e_dvalue'): + 500 raise Exception('Run the gamma method first.') + 501 + 502 for e, e_name in enumerate(self.mc_names): + 503 fig = plt.figure() + 504 plt.xlabel(r'$W$') + 505 plt.ylabel(r'$\tau_\mathrm{int}$') + 506 length = int(len(self.e_n_tauint[e_name])) + 507 if self.tau_exp[e_name] > 0: + 508 base = self.e_n_tauint[e_name][self.e_windowsize[e_name]] + 509 x_help = np.arange(2 * self.tau_exp[e_name]) + 510 y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base + 511 x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]) + 512 plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',') + 513 plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]], + 514 yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor']) + 515 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 + 516 label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2)) + 517 else: + 518 label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)) + 519 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) + 520 + 521 plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label) + 522 plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--') + 523 plt.legend() + 524 plt.xlim(-0.5, xmax) + 525 ylim = plt.ylim() + 526 plt.ylim(bottom=0.0, top=max(1.0, ylim[1])) + 527 plt.draw() + 528 if save: + 529 fig.savefig(save + "_" + str(e)) + 530 + 531 def plot_rho(self, save=None): + 532 """Plot normalized autocorrelation function time for each ensemble. + 533 + 534 Parameters + 535 ---------- + 536 save : str + 537 saves the figure to a file named 'save' if. + 538 """ + 539 if not hasattr(self, 'e_dvalue'): + 540 raise Exception('Run the gamma method first.') + 541 for e, e_name in enumerate(self.mc_names): + 542 fig = plt.figure() + 543 plt.xlabel('W') + 544 plt.ylabel('rho') + 545 length = int(len(self.e_drho[e_name])) + 546 plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2) + 547 plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',') + 548 if self.tau_exp[e_name] > 0: + 549 plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]], + 550 [self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1) + 551 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 + 552 plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2))) + 553 else: + 554 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) + 555 plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))) + 556 plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1) + 557 plt.xlim(-0.5, xmax) + 558 plt.draw() + 559 if save: + 560 fig.savefig(save + "_" + str(e)) + 561 + 562 def plot_rep_dist(self): + 563 """Plot replica distribution for each ensemble with more than one replicum.""" + 564 if not hasattr(self, 'e_dvalue'): + 565 raise Exception('Run the gamma method first.') + 566 for e, e_name in enumerate(self.mc_names): + 567 if len(self.e_content[e_name]) == 1: + 568 print('No replica distribution for a single replicum (', e_name, ')') + 569 continue + 570 r_length = [] + 571 sub_r_mean = 0 + 572 for r, r_name in enumerate(self.e_content[e_name]): + 573 r_length.append(len(self.deltas[r_name])) + 574 sub_r_mean += self.shape[r_name] * self.r_values[r_name] + 575 e_N = np.sum(r_length) + 576 sub_r_mean /= e_N + 577 arr = np.zeros(len(self.e_content[e_name])) + 578 for r, r_name in enumerate(self.e_content[e_name]): + 579 arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1)) + 580 plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name])) + 581 plt.title('Replica distribution' + e_name + ' (mean=0, var=1)') + 582 plt.draw() + 583 + 584 def plot_history(self, expand=True): + 585 """Plot derived Monte Carlo history for each ensemble + 586 + 587 Parameters + 588 ---------- + 589 expand : bool + 590 show expanded history for irregular Monte Carlo chains (default: True). + 591 """ + 592 for e, e_name in enumerate(self.mc_names): + 593 plt.figure() + 594 r_length = [] + 595 tmp = [] + 596 tmp_expanded = [] + 597 for r, r_name in enumerate(self.e_content[e_name]): + 598 tmp.append(self.deltas[r_name] + self.r_values[r_name]) + 599 if expand: + 600 tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name]) + self.r_values[r_name]) + 601 r_length.append(len(tmp_expanded[-1])) + 602 else: + 603 r_length.append(len(tmp[-1])) + 604 e_N = np.sum(r_length) + 605 x = np.arange(e_N) + 606 y_test = np.concatenate(tmp, axis=0) + 607 if expand: + 608 y = np.concatenate(tmp_expanded, axis=0) + 609 else: + 610 y = y_test + 611 plt.errorbar(x, y, fmt='.', markersize=3) + 612 plt.xlim(-0.5, e_N - 0.5) + 613 plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})') + 614 plt.draw() + 615 + 616 def plot_piechart(self, save=None): + 617 """Plot piechart which shows the fractional contribution of each + 618 ensemble to the error and returns a dictionary containing the fractions. + 619 + 620 Parameters + 621 ---------- + 622 save : str + 623 saves the figure to a file named 'save' if. + 624 """ + 625 if not hasattr(self, 'e_dvalue'): + 626 raise Exception('Run the gamma method first.') + 627 if np.isclose(0.0, self._dvalue, atol=1e-15): + 628 raise Exception('Error is 0.0') + 629 labels = self.e_names + 630 sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 + 631 fig1, ax1 = plt.subplots() + 632 ax1.pie(sizes, labels=labels, startangle=90, normalize=True) + 633 ax1.axis('equal') + 634 plt.draw() + 635 if save: + 636 fig1.savefig(save) + 637 + 638 return dict(zip(self.e_names, sizes)) + 639 + 640 def dump(self, filename, datatype="json.gz", description="", **kwargs): + 641 """Dump the Obs to a file 'name' of chosen format. + 642 + 643 Parameters + 644 ---------- + 645 filename : str + 646 name of the file to be saved. + 647 datatype : str + 648 Format of the exported file. Supported formats include + 649 "json.gz" and "pickle" + 650 description : str + 651 Description for output file, only relevant for json.gz format. + 652 path : str + 653 specifies a custom path for the file (default '.') + 654 """ + 655 if 'path' in kwargs: + 656 file_name = kwargs.get('path') + '/' + filename + 657 else: + 658 file_name = filename + 659 + 660 if datatype == "json.gz": + 661 from .input.json import dump_to_json + 662 dump_to_json([self], file_name, description=description) + 663 elif datatype == "pickle": + 664 with open(file_name + '.p', 'wb') as fb: + 665 pickle.dump(self, fb) + 666 else: + 667 raise Exception("Unknown datatype " + str(datatype)) + 668 + 669 def export_jackknife(self): + 670 """Export jackknife samples from the Obs 671 - 672 if len(self.names) != 1: - 673 raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") - 674 - 675 name = self.names[0] - 676 full_data = self.deltas[name] + self.r_values[name] - 677 n = full_data.size - 678 mean = self.value - 679 tmp_jacks = np.zeros(n + 1) - 680 tmp_jacks[0] = mean - 681 tmp_jacks[1:] = (n * mean - full_data) / (n - 1) - 682 return tmp_jacks - 683 - 684 def __float__(self): - 685 return float(self.value) - 686 - 687 def __repr__(self): - 688 return 'Obs[' + str(self) + ']' - 689 - 690 def __str__(self): - 691 if self._dvalue == 0.0: - 692 return str(self.value) - 693 fexp = np.floor(np.log10(self._dvalue)) - 694 if fexp < 0.0: - 695 return '{:{form}}({:2.0f})'.format(self.value, self._dvalue * 10 ** (-fexp + 1), form='.' + str(-int(fexp) + 1) + 'f') - 696 elif fexp == 0.0: - 697 return '{:.1f}({:1.1f})'.format(self.value, self._dvalue) - 698 else: - 699 return '{:.0f}({:2.0f})'.format(self.value, self._dvalue) + 672 Returns + 673 ------- + 674 numpy.ndarray + 675 Returns a numpy array of length N + 1 where N is the number of samples + 676 for the given ensemble and replicum. The zeroth entry of the array contains + 677 the mean value of the Obs, entries 1 to N contain the N jackknife samples + 678 derived from the Obs. The current implementation only works for observables + 679 defined on exactly one ensemble and replicum. The derived jackknife samples + 680 should agree with samples from a full jackknife analysis up to O(1/N). + 681 """ + 682 + 683 if len(self.names) != 1: + 684 raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") + 685 + 686 name = self.names[0] + 687 full_data = self.deltas[name] + self.r_values[name] + 688 n = full_data.size + 689 mean = self.value + 690 tmp_jacks = np.zeros(n + 1) + 691 tmp_jacks[0] = mean + 692 tmp_jacks[1:] = (n * mean - full_data) / (n - 1) + 693 return tmp_jacks + 694 + 695 def __float__(self): + 696 return float(self.value) + 697 + 698 def __repr__(self): + 699 return 'Obs[' + str(self) + ']' 700 - 701 def __hash__(self): - 702 hash_tuple = (np.array([self.value]).astype(np.float32).data.tobytes(),) - 703 hash_tuple += tuple([o.astype(np.float32).data.tobytes() for o in self.deltas.values()]) - 704 hash_tuple += tuple([np.array([o.errsq()]).astype(np.float32).data.tobytes() for o in self.covobs.values()]) - 705 hash_tuple += tuple([o.encode() for o in self.names]) - 706 m = hashlib.md5() - 707 [m.update(o) for o in hash_tuple] - 708 return int(m.hexdigest(), 16) & 0xFFFFFFFF - 709 - 710 # Overload comparisons - 711 def __lt__(self, other): - 712 return self.value < other - 713 - 714 def __le__(self, other): - 715 return self.value <= other - 716 - 717 def __gt__(self, other): - 718 return self.value > other - 719 - 720 def __ge__(self, other): - 721 return self.value >= other - 722 - 723 def __eq__(self, other): - 724 return (self - other).is_zero() - 725 - 726 def __ne__(self, other): - 727 return not (self - other).is_zero() - 728 - 729 # Overload math operations - 730 def __add__(self, y): - 731 if isinstance(y, Obs): - 732 return derived_observable(lambda x, **kwargs: x[0] + x[1], [self, y], man_grad=[1, 1]) - 733 else: - 734 if isinstance(y, np.ndarray): - 735 return np.array([self + o for o in y]) - 736 elif y.__class__.__name__ in ['Corr', 'CObs']: - 737 return NotImplemented - 738 else: - 739 return derived_observable(lambda x, **kwargs: x[0] + y, [self], man_grad=[1]) - 740 - 741 def __radd__(self, y): - 742 return self + y - 743 - 744 def __mul__(self, y): - 745 if isinstance(y, Obs): - 746 return derived_observable(lambda x, **kwargs: x[0] * x[1], [self, y], man_grad=[y.value, self.value]) - 747 else: - 748 if isinstance(y, np.ndarray): - 749 return np.array([self * o for o in y]) - 750 elif isinstance(y, complex): - 751 return CObs(self * y.real, self * y.imag) - 752 elif y.__class__.__name__ in ['Corr', 'CObs']: - 753 return NotImplemented - 754 else: - 755 return derived_observable(lambda x, **kwargs: x[0] * y, [self], man_grad=[y]) - 756 - 757 def __rmul__(self, y): - 758 return self * y - 759 - 760 def __sub__(self, y): - 761 if isinstance(y, Obs): - 762 return derived_observable(lambda x, **kwargs: x[0] - x[1], [self, y], man_grad=[1, -1]) - 763 else: - 764 if isinstance(y, np.ndarray): - 765 return np.array([self - o for o in y]) - 766 elif y.__class__.__name__ in ['Corr', 'CObs']: - 767 return NotImplemented - 768 else: - 769 return derived_observable(lambda x, **kwargs: x[0] - y, [self], man_grad=[1]) - 770 - 771 def __rsub__(self, y): - 772 return -1 * (self - y) - 773 - 774 def __pos__(self): - 775 return self - 776 - 777 def __neg__(self): - 778 return -1 * self - 779 - 780 def __truediv__(self, y): - 781 if isinstance(y, Obs): - 782 return derived_observable(lambda x, **kwargs: x[0] / x[1], [self, y], man_grad=[1 / y.value, - self.value / y.value ** 2]) - 783 else: - 784 if isinstance(y, np.ndarray): - 785 return np.array([self / o for o in y]) - 786 elif y.__class__.__name__ in ['Corr', 'CObs']: - 787 return NotImplemented - 788 else: - 789 return derived_observable(lambda x, **kwargs: x[0] / y, [self], man_grad=[1 / y]) - 790 - 791 def __rtruediv__(self, y): - 792 if isinstance(y, Obs): - 793 return derived_observable(lambda x, **kwargs: x[0] / x[1], [y, self], man_grad=[1 / self.value, - y.value / self.value ** 2]) - 794 else: - 795 if isinstance(y, np.ndarray): - 796 return np.array([o / self for o in y]) - 797 elif y.__class__.__name__ in ['Corr', 'CObs']: - 798 return NotImplemented - 799 else: - 800 return derived_observable(lambda x, **kwargs: y / x[0], [self], man_grad=[-y / self.value ** 2]) - 801 - 802 def __pow__(self, y): - 803 if isinstance(y, Obs): - 804 return derived_observable(lambda x: x[0] ** x[1], [self, y]) - 805 else: - 806 return derived_observable(lambda x: x[0] ** y, [self]) - 807 - 808 def __rpow__(self, y): - 809 if isinstance(y, Obs): - 810 return derived_observable(lambda x: x[0] ** x[1], [y, self]) - 811 else: - 812 return derived_observable(lambda x: y ** x[0], [self]) - 813 - 814 def __abs__(self): - 815 return derived_observable(lambda x: anp.abs(x[0]), [self]) - 816 - 817 # Overload numpy functions - 818 def sqrt(self): - 819 return derived_observable(lambda x, **kwargs: np.sqrt(x[0]), [self], man_grad=[1 / 2 / np.sqrt(self.value)]) - 820 - 821 def log(self): - 822 return derived_observable(lambda x, **kwargs: np.log(x[0]), [self], man_grad=[1 / self.value]) - 823 - 824 def exp(self): - 825 return derived_observable(lambda x, **kwargs: np.exp(x[0]), [self], man_grad=[np.exp(self.value)]) - 826 - 827 def sin(self): - 828 return derived_observable(lambda x, **kwargs: np.sin(x[0]), [self], man_grad=[np.cos(self.value)]) - 829 - 830 def cos(self): - 831 return derived_observable(lambda x, **kwargs: np.cos(x[0]), [self], man_grad=[-np.sin(self.value)]) - 832 - 833 def tan(self): - 834 return derived_observable(lambda x, **kwargs: np.tan(x[0]), [self], man_grad=[1 / np.cos(self.value) ** 2]) - 835 - 836 def arcsin(self): - 837 return derived_observable(lambda x: anp.arcsin(x[0]), [self]) - 838 - 839 def arccos(self): - 840 return derived_observable(lambda x: anp.arccos(x[0]), [self]) - 841 - 842 def arctan(self): - 843 return derived_observable(lambda x: anp.arctan(x[0]), [self]) - 844 - 845 def sinh(self): - 846 return derived_observable(lambda x, **kwargs: np.sinh(x[0]), [self], man_grad=[np.cosh(self.value)]) - 847 - 848 def cosh(self): - 849 return derived_observable(lambda x, **kwargs: np.cosh(x[0]), [self], man_grad=[np.sinh(self.value)]) - 850 - 851 def tanh(self): - 852 return derived_observable(lambda x, **kwargs: np.tanh(x[0]), [self], man_grad=[1 / np.cosh(self.value) ** 2]) - 853 - 854 def arcsinh(self): - 855 return derived_observable(lambda x: anp.arcsinh(x[0]), [self]) - 856 - 857 def arccosh(self): - 858 return derived_observable(lambda x: anp.arccosh(x[0]), [self]) - 859 - 860 def arctanh(self): - 861 return derived_observable(lambda x: anp.arctanh(x[0]), [self]) - 862 - 863 - 864class CObs: - 865 """Class for a complex valued observable.""" - 866 __slots__ = ['_real', '_imag', 'tag'] + 701 def __str__(self): + 702 if self._dvalue == 0.0: + 703 return str(self.value) + 704 return _format_uncertainty(self.value, self._dvalue) + 705 + 706 def __hash__(self): + 707 hash_tuple = (np.array([self.value]).astype(np.float32).data.tobytes(),) + 708 hash_tuple += tuple([o.astype(np.float32).data.tobytes() for o in self.deltas.values()]) + 709 hash_tuple += tuple([np.array([o.errsq()]).astype(np.float32).data.tobytes() for o in self.covobs.values()]) + 710 hash_tuple += tuple([o.encode() for o in self.names]) + 711 m = hashlib.md5() + 712 [m.update(o) for o in hash_tuple] + 713 return int(m.hexdigest(), 16) & 0xFFFFFFFF + 714 + 715 # Overload comparisons + 716 def __lt__(self, other): + 717 return self.value < other + 718 + 719 def __le__(self, other): + 720 return self.value <= other + 721 + 722 def __gt__(self, other): + 723 return self.value > other + 724 + 725 def __ge__(self, other): + 726 return self.value >= other + 727 + 728 def __eq__(self, other): + 729 return (self - other).is_zero() + 730 + 731 def __ne__(self, other): + 732 return not (self - other).is_zero() + 733 + 734 # Overload math operations + 735 def __add__(self, y): + 736 if isinstance(y, Obs): + 737 return derived_observable(lambda x, **kwargs: x[0] + x[1], [self, y], man_grad=[1, 1]) + 738 else: + 739 if isinstance(y, np.ndarray): + 740 return np.array([self + o for o in y]) + 741 elif y.__class__.__name__ in ['Corr', 'CObs']: + 742 return NotImplemented + 743 else: + 744 return derived_observable(lambda x, **kwargs: x[0] + y, [self], man_grad=[1]) + 745 + 746 def __radd__(self, y): + 747 return self + y + 748 + 749 def __mul__(self, y): + 750 if isinstance(y, Obs): + 751 return derived_observable(lambda x, **kwargs: x[0] * x[1], [self, y], man_grad=[y.value, self.value]) + 752 else: + 753 if isinstance(y, np.ndarray): + 754 return np.array([self * o for o in y]) + 755 elif isinstance(y, complex): + 756 return CObs(self * y.real, self * y.imag) + 757 elif y.__class__.__name__ in ['Corr', 'CObs']: + 758 return NotImplemented + 759 else: + 760 return derived_observable(lambda x, **kwargs: x[0] * y, [self], man_grad=[y]) + 761 + 762 def __rmul__(self, y): + 763 return self * y + 764 + 765 def __sub__(self, y): + 766 if isinstance(y, Obs): + 767 return derived_observable(lambda x, **kwargs: x[0] - x[1], [self, y], man_grad=[1, -1]) + 768 else: + 769 if isinstance(y, np.ndarray): + 770 return np.array([self - o for o in y]) + 771 elif y.__class__.__name__ in ['Corr', 'CObs']: + 772 return NotImplemented + 773 else: + 774 return derived_observable(lambda x, **kwargs: x[0] - y, [self], man_grad=[1]) + 775 + 776 def __rsub__(self, y): + 777 return -1 * (self - y) + 778 + 779 def __pos__(self): + 780 return self + 781 + 782 def __neg__(self): + 783 return -1 * self + 784 + 785 def __truediv__(self, y): + 786 if isinstance(y, Obs): + 787 return derived_observable(lambda x, **kwargs: x[0] / x[1], [self, y], man_grad=[1 / y.value, - self.value / y.value ** 2]) + 788 else: + 789 if isinstance(y, np.ndarray): + 790 return np.array([self / o for o in y]) + 791 elif y.__class__.__name__ in ['Corr', 'CObs']: + 792 return NotImplemented + 793 else: + 794 return derived_observable(lambda x, **kwargs: x[0] / y, [self], man_grad=[1 / y]) + 795 + 796 def __rtruediv__(self, y): + 797 if isinstance(y, Obs): + 798 return derived_observable(lambda x, **kwargs: x[0] / x[1], [y, self], man_grad=[1 / self.value, - y.value / self.value ** 2]) + 799 else: + 800 if isinstance(y, np.ndarray): + 801 return np.array([o / self for o in y]) + 802 elif y.__class__.__name__ in ['Corr', 'CObs']: + 803 return NotImplemented + 804 else: + 805 return derived_observable(lambda x, **kwargs: y / x[0], [self], man_grad=[-y / self.value ** 2]) + 806 + 807 def __pow__(self, y): + 808 if isinstance(y, Obs): + 809 return derived_observable(lambda x: x[0] ** x[1], [self, y]) + 810 else: + 811 return derived_observable(lambda x: x[0] ** y, [self]) + 812 + 813 def __rpow__(self, y): + 814 if isinstance(y, Obs): + 815 return derived_observable(lambda x: x[0] ** x[1], [y, self]) + 816 else: + 817 return derived_observable(lambda x: y ** x[0], [self]) + 818 + 819 def __abs__(self): + 820 return derived_observable(lambda x: anp.abs(x[0]), [self]) + 821 + 822 # Overload numpy functions + 823 def sqrt(self): + 824 return derived_observable(lambda x, **kwargs: np.sqrt(x[0]), [self], man_grad=[1 / 2 / np.sqrt(self.value)]) + 825 + 826 def log(self): + 827 return derived_observable(lambda x, **kwargs: np.log(x[0]), [self], man_grad=[1 / self.value]) + 828 + 829 def exp(self): + 830 return derived_observable(lambda x, **kwargs: np.exp(x[0]), [self], man_grad=[np.exp(self.value)]) + 831 + 832 def sin(self): + 833 return derived_observable(lambda x, **kwargs: np.sin(x[0]), [self], man_grad=[np.cos(self.value)]) + 834 + 835 def cos(self): + 836 return derived_observable(lambda x, **kwargs: np.cos(x[0]), [self], man_grad=[-np.sin(self.value)]) + 837 + 838 def tan(self): + 839 return derived_observable(lambda x, **kwargs: np.tan(x[0]), [self], man_grad=[1 / np.cos(self.value) ** 2]) + 840 + 841 def arcsin(self): + 842 return derived_observable(lambda x: anp.arcsin(x[0]), [self]) + 843 + 844 def arccos(self): + 845 return derived_observable(lambda x: anp.arccos(x[0]), [self]) + 846 + 847 def arctan(self): + 848 return derived_observable(lambda x: anp.arctan(x[0]), [self]) + 849 + 850 def sinh(self): + 851 return derived_observable(lambda x, **kwargs: np.sinh(x[0]), [self], man_grad=[np.cosh(self.value)]) + 852 + 853 def cosh(self): + 854 return derived_observable(lambda x, **kwargs: np.cosh(x[0]), [self], man_grad=[np.sinh(self.value)]) + 855 + 856 def tanh(self): + 857 return derived_observable(lambda x, **kwargs: np.tanh(x[0]), [self], man_grad=[1 / np.cosh(self.value) ** 2]) + 858 + 859 def arcsinh(self): + 860 return derived_observable(lambda x: anp.arcsinh(x[0]), [self]) + 861 + 862 def arccosh(self): + 863 return derived_observable(lambda x: anp.arccosh(x[0]), [self]) + 864 + 865 def arctanh(self): + 866 return derived_observable(lambda x: anp.arctanh(x[0]), [self]) 867 - 868 def __init__(self, real, imag=0.0): - 869 self._real = real - 870 self._imag = imag - 871 self.tag = None + 868 + 869class CObs: + 870 """Class for a complex valued observable.""" + 871 __slots__ = ['_real', '_imag', 'tag'] 872 - 873 @property - 874 def real(self): - 875 return self._real - 876 - 877 @property - 878 def imag(self): - 879 return self._imag - 880 - 881 def gamma_method(self, **kwargs): - 882 """Executes the gamma_method for the real and the imaginary part.""" - 883 if isinstance(self.real, Obs): - 884 self.real.gamma_method(**kwargs) - 885 if isinstance(self.imag, Obs): - 886 self.imag.gamma_method(**kwargs) - 887 - 888 def is_zero(self): - 889 """Checks whether both real and imaginary part are zero within machine precision.""" - 890 return self.real == 0.0 and self.imag == 0.0 - 891 - 892 def conjugate(self): - 893 return CObs(self.real, -self.imag) - 894 - 895 def __add__(self, other): - 896 if isinstance(other, np.ndarray): - 897 return other + self - 898 elif hasattr(other, 'real') and hasattr(other, 'imag'): - 899 return CObs(self.real + other.real, - 900 self.imag + other.imag) - 901 else: - 902 return CObs(self.real + other, self.imag) - 903 - 904 def __radd__(self, y): - 905 return self + y - 906 - 907 def __sub__(self, other): - 908 if isinstance(other, np.ndarray): - 909 return -1 * (other - self) - 910 elif hasattr(other, 'real') and hasattr(other, 'imag'): - 911 return CObs(self.real - other.real, self.imag - other.imag) - 912 else: - 913 return CObs(self.real - other, self.imag) - 914 - 915 def __rsub__(self, other): - 916 return -1 * (self - other) - 917 - 918 def __mul__(self, other): - 919 if isinstance(other, np.ndarray): - 920 return other * self - 921 elif hasattr(other, 'real') and hasattr(other, 'imag'): - 922 if all(isinstance(i, Obs) for i in [self.real, self.imag, other.real, other.imag]): - 923 return CObs(derived_observable(lambda x, **kwargs: x[0] * x[1] - x[2] * x[3], - 924 [self.real, other.real, self.imag, other.imag], - 925 man_grad=[other.real.value, self.real.value, -other.imag.value, -self.imag.value]), - 926 derived_observable(lambda x, **kwargs: x[2] * x[1] + x[0] * x[3], - 927 [self.real, other.real, self.imag, other.imag], - 928 man_grad=[other.imag.value, self.imag.value, other.real.value, self.real.value])) - 929 elif getattr(other, 'imag', 0) != 0: - 930 return CObs(self.real * other.real - self.imag * other.imag, - 931 self.imag * other.real + self.real * other.imag) - 932 else: - 933 return CObs(self.real * other.real, self.imag * other.real) - 934 else: - 935 return CObs(self.real * other, self.imag * other) - 936 - 937 def __rmul__(self, other): - 938 return self * other - 939 - 940 def __truediv__(self, other): - 941 if isinstance(other, np.ndarray): - 942 return 1 / (other / self) - 943 elif hasattr(other, 'real') and hasattr(other, 'imag'): - 944 r = other.real ** 2 + other.imag ** 2 - 945 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.imag * other.real - self.real * other.imag) / r) - 946 else: - 947 return CObs(self.real / other, self.imag / other) - 948 - 949 def __rtruediv__(self, other): - 950 r = self.real ** 2 + self.imag ** 2 - 951 if hasattr(other, 'real') and hasattr(other, 'imag'): - 952 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.real * other.imag - self.imag * other.real) / r) - 953 else: - 954 return CObs(self.real * other / r, -self.imag * other / r) - 955 - 956 def __abs__(self): - 957 return np.sqrt(self.real**2 + self.imag**2) - 958 - 959 def __pos__(self): - 960 return self - 961 - 962 def __neg__(self): - 963 return -1 * self - 964 - 965 def __eq__(self, other): - 966 return self.real == other.real and self.imag == other.imag - 967 - 968 def __str__(self): - 969 return '(' + str(self.real) + int(self.imag >= 0.0) * '+' + str(self.imag) + 'j)' - 970 - 971 def __repr__(self): - 972 return 'CObs[' + str(self) + ']' - 973 - 974 - 975def _expand_deltas(deltas, idx, shape): - 976 """Expand deltas defined on idx to a regular, contiguous range, where holes are filled by 0. - 977 If idx is of type range, the deltas are not changed + 873 def __init__(self, real, imag=0.0): + 874 self._real = real + 875 self._imag = imag + 876 self.tag = None + 877 + 878 @property + 879 def real(self): + 880 return self._real + 881 + 882 @property + 883 def imag(self): + 884 return self._imag + 885 + 886 def gamma_method(self, **kwargs): + 887 """Executes the gamma_method for the real and the imaginary part.""" + 888 if isinstance(self.real, Obs): + 889 self.real.gamma_method(**kwargs) + 890 if isinstance(self.imag, Obs): + 891 self.imag.gamma_method(**kwargs) + 892 + 893 def is_zero(self): + 894 """Checks whether both real and imaginary part are zero within machine precision.""" + 895 return self.real == 0.0 and self.imag == 0.0 + 896 + 897 def conjugate(self): + 898 return CObs(self.real, -self.imag) + 899 + 900 def __add__(self, other): + 901 if isinstance(other, np.ndarray): + 902 return other + self + 903 elif hasattr(other, 'real') and hasattr(other, 'imag'): + 904 return CObs(self.real + other.real, + 905 self.imag + other.imag) + 906 else: + 907 return CObs(self.real + other, self.imag) + 908 + 909 def __radd__(self, y): + 910 return self + y + 911 + 912 def __sub__(self, other): + 913 if isinstance(other, np.ndarray): + 914 return -1 * (other - self) + 915 elif hasattr(other, 'real') and hasattr(other, 'imag'): + 916 return CObs(self.real - other.real, self.imag - other.imag) + 917 else: + 918 return CObs(self.real - other, self.imag) + 919 + 920 def __rsub__(self, other): + 921 return -1 * (self - other) + 922 + 923 def __mul__(self, other): + 924 if isinstance(other, np.ndarray): + 925 return other * self + 926 elif hasattr(other, 'real') and hasattr(other, 'imag'): + 927 if all(isinstance(i, Obs) for i in [self.real, self.imag, other.real, other.imag]): + 928 return CObs(derived_observable(lambda x, **kwargs: x[0] * x[1] - x[2] * x[3], + 929 [self.real, other.real, self.imag, other.imag], + 930 man_grad=[other.real.value, self.real.value, -other.imag.value, -self.imag.value]), + 931 derived_observable(lambda x, **kwargs: x[2] * x[1] + x[0] * x[3], + 932 [self.real, other.real, self.imag, other.imag], + 933 man_grad=[other.imag.value, self.imag.value, other.real.value, self.real.value])) + 934 elif getattr(other, 'imag', 0) != 0: + 935 return CObs(self.real * other.real - self.imag * other.imag, + 936 self.imag * other.real + self.real * other.imag) + 937 else: + 938 return CObs(self.real * other.real, self.imag * other.real) + 939 else: + 940 return CObs(self.real * other, self.imag * other) + 941 + 942 def __rmul__(self, other): + 943 return self * other + 944 + 945 def __truediv__(self, other): + 946 if isinstance(other, np.ndarray): + 947 return 1 / (other / self) + 948 elif hasattr(other, 'real') and hasattr(other, 'imag'): + 949 r = other.real ** 2 + other.imag ** 2 + 950 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.imag * other.real - self.real * other.imag) / r) + 951 else: + 952 return CObs(self.real / other, self.imag / other) + 953 + 954 def __rtruediv__(self, other): + 955 r = self.real ** 2 + self.imag ** 2 + 956 if hasattr(other, 'real') and hasattr(other, 'imag'): + 957 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.real * other.imag - self.imag * other.real) / r) + 958 else: + 959 return CObs(self.real * other / r, -self.imag * other / r) + 960 + 961 def __abs__(self): + 962 return np.sqrt(self.real**2 + self.imag**2) + 963 + 964 def __pos__(self): + 965 return self + 966 + 967 def __neg__(self): + 968 return -1 * self + 969 + 970 def __eq__(self, other): + 971 return self.real == other.real and self.imag == other.imag + 972 + 973 def __str__(self): + 974 return '(' + str(self.real) + int(self.imag >= 0.0) * '+' + str(self.imag) + 'j)' + 975 + 976 def __repr__(self): + 977 return 'CObs[' + str(self) + ']' 978 - 979 Parameters - 980 ---------- - 981 deltas : list - 982 List of fluctuations - 983 idx : list - 984 List or range of configs on which the deltas are defined, has to be sorted in ascending order. - 985 shape : int - 986 Number of configs in idx. - 987 """ - 988 if isinstance(idx, range): - 989 return deltas - 990 else: - 991 ret = np.zeros(idx[-1] - idx[0] + 1) - 992 for i in range(shape): - 993 ret[idx[i] - idx[0]] = deltas[i] - 994 return ret - 995 - 996 - 997def _merge_idx(idl): - 998 """Returns the union of all lists in idl as sorted list - 999 -1000 Parameters -1001 ---------- -1002 idl : list -1003 List of lists or ranges. -1004 """ -1005 -1006 # Use groupby to efficiently check whether all elements of idl are identical -1007 try: -1008 g = groupby(idl) -1009 if next(g, True) and not next(g, False): -1010 return idl[0] -1011 except Exception: -1012 pass -1013 -1014 if np.all([type(idx) is range for idx in idl]): -1015 if len(set([idx[0] for idx in idl])) == 1: -1016 idstart = min([idx.start for idx in idl]) -1017 idstop = max([idx.stop for idx in idl]) -1018 idstep = min([idx.step for idx in idl]) -1019 return range(idstart, idstop, idstep) -1020 -1021 return sorted(set().union(*idl)) -1022 -1023 -1024def _intersection_idx(idl): -1025 """Returns the intersection of all lists in idl as sorted list -1026 -1027 Parameters -1028 ---------- -1029 idl : list -1030 List of lists or ranges. -1031 """ -1032 -1033 def _lcm(*args): -1034 """Returns the lowest common multiple of args. -1035 -1036 From python 3.9 onwards the math library contains an lcm function.""" -1037 return reduce(lambda a, b: a * b // gcd(a, b), args) + 979 + 980def _format_uncertainty(value, dvalue): + 981 """Creates a string of a value and its error in paranthesis notation, e.g., 13.02(45)""" + 982 fexp = np.floor(np.log10(dvalue)) + 983 if fexp < 0.0: + 984 return '{:{form}}({:2.0f})'.format(value, dvalue * 10 ** (-fexp + 1), form='.' + str(-int(fexp) + 1) + 'f') + 985 elif fexp == 0.0: + 986 return '{:.1f}({:1.1f})'.format(value, dvalue) + 987 else: + 988 return '{:.0f}({:2.0f})'.format(value, dvalue) + 989 + 990 + 991def _expand_deltas(deltas, idx, shape): + 992 """Expand deltas defined on idx to a regular, contiguous range, where holes are filled by 0. + 993 If idx is of type range, the deltas are not changed + 994 + 995 Parameters + 996 ---------- + 997 deltas : list + 998 List of fluctuations + 999 idx : list +1000 List or range of configs on which the deltas are defined, has to be sorted in ascending order. +1001 shape : int +1002 Number of configs in idx. +1003 """ +1004 if isinstance(idx, range): +1005 return deltas +1006 else: +1007 ret = np.zeros(idx[-1] - idx[0] + 1) +1008 for i in range(shape): +1009 ret[idx[i] - idx[0]] = deltas[i] +1010 return ret +1011 +1012 +1013def _merge_idx(idl): +1014 """Returns the union of all lists in idl as sorted list +1015 +1016 Parameters +1017 ---------- +1018 idl : list +1019 List of lists or ranges. +1020 """ +1021 +1022 # Use groupby to efficiently check whether all elements of idl are identical +1023 try: +1024 g = groupby(idl) +1025 if next(g, True) and not next(g, False): +1026 return idl[0] +1027 except Exception: +1028 pass +1029 +1030 if np.all([type(idx) is range for idx in idl]): +1031 if len(set([idx[0] for idx in idl])) == 1: +1032 idstart = min([idx.start for idx in idl]) +1033 idstop = max([idx.stop for idx in idl]) +1034 idstep = min([idx.step for idx in idl]) +1035 return range(idstart, idstop, idstep) +1036 +1037 return sorted(set().union(*idl)) 1038 -1039 # Use groupby to efficiently check whether all elements of idl are identical -1040 try: -1041 g = groupby(idl) -1042 if next(g, True) and not next(g, False): -1043 return idl[0] -1044 except Exception: -1045 pass -1046 -1047 if np.all([type(idx) is range for idx in idl]): -1048 if len(set([idx[0] for idx in idl])) == 1: -1049 idstart = max([idx.start for idx in idl]) -1050 idstop = min([idx.stop for idx in idl]) -1051 idstep = _lcm(*[idx.step for idx in idl]) -1052 return range(idstart, idstop, idstep) -1053 -1054 return sorted(set.intersection(*[set(o) for o in idl])) -1055 -1056 -1057def _expand_deltas_for_merge(deltas, idx, shape, new_idx): -1058 """Expand deltas defined on idx to the list of configs that is defined by new_idx. -1059 New, empty entries are filled by 0. If idx and new_idx are of type range, the smallest -1060 common divisor of the step sizes is used as new step size. -1061 -1062 Parameters -1063 ---------- -1064 deltas : list -1065 List of fluctuations -1066 idx : list -1067 List or range of configs on which the deltas are defined. -1068 Has to be a subset of new_idx and has to be sorted in ascending order. -1069 shape : list -1070 Number of configs in idx. -1071 new_idx : list -1072 List of configs that defines the new range, has to be sorted in ascending order. -1073 """ -1074 -1075 if type(idx) is range and type(new_idx) is range: -1076 if idx == new_idx: -1077 return deltas -1078 ret = np.zeros(new_idx[-1] - new_idx[0] + 1) -1079 for i in range(shape): -1080 ret[idx[i] - new_idx[0]] = deltas[i] -1081 return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))]) -1082 -1083 -1084def _collapse_deltas_for_merge(deltas, idx, shape, new_idx): -1085 """Collapse deltas defined on idx to the list of configs that is defined by new_idx. -1086 If idx and new_idx are of type range, the smallest -1087 common divisor of the step sizes is used as new step size. -1088 -1089 Parameters -1090 ---------- -1091 deltas : list -1092 List of fluctuations -1093 idx : list -1094 List or range of configs on which the deltas are defined. -1095 Has to be a subset of new_idx and has to be sorted in ascending order. -1096 shape : list -1097 Number of configs in idx. -1098 new_idx : list -1099 List of configs that defines the new range, has to be sorted in ascending order. -1100 """ -1101 -1102 if type(idx) is range and type(new_idx) is range: -1103 if idx == new_idx: -1104 return deltas -1105 ret = np.zeros(new_idx[-1] - new_idx[0] + 1) -1106 for i in range(shape): -1107 if idx[i] in new_idx: -1108 ret[idx[i] - new_idx[0]] = deltas[i] -1109 return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))]) -1110 -1111 -1112def _filter_zeroes(deltas, idx, eps=Obs.filter_eps): -1113 """Filter out all configurations with vanishing fluctuation such that they do not -1114 contribute to the error estimate anymore. Returns the new deltas and -1115 idx according to the filtering. -1116 A fluctuation is considered to be vanishing, if it is smaller than eps times -1117 the mean of the absolute values of all deltas in one list. -1118 -1119 Parameters -1120 ---------- -1121 deltas : list -1122 List of fluctuations -1123 idx : list -1124 List or ranges of configs on which the deltas are defined. -1125 eps : float -1126 Prefactor that enters the filter criterion. -1127 """ -1128 new_deltas = [] -1129 new_idx = [] -1130 maxd = np.mean(np.fabs(deltas)) -1131 for i in range(len(deltas)): -1132 if abs(deltas[i]) > eps * maxd: -1133 new_deltas.append(deltas[i]) -1134 new_idx.append(idx[i]) -1135 if new_idx: -1136 return np.array(new_deltas), new_idx -1137 else: -1138 return deltas, idx -1139 -1140 -1141def derived_observable(func, data, array_mode=False, **kwargs): -1142 """Construct a derived Obs according to func(data, **kwargs) using automatic differentiation. -1143 -1144 Parameters -1145 ---------- -1146 func : object -1147 arbitrary function of the form func(data, **kwargs). For the -1148 automatic differentiation to work, all numpy functions have to have -1149 the autograd wrapper (use 'import autograd.numpy as anp'). -1150 data : list -1151 list of Obs, e.g. [obs1, obs2, obs3]. -1152 num_grad : bool -1153 if True, numerical derivatives are used instead of autograd -1154 (default False). To control the numerical differentiation the -1155 kwargs of numdifftools.step_generators.MaxStepGenerator -1156 can be used. -1157 man_grad : list -1158 manually supply a list or an array which contains the jacobian -1159 of func. Use cautiously, supplying the wrong derivative will -1160 not be intercepted. -1161 -1162 Notes -1163 ----- -1164 For simple mathematical operations it can be practical to use anonymous -1165 functions. For the ratio of two observables one can e.g. use -1166 -1167 new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2]) -1168 """ -1169 -1170 data = np.asarray(data) -1171 raveled_data = data.ravel() -1172 -1173 # Workaround for matrix operations containing non Obs data -1174 if not all(isinstance(x, Obs) for x in raveled_data): -1175 for i in range(len(raveled_data)): -1176 if isinstance(raveled_data[i], (int, float)): -1177 raveled_data[i] = cov_Obs(raveled_data[i], 0.0, "###dummy_covobs###") -1178 -1179 allcov = {} -1180 for o in raveled_data: -1181 for name in o.cov_names: -1182 if name in allcov: -1183 if not np.allclose(allcov[name], o.covobs[name].cov): -1184 raise Exception('Inconsistent covariance matrices for %s!' % (name)) -1185 else: -1186 allcov[name] = o.covobs[name].cov -1187 -1188 n_obs = len(raveled_data) -1189 new_names = sorted(set([y for x in [o.names for o in raveled_data] for y in x])) -1190 new_cov_names = sorted(set([y for x in [o.cov_names for o in raveled_data] for y in x])) -1191 new_sample_names = sorted(set(new_names) - set(new_cov_names)) -1192 -1193 is_merged = {name: (len(list(filter(lambda o: o.is_merged.get(name, False) is True, raveled_data))) > 0) for name in new_sample_names} -1194 reweighted = len(list(filter(lambda o: o.reweighted is True, raveled_data))) > 0 -1195 -1196 if data.ndim == 1: -1197 values = np.array([o.value for o in data]) -1198 else: -1199 values = np.vectorize(lambda x: x.value)(data) -1200 -1201 new_values = func(values, **kwargs) -1202 -1203 multi = int(isinstance(new_values, np.ndarray)) -1204 -1205 new_r_values = {} -1206 new_idl_d = {} -1207 for name in new_sample_names: -1208 idl = [] -1209 tmp_values = np.zeros(n_obs) -1210 for i, item in enumerate(raveled_data): -1211 tmp_values[i] = item.r_values.get(name, item.value) -1212 tmp_idl = item.idl.get(name) -1213 if tmp_idl is not None: -1214 idl.append(tmp_idl) -1215 if multi > 0: -1216 tmp_values = np.array(tmp_values).reshape(data.shape) -1217 new_r_values[name] = func(tmp_values, **kwargs) -1218 new_idl_d[name] = _merge_idx(idl) -1219 if not is_merged[name]: -1220 is_merged[name] = (1 != len(set([len(idx) for idx in [*idl, new_idl_d[name]]]))) -1221 -1222 if 'man_grad' in kwargs: -1223 deriv = np.asarray(kwargs.get('man_grad')) -1224 if new_values.shape + data.shape != deriv.shape: -1225 raise Exception('Manual derivative does not have correct shape.') -1226 elif kwargs.get('num_grad') is True: -1227 if multi > 0: -1228 raise Exception('Multi mode currently not supported for numerical derivative') -1229 options = { -1230 'base_step': 0.1, -1231 'step_ratio': 2.5} -1232 for key in options.keys(): -1233 kwarg = kwargs.get(key) -1234 if kwarg is not None: -1235 options[key] = kwarg -1236 tmp_df = nd.Gradient(func, order=4, **{k: v for k, v in options.items() if v is not None})(values, **kwargs) -1237 if tmp_df.size == 1: -1238 deriv = np.array([tmp_df.real]) -1239 else: -1240 deriv = tmp_df.real -1241 else: -1242 deriv = jacobian(func)(values, **kwargs) -1243 -1244 final_result = np.zeros(new_values.shape, dtype=object) -1245 -1246 if array_mode is True: -1247 -1248 class _Zero_grad(): -1249 def __init__(self, N): -1250 self.grad = np.zeros((N, 1)) -1251 -1252 new_covobs_lengths = dict(set([y for x in [[(n, o.covobs[n].N) for n in o.cov_names] for o in raveled_data] for y in x])) -1253 d_extracted = {} -1254 g_extracted = {} -1255 for name in new_sample_names: -1256 d_extracted[name] = [] -1257 ens_length = len(new_idl_d[name]) -1258 for i_dat, dat in enumerate(data): -1259 d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas.get(name, np.zeros(ens_length)), o.idl.get(name, new_idl_d[name]), o.shape.get(name, ens_length), new_idl_d[name]) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, ))) -1260 for name in new_cov_names: -1261 g_extracted[name] = [] -1262 zero_grad = _Zero_grad(new_covobs_lengths[name]) -1263 for i_dat, dat in enumerate(data): -1264 g_extracted[name].append(np.array([o.covobs.get(name, zero_grad).grad for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (new_covobs_lengths[name], 1))) -1265 -1266 for i_val, new_val in np.ndenumerate(new_values): -1267 new_deltas = {} -1268 new_grad = {} -1269 if array_mode is True: -1270 for name in new_sample_names: -1271 ens_length = d_extracted[name][0].shape[-1] -1272 new_deltas[name] = np.zeros(ens_length) -1273 for i_dat, dat in enumerate(d_extracted[name]): -1274 new_deltas[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) -1275 for name in new_cov_names: -1276 new_grad[name] = 0 -1277 for i_dat, dat in enumerate(g_extracted[name]): -1278 new_grad[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) -1279 else: -1280 for j_obs, obs in np.ndenumerate(data): -1281 for name in obs.names: -1282 if name in obs.cov_names: -1283 new_grad[name] = new_grad.get(name, 0) + deriv[i_val + j_obs] * obs.covobs[name].grad -1284 else: -1285 new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name]) -1286 -1287 new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad} -1288 -1289 if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()): -1290 raise Exception('The same name has been used for deltas and covobs!') -1291 new_samples = [] -1292 new_means = [] -1293 new_idl = [] -1294 new_names_obs = [] -1295 for name in new_names: -1296 if name not in new_covobs: -1297 if is_merged[name]: -1298 filtered_deltas, filtered_idl_d = _filter_zeroes(new_deltas[name], new_idl_d[name]) -1299 else: -1300 filtered_deltas = new_deltas[name] -1301 filtered_idl_d = new_idl_d[name] +1039 +1040def _intersection_idx(idl): +1041 """Returns the intersection of all lists in idl as sorted list +1042 +1043 Parameters +1044 ---------- +1045 idl : list +1046 List of lists or ranges. +1047 """ +1048 +1049 def _lcm(*args): +1050 """Returns the lowest common multiple of args. +1051 +1052 From python 3.9 onwards the math library contains an lcm function.""" +1053 return reduce(lambda a, b: a * b // gcd(a, b), args) +1054 +1055 # Use groupby to efficiently check whether all elements of idl are identical +1056 try: +1057 g = groupby(idl) +1058 if next(g, True) and not next(g, False): +1059 return idl[0] +1060 except Exception: +1061 pass +1062 +1063 if np.all([type(idx) is range for idx in idl]): +1064 if len(set([idx[0] for idx in idl])) == 1: +1065 idstart = max([idx.start for idx in idl]) +1066 idstop = min([idx.stop for idx in idl]) +1067 idstep = _lcm(*[idx.step for idx in idl]) +1068 return range(idstart, idstop, idstep) +1069 +1070 return sorted(set.intersection(*[set(o) for o in idl])) +1071 +1072 +1073def _expand_deltas_for_merge(deltas, idx, shape, new_idx): +1074 """Expand deltas defined on idx to the list of configs that is defined by new_idx. +1075 New, empty entries are filled by 0. If idx and new_idx are of type range, the smallest +1076 common divisor of the step sizes is used as new step size. +1077 +1078 Parameters +1079 ---------- +1080 deltas : list +1081 List of fluctuations +1082 idx : list +1083 List or range of configs on which the deltas are defined. +1084 Has to be a subset of new_idx and has to be sorted in ascending order. +1085 shape : list +1086 Number of configs in idx. +1087 new_idx : list +1088 List of configs that defines the new range, has to be sorted in ascending order. +1089 """ +1090 +1091 if type(idx) is range and type(new_idx) is range: +1092 if idx == new_idx: +1093 return deltas +1094 ret = np.zeros(new_idx[-1] - new_idx[0] + 1) +1095 for i in range(shape): +1096 ret[idx[i] - new_idx[0]] = deltas[i] +1097 return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))]) +1098 +1099 +1100def _collapse_deltas_for_merge(deltas, idx, shape, new_idx): +1101 """Collapse deltas defined on idx to the list of configs that is defined by new_idx. +1102 If idx and new_idx are of type range, the smallest +1103 common divisor of the step sizes is used as new step size. +1104 +1105 Parameters +1106 ---------- +1107 deltas : list +1108 List of fluctuations +1109 idx : list +1110 List or range of configs on which the deltas are defined. +1111 Has to be a subset of new_idx and has to be sorted in ascending order. +1112 shape : list +1113 Number of configs in idx. +1114 new_idx : list +1115 List of configs that defines the new range, has to be sorted in ascending order. +1116 """ +1117 +1118 if type(idx) is range and type(new_idx) is range: +1119 if idx == new_idx: +1120 return deltas +1121 ret = np.zeros(new_idx[-1] - new_idx[0] + 1) +1122 for i in range(shape): +1123 if idx[i] in new_idx: +1124 ret[idx[i] - new_idx[0]] = deltas[i] +1125 return np.array([ret[new_idx[i] - new_idx[0]] for i in range(len(new_idx))]) +1126 +1127 +1128def _filter_zeroes(deltas, idx, eps=Obs.filter_eps): +1129 """Filter out all configurations with vanishing fluctuation such that they do not +1130 contribute to the error estimate anymore. Returns the new deltas and +1131 idx according to the filtering. +1132 A fluctuation is considered to be vanishing, if it is smaller than eps times +1133 the mean of the absolute values of all deltas in one list. +1134 +1135 Parameters +1136 ---------- +1137 deltas : list +1138 List of fluctuations +1139 idx : list +1140 List or ranges of configs on which the deltas are defined. +1141 eps : float +1142 Prefactor that enters the filter criterion. +1143 """ +1144 new_deltas = [] +1145 new_idx = [] +1146 maxd = np.mean(np.fabs(deltas)) +1147 for i in range(len(deltas)): +1148 if abs(deltas[i]) > eps * maxd: +1149 new_deltas.append(deltas[i]) +1150 new_idx.append(idx[i]) +1151 if new_idx: +1152 return np.array(new_deltas), new_idx +1153 else: +1154 return deltas, idx +1155 +1156 +1157def derived_observable(func, data, array_mode=False, **kwargs): +1158 """Construct a derived Obs according to func(data, **kwargs) using automatic differentiation. +1159 +1160 Parameters +1161 ---------- +1162 func : object +1163 arbitrary function of the form func(data, **kwargs). For the +1164 automatic differentiation to work, all numpy functions have to have +1165 the autograd wrapper (use 'import autograd.numpy as anp'). +1166 data : list +1167 list of Obs, e.g. [obs1, obs2, obs3]. +1168 num_grad : bool +1169 if True, numerical derivatives are used instead of autograd +1170 (default False). To control the numerical differentiation the +1171 kwargs of numdifftools.step_generators.MaxStepGenerator +1172 can be used. +1173 man_grad : list +1174 manually supply a list or an array which contains the jacobian +1175 of func. Use cautiously, supplying the wrong derivative will +1176 not be intercepted. +1177 +1178 Notes +1179 ----- +1180 For simple mathematical operations it can be practical to use anonymous +1181 functions. For the ratio of two observables one can e.g. use +1182 +1183 new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2]) +1184 """ +1185 +1186 data = np.asarray(data) +1187 raveled_data = data.ravel() +1188 +1189 # Workaround for matrix operations containing non Obs data +1190 if not all(isinstance(x, Obs) for x in raveled_data): +1191 for i in range(len(raveled_data)): +1192 if isinstance(raveled_data[i], (int, float)): +1193 raveled_data[i] = cov_Obs(raveled_data[i], 0.0, "###dummy_covobs###") +1194 +1195 allcov = {} +1196 for o in raveled_data: +1197 for name in o.cov_names: +1198 if name in allcov: +1199 if not np.allclose(allcov[name], o.covobs[name].cov): +1200 raise Exception('Inconsistent covariance matrices for %s!' % (name)) +1201 else: +1202 allcov[name] = o.covobs[name].cov +1203 +1204 n_obs = len(raveled_data) +1205 new_names = sorted(set([y for x in [o.names for o in raveled_data] for y in x])) +1206 new_cov_names = sorted(set([y for x in [o.cov_names for o in raveled_data] for y in x])) +1207 new_sample_names = sorted(set(new_names) - set(new_cov_names)) +1208 +1209 is_merged = {name: (len(list(filter(lambda o: o.is_merged.get(name, False) is True, raveled_data))) > 0) for name in new_sample_names} +1210 reweighted = len(list(filter(lambda o: o.reweighted is True, raveled_data))) > 0 +1211 +1212 if data.ndim == 1: +1213 values = np.array([o.value for o in data]) +1214 else: +1215 values = np.vectorize(lambda x: x.value)(data) +1216 +1217 new_values = func(values, **kwargs) +1218 +1219 multi = int(isinstance(new_values, np.ndarray)) +1220 +1221 new_r_values = {} +1222 new_idl_d = {} +1223 for name in new_sample_names: +1224 idl = [] +1225 tmp_values = np.zeros(n_obs) +1226 for i, item in enumerate(raveled_data): +1227 tmp_values[i] = item.r_values.get(name, item.value) +1228 tmp_idl = item.idl.get(name) +1229 if tmp_idl is not None: +1230 idl.append(tmp_idl) +1231 if multi > 0: +1232 tmp_values = np.array(tmp_values).reshape(data.shape) +1233 new_r_values[name] = func(tmp_values, **kwargs) +1234 new_idl_d[name] = _merge_idx(idl) +1235 if not is_merged[name]: +1236 is_merged[name] = (1 != len(set([len(idx) for idx in [*idl, new_idl_d[name]]]))) +1237 +1238 if 'man_grad' in kwargs: +1239 deriv = np.asarray(kwargs.get('man_grad')) +1240 if new_values.shape + data.shape != deriv.shape: +1241 raise Exception('Manual derivative does not have correct shape.') +1242 elif kwargs.get('num_grad') is True: +1243 if multi > 0: +1244 raise Exception('Multi mode currently not supported for numerical derivative') +1245 options = { +1246 'base_step': 0.1, +1247 'step_ratio': 2.5} +1248 for key in options.keys(): +1249 kwarg = kwargs.get(key) +1250 if kwarg is not None: +1251 options[key] = kwarg +1252 tmp_df = nd.Gradient(func, order=4, **{k: v for k, v in options.items() if v is not None})(values, **kwargs) +1253 if tmp_df.size == 1: +1254 deriv = np.array([tmp_df.real]) +1255 else: +1256 deriv = tmp_df.real +1257 else: +1258 deriv = jacobian(func)(values, **kwargs) +1259 +1260 final_result = np.zeros(new_values.shape, dtype=object) +1261 +1262 if array_mode is True: +1263 +1264 class _Zero_grad(): +1265 def __init__(self, N): +1266 self.grad = np.zeros((N, 1)) +1267 +1268 new_covobs_lengths = dict(set([y for x in [[(n, o.covobs[n].N) for n in o.cov_names] for o in raveled_data] for y in x])) +1269 d_extracted = {} +1270 g_extracted = {} +1271 for name in new_sample_names: +1272 d_extracted[name] = [] +1273 ens_length = len(new_idl_d[name]) +1274 for i_dat, dat in enumerate(data): +1275 d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas.get(name, np.zeros(ens_length)), o.idl.get(name, new_idl_d[name]), o.shape.get(name, ens_length), new_idl_d[name]) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, ))) +1276 for name in new_cov_names: +1277 g_extracted[name] = [] +1278 zero_grad = _Zero_grad(new_covobs_lengths[name]) +1279 for i_dat, dat in enumerate(data): +1280 g_extracted[name].append(np.array([o.covobs.get(name, zero_grad).grad for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (new_covobs_lengths[name], 1))) +1281 +1282 for i_val, new_val in np.ndenumerate(new_values): +1283 new_deltas = {} +1284 new_grad = {} +1285 if array_mode is True: +1286 for name in new_sample_names: +1287 ens_length = d_extracted[name][0].shape[-1] +1288 new_deltas[name] = np.zeros(ens_length) +1289 for i_dat, dat in enumerate(d_extracted[name]): +1290 new_deltas[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) +1291 for name in new_cov_names: +1292 new_grad[name] = 0 +1293 for i_dat, dat in enumerate(g_extracted[name]): +1294 new_grad[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) +1295 else: +1296 for j_obs, obs in np.ndenumerate(data): +1297 for name in obs.names: +1298 if name in obs.cov_names: +1299 new_grad[name] = new_grad.get(name, 0) + deriv[i_val + j_obs] * obs.covobs[name].grad +1300 else: +1301 new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name]) 1302 -1303 new_samples.append(filtered_deltas) -1304 new_idl.append(filtered_idl_d) -1305 new_means.append(new_r_values[name][i_val]) -1306 new_names_obs.append(name) -1307 final_result[i_val] = Obs(new_samples, new_names_obs, means=new_means, idl=new_idl) -1308 for name in new_covobs: -1309 final_result[i_val].names.append(name) -1310 final_result[i_val]._covobs = new_covobs -1311 final_result[i_val]._value = new_val -1312 final_result[i_val].is_merged = is_merged -1313 final_result[i_val].reweighted = reweighted -1314 -1315 if multi == 0: -1316 final_result = final_result.item() -1317 -1318 return final_result -1319 -1320 -1321def _reduce_deltas(deltas, idx_old, idx_new): -1322 """Extract deltas defined on idx_old on all configs of idx_new. -1323 -1324 Assumes, that idx_old and idx_new are correctly defined idl, i.e., they -1325 are ordered in an ascending order. -1326 -1327 Parameters -1328 ---------- -1329 deltas : list -1330 List of fluctuations -1331 idx_old : list -1332 List or range of configs on which the deltas are defined -1333 idx_new : list -1334 List of configs for which we want to extract the deltas. -1335 Has to be a subset of idx_old. -1336 """ -1337 if not len(deltas) == len(idx_old): -1338 raise Exception('Length of deltas and idx_old have to be the same: %d != %d' % (len(deltas), len(idx_old))) -1339 if type(idx_old) is range and type(idx_new) is range: -1340 if idx_old == idx_new: -1341 return deltas -1342 shape = len(idx_new) -1343 ret = np.zeros(shape) -1344 oldpos = 0 -1345 for i in range(shape): -1346 pos = -1 -1347 for j in range(oldpos, len(idx_old)): -1348 if idx_old[j] == idx_new[i]: -1349 pos = j -1350 break -1351 if pos < 0: -1352 raise Exception('Error in _reduce_deltas: Config %d not in idx_old' % (idx_new[i])) -1353 ret[i] = deltas[pos] -1354 oldpos = pos -1355 return np.array(ret) -1356 -1357 -1358def reweight(weight, obs, **kwargs): -1359 """Reweight a list of observables. -1360 -1361 Parameters -1362 ---------- -1363 weight : Obs -1364 Reweighting factor. An Observable that has to be defined on a superset of the -1365 configurations in obs[i].idl for all i. -1366 obs : list -1367 list of Obs, e.g. [obs1, obs2, obs3]. -1368 all_configs : bool -1369 if True, the reweighted observables are normalized by the average of -1370 the reweighting factor on all configurations in weight.idl and not -1371 on the configurations in obs[i].idl. Default False. -1372 """ -1373 result = [] -1374 for i in range(len(obs)): -1375 if len(obs[i].cov_names): -1376 raise Exception('Error: Not possible to reweight an Obs that contains covobs!') -1377 if not set(obs[i].names).issubset(weight.names): -1378 raise Exception('Error: Ensembles do not fit') -1379 for name in obs[i].names: -1380 if not set(obs[i].idl[name]).issubset(weight.idl[name]): -1381 raise Exception('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name)) -1382 new_samples = [] -1383 w_deltas = {} -1384 for name in sorted(obs[i].names): -1385 w_deltas[name] = _reduce_deltas(weight.deltas[name], weight.idl[name], obs[i].idl[name]) -1386 new_samples.append((w_deltas[name] + weight.r_values[name]) * (obs[i].deltas[name] + obs[i].r_values[name])) -1387 tmp_obs = Obs(new_samples, sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) -1388 -1389 if kwargs.get('all_configs'): -1390 new_weight = weight -1391 else: -1392 new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(obs[i].names)], sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) -1393 -1394 result.append(tmp_obs / new_weight) -1395 result[-1].reweighted = True -1396 result[-1].is_merged = obs[i].is_merged -1397 -1398 return result -1399 -1400 -1401def correlate(obs_a, obs_b): -1402 """Correlate two observables. -1403 -1404 Parameters -1405 ---------- -1406 obs_a : Obs -1407 First observable -1408 obs_b : Obs -1409 Second observable -1410 -1411 Notes -1412 ----- -1413 Keep in mind to only correlate primary observables which have not been reweighted -1414 yet. The reweighting has to be applied after correlating the observables. -1415 Currently only works if ensembles are identical (this is not strictly necessary). -1416 """ -1417 -1418 if sorted(obs_a.names) != sorted(obs_b.names): -1419 raise Exception('Ensembles do not fit') -1420 if len(obs_a.cov_names) or len(obs_b.cov_names): -1421 raise Exception('Error: Not possible to correlate Obs that contain covobs!') -1422 for name in obs_a.names: -1423 if obs_a.shape[name] != obs_b.shape[name]: -1424 raise Exception('Shapes of ensemble', name, 'do not fit') -1425 if obs_a.idl[name] != obs_b.idl[name]: -1426 raise Exception('idl of ensemble', name, 'do not fit') -1427 -1428 if obs_a.reweighted is True: -1429 warnings.warn("The first observable is already reweighted.", RuntimeWarning) -1430 if obs_b.reweighted is True: -1431 warnings.warn("The second observable is already reweighted.", RuntimeWarning) -1432 -1433 new_samples = [] -1434 new_idl = [] -1435 for name in sorted(obs_a.names): -1436 new_samples.append((obs_a.deltas[name] + obs_a.r_values[name]) * (obs_b.deltas[name] + obs_b.r_values[name])) -1437 new_idl.append(obs_a.idl[name]) -1438 -1439 o = Obs(new_samples, sorted(obs_a.names), idl=new_idl) -1440 o.is_merged = {name: (obs_a.is_merged.get(name, False) or obs_b.is_merged.get(name, False)) for name in o.names} -1441 o.reweighted = obs_a.reweighted or obs_b.reweighted -1442 return o +1303 new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad} +1304 +1305 if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()): +1306 raise Exception('The same name has been used for deltas and covobs!') +1307 new_samples = [] +1308 new_means = [] +1309 new_idl = [] +1310 new_names_obs = [] +1311 for name in new_names: +1312 if name not in new_covobs: +1313 if is_merged[name]: +1314 filtered_deltas, filtered_idl_d = _filter_zeroes(new_deltas[name], new_idl_d[name]) +1315 else: +1316 filtered_deltas = new_deltas[name] +1317 filtered_idl_d = new_idl_d[name] +1318 +1319 new_samples.append(filtered_deltas) +1320 new_idl.append(filtered_idl_d) +1321 new_means.append(new_r_values[name][i_val]) +1322 new_names_obs.append(name) +1323 final_result[i_val] = Obs(new_samples, new_names_obs, means=new_means, idl=new_idl) +1324 for name in new_covobs: +1325 final_result[i_val].names.append(name) +1326 final_result[i_val]._covobs = new_covobs +1327 final_result[i_val]._value = new_val +1328 final_result[i_val].is_merged = is_merged +1329 final_result[i_val].reweighted = reweighted +1330 +1331 if multi == 0: +1332 final_result = final_result.item() +1333 +1334 return final_result +1335 +1336 +1337def _reduce_deltas(deltas, idx_old, idx_new): +1338 """Extract deltas defined on idx_old on all configs of idx_new. +1339 +1340 Assumes, that idx_old and idx_new are correctly defined idl, i.e., they +1341 are ordered in an ascending order. +1342 +1343 Parameters +1344 ---------- +1345 deltas : list +1346 List of fluctuations +1347 idx_old : list +1348 List or range of configs on which the deltas are defined +1349 idx_new : list +1350 List of configs for which we want to extract the deltas. +1351 Has to be a subset of idx_old. +1352 """ +1353 if not len(deltas) == len(idx_old): +1354 raise Exception('Length of deltas and idx_old have to be the same: %d != %d' % (len(deltas), len(idx_old))) +1355 if type(idx_old) is range and type(idx_new) is range: +1356 if idx_old == idx_new: +1357 return deltas +1358 shape = len(idx_new) +1359 ret = np.zeros(shape) +1360 oldpos = 0 +1361 for i in range(shape): +1362 pos = -1 +1363 for j in range(oldpos, len(idx_old)): +1364 if idx_old[j] == idx_new[i]: +1365 pos = j +1366 break +1367 if pos < 0: +1368 raise Exception('Error in _reduce_deltas: Config %d not in idx_old' % (idx_new[i])) +1369 ret[i] = deltas[pos] +1370 oldpos = pos +1371 return np.array(ret) +1372 +1373 +1374def reweight(weight, obs, **kwargs): +1375 """Reweight a list of observables. +1376 +1377 Parameters +1378 ---------- +1379 weight : Obs +1380 Reweighting factor. An Observable that has to be defined on a superset of the +1381 configurations in obs[i].idl for all i. +1382 obs : list +1383 list of Obs, e.g. [obs1, obs2, obs3]. +1384 all_configs : bool +1385 if True, the reweighted observables are normalized by the average of +1386 the reweighting factor on all configurations in weight.idl and not +1387 on the configurations in obs[i].idl. Default False. +1388 """ +1389 result = [] +1390 for i in range(len(obs)): +1391 if len(obs[i].cov_names): +1392 raise Exception('Error: Not possible to reweight an Obs that contains covobs!') +1393 if not set(obs[i].names).issubset(weight.names): +1394 raise Exception('Error: Ensembles do not fit') +1395 for name in obs[i].names: +1396 if not set(obs[i].idl[name]).issubset(weight.idl[name]): +1397 raise Exception('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name)) +1398 new_samples = [] +1399 w_deltas = {} +1400 for name in sorted(obs[i].names): +1401 w_deltas[name] = _reduce_deltas(weight.deltas[name], weight.idl[name], obs[i].idl[name]) +1402 new_samples.append((w_deltas[name] + weight.r_values[name]) * (obs[i].deltas[name] + obs[i].r_values[name])) +1403 tmp_obs = Obs(new_samples, sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) +1404 +1405 if kwargs.get('all_configs'): +1406 new_weight = weight +1407 else: +1408 new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(obs[i].names)], sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) +1409 +1410 result.append(tmp_obs / new_weight) +1411 result[-1].reweighted = True +1412 result[-1].is_merged = obs[i].is_merged +1413 +1414 return result +1415 +1416 +1417def correlate(obs_a, obs_b): +1418 """Correlate two observables. +1419 +1420 Parameters +1421 ---------- +1422 obs_a : Obs +1423 First observable +1424 obs_b : Obs +1425 Second observable +1426 +1427 Notes +1428 ----- +1429 Keep in mind to only correlate primary observables which have not been reweighted +1430 yet. The reweighting has to be applied after correlating the observables. +1431 Currently only works if ensembles are identical (this is not strictly necessary). +1432 """ +1433 +1434 if sorted(obs_a.names) != sorted(obs_b.names): +1435 raise Exception('Ensembles do not fit') +1436 if len(obs_a.cov_names) or len(obs_b.cov_names): +1437 raise Exception('Error: Not possible to correlate Obs that contain covobs!') +1438 for name in obs_a.names: +1439 if obs_a.shape[name] != obs_b.shape[name]: +1440 raise Exception('Shapes of ensemble', name, 'do not fit') +1441 if obs_a.idl[name] != obs_b.idl[name]: +1442 raise Exception('idl of ensemble', name, 'do not fit') 1443 -1444 -1445def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs): -1446 r'''Calculates the error covariance matrix of a set of observables. -1447 -1448 The gamma method has to be applied first to all observables. -1449 -1450 Parameters -1451 ---------- -1452 obs : list or numpy.ndarray -1453 List or one dimensional array of Obs -1454 visualize : bool -1455 If True plots the corresponding normalized correlation matrix (default False). -1456 correlation : bool -1457 If True the correlation matrix instead of the error covariance matrix is returned (default False). -1458 smooth : None or int -1459 If smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue -1460 smoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the -1461 largest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely -1462 small ones. +1444 if obs_a.reweighted is True: +1445 warnings.warn("The first observable is already reweighted.", RuntimeWarning) +1446 if obs_b.reweighted is True: +1447 warnings.warn("The second observable is already reweighted.", RuntimeWarning) +1448 +1449 new_samples = [] +1450 new_idl = [] +1451 for name in sorted(obs_a.names): +1452 new_samples.append((obs_a.deltas[name] + obs_a.r_values[name]) * (obs_b.deltas[name] + obs_b.r_values[name])) +1453 new_idl.append(obs_a.idl[name]) +1454 +1455 o = Obs(new_samples, sorted(obs_a.names), idl=new_idl) +1456 o.is_merged = {name: (obs_a.is_merged.get(name, False) or obs_b.is_merged.get(name, False)) for name in o.names} +1457 o.reweighted = obs_a.reweighted or obs_b.reweighted +1458 return o +1459 +1460 +1461def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs): +1462 r'''Calculates the error covariance matrix of a set of observables. 1463 -1464 Notes -1465 ----- -1466 The error covariance is defined such that it agrees with the squared standard error for two identical observables -1467 $$\operatorname{cov}(a,a)=\sum_{s=1}^N\delta_a^s\delta_a^s/N^2=\Gamma_{aa}(0)/N=\operatorname{var}(a)/N=\sigma_a^2$$ -1468 in the absence of autocorrelation. -1469 The error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite -1470 $$\sum_{i,j}v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v\in\mathbb{R}^M$, while such an identity does not hold for larger windows/lags. -1471 For observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements. -1472 $$\tau_{\mathrm{int}, ij}=\sqrt{\tau_{\mathrm{int}, i}\times \tau_{\mathrm{int}, j}}$$ -1473 This construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors). -1474 ''' -1475 -1476 length = len(obs) -1477 -1478 max_samples = np.max([o.N for o in obs]) -1479 if max_samples <= length and not [item for sublist in [o.cov_names for o in obs] for item in sublist]: -1480 warnings.warn(f"The dimension of the covariance matrix ({length}) is larger or equal to the number of samples ({max_samples}). This will result in a rank deficient matrix.", RuntimeWarning) -1481 -1482 cov = np.zeros((length, length)) -1483 for i in range(length): -1484 for j in range(i, length): -1485 cov[i, j] = _covariance_element(obs[i], obs[j]) -1486 cov = cov + cov.T - np.diag(np.diag(cov)) -1487 -1488 corr = np.diag(1 / np.sqrt(np.diag(cov))) @ cov @ np.diag(1 / np.sqrt(np.diag(cov))) -1489 -1490 if isinstance(smooth, int): -1491 corr = _smooth_eigenvalues(corr, smooth) -1492 -1493 if visualize: -1494 plt.matshow(corr, vmin=-1, vmax=1) -1495 plt.set_cmap('RdBu') -1496 plt.colorbar() -1497 plt.draw() -1498 -1499 if correlation is True: -1500 return corr -1501 -1502 errors = [o.dvalue for o in obs] -1503 cov = np.diag(errors) @ corr @ np.diag(errors) -1504 -1505 eigenvalues = np.linalg.eigh(cov)[0] -1506 if not np.all(eigenvalues >= 0): -1507 warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning) +1464 The gamma method has to be applied first to all observables. +1465 +1466 Parameters +1467 ---------- +1468 obs : list or numpy.ndarray +1469 List or one dimensional array of Obs +1470 visualize : bool +1471 If True plots the corresponding normalized correlation matrix (default False). +1472 correlation : bool +1473 If True the correlation matrix instead of the error covariance matrix is returned (default False). +1474 smooth : None or int +1475 If smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue +1476 smoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the +1477 largest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely +1478 small ones. +1479 +1480 Notes +1481 ----- +1482 The error covariance is defined such that it agrees with the squared standard error for two identical observables +1483 $$\operatorname{cov}(a,a)=\sum_{s=1}^N\delta_a^s\delta_a^s/N^2=\Gamma_{aa}(0)/N=\operatorname{var}(a)/N=\sigma_a^2$$ +1484 in the absence of autocorrelation. +1485 The error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite +1486 $$\sum_{i,j}v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v\in\mathbb{R}^M$, while such an identity does not hold for larger windows/lags. +1487 For observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements. +1488 $$\tau_{\mathrm{int}, ij}=\sqrt{\tau_{\mathrm{int}, i}\times \tau_{\mathrm{int}, j}}$$ +1489 This construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors). +1490 ''' +1491 +1492 length = len(obs) +1493 +1494 max_samples = np.max([o.N for o in obs]) +1495 if max_samples <= length and not [item for sublist in [o.cov_names for o in obs] for item in sublist]: +1496 warnings.warn(f"The dimension of the covariance matrix ({length}) is larger or equal to the number of samples ({max_samples}). This will result in a rank deficient matrix.", RuntimeWarning) +1497 +1498 cov = np.zeros((length, length)) +1499 for i in range(length): +1500 for j in range(i, length): +1501 cov[i, j] = _covariance_element(obs[i], obs[j]) +1502 cov = cov + cov.T - np.diag(np.diag(cov)) +1503 +1504 corr = np.diag(1 / np.sqrt(np.diag(cov))) @ cov @ np.diag(1 / np.sqrt(np.diag(cov))) +1505 +1506 if isinstance(smooth, int): +1507 corr = _smooth_eigenvalues(corr, smooth) 1508 -1509 return cov -1510 -1511 -1512def _smooth_eigenvalues(corr, E): -1513 """Eigenvalue smoothing as described in hep-lat/9412087 +1509 if visualize: +1510 plt.matshow(corr, vmin=-1, vmax=1) +1511 plt.set_cmap('RdBu') +1512 plt.colorbar() +1513 plt.draw() 1514 -1515 corr : np.ndarray -1516 correlation matrix -1517 E : integer -1518 Number of eigenvalues to be left substantially unchanged -1519 """ -1520 if not (2 < E < corr.shape[0] - 1): -1521 raise Exception(f"'E' has to be between 2 and the dimension of the correlation matrix minus 1 ({corr.shape[0] - 1}).") -1522 vals, vec = np.linalg.eigh(corr) -1523 lambda_min = np.mean(vals[:-E]) -1524 vals[vals < lambda_min] = lambda_min -1525 vals /= np.mean(vals) -1526 return vec @ np.diag(vals) @ vec.T +1515 if correlation is True: +1516 return corr +1517 +1518 errors = [o.dvalue for o in obs] +1519 cov = np.diag(errors) @ corr @ np.diag(errors) +1520 +1521 eigenvalues = np.linalg.eigh(cov)[0] +1522 if not np.all(eigenvalues >= 0): +1523 warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning) +1524 +1525 return cov +1526 1527 -1528 -1529def _covariance_element(obs1, obs2): -1530 """Estimates the covariance of two Obs objects, neglecting autocorrelations.""" -1531 -1532 def calc_gamma(deltas1, deltas2, idx1, idx2, new_idx): -1533 deltas1 = _collapse_deltas_for_merge(deltas1, idx1, len(idx1), new_idx) -1534 deltas2 = _collapse_deltas_for_merge(deltas2, idx2, len(idx2), new_idx) -1535 return np.sum(deltas1 * deltas2) -1536 -1537 if set(obs1.names).isdisjoint(set(obs2.names)): -1538 return 0.0 -1539 -1540 if not hasattr(obs1, 'e_dvalue') or not hasattr(obs2, 'e_dvalue'): -1541 raise Exception('The gamma method has to be applied to both Obs first.') -1542 -1543 dvalue = 0.0 +1528def _smooth_eigenvalues(corr, E): +1529 """Eigenvalue smoothing as described in hep-lat/9412087 +1530 +1531 corr : np.ndarray +1532 correlation matrix +1533 E : integer +1534 Number of eigenvalues to be left substantially unchanged +1535 """ +1536 if not (2 < E < corr.shape[0] - 1): +1537 raise Exception(f"'E' has to be between 2 and the dimension of the correlation matrix minus 1 ({corr.shape[0] - 1}).") +1538 vals, vec = np.linalg.eigh(corr) +1539 lambda_min = np.mean(vals[:-E]) +1540 vals[vals < lambda_min] = lambda_min +1541 vals /= np.mean(vals) +1542 return vec @ np.diag(vals) @ vec.T +1543 1544 -1545 for e_name in obs1.mc_names: -1546 -1547 if e_name not in obs2.mc_names: -1548 continue -1549 -1550 idl_d = {} -1551 for r_name in obs1.e_content[e_name]: -1552 if r_name not in obs2.e_content[e_name]: -1553 continue -1554 idl_d[r_name] = _intersection_idx([obs1.idl[r_name], obs2.idl[r_name]]) +1545def _covariance_element(obs1, obs2): +1546 """Estimates the covariance of two Obs objects, neglecting autocorrelations.""" +1547 +1548 def calc_gamma(deltas1, deltas2, idx1, idx2, new_idx): +1549 deltas1 = _collapse_deltas_for_merge(deltas1, idx1, len(idx1), new_idx) +1550 deltas2 = _collapse_deltas_for_merge(deltas2, idx2, len(idx2), new_idx) +1551 return np.sum(deltas1 * deltas2) +1552 +1553 if set(obs1.names).isdisjoint(set(obs2.names)): +1554 return 0.0 1555 -1556 gamma = 0.0 -1557 -1558 for r_name in obs1.e_content[e_name]: -1559 if r_name not in obs2.e_content[e_name]: -1560 continue -1561 if len(idl_d[r_name]) == 0: -1562 continue -1563 gamma += calc_gamma(obs1.deltas[r_name], obs2.deltas[r_name], obs1.idl[r_name], obs2.idl[r_name], idl_d[r_name]) -1564 -1565 if gamma == 0.0: -1566 continue -1567 -1568 gamma_div = 0.0 -1569 for r_name in obs1.e_content[e_name]: -1570 if r_name not in obs2.e_content[e_name]: -1571 continue -1572 if len(idl_d[r_name]) == 0: -1573 continue -1574 gamma_div += np.sqrt(calc_gamma(obs1.deltas[r_name], obs1.deltas[r_name], obs1.idl[r_name], obs1.idl[r_name], idl_d[r_name]) * calc_gamma(obs2.deltas[r_name], obs2.deltas[r_name], obs2.idl[r_name], obs2.idl[r_name], idl_d[r_name])) -1575 gamma /= gamma_div -1576 -1577 dvalue += gamma -1578 -1579 for e_name in obs1.cov_names: +1556 if not hasattr(obs1, 'e_dvalue') or not hasattr(obs2, 'e_dvalue'): +1557 raise Exception('The gamma method has to be applied to both Obs first.') +1558 +1559 dvalue = 0.0 +1560 +1561 for e_name in obs1.mc_names: +1562 +1563 if e_name not in obs2.mc_names: +1564 continue +1565 +1566 idl_d = {} +1567 for r_name in obs1.e_content[e_name]: +1568 if r_name not in obs2.e_content[e_name]: +1569 continue +1570 idl_d[r_name] = _intersection_idx([obs1.idl[r_name], obs2.idl[r_name]]) +1571 +1572 gamma = 0.0 +1573 +1574 for r_name in obs1.e_content[e_name]: +1575 if r_name not in obs2.e_content[e_name]: +1576 continue +1577 if len(idl_d[r_name]) == 0: +1578 continue +1579 gamma += calc_gamma(obs1.deltas[r_name], obs2.deltas[r_name], obs1.idl[r_name], obs2.idl[r_name], idl_d[r_name]) 1580 -1581 if e_name not in obs2.cov_names: +1581 if gamma == 0.0: 1582 continue 1583 -1584 dvalue += float(np.dot(np.transpose(obs1.covobs[e_name].grad), np.dot(obs1.covobs[e_name].cov, obs2.covobs[e_name].grad))) -1585 -1586 return dvalue -1587 -1588 -1589def import_jackknife(jacks, name, idl=None): -1590 """Imports jackknife samples and returns an Obs -1591 -1592 Parameters -1593 ---------- -1594 jacks : numpy.ndarray -1595 numpy array containing the mean value as zeroth entry and -1596 the N jackknife samples as first to Nth entry. -1597 name : str -1598 name of the ensemble the samples are defined on. -1599 """ -1600 length = len(jacks) - 1 -1601 prj = (np.ones((length, length)) - (length - 1) * np.identity(length)) -1602 samples = jacks[1:] @ prj -1603 mean = np.mean(samples) -1604 new_obs = Obs([samples - mean], [name], idl=idl, means=[mean]) -1605 new_obs._value = jacks[0] -1606 return new_obs +1584 gamma_div = 0.0 +1585 for r_name in obs1.e_content[e_name]: +1586 if r_name not in obs2.e_content[e_name]: +1587 continue +1588 if len(idl_d[r_name]) == 0: +1589 continue +1590 gamma_div += np.sqrt(calc_gamma(obs1.deltas[r_name], obs1.deltas[r_name], obs1.idl[r_name], obs1.idl[r_name], idl_d[r_name]) * calc_gamma(obs2.deltas[r_name], obs2.deltas[r_name], obs2.idl[r_name], obs2.idl[r_name], idl_d[r_name])) +1591 gamma /= gamma_div +1592 +1593 dvalue += gamma +1594 +1595 for e_name in obs1.cov_names: +1596 +1597 if e_name not in obs2.cov_names: +1598 continue +1599 +1600 dvalue += float(np.dot(np.transpose(obs1.covobs[e_name].grad), np.dot(obs1.covobs[e_name].cov, obs2.covobs[e_name].grad))) +1601 +1602 return dvalue +1603 +1604 +1605def import_jackknife(jacks, name, idl=None): +1606 """Imports jackknife samples and returns an Obs 1607 -1608 -1609def merge_obs(list_of_obs): -1610 """Combine all observables in list_of_obs into one new observable -1611 -1612 Parameters -1613 ---------- -1614 list_of_obs : list -1615 list of the Obs object to be combined -1616 -1617 Notes -1618 ----- -1619 It is not possible to combine obs which are based on the same replicum -1620 """ -1621 replist = [item for obs in list_of_obs for item in obs.names] -1622 if (len(replist) == len(set(replist))) is False: -1623 raise Exception('list_of_obs contains duplicate replica: %s' % (str(replist))) -1624 if any([len(o.cov_names) for o in list_of_obs]): -1625 raise Exception('Not possible to merge data that contains covobs!') -1626 new_dict = {} -1627 idl_dict = {} -1628 for o in list_of_obs: -1629 new_dict.update({key: o.deltas.get(key, 0) + o.r_values.get(key, 0) -1630 for key in set(o.deltas) | set(o.r_values)}) -1631 idl_dict.update({key: o.idl.get(key, 0) for key in set(o.deltas)}) +1608 Parameters +1609 ---------- +1610 jacks : numpy.ndarray +1611 numpy array containing the mean value as zeroth entry and +1612 the N jackknife samples as first to Nth entry. +1613 name : str +1614 name of the ensemble the samples are defined on. +1615 """ +1616 length = len(jacks) - 1 +1617 prj = (np.ones((length, length)) - (length - 1) * np.identity(length)) +1618 samples = jacks[1:] @ prj +1619 mean = np.mean(samples) +1620 new_obs = Obs([samples - mean], [name], idl=idl, means=[mean]) +1621 new_obs._value = jacks[0] +1622 return new_obs +1623 +1624 +1625def merge_obs(list_of_obs): +1626 """Combine all observables in list_of_obs into one new observable +1627 +1628 Parameters +1629 ---------- +1630 list_of_obs : list +1631 list of the Obs object to be combined 1632 -1633 names = sorted(new_dict.keys()) -1634 o = Obs([new_dict[name] for name in names], names, idl=[idl_dict[name] for name in names]) -1635 o.is_merged = {name: np.any([oi.is_merged.get(name, False) for oi in list_of_obs]) for name in o.names} -1636 o.reweighted = np.max([oi.reweighted for oi in list_of_obs]) -1637 return o -1638 -1639 -1640def cov_Obs(means, cov, name, grad=None): -1641 """Create an Obs based on mean(s) and a covariance matrix -1642 -1643 Parameters -1644 ---------- -1645 mean : list of floats or float -1646 N mean value(s) of the new Obs -1647 cov : list or array -1648 2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance -1649 name : str -1650 identifier for the covariance matrix -1651 grad : list or array -1652 Gradient of the Covobs wrt. the means belonging to cov. -1653 """ +1633 Notes +1634 ----- +1635 It is not possible to combine obs which are based on the same replicum +1636 """ +1637 replist = [item for obs in list_of_obs for item in obs.names] +1638 if (len(replist) == len(set(replist))) is False: +1639 raise Exception('list_of_obs contains duplicate replica: %s' % (str(replist))) +1640 if any([len(o.cov_names) for o in list_of_obs]): +1641 raise Exception('Not possible to merge data that contains covobs!') +1642 new_dict = {} +1643 idl_dict = {} +1644 for o in list_of_obs: +1645 new_dict.update({key: o.deltas.get(key, 0) + o.r_values.get(key, 0) +1646 for key in set(o.deltas) | set(o.r_values)}) +1647 idl_dict.update({key: o.idl.get(key, 0) for key in set(o.deltas)}) +1648 +1649 names = sorted(new_dict.keys()) +1650 o = Obs([new_dict[name] for name in names], names, idl=[idl_dict[name] for name in names]) +1651 o.is_merged = {name: np.any([oi.is_merged.get(name, False) for oi in list_of_obs]) for name in o.names} +1652 o.reweighted = np.max([oi.reweighted for oi in list_of_obs]) +1653 return o 1654 -1655 def covobs_to_obs(co): -1656 """Make an Obs out of a Covobs -1657 -1658 Parameters -1659 ---------- -1660 co : Covobs -1661 Covobs to be embedded into the Obs -1662 """ -1663 o = Obs([], [], means=[]) -1664 o._value = co.value -1665 o.names.append(co.name) -1666 o._covobs[co.name] = co -1667 o._dvalue = np.sqrt(co.errsq()) -1668 return o -1669 -1670 ol = [] -1671 if isinstance(means, (float, int)): -1672 means = [means] +1655 +1656def cov_Obs(means, cov, name, grad=None): +1657 """Create an Obs based on mean(s) and a covariance matrix +1658 +1659 Parameters +1660 ---------- +1661 mean : list of floats or float +1662 N mean value(s) of the new Obs +1663 cov : list or array +1664 2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance +1665 name : str +1666 identifier for the covariance matrix +1667 grad : list or array +1668 Gradient of the Covobs wrt. the means belonging to cov. +1669 """ +1670 +1671 def covobs_to_obs(co): +1672 """Make an Obs out of a Covobs 1673 -1674 for i in range(len(means)): -1675 ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad))) -1676 if ol[0].covobs[name].N != len(means): -1677 raise Exception('You have to provide %d mean values!' % (ol[0].N)) -1678 if len(ol) == 1: -1679 return ol[0] -1680 return ol +1674 Parameters +1675 ---------- +1676 co : Covobs +1677 Covobs to be embedded into the Obs +1678 """ +1679 o = Obs([], [], means=[]) +1680 o._value = co.value +1681 o.names.append(co.name) +1682 o._covobs[co.name] = co +1683 o._dvalue = np.sqrt(co.errsq()) +1684 return o +1685 +1686 ol = [] +1687 if isinstance(means, (float, int)): +1688 means = [means] +1689 +1690 for i in range(len(means)): +1691 ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad))) +1692 if ol[0].covobs[name].N != len(means): +1693 raise Exception('You have to provide %d mean values!' % (ol[0].N)) +1694 if len(ol) == 1: +1695 return ol[0] +1696 return ol @@ -2278,466 +2294,471 @@ 400 print('Result\t %3.8e +/- %3.8e +/- %3.8e (%3.3f%%)' % (self.value, self._dvalue, self.ddvalue, percentage)) 401 if len(self.e_names) > 1: 402 print(' Ensemble errors:') -403 for e_name in self.mc_names: -404 if len(self.e_names) > 1: -405 print('', e_name, '\t %3.8e +/- %3.8e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name])) -406 if self.tau_exp[e_name] > 0: -407 print(' t_int\t %3.8e +/- %3.8e tau_exp = %3.2f, N_sigma = %1.0i' % (self.e_tauint[e_name], self.e_dtauint[e_name], self.tau_exp[e_name], self.N_sigma[e_name])) -408 else: -409 print(' t_int\t %3.8e +/- %3.8e S = %3.2f' % (self.e_tauint[e_name], self.e_dtauint[e_name], self.S[e_name])) -410 for e_name in self.cov_names: -411 print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name])) -412 if ens_content is True: -413 if len(self.e_names) == 1: -414 print(self.N, 'samples in', len(self.e_names), 'ensemble:') -415 else: -416 print(self.N, 'samples in', len(self.e_names), 'ensembles:') -417 my_string_list = [] -418 for key, value in sorted(self.e_content.items()): -419 if key not in self.covobs: -420 my_string = ' ' + "\u00B7 Ensemble '" + key + "' " -421 if len(value) == 1: -422 my_string += f': {self.shape[value[0]]} configurations' -423 if isinstance(self.idl[value[0]], range): -424 my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')' -425 else: -426 my_string += ' (irregular range)' -427 else: -428 sublist = [] -429 for v in value: -430 my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' " -431 my_substring += f': {self.shape[v]} configurations' -432 if isinstance(self.idl[v], range): -433 my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')' -434 else: -435 my_substring += ' (irregular range)' -436 sublist.append(my_substring) -437 -438 my_string += '\n' + '\n'.join(sublist) -439 else: -440 my_string = ' ' + "\u00B7 Covobs '" + key + "' " -441 my_string_list.append(my_string) -442 print('\n'.join(my_string_list)) -443 -444 def reweight(self, weight): -445 """Reweight the obs with given rewighting factors. -446 -447 Parameters -448 ---------- -449 weight : Obs -450 Reweighting factor. An Observable that has to be defined on a superset of the -451 configurations in obs[i].idl for all i. -452 all_configs : bool -453 if True, the reweighted observables are normalized by the average of -454 the reweighting factor on all configurations in weight.idl and not -455 on the configurations in obs[i].idl. Default False. -456 """ -457 return reweight(weight, [self])[0] -458 -459 def is_zero_within_error(self, sigma=1): -460 """Checks whether the observable is zero within 'sigma' standard errors. -461 -462 Parameters -463 ---------- -464 sigma : int -465 Number of standard errors used for the check. -466 -467 Works only properly when the gamma method was run. -468 """ -469 return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue -470 -471 def is_zero(self, atol=1e-10): -472 """Checks whether the observable is zero within a given tolerance. -473 -474 Parameters -475 ---------- -476 atol : float -477 Absolute tolerance (for details see numpy documentation). -478 """ -479 return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values()) -480 -481 def plot_tauint(self, save=None): -482 """Plot integrated autocorrelation time for each ensemble. -483 -484 Parameters -485 ---------- -486 save : str -487 saves the figure to a file named 'save' if. -488 """ -489 if not hasattr(self, 'e_dvalue'): -490 raise Exception('Run the gamma method first.') +403 e_content = self.e_content +404 for e_name in self.mc_names: +405 if isinstance(self.idl[e_content[e_name][0]], range): +406 gap = self.idl[e_content[e_name][0]].step +407 else: +408 gap = np.min(np.diff(self.idl[e_content[e_name][0]])) +409 +410 if len(self.e_names) > 1: +411 print('', e_name, '\t %3.6e +/- %3.6e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name])) +412 tau_string = " \N{GREEK SMALL LETTER TAU}_int\t " + _format_uncertainty(self.e_tauint[e_name], self.e_dtauint[e_name]) +413 tau_string += f" in units of {gap} config" +414 if gap > 1: +415 tau_string += "s" +416 if self.tau_exp[e_name] > 0: +417 tau_string = f"{tau_string: <45}" + '\t(\N{GREEK SMALL LETTER TAU}_exp=%3.2f, N_\N{GREEK SMALL LETTER SIGMA}=%1.0i)' % (self.tau_exp[e_name], self.N_sigma[e_name]) +418 else: +419 tau_string = f"{tau_string: <45}" + '\t(S=%3.2f)' % (self.S[e_name]) +420 print(tau_string) +421 for e_name in self.cov_names: +422 print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name])) +423 if ens_content is True: +424 if len(self.e_names) == 1: +425 print(self.N, 'samples in', len(self.e_names), 'ensemble:') +426 else: +427 print(self.N, 'samples in', len(self.e_names), 'ensembles:') +428 my_string_list = [] +429 for key, value in sorted(self.e_content.items()): +430 if key not in self.covobs: +431 my_string = ' ' + "\u00B7 Ensemble '" + key + "' " +432 if len(value) == 1: +433 my_string += f': {self.shape[value[0]]} configurations' +434 if isinstance(self.idl[value[0]], range): +435 my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')' +436 else: +437 my_string += f' (irregular range from {self.idl[value[0]][0]} to {self.idl[value[0]][-1]})' +438 else: +439 sublist = [] +440 for v in value: +441 my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' " +442 my_substring += f': {self.shape[v]} configurations' +443 if isinstance(self.idl[v], range): +444 my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')' +445 else: +446 my_substring += f' (irregular range from {self.idl[v][0]} to {self.idl[v][-1]})' +447 sublist.append(my_substring) +448 +449 my_string += '\n' + '\n'.join(sublist) +450 else: +451 my_string = ' ' + "\u00B7 Covobs '" + key + "' " +452 my_string_list.append(my_string) +453 print('\n'.join(my_string_list)) +454 +455 def reweight(self, weight): +456 """Reweight the obs with given rewighting factors. +457 +458 Parameters +459 ---------- +460 weight : Obs +461 Reweighting factor. An Observable that has to be defined on a superset of the +462 configurations in obs[i].idl for all i. +463 all_configs : bool +464 if True, the reweighted observables are normalized by the average of +465 the reweighting factor on all configurations in weight.idl and not +466 on the configurations in obs[i].idl. Default False. +467 """ +468 return reweight(weight, [self])[0] +469 +470 def is_zero_within_error(self, sigma=1): +471 """Checks whether the observable is zero within 'sigma' standard errors. +472 +473 Parameters +474 ---------- +475 sigma : int +476 Number of standard errors used for the check. +477 +478 Works only properly when the gamma method was run. +479 """ +480 return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue +481 +482 def is_zero(self, atol=1e-10): +483 """Checks whether the observable is zero within a given tolerance. +484 +485 Parameters +486 ---------- +487 atol : float +488 Absolute tolerance (for details see numpy documentation). +489 """ +490 return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values()) 491 -492 for e, e_name in enumerate(self.mc_names): -493 fig = plt.figure() -494 plt.xlabel(r'$W$') -495 plt.ylabel(r'$\tau_\mathrm{int}$') -496 length = int(len(self.e_n_tauint[e_name])) -497 if self.tau_exp[e_name] > 0: -498 base = self.e_n_tauint[e_name][self.e_windowsize[e_name]] -499 x_help = np.arange(2 * self.tau_exp[e_name]) -500 y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base -501 x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]) -502 plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',') -503 plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]], -504 yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor']) -505 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 -506 label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2)) -507 else: -508 label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)) -509 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) -510 -511 plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label) -512 plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--') -513 plt.legend() -514 plt.xlim(-0.5, xmax) -515 ylim = plt.ylim() -516 plt.ylim(bottom=0.0, top=max(1.0, ylim[1])) -517 plt.draw() -518 if save: -519 fig.savefig(save + "_" + str(e)) -520 -521 def plot_rho(self, save=None): -522 """Plot normalized autocorrelation function time for each ensemble. -523 -524 Parameters -525 ---------- -526 save : str -527 saves the figure to a file named 'save' if. -528 """ -529 if not hasattr(self, 'e_dvalue'): -530 raise Exception('Run the gamma method first.') -531 for e, e_name in enumerate(self.mc_names): -532 fig = plt.figure() -533 plt.xlabel('W') -534 plt.ylabel('rho') -535 length = int(len(self.e_drho[e_name])) -536 plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2) -537 plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',') -538 if self.tau_exp[e_name] > 0: -539 plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]], -540 [self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1) -541 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 -542 plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2))) -543 else: -544 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) -545 plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))) -546 plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1) -547 plt.xlim(-0.5, xmax) -548 plt.draw() -549 if save: -550 fig.savefig(save + "_" + str(e)) -551 -552 def plot_rep_dist(self): -553 """Plot replica distribution for each ensemble with more than one replicum.""" -554 if not hasattr(self, 'e_dvalue'): -555 raise Exception('Run the gamma method first.') -556 for e, e_name in enumerate(self.mc_names): -557 if len(self.e_content[e_name]) == 1: -558 print('No replica distribution for a single replicum (', e_name, ')') -559 continue -560 r_length = [] -561 sub_r_mean = 0 -562 for r, r_name in enumerate(self.e_content[e_name]): -563 r_length.append(len(self.deltas[r_name])) -564 sub_r_mean += self.shape[r_name] * self.r_values[r_name] -565 e_N = np.sum(r_length) -566 sub_r_mean /= e_N -567 arr = np.zeros(len(self.e_content[e_name])) -568 for r, r_name in enumerate(self.e_content[e_name]): -569 arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1)) -570 plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name])) -571 plt.title('Replica distribution' + e_name + ' (mean=0, var=1)') -572 plt.draw() -573 -574 def plot_history(self, expand=True): -575 """Plot derived Monte Carlo history for each ensemble -576 -577 Parameters -578 ---------- -579 expand : bool -580 show expanded history for irregular Monte Carlo chains (default: True). -581 """ -582 for e, e_name in enumerate(self.mc_names): -583 plt.figure() -584 r_length = [] -585 tmp = [] -586 tmp_expanded = [] -587 for r, r_name in enumerate(self.e_content[e_name]): -588 tmp.append(self.deltas[r_name] + self.r_values[r_name]) -589 if expand: -590 tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name]) + self.r_values[r_name]) -591 r_length.append(len(tmp_expanded[-1])) -592 else: -593 r_length.append(len(tmp[-1])) -594 e_N = np.sum(r_length) -595 x = np.arange(e_N) -596 y_test = np.concatenate(tmp, axis=0) -597 if expand: -598 y = np.concatenate(tmp_expanded, axis=0) -599 else: -600 y = y_test -601 plt.errorbar(x, y, fmt='.', markersize=3) -602 plt.xlim(-0.5, e_N - 0.5) -603 plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})') -604 plt.draw() -605 -606 def plot_piechart(self, save=None): -607 """Plot piechart which shows the fractional contribution of each -608 ensemble to the error and returns a dictionary containing the fractions. -609 -610 Parameters -611 ---------- -612 save : str -613 saves the figure to a file named 'save' if. -614 """ -615 if not hasattr(self, 'e_dvalue'): -616 raise Exception('Run the gamma method first.') -617 if np.isclose(0.0, self._dvalue, atol=1e-15): -618 raise Exception('Error is 0.0') -619 labels = self.e_names -620 sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 -621 fig1, ax1 = plt.subplots() -622 ax1.pie(sizes, labels=labels, startangle=90, normalize=True) -623 ax1.axis('equal') -624 plt.draw() -625 if save: -626 fig1.savefig(save) -627 -628 return dict(zip(self.e_names, sizes)) -629 -630 def dump(self, filename, datatype="json.gz", description="", **kwargs): -631 """Dump the Obs to a file 'name' of chosen format. -632 -633 Parameters -634 ---------- -635 filename : str -636 name of the file to be saved. -637 datatype : str -638 Format of the exported file. Supported formats include -639 "json.gz" and "pickle" -640 description : str -641 Description for output file, only relevant for json.gz format. -642 path : str -643 specifies a custom path for the file (default '.') -644 """ -645 if 'path' in kwargs: -646 file_name = kwargs.get('path') + '/' + filename -647 else: -648 file_name = filename -649 -650 if datatype == "json.gz": -651 from .input.json import dump_to_json -652 dump_to_json([self], file_name, description=description) -653 elif datatype == "pickle": -654 with open(file_name + '.p', 'wb') as fb: -655 pickle.dump(self, fb) -656 else: -657 raise Exception("Unknown datatype " + str(datatype)) -658 -659 def export_jackknife(self): -660 """Export jackknife samples from the Obs -661 -662 Returns -663 ------- -664 numpy.ndarray -665 Returns a numpy array of length N + 1 where N is the number of samples -666 for the given ensemble and replicum. The zeroth entry of the array contains -667 the mean value of the Obs, entries 1 to N contain the N jackknife samples -668 derived from the Obs. The current implementation only works for observables -669 defined on exactly one ensemble and replicum. The derived jackknife samples -670 should agree with samples from a full jackknife analysis up to O(1/N). -671 """ +492 def plot_tauint(self, save=None): +493 """Plot integrated autocorrelation time for each ensemble. +494 +495 Parameters +496 ---------- +497 save : str +498 saves the figure to a file named 'save' if. +499 """ +500 if not hasattr(self, 'e_dvalue'): +501 raise Exception('Run the gamma method first.') +502 +503 for e, e_name in enumerate(self.mc_names): +504 fig = plt.figure() +505 plt.xlabel(r'$W$') +506 plt.ylabel(r'$\tau_\mathrm{int}$') +507 length = int(len(self.e_n_tauint[e_name])) +508 if self.tau_exp[e_name] > 0: +509 base = self.e_n_tauint[e_name][self.e_windowsize[e_name]] +510 x_help = np.arange(2 * self.tau_exp[e_name]) +511 y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base +512 x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]) +513 plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',') +514 plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]], +515 yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor']) +516 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 +517 label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2)) +518 else: +519 label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)) +520 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) +521 +522 plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label) +523 plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--') +524 plt.legend() +525 plt.xlim(-0.5, xmax) +526 ylim = plt.ylim() +527 plt.ylim(bottom=0.0, top=max(1.0, ylim[1])) +528 plt.draw() +529 if save: +530 fig.savefig(save + "_" + str(e)) +531 +532 def plot_rho(self, save=None): +533 """Plot normalized autocorrelation function time for each ensemble. +534 +535 Parameters +536 ---------- +537 save : str +538 saves the figure to a file named 'save' if. +539 """ +540 if not hasattr(self, 'e_dvalue'): +541 raise Exception('Run the gamma method first.') +542 for e, e_name in enumerate(self.mc_names): +543 fig = plt.figure() +544 plt.xlabel('W') +545 plt.ylabel('rho') +546 length = int(len(self.e_drho[e_name])) +547 plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2) +548 plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',') +549 if self.tau_exp[e_name] > 0: +550 plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]], +551 [self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1) +552 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 +553 plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2))) +554 else: +555 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) +556 plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))) +557 plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1) +558 plt.xlim(-0.5, xmax) +559 plt.draw() +560 if save: +561 fig.savefig(save + "_" + str(e)) +562 +563 def plot_rep_dist(self): +564 """Plot replica distribution for each ensemble with more than one replicum.""" +565 if not hasattr(self, 'e_dvalue'): +566 raise Exception('Run the gamma method first.') +567 for e, e_name in enumerate(self.mc_names): +568 if len(self.e_content[e_name]) == 1: +569 print('No replica distribution for a single replicum (', e_name, ')') +570 continue +571 r_length = [] +572 sub_r_mean = 0 +573 for r, r_name in enumerate(self.e_content[e_name]): +574 r_length.append(len(self.deltas[r_name])) +575 sub_r_mean += self.shape[r_name] * self.r_values[r_name] +576 e_N = np.sum(r_length) +577 sub_r_mean /= e_N +578 arr = np.zeros(len(self.e_content[e_name])) +579 for r, r_name in enumerate(self.e_content[e_name]): +580 arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1)) +581 plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name])) +582 plt.title('Replica distribution' + e_name + ' (mean=0, var=1)') +583 plt.draw() +584 +585 def plot_history(self, expand=True): +586 """Plot derived Monte Carlo history for each ensemble +587 +588 Parameters +589 ---------- +590 expand : bool +591 show expanded history for irregular Monte Carlo chains (default: True). +592 """ +593 for e, e_name in enumerate(self.mc_names): +594 plt.figure() +595 r_length = [] +596 tmp = [] +597 tmp_expanded = [] +598 for r, r_name in enumerate(self.e_content[e_name]): +599 tmp.append(self.deltas[r_name] + self.r_values[r_name]) +600 if expand: +601 tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name]) + self.r_values[r_name]) +602 r_length.append(len(tmp_expanded[-1])) +603 else: +604 r_length.append(len(tmp[-1])) +605 e_N = np.sum(r_length) +606 x = np.arange(e_N) +607 y_test = np.concatenate(tmp, axis=0) +608 if expand: +609 y = np.concatenate(tmp_expanded, axis=0) +610 else: +611 y = y_test +612 plt.errorbar(x, y, fmt='.', markersize=3) +613 plt.xlim(-0.5, e_N - 0.5) +614 plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})') +615 plt.draw() +616 +617 def plot_piechart(self, save=None): +618 """Plot piechart which shows the fractional contribution of each +619 ensemble to the error and returns a dictionary containing the fractions. +620 +621 Parameters +622 ---------- +623 save : str +624 saves the figure to a file named 'save' if. +625 """ +626 if not hasattr(self, 'e_dvalue'): +627 raise Exception('Run the gamma method first.') +628 if np.isclose(0.0, self._dvalue, atol=1e-15): +629 raise Exception('Error is 0.0') +630 labels = self.e_names +631 sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 +632 fig1, ax1 = plt.subplots() +633 ax1.pie(sizes, labels=labels, startangle=90, normalize=True) +634 ax1.axis('equal') +635 plt.draw() +636 if save: +637 fig1.savefig(save) +638 +639 return dict(zip(self.e_names, sizes)) +640 +641 def dump(self, filename, datatype="json.gz", description="", **kwargs): +642 """Dump the Obs to a file 'name' of chosen format. +643 +644 Parameters +645 ---------- +646 filename : str +647 name of the file to be saved. +648 datatype : str +649 Format of the exported file. Supported formats include +650 "json.gz" and "pickle" +651 description : str +652 Description for output file, only relevant for json.gz format. +653 path : str +654 specifies a custom path for the file (default '.') +655 """ +656 if 'path' in kwargs: +657 file_name = kwargs.get('path') + '/' + filename +658 else: +659 file_name = filename +660 +661 if datatype == "json.gz": +662 from .input.json import dump_to_json +663 dump_to_json([self], file_name, description=description) +664 elif datatype == "pickle": +665 with open(file_name + '.p', 'wb') as fb: +666 pickle.dump(self, fb) +667 else: +668 raise Exception("Unknown datatype " + str(datatype)) +669 +670 def export_jackknife(self): +671 """Export jackknife samples from the Obs 672 -673 if len(self.names) != 1: -674 raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") -675 -676 name = self.names[0] -677 full_data = self.deltas[name] + self.r_values[name] -678 n = full_data.size -679 mean = self.value -680 tmp_jacks = np.zeros(n + 1) -681 tmp_jacks[0] = mean -682 tmp_jacks[1:] = (n * mean - full_data) / (n - 1) -683 return tmp_jacks -684 -685 def __float__(self): -686 return float(self.value) -687 -688 def __repr__(self): -689 return 'Obs[' + str(self) + ']' -690 -691 def __str__(self): -692 if self._dvalue == 0.0: -693 return str(self.value) -694 fexp = np.floor(np.log10(self._dvalue)) -695 if fexp < 0.0: -696 return '{:{form}}({:2.0f})'.format(self.value, self._dvalue * 10 ** (-fexp + 1), form='.' + str(-int(fexp) + 1) + 'f') -697 elif fexp == 0.0: -698 return '{:.1f}({:1.1f})'.format(self.value, self._dvalue) -699 else: -700 return '{:.0f}({:2.0f})'.format(self.value, self._dvalue) +673 Returns +674 ------- +675 numpy.ndarray +676 Returns a numpy array of length N + 1 where N is the number of samples +677 for the given ensemble and replicum. The zeroth entry of the array contains +678 the mean value of the Obs, entries 1 to N contain the N jackknife samples +679 derived from the Obs. The current implementation only works for observables +680 defined on exactly one ensemble and replicum. The derived jackknife samples +681 should agree with samples from a full jackknife analysis up to O(1/N). +682 """ +683 +684 if len(self.names) != 1: +685 raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") +686 +687 name = self.names[0] +688 full_data = self.deltas[name] + self.r_values[name] +689 n = full_data.size +690 mean = self.value +691 tmp_jacks = np.zeros(n + 1) +692 tmp_jacks[0] = mean +693 tmp_jacks[1:] = (n * mean - full_data) / (n - 1) +694 return tmp_jacks +695 +696 def __float__(self): +697 return float(self.value) +698 +699 def __repr__(self): +700 return 'Obs[' + str(self) + ']' 701 -702 def __hash__(self): -703 hash_tuple = (np.array([self.value]).astype(np.float32).data.tobytes(),) -704 hash_tuple += tuple([o.astype(np.float32).data.tobytes() for o in self.deltas.values()]) -705 hash_tuple += tuple([np.array([o.errsq()]).astype(np.float32).data.tobytes() for o in self.covobs.values()]) -706 hash_tuple += tuple([o.encode() for o in self.names]) -707 m = hashlib.md5() -708 [m.update(o) for o in hash_tuple] -709 return int(m.hexdigest(), 16) & 0xFFFFFFFF -710 -711 # Overload comparisons -712 def __lt__(self, other): -713 return self.value < other -714 -715 def __le__(self, other): -716 return self.value <= other -717 -718 def __gt__(self, other): -719 return self.value > other -720 -721 def __ge__(self, other): -722 return self.value >= other -723 -724 def __eq__(self, other): -725 return (self - other).is_zero() -726 -727 def __ne__(self, other): -728 return not (self - other).is_zero() -729 -730 # Overload math operations -731 def __add__(self, y): -732 if isinstance(y, Obs): -733 return derived_observable(lambda x, **kwargs: x[0] + x[1], [self, y], man_grad=[1, 1]) -734 else: -735 if isinstance(y, np.ndarray): -736 return np.array([self + o for o in y]) -737 elif y.__class__.__name__ in ['Corr', 'CObs']: -738 return NotImplemented -739 else: -740 return derived_observable(lambda x, **kwargs: x[0] + y, [self], man_grad=[1]) -741 -742 def __radd__(self, y): -743 return self + y -744 -745 def __mul__(self, y): -746 if isinstance(y, Obs): -747 return derived_observable(lambda x, **kwargs: x[0] * x[1], [self, y], man_grad=[y.value, self.value]) -748 else: -749 if isinstance(y, np.ndarray): -750 return np.array([self * o for o in y]) -751 elif isinstance(y, complex): -752 return CObs(self * y.real, self * y.imag) -753 elif y.__class__.__name__ in ['Corr', 'CObs']: -754 return NotImplemented -755 else: -756 return derived_observable(lambda x, **kwargs: x[0] * y, [self], man_grad=[y]) -757 -758 def __rmul__(self, y): -759 return self * y -760 -761 def __sub__(self, y): -762 if isinstance(y, Obs): -763 return derived_observable(lambda x, **kwargs: x[0] - x[1], [self, y], man_grad=[1, -1]) -764 else: -765 if isinstance(y, np.ndarray): -766 return np.array([self - o for o in y]) -767 elif y.__class__.__name__ in ['Corr', 'CObs']: -768 return NotImplemented -769 else: -770 return derived_observable(lambda x, **kwargs: x[0] - y, [self], man_grad=[1]) -771 -772 def __rsub__(self, y): -773 return -1 * (self - y) -774 -775 def __pos__(self): -776 return self -777 -778 def __neg__(self): -779 return -1 * self -780 -781 def __truediv__(self, y): -782 if isinstance(y, Obs): -783 return derived_observable(lambda x, **kwargs: x[0] / x[1], [self, y], man_grad=[1 / y.value, - self.value / y.value ** 2]) -784 else: -785 if isinstance(y, np.ndarray): -786 return np.array([self / o for o in y]) -787 elif y.__class__.__name__ in ['Corr', 'CObs']: -788 return NotImplemented -789 else: -790 return derived_observable(lambda x, **kwargs: x[0] / y, [self], man_grad=[1 / y]) -791 -792 def __rtruediv__(self, y): -793 if isinstance(y, Obs): -794 return derived_observable(lambda x, **kwargs: x[0] / x[1], [y, self], man_grad=[1 / self.value, - y.value / self.value ** 2]) -795 else: -796 if isinstance(y, np.ndarray): -797 return np.array([o / self for o in y]) -798 elif y.__class__.__name__ in ['Corr', 'CObs']: -799 return NotImplemented -800 else: -801 return derived_observable(lambda x, **kwargs: y / x[0], [self], man_grad=[-y / self.value ** 2]) -802 -803 def __pow__(self, y): -804 if isinstance(y, Obs): -805 return derived_observable(lambda x: x[0] ** x[1], [self, y]) -806 else: -807 return derived_observable(lambda x: x[0] ** y, [self]) -808 -809 def __rpow__(self, y): -810 if isinstance(y, Obs): -811 return derived_observable(lambda x: x[0] ** x[1], [y, self]) -812 else: -813 return derived_observable(lambda x: y ** x[0], [self]) -814 -815 def __abs__(self): -816 return derived_observable(lambda x: anp.abs(x[0]), [self]) -817 -818 # Overload numpy functions -819 def sqrt(self): -820 return derived_observable(lambda x, **kwargs: np.sqrt(x[0]), [self], man_grad=[1 / 2 / np.sqrt(self.value)]) -821 -822 def log(self): -823 return derived_observable(lambda x, **kwargs: np.log(x[0]), [self], man_grad=[1 / self.value]) -824 -825 def exp(self): -826 return derived_observable(lambda x, **kwargs: np.exp(x[0]), [self], man_grad=[np.exp(self.value)]) -827 -828 def sin(self): -829 return derived_observable(lambda x, **kwargs: np.sin(x[0]), [self], man_grad=[np.cos(self.value)]) -830 -831 def cos(self): -832 return derived_observable(lambda x, **kwargs: np.cos(x[0]), [self], man_grad=[-np.sin(self.value)]) -833 -834 def tan(self): -835 return derived_observable(lambda x, **kwargs: np.tan(x[0]), [self], man_grad=[1 / np.cos(self.value) ** 2]) -836 -837 def arcsin(self): -838 return derived_observable(lambda x: anp.arcsin(x[0]), [self]) -839 -840 def arccos(self): -841 return derived_observable(lambda x: anp.arccos(x[0]), [self]) -842 -843 def arctan(self): -844 return derived_observable(lambda x: anp.arctan(x[0]), [self]) -845 -846 def sinh(self): -847 return derived_observable(lambda x, **kwargs: np.sinh(x[0]), [self], man_grad=[np.cosh(self.value)]) -848 -849 def cosh(self): -850 return derived_observable(lambda x, **kwargs: np.cosh(x[0]), [self], man_grad=[np.sinh(self.value)]) -851 -852 def tanh(self): -853 return derived_observable(lambda x, **kwargs: np.tanh(x[0]), [self], man_grad=[1 / np.cosh(self.value) ** 2]) -854 -855 def arcsinh(self): -856 return derived_observable(lambda x: anp.arcsinh(x[0]), [self]) -857 -858 def arccosh(self): -859 return derived_observable(lambda x: anp.arccosh(x[0]), [self]) -860 -861 def arctanh(self): -862 return derived_observable(lambda x: anp.arctanh(x[0]), [self]) +702 def __str__(self): +703 if self._dvalue == 0.0: +704 return str(self.value) +705 return _format_uncertainty(self.value, self._dvalue) +706 +707 def __hash__(self): +708 hash_tuple = (np.array([self.value]).astype(np.float32).data.tobytes(),) +709 hash_tuple += tuple([o.astype(np.float32).data.tobytes() for o in self.deltas.values()]) +710 hash_tuple += tuple([np.array([o.errsq()]).astype(np.float32).data.tobytes() for o in self.covobs.values()]) +711 hash_tuple += tuple([o.encode() for o in self.names]) +712 m = hashlib.md5() +713 [m.update(o) for o in hash_tuple] +714 return int(m.hexdigest(), 16) & 0xFFFFFFFF +715 +716 # Overload comparisons +717 def __lt__(self, other): +718 return self.value < other +719 +720 def __le__(self, other): +721 return self.value <= other +722 +723 def __gt__(self, other): +724 return self.value > other +725 +726 def __ge__(self, other): +727 return self.value >= other +728 +729 def __eq__(self, other): +730 return (self - other).is_zero() +731 +732 def __ne__(self, other): +733 return not (self - other).is_zero() +734 +735 # Overload math operations +736 def __add__(self, y): +737 if isinstance(y, Obs): +738 return derived_observable(lambda x, **kwargs: x[0] + x[1], [self, y], man_grad=[1, 1]) +739 else: +740 if isinstance(y, np.ndarray): +741 return np.array([self + o for o in y]) +742 elif y.__class__.__name__ in ['Corr', 'CObs']: +743 return NotImplemented +744 else: +745 return derived_observable(lambda x, **kwargs: x[0] + y, [self], man_grad=[1]) +746 +747 def __radd__(self, y): +748 return self + y +749 +750 def __mul__(self, y): +751 if isinstance(y, Obs): +752 return derived_observable(lambda x, **kwargs: x[0] * x[1], [self, y], man_grad=[y.value, self.value]) +753 else: +754 if isinstance(y, np.ndarray): +755 return np.array([self * o for o in y]) +756 elif isinstance(y, complex): +757 return CObs(self * y.real, self * y.imag) +758 elif y.__class__.__name__ in ['Corr', 'CObs']: +759 return NotImplemented +760 else: +761 return derived_observable(lambda x, **kwargs: x[0] * y, [self], man_grad=[y]) +762 +763 def __rmul__(self, y): +764 return self * y +765 +766 def __sub__(self, y): +767 if isinstance(y, Obs): +768 return derived_observable(lambda x, **kwargs: x[0] - x[1], [self, y], man_grad=[1, -1]) +769 else: +770 if isinstance(y, np.ndarray): +771 return np.array([self - o for o in y]) +772 elif y.__class__.__name__ in ['Corr', 'CObs']: +773 return NotImplemented +774 else: +775 return derived_observable(lambda x, **kwargs: x[0] - y, [self], man_grad=[1]) +776 +777 def __rsub__(self, y): +778 return -1 * (self - y) +779 +780 def __pos__(self): +781 return self +782 +783 def __neg__(self): +784 return -1 * self +785 +786 def __truediv__(self, y): +787 if isinstance(y, Obs): +788 return derived_observable(lambda x, **kwargs: x[0] / x[1], [self, y], man_grad=[1 / y.value, - self.value / y.value ** 2]) +789 else: +790 if isinstance(y, np.ndarray): +791 return np.array([self / o for o in y]) +792 elif y.__class__.__name__ in ['Corr', 'CObs']: +793 return NotImplemented +794 else: +795 return derived_observable(lambda x, **kwargs: x[0] / y, [self], man_grad=[1 / y]) +796 +797 def __rtruediv__(self, y): +798 if isinstance(y, Obs): +799 return derived_observable(lambda x, **kwargs: x[0] / x[1], [y, self], man_grad=[1 / self.value, - y.value / self.value ** 2]) +800 else: +801 if isinstance(y, np.ndarray): +802 return np.array([o / self for o in y]) +803 elif y.__class__.__name__ in ['Corr', 'CObs']: +804 return NotImplemented +805 else: +806 return derived_observable(lambda x, **kwargs: y / x[0], [self], man_grad=[-y / self.value ** 2]) +807 +808 def __pow__(self, y): +809 if isinstance(y, Obs): +810 return derived_observable(lambda x: x[0] ** x[1], [self, y]) +811 else: +812 return derived_observable(lambda x: x[0] ** y, [self]) +813 +814 def __rpow__(self, y): +815 if isinstance(y, Obs): +816 return derived_observable(lambda x: x[0] ** x[1], [y, self]) +817 else: +818 return derived_observable(lambda x: y ** x[0], [self]) +819 +820 def __abs__(self): +821 return derived_observable(lambda x: anp.abs(x[0]), [self]) +822 +823 # Overload numpy functions +824 def sqrt(self): +825 return derived_observable(lambda x, **kwargs: np.sqrt(x[0]), [self], man_grad=[1 / 2 / np.sqrt(self.value)]) +826 +827 def log(self): +828 return derived_observable(lambda x, **kwargs: np.log(x[0]), [self], man_grad=[1 / self.value]) +829 +830 def exp(self): +831 return derived_observable(lambda x, **kwargs: np.exp(x[0]), [self], man_grad=[np.exp(self.value)]) +832 +833 def sin(self): +834 return derived_observable(lambda x, **kwargs: np.sin(x[0]), [self], man_grad=[np.cos(self.value)]) +835 +836 def cos(self): +837 return derived_observable(lambda x, **kwargs: np.cos(x[0]), [self], man_grad=[-np.sin(self.value)]) +838 +839 def tan(self): +840 return derived_observable(lambda x, **kwargs: np.tan(x[0]), [self], man_grad=[1 / np.cos(self.value) ** 2]) +841 +842 def arcsin(self): +843 return derived_observable(lambda x: anp.arcsin(x[0]), [self]) +844 +845 def arccos(self): +846 return derived_observable(lambda x: anp.arccos(x[0]), [self]) +847 +848 def arctan(self): +849 return derived_observable(lambda x: anp.arctan(x[0]), [self]) +850 +851 def sinh(self): +852 return derived_observable(lambda x, **kwargs: np.sinh(x[0]), [self], man_grad=[np.cosh(self.value)]) +853 +854 def cosh(self): +855 return derived_observable(lambda x, **kwargs: np.cosh(x[0]), [self], man_grad=[np.sinh(self.value)]) +856 +857 def tanh(self): +858 return derived_observable(lambda x, **kwargs: np.tanh(x[0]), [self], man_grad=[1 / np.cosh(self.value) ** 2]) +859 +860 def arcsinh(self): +861 return derived_observable(lambda x: anp.arcsinh(x[0]), [self]) +862 +863 def arccosh(self): +864 return derived_observable(lambda x: anp.arccosh(x[0]), [self]) +865 +866 def arctanh(self): +867 return derived_observable(lambda x: anp.arctanh(x[0]), [self]) @@ -3126,46 +3147,57 @@ of the autocorrelation function (default True) 400 print('Result\t %3.8e +/- %3.8e +/- %3.8e (%3.3f%%)' % (self.value, self._dvalue, self.ddvalue, percentage)) 401 if len(self.e_names) > 1: 402 print(' Ensemble errors:') -403 for e_name in self.mc_names: -404 if len(self.e_names) > 1: -405 print('', e_name, '\t %3.8e +/- %3.8e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name])) -406 if self.tau_exp[e_name] > 0: -407 print(' t_int\t %3.8e +/- %3.8e tau_exp = %3.2f, N_sigma = %1.0i' % (self.e_tauint[e_name], self.e_dtauint[e_name], self.tau_exp[e_name], self.N_sigma[e_name])) -408 else: -409 print(' t_int\t %3.8e +/- %3.8e S = %3.2f' % (self.e_tauint[e_name], self.e_dtauint[e_name], self.S[e_name])) -410 for e_name in self.cov_names: -411 print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name])) -412 if ens_content is True: -413 if len(self.e_names) == 1: -414 print(self.N, 'samples in', len(self.e_names), 'ensemble:') -415 else: -416 print(self.N, 'samples in', len(self.e_names), 'ensembles:') -417 my_string_list = [] -418 for key, value in sorted(self.e_content.items()): -419 if key not in self.covobs: -420 my_string = ' ' + "\u00B7 Ensemble '" + key + "' " -421 if len(value) == 1: -422 my_string += f': {self.shape[value[0]]} configurations' -423 if isinstance(self.idl[value[0]], range): -424 my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')' -425 else: -426 my_string += ' (irregular range)' -427 else: -428 sublist = [] -429 for v in value: -430 my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' " -431 my_substring += f': {self.shape[v]} configurations' -432 if isinstance(self.idl[v], range): -433 my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')' -434 else: -435 my_substring += ' (irregular range)' -436 sublist.append(my_substring) -437 -438 my_string += '\n' + '\n'.join(sublist) -439 else: -440 my_string = ' ' + "\u00B7 Covobs '" + key + "' " -441 my_string_list.append(my_string) -442 print('\n'.join(my_string_list)) +403 e_content = self.e_content +404 for e_name in self.mc_names: +405 if isinstance(self.idl[e_content[e_name][0]], range): +406 gap = self.idl[e_content[e_name][0]].step +407 else: +408 gap = np.min(np.diff(self.idl[e_content[e_name][0]])) +409 +410 if len(self.e_names) > 1: +411 print('', e_name, '\t %3.6e +/- %3.6e' % (self.e_dvalue[e_name], self.e_ddvalue[e_name])) +412 tau_string = " \N{GREEK SMALL LETTER TAU}_int\t " + _format_uncertainty(self.e_tauint[e_name], self.e_dtauint[e_name]) +413 tau_string += f" in units of {gap} config" +414 if gap > 1: +415 tau_string += "s" +416 if self.tau_exp[e_name] > 0: +417 tau_string = f"{tau_string: <45}" + '\t(\N{GREEK SMALL LETTER TAU}_exp=%3.2f, N_\N{GREEK SMALL LETTER SIGMA}=%1.0i)' % (self.tau_exp[e_name], self.N_sigma[e_name]) +418 else: +419 tau_string = f"{tau_string: <45}" + '\t(S=%3.2f)' % (self.S[e_name]) +420 print(tau_string) +421 for e_name in self.cov_names: +422 print('', e_name, '\t %3.8e' % (self.e_dvalue[e_name])) +423 if ens_content is True: +424 if len(self.e_names) == 1: +425 print(self.N, 'samples in', len(self.e_names), 'ensemble:') +426 else: +427 print(self.N, 'samples in', len(self.e_names), 'ensembles:') +428 my_string_list = [] +429 for key, value in sorted(self.e_content.items()): +430 if key not in self.covobs: +431 my_string = ' ' + "\u00B7 Ensemble '" + key + "' " +432 if len(value) == 1: +433 my_string += f': {self.shape[value[0]]} configurations' +434 if isinstance(self.idl[value[0]], range): +435 my_string += f' (from {self.idl[value[0]].start} to {self.idl[value[0]][-1]}' + int(self.idl[value[0]].step != 1) * f' in steps of {self.idl[value[0]].step}' + ')' +436 else: +437 my_string += f' (irregular range from {self.idl[value[0]][0]} to {self.idl[value[0]][-1]})' +438 else: +439 sublist = [] +440 for v in value: +441 my_substring = ' ' + "\u00B7 Replicum '" + v[len(key) + 1:] + "' " +442 my_substring += f': {self.shape[v]} configurations' +443 if isinstance(self.idl[v], range): +444 my_substring += f' (from {self.idl[v].start} to {self.idl[v][-1]}' + int(self.idl[v].step != 1) * f' in steps of {self.idl[v].step}' + ')' +445 else: +446 my_substring += f' (irregular range from {self.idl[v][0]} to {self.idl[v][-1]})' +447 sublist.append(my_substring) +448 +449 my_string += '\n' + '\n'.join(sublist) +450 else: +451 my_string = ' ' + "\u00B7 Covobs '" + key + "' " +452 my_string_list.append(my_string) +453 print('\n'.join(my_string_list)) @@ -3192,20 +3224,20 @@ print details about the ensembles and replica if true. -
444 def reweight(self, weight): -445 """Reweight the obs with given rewighting factors. -446 -447 Parameters -448 ---------- -449 weight : Obs -450 Reweighting factor. An Observable that has to be defined on a superset of the -451 configurations in obs[i].idl for all i. -452 all_configs : bool -453 if True, the reweighted observables are normalized by the average of -454 the reweighting factor on all configurations in weight.idl and not -455 on the configurations in obs[i].idl. Default False. -456 """ -457 return reweight(weight, [self])[0] +@@ -3237,17 +3269,17 @@ on the configurations in obs[i].idl. Default False.455 def reweight(self, weight): +456 """Reweight the obs with given rewighting factors. +457 +458 Parameters +459 ---------- +460 weight : Obs +461 Reweighting factor. An Observable that has to be defined on a superset of the +462 configurations in obs[i].idl for all i. +463 all_configs : bool +464 if True, the reweighted observables are normalized by the average of +465 the reweighting factor on all configurations in weight.idl and not +466 on the configurations in obs[i].idl. Default False. +467 """ +468 return reweight(weight, [self])[0]
459 def is_zero_within_error(self, sigma=1): -460 """Checks whether the observable is zero within 'sigma' standard errors. -461 -462 Parameters -463 ---------- -464 sigma : int -465 Number of standard errors used for the check. -466 -467 Works only properly when the gamma method was run. -468 """ -469 return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue +@@ -3275,15 +3307,15 @@ Number of standard errors used for the check.470 def is_zero_within_error(self, sigma=1): +471 """Checks whether the observable is zero within 'sigma' standard errors. +472 +473 Parameters +474 ---------- +475 sigma : int +476 Number of standard errors used for the check. +477 +478 Works only properly when the gamma method was run. +479 """ +480 return self.is_zero() or np.abs(self.value) <= sigma * self._dvalue
471 def is_zero(self, atol=1e-10): -472 """Checks whether the observable is zero within a given tolerance. -473 -474 Parameters -475 ---------- -476 atol : float -477 Absolute tolerance (for details see numpy documentation). -478 """ -479 return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values()) +@@ -3310,45 +3342,45 @@ Absolute tolerance (for details see numpy documentation).482 def is_zero(self, atol=1e-10): +483 """Checks whether the observable is zero within a given tolerance. +484 +485 Parameters +486 ---------- +487 atol : float +488 Absolute tolerance (for details see numpy documentation). +489 """ +490 return np.isclose(0.0, self.value, 1e-14, atol) and all(np.allclose(0.0, delta, 1e-14, atol) for delta in self.deltas.values()) and all(np.allclose(0.0, delta.errsq(), 1e-14, atol) for delta in self.covobs.values())
481 def plot_tauint(self, save=None): -482 """Plot integrated autocorrelation time for each ensemble. -483 -484 Parameters -485 ---------- -486 save : str -487 saves the figure to a file named 'save' if. -488 """ -489 if not hasattr(self, 'e_dvalue'): -490 raise Exception('Run the gamma method first.') -491 -492 for e, e_name in enumerate(self.mc_names): -493 fig = plt.figure() -494 plt.xlabel(r'$W$') -495 plt.ylabel(r'$\tau_\mathrm{int}$') -496 length = int(len(self.e_n_tauint[e_name])) -497 if self.tau_exp[e_name] > 0: -498 base = self.e_n_tauint[e_name][self.e_windowsize[e_name]] -499 x_help = np.arange(2 * self.tau_exp[e_name]) -500 y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base -501 x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]) -502 plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',') -503 plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]], -504 yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor']) -505 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 -506 label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2)) -507 else: -508 label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)) -509 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) -510 -511 plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label) -512 plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--') -513 plt.legend() -514 plt.xlim(-0.5, xmax) -515 ylim = plt.ylim() -516 plt.ylim(bottom=0.0, top=max(1.0, ylim[1])) -517 plt.draw() -518 if save: -519 fig.savefig(save + "_" + str(e)) +@@ -3375,36 +3407,36 @@ saves the figure to a file named 'save' if.492 def plot_tauint(self, save=None): +493 """Plot integrated autocorrelation time for each ensemble. +494 +495 Parameters +496 ---------- +497 save : str +498 saves the figure to a file named 'save' if. +499 """ +500 if not hasattr(self, 'e_dvalue'): +501 raise Exception('Run the gamma method first.') +502 +503 for e, e_name in enumerate(self.mc_names): +504 fig = plt.figure() +505 plt.xlabel(r'$W$') +506 plt.ylabel(r'$\tau_\mathrm{int}$') +507 length = int(len(self.e_n_tauint[e_name])) +508 if self.tau_exp[e_name] > 0: +509 base = self.e_n_tauint[e_name][self.e_windowsize[e_name]] +510 x_help = np.arange(2 * self.tau_exp[e_name]) +511 y_help = (x_help + 1) * np.abs(self.e_rho[e_name][self.e_windowsize[e_name] + 1]) * (1 - x_help / (2 * (2 * self.tau_exp[e_name] - 1))) + base +512 x_arr = np.arange(self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]) +513 plt.plot(x_arr, y_help, 'C' + str(e), linewidth=1, ls='--', marker=',') +514 plt.errorbar([self.e_windowsize[e_name] + 2 * self.tau_exp[e_name]], [self.e_tauint[e_name]], +515 yerr=[self.e_dtauint[e_name]], fmt='C' + str(e), linewidth=1, capsize=2, marker='o', mfc=plt.rcParams['axes.facecolor']) +516 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 +517 label = e_name + r', $\tau_\mathrm{exp}$=' + str(np.around(self.tau_exp[e_name], decimals=2)) +518 else: +519 label = e_name + ', S=' + str(np.around(self.S[e_name], decimals=2)) +520 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) +521 +522 plt.errorbar(np.arange(length)[:int(xmax) + 1], self.e_n_tauint[e_name][:int(xmax) + 1], yerr=self.e_n_dtauint[e_name][:int(xmax) + 1], linewidth=1, capsize=2, label=label) +523 plt.axvline(x=self.e_windowsize[e_name], color='C' + str(e), alpha=0.5, marker=',', ls='--') +524 plt.legend() +525 plt.xlim(-0.5, xmax) +526 ylim = plt.ylim() +527 plt.ylim(bottom=0.0, top=max(1.0, ylim[1])) +528 plt.draw() +529 if save: +530 fig.savefig(save + "_" + str(e))
521 def plot_rho(self, save=None): -522 """Plot normalized autocorrelation function time for each ensemble. -523 -524 Parameters -525 ---------- -526 save : str -527 saves the figure to a file named 'save' if. -528 """ -529 if not hasattr(self, 'e_dvalue'): -530 raise Exception('Run the gamma method first.') -531 for e, e_name in enumerate(self.mc_names): -532 fig = plt.figure() -533 plt.xlabel('W') -534 plt.ylabel('rho') -535 length = int(len(self.e_drho[e_name])) -536 plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2) -537 plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',') -538 if self.tau_exp[e_name] > 0: -539 plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]], -540 [self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1) -541 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 -542 plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2))) -543 else: -544 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) -545 plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))) -546 plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1) -547 plt.xlim(-0.5, xmax) -548 plt.draw() -549 if save: -550 fig.savefig(save + "_" + str(e)) +@@ -3431,27 +3463,27 @@ saves the figure to a file named 'save' if.532 def plot_rho(self, save=None): +533 """Plot normalized autocorrelation function time for each ensemble. +534 +535 Parameters +536 ---------- +537 save : str +538 saves the figure to a file named 'save' if. +539 """ +540 if not hasattr(self, 'e_dvalue'): +541 raise Exception('Run the gamma method first.') +542 for e, e_name in enumerate(self.mc_names): +543 fig = plt.figure() +544 plt.xlabel('W') +545 plt.ylabel('rho') +546 length = int(len(self.e_drho[e_name])) +547 plt.errorbar(np.arange(length), self.e_rho[e_name][:length], yerr=self.e_drho[e_name][:], linewidth=1, capsize=2) +548 plt.axvline(x=self.e_windowsize[e_name], color='r', alpha=0.25, ls='--', marker=',') +549 if self.tau_exp[e_name] > 0: +550 plt.plot([self.e_windowsize[e_name] + 1, self.e_windowsize[e_name] + 1 + 2 * self.tau_exp[e_name]], +551 [self.e_rho[e_name][self.e_windowsize[e_name] + 1], 0], 'k-', lw=1) +552 xmax = self.e_windowsize[e_name] + 2 * self.tau_exp[e_name] + 1.5 +553 plt.title('Rho ' + e_name + r', tau\_exp=' + str(np.around(self.tau_exp[e_name], decimals=2))) +554 else: +555 xmax = max(10.5, 2 * self.e_windowsize[e_name] - 0.5) +556 plt.title('Rho ' + e_name + ', S=' + str(np.around(self.S[e_name], decimals=2))) +557 plt.plot([-0.5, xmax], [0, 0], 'k--', lw=1) +558 plt.xlim(-0.5, xmax) +559 plt.draw() +560 if save: +561 fig.savefig(save + "_" + str(e))
552 def plot_rep_dist(self): -553 """Plot replica distribution for each ensemble with more than one replicum.""" -554 if not hasattr(self, 'e_dvalue'): -555 raise Exception('Run the gamma method first.') -556 for e, e_name in enumerate(self.mc_names): -557 if len(self.e_content[e_name]) == 1: -558 print('No replica distribution for a single replicum (', e_name, ')') -559 continue -560 r_length = [] -561 sub_r_mean = 0 -562 for r, r_name in enumerate(self.e_content[e_name]): -563 r_length.append(len(self.deltas[r_name])) -564 sub_r_mean += self.shape[r_name] * self.r_values[r_name] -565 e_N = np.sum(r_length) -566 sub_r_mean /= e_N -567 arr = np.zeros(len(self.e_content[e_name])) -568 for r, r_name in enumerate(self.e_content[e_name]): -569 arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1)) -570 plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name])) -571 plt.title('Replica distribution' + e_name + ' (mean=0, var=1)') -572 plt.draw() +@@ -3471,37 +3503,37 @@ saves the figure to a file named 'save' if.563 def plot_rep_dist(self): +564 """Plot replica distribution for each ensemble with more than one replicum.""" +565 if not hasattr(self, 'e_dvalue'): +566 raise Exception('Run the gamma method first.') +567 for e, e_name in enumerate(self.mc_names): +568 if len(self.e_content[e_name]) == 1: +569 print('No replica distribution for a single replicum (', e_name, ')') +570 continue +571 r_length = [] +572 sub_r_mean = 0 +573 for r, r_name in enumerate(self.e_content[e_name]): +574 r_length.append(len(self.deltas[r_name])) +575 sub_r_mean += self.shape[r_name] * self.r_values[r_name] +576 e_N = np.sum(r_length) +577 sub_r_mean /= e_N +578 arr = np.zeros(len(self.e_content[e_name])) +579 for r, r_name in enumerate(self.e_content[e_name]): +580 arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1)) +581 plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name])) +582 plt.title('Replica distribution' + e_name + ' (mean=0, var=1)') +583 plt.draw()
574 def plot_history(self, expand=True): -575 """Plot derived Monte Carlo history for each ensemble -576 -577 Parameters -578 ---------- -579 expand : bool -580 show expanded history for irregular Monte Carlo chains (default: True). -581 """ -582 for e, e_name in enumerate(self.mc_names): -583 plt.figure() -584 r_length = [] -585 tmp = [] -586 tmp_expanded = [] -587 for r, r_name in enumerate(self.e_content[e_name]): -588 tmp.append(self.deltas[r_name] + self.r_values[r_name]) -589 if expand: -590 tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name]) + self.r_values[r_name]) -591 r_length.append(len(tmp_expanded[-1])) -592 else: -593 r_length.append(len(tmp[-1])) -594 e_N = np.sum(r_length) -595 x = np.arange(e_N) -596 y_test = np.concatenate(tmp, axis=0) -597 if expand: -598 y = np.concatenate(tmp_expanded, axis=0) -599 else: -600 y = y_test -601 plt.errorbar(x, y, fmt='.', markersize=3) -602 plt.xlim(-0.5, e_N - 0.5) -603 plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})') -604 plt.draw() +@@ -3528,29 +3560,29 @@ show expanded history for irregular Monte Carlo chains (default: True).585 def plot_history(self, expand=True): +586 """Plot derived Monte Carlo history for each ensemble +587 +588 Parameters +589 ---------- +590 expand : bool +591 show expanded history for irregular Monte Carlo chains (default: True). +592 """ +593 for e, e_name in enumerate(self.mc_names): +594 plt.figure() +595 r_length = [] +596 tmp = [] +597 tmp_expanded = [] +598 for r, r_name in enumerate(self.e_content[e_name]): +599 tmp.append(self.deltas[r_name] + self.r_values[r_name]) +600 if expand: +601 tmp_expanded.append(_expand_deltas(self.deltas[r_name], list(self.idl[r_name]), self.shape[r_name]) + self.r_values[r_name]) +602 r_length.append(len(tmp_expanded[-1])) +603 else: +604 r_length.append(len(tmp[-1])) +605 e_N = np.sum(r_length) +606 x = np.arange(e_N) +607 y_test = np.concatenate(tmp, axis=0) +608 if expand: +609 y = np.concatenate(tmp_expanded, axis=0) +610 else: +611 y = y_test +612 plt.errorbar(x, y, fmt='.', markersize=3) +613 plt.xlim(-0.5, e_N - 0.5) +614 plt.title(e_name + f'\nskew: {skew(y_test):.3f} (p={skewtest(y_test).pvalue:.3f}), kurtosis: {kurtosis(y_test):.3f} (p={kurtosistest(y_test).pvalue:.3f})') +615 plt.draw()
606 def plot_piechart(self, save=None): -607 """Plot piechart which shows the fractional contribution of each -608 ensemble to the error and returns a dictionary containing the fractions. -609 -610 Parameters -611 ---------- -612 save : str -613 saves the figure to a file named 'save' if. -614 """ -615 if not hasattr(self, 'e_dvalue'): -616 raise Exception('Run the gamma method first.') -617 if np.isclose(0.0, self._dvalue, atol=1e-15): -618 raise Exception('Error is 0.0') -619 labels = self.e_names -620 sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 -621 fig1, ax1 = plt.subplots() -622 ax1.pie(sizes, labels=labels, startangle=90, normalize=True) -623 ax1.axis('equal') -624 plt.draw() -625 if save: -626 fig1.savefig(save) -627 -628 return dict(zip(self.e_names, sizes)) +@@ -3578,34 +3610,34 @@ saves the figure to a file named 'save' if.617 def plot_piechart(self, save=None): +618 """Plot piechart which shows the fractional contribution of each +619 ensemble to the error and returns a dictionary containing the fractions. +620 +621 Parameters +622 ---------- +623 save : str +624 saves the figure to a file named 'save' if. +625 """ +626 if not hasattr(self, 'e_dvalue'): +627 raise Exception('Run the gamma method first.') +628 if np.isclose(0.0, self._dvalue, atol=1e-15): +629 raise Exception('Error is 0.0') +630 labels = self.e_names +631 sizes = [self.e_dvalue[name] ** 2 for name in labels] / self._dvalue ** 2 +632 fig1, ax1 = plt.subplots() +633 ax1.pie(sizes, labels=labels, startangle=90, normalize=True) +634 ax1.axis('equal') +635 plt.draw() +636 if save: +637 fig1.savefig(save) +638 +639 return dict(zip(self.e_names, sizes))
630 def dump(self, filename, datatype="json.gz", description="", **kwargs): -631 """Dump the Obs to a file 'name' of chosen format. -632 -633 Parameters -634 ---------- -635 filename : str -636 name of the file to be saved. -637 datatype : str -638 Format of the exported file. Supported formats include -639 "json.gz" and "pickle" -640 description : str -641 Description for output file, only relevant for json.gz format. -642 path : str -643 specifies a custom path for the file (default '.') -644 """ -645 if 'path' in kwargs: -646 file_name = kwargs.get('path') + '/' + filename -647 else: -648 file_name = filename -649 -650 if datatype == "json.gz": -651 from .input.json import dump_to_json -652 dump_to_json([self], file_name, description=description) -653 elif datatype == "pickle": -654 with open(file_name + '.p', 'wb') as fb: -655 pickle.dump(self, fb) -656 else: -657 raise Exception("Unknown datatype " + str(datatype)) +@@ -3639,31 +3671,31 @@ specifies a custom path for the file (default '.')641 def dump(self, filename, datatype="json.gz", description="", **kwargs): +642 """Dump the Obs to a file 'name' of chosen format. +643 +644 Parameters +645 ---------- +646 filename : str +647 name of the file to be saved. +648 datatype : str +649 Format of the exported file. Supported formats include +650 "json.gz" and "pickle" +651 description : str +652 Description for output file, only relevant for json.gz format. +653 path : str +654 specifies a custom path for the file (default '.') +655 """ +656 if 'path' in kwargs: +657 file_name = kwargs.get('path') + '/' + filename +658 else: +659 file_name = filename +660 +661 if datatype == "json.gz": +662 from .input.json import dump_to_json +663 dump_to_json([self], file_name, description=description) +664 elif datatype == "pickle": +665 with open(file_name + '.p', 'wb') as fb: +666 pickle.dump(self, fb) +667 else: +668 raise Exception("Unknown datatype " + str(datatype))
659 def export_jackknife(self): -660 """Export jackknife samples from the Obs -661 -662 Returns -663 ------- -664 numpy.ndarray -665 Returns a numpy array of length N + 1 where N is the number of samples -666 for the given ensemble and replicum. The zeroth entry of the array contains -667 the mean value of the Obs, entries 1 to N contain the N jackknife samples -668 derived from the Obs. The current implementation only works for observables -669 defined on exactly one ensemble and replicum. The derived jackknife samples -670 should agree with samples from a full jackknife analysis up to O(1/N). -671 """ +@@ -3694,8 +3726,8 @@ should agree with samples from a full jackknife analysis up to O(1/N).670 def export_jackknife(self): +671 """Export jackknife samples from the Obs 672 -673 if len(self.names) != 1: -674 raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") -675 -676 name = self.names[0] -677 full_data = self.deltas[name] + self.r_values[name] -678 n = full_data.size -679 mean = self.value -680 tmp_jacks = np.zeros(n + 1) -681 tmp_jacks[0] = mean -682 tmp_jacks[1:] = (n * mean - full_data) / (n - 1) -683 return tmp_jacks +673 Returns +674 ------- +675 numpy.ndarray +676 Returns a numpy array of length N + 1 where N is the number of samples +677 for the given ensemble and replicum. The zeroth entry of the array contains +678 the mean value of the Obs, entries 1 to N contain the N jackknife samples +679 derived from the Obs. The current implementation only works for observables +680 defined on exactly one ensemble and replicum. The derived jackknife samples +681 should agree with samples from a full jackknife analysis up to O(1/N). +682 """ +683 +684 if len(self.names) != 1: +685 raise Exception("'export_jackknife' is only implemented for Obs defined on one ensemble and replicum.") +686 +687 name = self.names[0] +688 full_data = self.deltas[name] + self.r_values[name] +689 n = full_data.size +690 mean = self.value +691 tmp_jacks = np.zeros(n + 1) +692 tmp_jacks[0] = mean +693 tmp_jacks[1:] = (n * mean - full_data) / (n - 1) +694 return tmp_jacks
819 def sqrt(self): -820 return derived_observable(lambda x, **kwargs: np.sqrt(x[0]), [self], man_grad=[1 / 2 / np.sqrt(self.value)]) + @@ -3713,8 +3745,8 @@ should agree with samples from a full jackknife analysis up to O(1/N).
822 def log(self): -823 return derived_observable(lambda x, **kwargs: np.log(x[0]), [self], man_grad=[1 / self.value]) + @@ -3732,8 +3764,8 @@ should agree with samples from a full jackknife analysis up to O(1/N).
825 def exp(self): -826 return derived_observable(lambda x, **kwargs: np.exp(x[0]), [self], man_grad=[np.exp(self.value)]) + @@ -3751,8 +3783,8 @@ should agree with samples from a full jackknife analysis up to O(1/N).
828 def sin(self): -829 return derived_observable(lambda x, **kwargs: np.sin(x[0]), [self], man_grad=[np.cos(self.value)]) + @@ -3770,8 +3802,8 @@ should agree with samples from a full jackknife analysis up to O(1/N).
831 def cos(self): -832 return derived_observable(lambda x, **kwargs: np.cos(x[0]), [self], man_grad=[-np.sin(self.value)]) + @@ -3789,8 +3821,8 @@ should agree with samples from a full jackknife analysis up to O(1/N).
834 def tan(self): -835 return derived_observable(lambda x, **kwargs: np.tan(x[0]), [self], man_grad=[1 / np.cos(self.value) ** 2]) + @@ -3808,8 +3840,8 @@ should agree with samples from a full jackknife analysis up to O(1/N).
837 def arcsin(self): -838 return derived_observable(lambda x: anp.arcsin(x[0]), [self]) + @@ -3827,8 +3859,8 @@ should agree with samples from a full jackknife analysis up to O(1/N).
840 def arccos(self): -841 return derived_observable(lambda x: anp.arccos(x[0]), [self]) + @@ -3846,8 +3878,8 @@ should agree with samples from a full jackknife analysis up to O(1/N).
843 def arctan(self): -844 return derived_observable(lambda x: anp.arctan(x[0]), [self]) + @@ -3865,8 +3897,8 @@ should agree with samples from a full jackknife analysis up to O(1/N).
846 def sinh(self): -847 return derived_observable(lambda x, **kwargs: np.sinh(x[0]), [self], man_grad=[np.cosh(self.value)]) + @@ -3884,8 +3916,8 @@ should agree with samples from a full jackknife analysis up to O(1/N).
849 def cosh(self): -850 return derived_observable(lambda x, **kwargs: np.cosh(x[0]), [self], man_grad=[np.sinh(self.value)]) + @@ -3903,8 +3935,8 @@ should agree with samples from a full jackknife analysis up to O(1/N).
852 def tanh(self): -853 return derived_observable(lambda x, **kwargs: np.tanh(x[0]), [self], man_grad=[1 / np.cosh(self.value) ** 2]) + @@ -3922,8 +3954,8 @@ should agree with samples from a full jackknife analysis up to O(1/N).
855 def arcsinh(self): -856 return derived_observable(lambda x: anp.arcsinh(x[0]), [self]) + @@ -3941,8 +3973,8 @@ should agree with samples from a full jackknife analysis up to O(1/N).
858 def arccosh(self): -859 return derived_observable(lambda x: anp.arccosh(x[0]), [self]) + @@ -3960,8 +3992,8 @@ should agree with samples from a full jackknife analysis up to O(1/N).
861 def arctanh(self): -862 return derived_observable(lambda x: anp.arctanh(x[0]), [self]) + @@ -3980,115 +4012,115 @@ should agree with samples from a full jackknife analysis up to O(1/N).
865class CObs: -866 """Class for a complex valued observable.""" -867 __slots__ = ['_real', '_imag', 'tag'] -868 -869 def __init__(self, real, imag=0.0): -870 self._real = real -871 self._imag = imag -872 self.tag = None +@@ -4106,10 +4138,10 @@ should agree with samples from a full jackknife analysis up to O(1/N).870class CObs: +871 """Class for a complex valued observable.""" +872 __slots__ = ['_real', '_imag', 'tag'] 873 -874 @property -875 def real(self): -876 return self._real -877 -878 @property -879 def imag(self): -880 return self._imag -881 -882 def gamma_method(self, **kwargs): -883 """Executes the gamma_method for the real and the imaginary part.""" -884 if isinstance(self.real, Obs): -885 self.real.gamma_method(**kwargs) -886 if isinstance(self.imag, Obs): -887 self.imag.gamma_method(**kwargs) -888 -889 def is_zero(self): -890 """Checks whether both real and imaginary part are zero within machine precision.""" -891 return self.real == 0.0 and self.imag == 0.0 -892 -893 def conjugate(self): -894 return CObs(self.real, -self.imag) -895 -896 def __add__(self, other): -897 if isinstance(other, np.ndarray): -898 return other + self -899 elif hasattr(other, 'real') and hasattr(other, 'imag'): -900 return CObs(self.real + other.real, -901 self.imag + other.imag) -902 else: -903 return CObs(self.real + other, self.imag) -904 -905 def __radd__(self, y): -906 return self + y -907 -908 def __sub__(self, other): -909 if isinstance(other, np.ndarray): -910 return -1 * (other - self) -911 elif hasattr(other, 'real') and hasattr(other, 'imag'): -912 return CObs(self.real - other.real, self.imag - other.imag) -913 else: -914 return CObs(self.real - other, self.imag) -915 -916 def __rsub__(self, other): -917 return -1 * (self - other) -918 -919 def __mul__(self, other): -920 if isinstance(other, np.ndarray): -921 return other * self -922 elif hasattr(other, 'real') and hasattr(other, 'imag'): -923 if all(isinstance(i, Obs) for i in [self.real, self.imag, other.real, other.imag]): -924 return CObs(derived_observable(lambda x, **kwargs: x[0] * x[1] - x[2] * x[3], -925 [self.real, other.real, self.imag, other.imag], -926 man_grad=[other.real.value, self.real.value, -other.imag.value, -self.imag.value]), -927 derived_observable(lambda x, **kwargs: x[2] * x[1] + x[0] * x[3], -928 [self.real, other.real, self.imag, other.imag], -929 man_grad=[other.imag.value, self.imag.value, other.real.value, self.real.value])) -930 elif getattr(other, 'imag', 0) != 0: -931 return CObs(self.real * other.real - self.imag * other.imag, -932 self.imag * other.real + self.real * other.imag) -933 else: -934 return CObs(self.real * other.real, self.imag * other.real) -935 else: -936 return CObs(self.real * other, self.imag * other) -937 -938 def __rmul__(self, other): -939 return self * other -940 -941 def __truediv__(self, other): -942 if isinstance(other, np.ndarray): -943 return 1 / (other / self) -944 elif hasattr(other, 'real') and hasattr(other, 'imag'): -945 r = other.real ** 2 + other.imag ** 2 -946 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.imag * other.real - self.real * other.imag) / r) -947 else: -948 return CObs(self.real / other, self.imag / other) -949 -950 def __rtruediv__(self, other): -951 r = self.real ** 2 + self.imag ** 2 -952 if hasattr(other, 'real') and hasattr(other, 'imag'): -953 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.real * other.imag - self.imag * other.real) / r) -954 else: -955 return CObs(self.real * other / r, -self.imag * other / r) -956 -957 def __abs__(self): -958 return np.sqrt(self.real**2 + self.imag**2) -959 -960 def __pos__(self): -961 return self -962 -963 def __neg__(self): -964 return -1 * self -965 -966 def __eq__(self, other): -967 return self.real == other.real and self.imag == other.imag -968 -969 def __str__(self): -970 return '(' + str(self.real) + int(self.imag >= 0.0) * '+' + str(self.imag) + 'j)' -971 -972 def __repr__(self): -973 return 'CObs[' + str(self) + ']' +874 def __init__(self, real, imag=0.0): +875 self._real = real +876 self._imag = imag +877 self.tag = None +878 +879 @property +880 def real(self): +881 return self._real +882 +883 @property +884 def imag(self): +885 return self._imag +886 +887 def gamma_method(self, **kwargs): +888 """Executes the gamma_method for the real and the imaginary part.""" +889 if isinstance(self.real, Obs): +890 self.real.gamma_method(**kwargs) +891 if isinstance(self.imag, Obs): +892 self.imag.gamma_method(**kwargs) +893 +894 def is_zero(self): +895 """Checks whether both real and imaginary part are zero within machine precision.""" +896 return self.real == 0.0 and self.imag == 0.0 +897 +898 def conjugate(self): +899 return CObs(self.real, -self.imag) +900 +901 def __add__(self, other): +902 if isinstance(other, np.ndarray): +903 return other + self +904 elif hasattr(other, 'real') and hasattr(other, 'imag'): +905 return CObs(self.real + other.real, +906 self.imag + other.imag) +907 else: +908 return CObs(self.real + other, self.imag) +909 +910 def __radd__(self, y): +911 return self + y +912 +913 def __sub__(self, other): +914 if isinstance(other, np.ndarray): +915 return -1 * (other - self) +916 elif hasattr(other, 'real') and hasattr(other, 'imag'): +917 return CObs(self.real - other.real, self.imag - other.imag) +918 else: +919 return CObs(self.real - other, self.imag) +920 +921 def __rsub__(self, other): +922 return -1 * (self - other) +923 +924 def __mul__(self, other): +925 if isinstance(other, np.ndarray): +926 return other * self +927 elif hasattr(other, 'real') and hasattr(other, 'imag'): +928 if all(isinstance(i, Obs) for i in [self.real, self.imag, other.real, other.imag]): +929 return CObs(derived_observable(lambda x, **kwargs: x[0] * x[1] - x[2] * x[3], +930 [self.real, other.real, self.imag, other.imag], +931 man_grad=[other.real.value, self.real.value, -other.imag.value, -self.imag.value]), +932 derived_observable(lambda x, **kwargs: x[2] * x[1] + x[0] * x[3], +933 [self.real, other.real, self.imag, other.imag], +934 man_grad=[other.imag.value, self.imag.value, other.real.value, self.real.value])) +935 elif getattr(other, 'imag', 0) != 0: +936 return CObs(self.real * other.real - self.imag * other.imag, +937 self.imag * other.real + self.real * other.imag) +938 else: +939 return CObs(self.real * other.real, self.imag * other.real) +940 else: +941 return CObs(self.real * other, self.imag * other) +942 +943 def __rmul__(self, other): +944 return self * other +945 +946 def __truediv__(self, other): +947 if isinstance(other, np.ndarray): +948 return 1 / (other / self) +949 elif hasattr(other, 'real') and hasattr(other, 'imag'): +950 r = other.real ** 2 + other.imag ** 2 +951 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.imag * other.real - self.real * other.imag) / r) +952 else: +953 return CObs(self.real / other, self.imag / other) +954 +955 def __rtruediv__(self, other): +956 r = self.real ** 2 + self.imag ** 2 +957 if hasattr(other, 'real') and hasattr(other, 'imag'): +958 return CObs((self.real * other.real + self.imag * other.imag) / r, (self.real * other.imag - self.imag * other.real) / r) +959 else: +960 return CObs(self.real * other / r, -self.imag * other / r) +961 +962 def __abs__(self): +963 return np.sqrt(self.real**2 + self.imag**2) +964 +965 def __pos__(self): +966 return self +967 +968 def __neg__(self): +969 return -1 * self +970 +971 def __eq__(self, other): +972 return self.real == other.real and self.imag == other.imag +973 +974 def __str__(self): +975 return '(' + str(self.real) + int(self.imag >= 0.0) * '+' + str(self.imag) + 'j)' +976 +977 def __repr__(self): +978 return 'CObs[' + str(self) + ']'
869 def __init__(self, real, imag=0.0): -870 self._real = real -871 self._imag = imag -872 self.tag = None + @@ -4127,12 +4159,12 @@ should agree with samples from a full jackknife analysis up to O(1/N).
882 def gamma_method(self, **kwargs): -883 """Executes the gamma_method for the real and the imaginary part.""" -884 if isinstance(self.real, Obs): -885 self.real.gamma_method(**kwargs) -886 if isinstance(self.imag, Obs): -887 self.imag.gamma_method(**kwargs) + @@ -4152,9 +4184,9 @@ should agree with samples from a full jackknife analysis up to O(1/N).
889 def is_zero(self): -890 """Checks whether both real and imaginary part are zero within machine precision.""" -891 return self.real == 0.0 and self.imag == 0.0 + @@ -4174,8 +4206,8 @@ should agree with samples from a full jackknife analysis up to O(1/N).
893 def conjugate(self): -894 return CObs(self.real, -self.imag) + @@ -4194,184 +4226,184 @@ should agree with samples from a full jackknife analysis up to O(1/N).
1142def derived_observable(func, data, array_mode=False, **kwargs): -1143 """Construct a derived Obs according to func(data, **kwargs) using automatic differentiation. -1144 -1145 Parameters -1146 ---------- -1147 func : object -1148 arbitrary function of the form func(data, **kwargs). For the -1149 automatic differentiation to work, all numpy functions have to have -1150 the autograd wrapper (use 'import autograd.numpy as anp'). -1151 data : list -1152 list of Obs, e.g. [obs1, obs2, obs3]. -1153 num_grad : bool -1154 if True, numerical derivatives are used instead of autograd -1155 (default False). To control the numerical differentiation the -1156 kwargs of numdifftools.step_generators.MaxStepGenerator -1157 can be used. -1158 man_grad : list -1159 manually supply a list or an array which contains the jacobian -1160 of func. Use cautiously, supplying the wrong derivative will -1161 not be intercepted. -1162 -1163 Notes -1164 ----- -1165 For simple mathematical operations it can be practical to use anonymous -1166 functions. For the ratio of two observables one can e.g. use -1167 -1168 new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2]) -1169 """ -1170 -1171 data = np.asarray(data) -1172 raveled_data = data.ravel() -1173 -1174 # Workaround for matrix operations containing non Obs data -1175 if not all(isinstance(x, Obs) for x in raveled_data): -1176 for i in range(len(raveled_data)): -1177 if isinstance(raveled_data[i], (int, float)): -1178 raveled_data[i] = cov_Obs(raveled_data[i], 0.0, "###dummy_covobs###") -1179 -1180 allcov = {} -1181 for o in raveled_data: -1182 for name in o.cov_names: -1183 if name in allcov: -1184 if not np.allclose(allcov[name], o.covobs[name].cov): -1185 raise Exception('Inconsistent covariance matrices for %s!' % (name)) -1186 else: -1187 allcov[name] = o.covobs[name].cov -1188 -1189 n_obs = len(raveled_data) -1190 new_names = sorted(set([y for x in [o.names for o in raveled_data] for y in x])) -1191 new_cov_names = sorted(set([y for x in [o.cov_names for o in raveled_data] for y in x])) -1192 new_sample_names = sorted(set(new_names) - set(new_cov_names)) -1193 -1194 is_merged = {name: (len(list(filter(lambda o: o.is_merged.get(name, False) is True, raveled_data))) > 0) for name in new_sample_names} -1195 reweighted = len(list(filter(lambda o: o.reweighted is True, raveled_data))) > 0 -1196 -1197 if data.ndim == 1: -1198 values = np.array([o.value for o in data]) -1199 else: -1200 values = np.vectorize(lambda x: x.value)(data) -1201 -1202 new_values = func(values, **kwargs) -1203 -1204 multi = int(isinstance(new_values, np.ndarray)) -1205 -1206 new_r_values = {} -1207 new_idl_d = {} -1208 for name in new_sample_names: -1209 idl = [] -1210 tmp_values = np.zeros(n_obs) -1211 for i, item in enumerate(raveled_data): -1212 tmp_values[i] = item.r_values.get(name, item.value) -1213 tmp_idl = item.idl.get(name) -1214 if tmp_idl is not None: -1215 idl.append(tmp_idl) -1216 if multi > 0: -1217 tmp_values = np.array(tmp_values).reshape(data.shape) -1218 new_r_values[name] = func(tmp_values, **kwargs) -1219 new_idl_d[name] = _merge_idx(idl) -1220 if not is_merged[name]: -1221 is_merged[name] = (1 != len(set([len(idx) for idx in [*idl, new_idl_d[name]]]))) -1222 -1223 if 'man_grad' in kwargs: -1224 deriv = np.asarray(kwargs.get('man_grad')) -1225 if new_values.shape + data.shape != deriv.shape: -1226 raise Exception('Manual derivative does not have correct shape.') -1227 elif kwargs.get('num_grad') is True: -1228 if multi > 0: -1229 raise Exception('Multi mode currently not supported for numerical derivative') -1230 options = { -1231 'base_step': 0.1, -1232 'step_ratio': 2.5} -1233 for key in options.keys(): -1234 kwarg = kwargs.get(key) -1235 if kwarg is not None: -1236 options[key] = kwarg -1237 tmp_df = nd.Gradient(func, order=4, **{k: v for k, v in options.items() if v is not None})(values, **kwargs) -1238 if tmp_df.size == 1: -1239 deriv = np.array([tmp_df.real]) -1240 else: -1241 deriv = tmp_df.real -1242 else: -1243 deriv = jacobian(func)(values, **kwargs) -1244 -1245 final_result = np.zeros(new_values.shape, dtype=object) -1246 -1247 if array_mode is True: -1248 -1249 class _Zero_grad(): -1250 def __init__(self, N): -1251 self.grad = np.zeros((N, 1)) -1252 -1253 new_covobs_lengths = dict(set([y for x in [[(n, o.covobs[n].N) for n in o.cov_names] for o in raveled_data] for y in x])) -1254 d_extracted = {} -1255 g_extracted = {} -1256 for name in new_sample_names: -1257 d_extracted[name] = [] -1258 ens_length = len(new_idl_d[name]) -1259 for i_dat, dat in enumerate(data): -1260 d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas.get(name, np.zeros(ens_length)), o.idl.get(name, new_idl_d[name]), o.shape.get(name, ens_length), new_idl_d[name]) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, ))) -1261 for name in new_cov_names: -1262 g_extracted[name] = [] -1263 zero_grad = _Zero_grad(new_covobs_lengths[name]) -1264 for i_dat, dat in enumerate(data): -1265 g_extracted[name].append(np.array([o.covobs.get(name, zero_grad).grad for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (new_covobs_lengths[name], 1))) -1266 -1267 for i_val, new_val in np.ndenumerate(new_values): -1268 new_deltas = {} -1269 new_grad = {} -1270 if array_mode is True: -1271 for name in new_sample_names: -1272 ens_length = d_extracted[name][0].shape[-1] -1273 new_deltas[name] = np.zeros(ens_length) -1274 for i_dat, dat in enumerate(d_extracted[name]): -1275 new_deltas[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) -1276 for name in new_cov_names: -1277 new_grad[name] = 0 -1278 for i_dat, dat in enumerate(g_extracted[name]): -1279 new_grad[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) -1280 else: -1281 for j_obs, obs in np.ndenumerate(data): -1282 for name in obs.names: -1283 if name in obs.cov_names: -1284 new_grad[name] = new_grad.get(name, 0) + deriv[i_val + j_obs] * obs.covobs[name].grad -1285 else: -1286 new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name]) -1287 -1288 new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad} -1289 -1290 if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()): -1291 raise Exception('The same name has been used for deltas and covobs!') -1292 new_samples = [] -1293 new_means = [] -1294 new_idl = [] -1295 new_names_obs = [] -1296 for name in new_names: -1297 if name not in new_covobs: -1298 if is_merged[name]: -1299 filtered_deltas, filtered_idl_d = _filter_zeroes(new_deltas[name], new_idl_d[name]) -1300 else: -1301 filtered_deltas = new_deltas[name] -1302 filtered_idl_d = new_idl_d[name] +@@ -4418,47 +4450,47 @@ functions. For the ratio of two observables one can e.g. use1158def derived_observable(func, data, array_mode=False, **kwargs): +1159 """Construct a derived Obs according to func(data, **kwargs) using automatic differentiation. +1160 +1161 Parameters +1162 ---------- +1163 func : object +1164 arbitrary function of the form func(data, **kwargs). For the +1165 automatic differentiation to work, all numpy functions have to have +1166 the autograd wrapper (use 'import autograd.numpy as anp'). +1167 data : list +1168 list of Obs, e.g. [obs1, obs2, obs3]. +1169 num_grad : bool +1170 if True, numerical derivatives are used instead of autograd +1171 (default False). To control the numerical differentiation the +1172 kwargs of numdifftools.step_generators.MaxStepGenerator +1173 can be used. +1174 man_grad : list +1175 manually supply a list or an array which contains the jacobian +1176 of func. Use cautiously, supplying the wrong derivative will +1177 not be intercepted. +1178 +1179 Notes +1180 ----- +1181 For simple mathematical operations it can be practical to use anonymous +1182 functions. For the ratio of two observables one can e.g. use +1183 +1184 new_obs = derived_observable(lambda x: x[0] / x[1], [obs1, obs2]) +1185 """ +1186 +1187 data = np.asarray(data) +1188 raveled_data = data.ravel() +1189 +1190 # Workaround for matrix operations containing non Obs data +1191 if not all(isinstance(x, Obs) for x in raveled_data): +1192 for i in range(len(raveled_data)): +1193 if isinstance(raveled_data[i], (int, float)): +1194 raveled_data[i] = cov_Obs(raveled_data[i], 0.0, "###dummy_covobs###") +1195 +1196 allcov = {} +1197 for o in raveled_data: +1198 for name in o.cov_names: +1199 if name in allcov: +1200 if not np.allclose(allcov[name], o.covobs[name].cov): +1201 raise Exception('Inconsistent covariance matrices for %s!' % (name)) +1202 else: +1203 allcov[name] = o.covobs[name].cov +1204 +1205 n_obs = len(raveled_data) +1206 new_names = sorted(set([y for x in [o.names for o in raveled_data] for y in x])) +1207 new_cov_names = sorted(set([y for x in [o.cov_names for o in raveled_data] for y in x])) +1208 new_sample_names = sorted(set(new_names) - set(new_cov_names)) +1209 +1210 is_merged = {name: (len(list(filter(lambda o: o.is_merged.get(name, False) is True, raveled_data))) > 0) for name in new_sample_names} +1211 reweighted = len(list(filter(lambda o: o.reweighted is True, raveled_data))) > 0 +1212 +1213 if data.ndim == 1: +1214 values = np.array([o.value for o in data]) +1215 else: +1216 values = np.vectorize(lambda x: x.value)(data) +1217 +1218 new_values = func(values, **kwargs) +1219 +1220 multi = int(isinstance(new_values, np.ndarray)) +1221 +1222 new_r_values = {} +1223 new_idl_d = {} +1224 for name in new_sample_names: +1225 idl = [] +1226 tmp_values = np.zeros(n_obs) +1227 for i, item in enumerate(raveled_data): +1228 tmp_values[i] = item.r_values.get(name, item.value) +1229 tmp_idl = item.idl.get(name) +1230 if tmp_idl is not None: +1231 idl.append(tmp_idl) +1232 if multi > 0: +1233 tmp_values = np.array(tmp_values).reshape(data.shape) +1234 new_r_values[name] = func(tmp_values, **kwargs) +1235 new_idl_d[name] = _merge_idx(idl) +1236 if not is_merged[name]: +1237 is_merged[name] = (1 != len(set([len(idx) for idx in [*idl, new_idl_d[name]]]))) +1238 +1239 if 'man_grad' in kwargs: +1240 deriv = np.asarray(kwargs.get('man_grad')) +1241 if new_values.shape + data.shape != deriv.shape: +1242 raise Exception('Manual derivative does not have correct shape.') +1243 elif kwargs.get('num_grad') is True: +1244 if multi > 0: +1245 raise Exception('Multi mode currently not supported for numerical derivative') +1246 options = { +1247 'base_step': 0.1, +1248 'step_ratio': 2.5} +1249 for key in options.keys(): +1250 kwarg = kwargs.get(key) +1251 if kwarg is not None: +1252 options[key] = kwarg +1253 tmp_df = nd.Gradient(func, order=4, **{k: v for k, v in options.items() if v is not None})(values, **kwargs) +1254 if tmp_df.size == 1: +1255 deriv = np.array([tmp_df.real]) +1256 else: +1257 deriv = tmp_df.real +1258 else: +1259 deriv = jacobian(func)(values, **kwargs) +1260 +1261 final_result = np.zeros(new_values.shape, dtype=object) +1262 +1263 if array_mode is True: +1264 +1265 class _Zero_grad(): +1266 def __init__(self, N): +1267 self.grad = np.zeros((N, 1)) +1268 +1269 new_covobs_lengths = dict(set([y for x in [[(n, o.covobs[n].N) for n in o.cov_names] for o in raveled_data] for y in x])) +1270 d_extracted = {} +1271 g_extracted = {} +1272 for name in new_sample_names: +1273 d_extracted[name] = [] +1274 ens_length = len(new_idl_d[name]) +1275 for i_dat, dat in enumerate(data): +1276 d_extracted[name].append(np.array([_expand_deltas_for_merge(o.deltas.get(name, np.zeros(ens_length)), o.idl.get(name, new_idl_d[name]), o.shape.get(name, ens_length), new_idl_d[name]) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, ))) +1277 for name in new_cov_names: +1278 g_extracted[name] = [] +1279 zero_grad = _Zero_grad(new_covobs_lengths[name]) +1280 for i_dat, dat in enumerate(data): +1281 g_extracted[name].append(np.array([o.covobs.get(name, zero_grad).grad for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (new_covobs_lengths[name], 1))) +1282 +1283 for i_val, new_val in np.ndenumerate(new_values): +1284 new_deltas = {} +1285 new_grad = {} +1286 if array_mode is True: +1287 for name in new_sample_names: +1288 ens_length = d_extracted[name][0].shape[-1] +1289 new_deltas[name] = np.zeros(ens_length) +1290 for i_dat, dat in enumerate(d_extracted[name]): +1291 new_deltas[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) +1292 for name in new_cov_names: +1293 new_grad[name] = 0 +1294 for i_dat, dat in enumerate(g_extracted[name]): +1295 new_grad[name] += np.tensordot(deriv[i_val + (i_dat, )], dat) +1296 else: +1297 for j_obs, obs in np.ndenumerate(data): +1298 for name in obs.names: +1299 if name in obs.cov_names: +1300 new_grad[name] = new_grad.get(name, 0) + deriv[i_val + j_obs] * obs.covobs[name].grad +1301 else: +1302 new_deltas[name] = new_deltas.get(name, 0) + deriv[i_val + j_obs] * _expand_deltas_for_merge(obs.deltas[name], obs.idl[name], obs.shape[name], new_idl_d[name]) 1303 -1304 new_samples.append(filtered_deltas) -1305 new_idl.append(filtered_idl_d) -1306 new_means.append(new_r_values[name][i_val]) -1307 new_names_obs.append(name) -1308 final_result[i_val] = Obs(new_samples, new_names_obs, means=new_means, idl=new_idl) -1309 for name in new_covobs: -1310 final_result[i_val].names.append(name) -1311 final_result[i_val]._covobs = new_covobs -1312 final_result[i_val]._value = new_val -1313 final_result[i_val].is_merged = is_merged -1314 final_result[i_val].reweighted = reweighted -1315 -1316 if multi == 0: -1317 final_result = final_result.item() -1318 -1319 return final_result +1304 new_covobs = {name: Covobs(0, allcov[name], name, grad=new_grad[name]) for name in new_grad} +1305 +1306 if not set(new_covobs.keys()).isdisjoint(new_deltas.keys()): +1307 raise Exception('The same name has been used for deltas and covobs!') +1308 new_samples = [] +1309 new_means = [] +1310 new_idl = [] +1311 new_names_obs = [] +1312 for name in new_names: +1313 if name not in new_covobs: +1314 if is_merged[name]: +1315 filtered_deltas, filtered_idl_d = _filter_zeroes(new_deltas[name], new_idl_d[name]) +1316 else: +1317 filtered_deltas = new_deltas[name] +1318 filtered_idl_d = new_idl_d[name] +1319 +1320 new_samples.append(filtered_deltas) +1321 new_idl.append(filtered_idl_d) +1322 new_means.append(new_r_values[name][i_val]) +1323 new_names_obs.append(name) +1324 final_result[i_val] = Obs(new_samples, new_names_obs, means=new_means, idl=new_idl) +1325 for name in new_covobs: +1326 final_result[i_val].names.append(name) +1327 final_result[i_val]._covobs = new_covobs +1328 final_result[i_val]._value = new_val +1329 final_result[i_val].is_merged = is_merged +1330 final_result[i_val].reweighted = reweighted +1331 +1332 if multi == 0: +1333 final_result = final_result.item() +1334 +1335 return final_result
1359def reweight(weight, obs, **kwargs): -1360 """Reweight a list of observables. -1361 -1362 Parameters -1363 ---------- -1364 weight : Obs -1365 Reweighting factor. An Observable that has to be defined on a superset of the -1366 configurations in obs[i].idl for all i. -1367 obs : list -1368 list of Obs, e.g. [obs1, obs2, obs3]. -1369 all_configs : bool -1370 if True, the reweighted observables are normalized by the average of -1371 the reweighting factor on all configurations in weight.idl and not -1372 on the configurations in obs[i].idl. Default False. -1373 """ -1374 result = [] -1375 for i in range(len(obs)): -1376 if len(obs[i].cov_names): -1377 raise Exception('Error: Not possible to reweight an Obs that contains covobs!') -1378 if not set(obs[i].names).issubset(weight.names): -1379 raise Exception('Error: Ensembles do not fit') -1380 for name in obs[i].names: -1381 if not set(obs[i].idl[name]).issubset(weight.idl[name]): -1382 raise Exception('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name)) -1383 new_samples = [] -1384 w_deltas = {} -1385 for name in sorted(obs[i].names): -1386 w_deltas[name] = _reduce_deltas(weight.deltas[name], weight.idl[name], obs[i].idl[name]) -1387 new_samples.append((w_deltas[name] + weight.r_values[name]) * (obs[i].deltas[name] + obs[i].r_values[name])) -1388 tmp_obs = Obs(new_samples, sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) -1389 -1390 if kwargs.get('all_configs'): -1391 new_weight = weight -1392 else: -1393 new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(obs[i].names)], sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) -1394 -1395 result.append(tmp_obs / new_weight) -1396 result[-1].reweighted = True -1397 result[-1].is_merged = obs[i].is_merged -1398 -1399 return result +@@ -4492,48 +4524,48 @@ on the configurations in obs[i].idl. Default False.1375def reweight(weight, obs, **kwargs): +1376 """Reweight a list of observables. +1377 +1378 Parameters +1379 ---------- +1380 weight : Obs +1381 Reweighting factor. An Observable that has to be defined on a superset of the +1382 configurations in obs[i].idl for all i. +1383 obs : list +1384 list of Obs, e.g. [obs1, obs2, obs3]. +1385 all_configs : bool +1386 if True, the reweighted observables are normalized by the average of +1387 the reweighting factor on all configurations in weight.idl and not +1388 on the configurations in obs[i].idl. Default False. +1389 """ +1390 result = [] +1391 for i in range(len(obs)): +1392 if len(obs[i].cov_names): +1393 raise Exception('Error: Not possible to reweight an Obs that contains covobs!') +1394 if not set(obs[i].names).issubset(weight.names): +1395 raise Exception('Error: Ensembles do not fit') +1396 for name in obs[i].names: +1397 if not set(obs[i].idl[name]).issubset(weight.idl[name]): +1398 raise Exception('obs[%d] has to be defined on a subset of the configs in weight.idl[%s]!' % (i, name)) +1399 new_samples = [] +1400 w_deltas = {} +1401 for name in sorted(obs[i].names): +1402 w_deltas[name] = _reduce_deltas(weight.deltas[name], weight.idl[name], obs[i].idl[name]) +1403 new_samples.append((w_deltas[name] + weight.r_values[name]) * (obs[i].deltas[name] + obs[i].r_values[name])) +1404 tmp_obs = Obs(new_samples, sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) +1405 +1406 if kwargs.get('all_configs'): +1407 new_weight = weight +1408 else: +1409 new_weight = Obs([w_deltas[name] + weight.r_values[name] for name in sorted(obs[i].names)], sorted(obs[i].names), idl=[obs[i].idl[name] for name in sorted(obs[i].names)]) +1410 +1411 result.append(tmp_obs / new_weight) +1412 result[-1].reweighted = True +1413 result[-1].is_merged = obs[i].is_merged +1414 +1415 return result
1402def correlate(obs_a, obs_b): -1403 """Correlate two observables. -1404 -1405 Parameters -1406 ---------- -1407 obs_a : Obs -1408 First observable -1409 obs_b : Obs -1410 Second observable -1411 -1412 Notes -1413 ----- -1414 Keep in mind to only correlate primary observables which have not been reweighted -1415 yet. The reweighting has to be applied after correlating the observables. -1416 Currently only works if ensembles are identical (this is not strictly necessary). -1417 """ -1418 -1419 if sorted(obs_a.names) != sorted(obs_b.names): -1420 raise Exception('Ensembles do not fit') -1421 if len(obs_a.cov_names) or len(obs_b.cov_names): -1422 raise Exception('Error: Not possible to correlate Obs that contain covobs!') -1423 for name in obs_a.names: -1424 if obs_a.shape[name] != obs_b.shape[name]: -1425 raise Exception('Shapes of ensemble', name, 'do not fit') -1426 if obs_a.idl[name] != obs_b.idl[name]: -1427 raise Exception('idl of ensemble', name, 'do not fit') -1428 -1429 if obs_a.reweighted is True: -1430 warnings.warn("The first observable is already reweighted.", RuntimeWarning) -1431 if obs_b.reweighted is True: -1432 warnings.warn("The second observable is already reweighted.", RuntimeWarning) -1433 -1434 new_samples = [] -1435 new_idl = [] -1436 for name in sorted(obs_a.names): -1437 new_samples.append((obs_a.deltas[name] + obs_a.r_values[name]) * (obs_b.deltas[name] + obs_b.r_values[name])) -1438 new_idl.append(obs_a.idl[name]) -1439 -1440 o = Obs(new_samples, sorted(obs_a.names), idl=new_idl) -1441 o.is_merged = {name: (obs_a.is_merged.get(name, False) or obs_b.is_merged.get(name, False)) for name in o.names} -1442 o.reweighted = obs_a.reweighted or obs_b.reweighted -1443 return o +@@ -4568,71 +4600,71 @@ Currently only works if ensembles are identical (this is not strictly necessary)1418def correlate(obs_a, obs_b): +1419 """Correlate two observables. +1420 +1421 Parameters +1422 ---------- +1423 obs_a : Obs +1424 First observable +1425 obs_b : Obs +1426 Second observable +1427 +1428 Notes +1429 ----- +1430 Keep in mind to only correlate primary observables which have not been reweighted +1431 yet. The reweighting has to be applied after correlating the observables. +1432 Currently only works if ensembles are identical (this is not strictly necessary). +1433 """ +1434 +1435 if sorted(obs_a.names) != sorted(obs_b.names): +1436 raise Exception('Ensembles do not fit') +1437 if len(obs_a.cov_names) or len(obs_b.cov_names): +1438 raise Exception('Error: Not possible to correlate Obs that contain covobs!') +1439 for name in obs_a.names: +1440 if obs_a.shape[name] != obs_b.shape[name]: +1441 raise Exception('Shapes of ensemble', name, 'do not fit') +1442 if obs_a.idl[name] != obs_b.idl[name]: +1443 raise Exception('idl of ensemble', name, 'do not fit') +1444 +1445 if obs_a.reweighted is True: +1446 warnings.warn("The first observable is already reweighted.", RuntimeWarning) +1447 if obs_b.reweighted is True: +1448 warnings.warn("The second observable is already reweighted.", RuntimeWarning) +1449 +1450 new_samples = [] +1451 new_idl = [] +1452 for name in sorted(obs_a.names): +1453 new_samples.append((obs_a.deltas[name] + obs_a.r_values[name]) * (obs_b.deltas[name] + obs_b.r_values[name])) +1454 new_idl.append(obs_a.idl[name]) +1455 +1456 o = Obs(new_samples, sorted(obs_a.names), idl=new_idl) +1457 o.is_merged = {name: (obs_a.is_merged.get(name, False) or obs_b.is_merged.get(name, False)) for name in o.names} +1458 o.reweighted = obs_a.reweighted or obs_b.reweighted +1459 return o
1446def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs): -1447 r'''Calculates the error covariance matrix of a set of observables. -1448 -1449 The gamma method has to be applied first to all observables. -1450 -1451 Parameters -1452 ---------- -1453 obs : list or numpy.ndarray -1454 List or one dimensional array of Obs -1455 visualize : bool -1456 If True plots the corresponding normalized correlation matrix (default False). -1457 correlation : bool -1458 If True the correlation matrix instead of the error covariance matrix is returned (default False). -1459 smooth : None or int -1460 If smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue -1461 smoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the -1462 largest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely -1463 small ones. +@@ -4681,24 +4713,24 @@ This construction ensures that the estimated covariance matrix is positive semi-1462def covariance(obs, visualize=False, correlation=False, smooth=None, **kwargs): +1463 r'''Calculates the error covariance matrix of a set of observables. 1464 -1465 Notes -1466 ----- -1467 The error covariance is defined such that it agrees with the squared standard error for two identical observables -1468 $$\operatorname{cov}(a,a)=\sum_{s=1}^N\delta_a^s\delta_a^s/N^2=\Gamma_{aa}(0)/N=\operatorname{var}(a)/N=\sigma_a^2$$ -1469 in the absence of autocorrelation. -1470 The error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite -1471 $$\sum_{i,j}v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v\in\mathbb{R}^M$, while such an identity does not hold for larger windows/lags. -1472 For observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements. -1473 $$\tau_{\mathrm{int}, ij}=\sqrt{\tau_{\mathrm{int}, i}\times \tau_{\mathrm{int}, j}}$$ -1474 This construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors). -1475 ''' -1476 -1477 length = len(obs) -1478 -1479 max_samples = np.max([o.N for o in obs]) -1480 if max_samples <= length and not [item for sublist in [o.cov_names for o in obs] for item in sublist]: -1481 warnings.warn(f"The dimension of the covariance matrix ({length}) is larger or equal to the number of samples ({max_samples}). This will result in a rank deficient matrix.", RuntimeWarning) -1482 -1483 cov = np.zeros((length, length)) -1484 for i in range(length): -1485 for j in range(i, length): -1486 cov[i, j] = _covariance_element(obs[i], obs[j]) -1487 cov = cov + cov.T - np.diag(np.diag(cov)) -1488 -1489 corr = np.diag(1 / np.sqrt(np.diag(cov))) @ cov @ np.diag(1 / np.sqrt(np.diag(cov))) -1490 -1491 if isinstance(smooth, int): -1492 corr = _smooth_eigenvalues(corr, smooth) -1493 -1494 if visualize: -1495 plt.matshow(corr, vmin=-1, vmax=1) -1496 plt.set_cmap('RdBu') -1497 plt.colorbar() -1498 plt.draw() -1499 -1500 if correlation is True: -1501 return corr -1502 -1503 errors = [o.dvalue for o in obs] -1504 cov = np.diag(errors) @ corr @ np.diag(errors) -1505 -1506 eigenvalues = np.linalg.eigh(cov)[0] -1507 if not np.all(eigenvalues >= 0): -1508 warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning) +1465 The gamma method has to be applied first to all observables. +1466 +1467 Parameters +1468 ---------- +1469 obs : list or numpy.ndarray +1470 List or one dimensional array of Obs +1471 visualize : bool +1472 If True plots the corresponding normalized correlation matrix (default False). +1473 correlation : bool +1474 If True the correlation matrix instead of the error covariance matrix is returned (default False). +1475 smooth : None or int +1476 If smooth is an integer 'E' between 2 and the dimension of the matrix minus 1 the eigenvalue +1477 smoothing procedure of hep-lat/9412087 is applied to the correlation matrix which leaves the +1478 largest E eigenvalues essentially unchanged and smoothes the smaller eigenvalues to avoid extremely +1479 small ones. +1480 +1481 Notes +1482 ----- +1483 The error covariance is defined such that it agrees with the squared standard error for two identical observables +1484 $$\operatorname{cov}(a,a)=\sum_{s=1}^N\delta_a^s\delta_a^s/N^2=\Gamma_{aa}(0)/N=\operatorname{var}(a)/N=\sigma_a^2$$ +1485 in the absence of autocorrelation. +1486 The error covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite +1487 $$\sum_{i,j}v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v\in\mathbb{R}^M$, while such an identity does not hold for larger windows/lags. +1488 For observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements. +1489 $$\tau_{\mathrm{int}, ij}=\sqrt{\tau_{\mathrm{int}, i}\times \tau_{\mathrm{int}, j}}$$ +1490 This construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors). +1491 ''' +1492 +1493 length = len(obs) +1494 +1495 max_samples = np.max([o.N for o in obs]) +1496 if max_samples <= length and not [item for sublist in [o.cov_names for o in obs] for item in sublist]: +1497 warnings.warn(f"The dimension of the covariance matrix ({length}) is larger or equal to the number of samples ({max_samples}). This will result in a rank deficient matrix.", RuntimeWarning) +1498 +1499 cov = np.zeros((length, length)) +1500 for i in range(length): +1501 for j in range(i, length): +1502 cov[i, j] = _covariance_element(obs[i], obs[j]) +1503 cov = cov + cov.T - np.diag(np.diag(cov)) +1504 +1505 corr = np.diag(1 / np.sqrt(np.diag(cov))) @ cov @ np.diag(1 / np.sqrt(np.diag(cov))) +1506 +1507 if isinstance(smooth, int): +1508 corr = _smooth_eigenvalues(corr, smooth) 1509 -1510 return cov +1510 if visualize: +1511 plt.matshow(corr, vmin=-1, vmax=1) +1512 plt.set_cmap('RdBu') +1513 plt.colorbar() +1514 plt.draw() +1515 +1516 if correlation is True: +1517 return corr +1518 +1519 errors = [o.dvalue for o in obs] +1520 cov = np.diag(errors) @ corr @ np.diag(errors) +1521 +1522 eigenvalues = np.linalg.eigh(cov)[0] +1523 if not np.all(eigenvalues >= 0): +1524 warnings.warn("Covariance matrix is not positive semi-definite (Eigenvalues: " + str(eigenvalues) + ")", RuntimeWarning) +1525 +1526 return cov
1590def import_jackknife(jacks, name, idl=None): -1591 """Imports jackknife samples and returns an Obs -1592 -1593 Parameters -1594 ---------- -1595 jacks : numpy.ndarray -1596 numpy array containing the mean value as zeroth entry and -1597 the N jackknife samples as first to Nth entry. -1598 name : str -1599 name of the ensemble the samples are defined on. -1600 """ -1601 length = len(jacks) - 1 -1602 prj = (np.ones((length, length)) - (length - 1) * np.identity(length)) -1603 samples = jacks[1:] @ prj -1604 mean = np.mean(samples) -1605 new_obs = Obs([samples - mean], [name], idl=idl, means=[mean]) -1606 new_obs._value = jacks[0] -1607 return new_obs +@@ -4728,35 +4760,35 @@ name of the ensemble the samples are defined on.1606def import_jackknife(jacks, name, idl=None): +1607 """Imports jackknife samples and returns an Obs +1608 +1609 Parameters +1610 ---------- +1611 jacks : numpy.ndarray +1612 numpy array containing the mean value as zeroth entry and +1613 the N jackknife samples as first to Nth entry. +1614 name : str +1615 name of the ensemble the samples are defined on. +1616 """ +1617 length = len(jacks) - 1 +1618 prj = (np.ones((length, length)) - (length - 1) * np.identity(length)) +1619 samples = jacks[1:] @ prj +1620 mean = np.mean(samples) +1621 new_obs = Obs([samples - mean], [name], idl=idl, means=[mean]) +1622 new_obs._value = jacks[0] +1623 return new_obs
1610def merge_obs(list_of_obs): -1611 """Combine all observables in list_of_obs into one new observable -1612 -1613 Parameters -1614 ---------- -1615 list_of_obs : list -1616 list of the Obs object to be combined -1617 -1618 Notes -1619 ----- -1620 It is not possible to combine obs which are based on the same replicum -1621 """ -1622 replist = [item for obs in list_of_obs for item in obs.names] -1623 if (len(replist) == len(set(replist))) is False: -1624 raise Exception('list_of_obs contains duplicate replica: %s' % (str(replist))) -1625 if any([len(o.cov_names) for o in list_of_obs]): -1626 raise Exception('Not possible to merge data that contains covobs!') -1627 new_dict = {} -1628 idl_dict = {} -1629 for o in list_of_obs: -1630 new_dict.update({key: o.deltas.get(key, 0) + o.r_values.get(key, 0) -1631 for key in set(o.deltas) | set(o.r_values)}) -1632 idl_dict.update({key: o.idl.get(key, 0) for key in set(o.deltas)}) +@@ -4787,47 +4819,47 @@ list of the Obs object to be combined1626def merge_obs(list_of_obs): +1627 """Combine all observables in list_of_obs into one new observable +1628 +1629 Parameters +1630 ---------- +1631 list_of_obs : list +1632 list of the Obs object to be combined 1633 -1634 names = sorted(new_dict.keys()) -1635 o = Obs([new_dict[name] for name in names], names, idl=[idl_dict[name] for name in names]) -1636 o.is_merged = {name: np.any([oi.is_merged.get(name, False) for oi in list_of_obs]) for name in o.names} -1637 o.reweighted = np.max([oi.reweighted for oi in list_of_obs]) -1638 return o +1634 Notes +1635 ----- +1636 It is not possible to combine obs which are based on the same replicum +1637 """ +1638 replist = [item for obs in list_of_obs for item in obs.names] +1639 if (len(replist) == len(set(replist))) is False: +1640 raise Exception('list_of_obs contains duplicate replica: %s' % (str(replist))) +1641 if any([len(o.cov_names) for o in list_of_obs]): +1642 raise Exception('Not possible to merge data that contains covobs!') +1643 new_dict = {} +1644 idl_dict = {} +1645 for o in list_of_obs: +1646 new_dict.update({key: o.deltas.get(key, 0) + o.r_values.get(key, 0) +1647 for key in set(o.deltas) | set(o.r_values)}) +1648 idl_dict.update({key: o.idl.get(key, 0) for key in set(o.deltas)}) +1649 +1650 names = sorted(new_dict.keys()) +1651 o = Obs([new_dict[name] for name in names], names, idl=[idl_dict[name] for name in names]) +1652 o.is_merged = {name: np.any([oi.is_merged.get(name, False) for oi in list_of_obs]) for name in o.names} +1653 o.reweighted = np.max([oi.reweighted for oi in list_of_obs]) +1654 return o
1641def cov_Obs(means, cov, name, grad=None): -1642 """Create an Obs based on mean(s) and a covariance matrix -1643 -1644 Parameters -1645 ---------- -1646 mean : list of floats or float -1647 N mean value(s) of the new Obs -1648 cov : list or array -1649 2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance -1650 name : str -1651 identifier for the covariance matrix -1652 grad : list or array -1653 Gradient of the Covobs wrt. the means belonging to cov. -1654 """ -1655 -1656 def covobs_to_obs(co): -1657 """Make an Obs out of a Covobs -1658 -1659 Parameters -1660 ---------- -1661 co : Covobs -1662 Covobs to be embedded into the Obs -1663 """ -1664 o = Obs([], [], means=[]) -1665 o._value = co.value -1666 o.names.append(co.name) -1667 o._covobs[co.name] = co -1668 o._dvalue = np.sqrt(co.errsq()) -1669 return o -1670 -1671 ol = [] -1672 if isinstance(means, (float, int)): -1673 means = [means] +1657def cov_Obs(means, cov, name, grad=None): +1658 """Create an Obs based on mean(s) and a covariance matrix +1659 +1660 Parameters +1661 ---------- +1662 mean : list of floats or float +1663 N mean value(s) of the new Obs +1664 cov : list or array +1665 2d (NxN) Covariance matrix, 1d diagonal entries or 0d covariance +1666 name : str +1667 identifier for the covariance matrix +1668 grad : list or array +1669 Gradient of the Covobs wrt. the means belonging to cov. +1670 """ +1671 +1672 def covobs_to_obs(co): +1673 """Make an Obs out of a Covobs 1674 -1675 for i in range(len(means)): -1676 ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad))) -1677 if ol[0].covobs[name].N != len(means): -1678 raise Exception('You have to provide %d mean values!' % (ol[0].N)) -1679 if len(ol) == 1: -1680 return ol[0] -1681 return ol +1675 Parameters +1676 ---------- +1677 co : Covobs +1678 Covobs to be embedded into the Obs +1679 """ +1680 o = Obs([], [], means=[]) +1681 o._value = co.value +1682 o.names.append(co.name) +1683 o._covobs[co.name] = co +1684 o._dvalue = np.sqrt(co.errsq()) +1685 return o +1686 +1687 ol = [] +1688 if isinstance(means, (float, int)): +1689 means = [means] +1690 +1691 for i in range(len(means)): +1692 ol.append(covobs_to_obs(Covobs(means[i], cov, name, pos=i, grad=grad))) +1693 if ol[0].covobs[name].N != len(means): +1694 raise Exception('You have to provide %d mean values!' % (ol[0].N)) +1695 if len(ol) == 1: +1696 return ol[0] +1697 return ol