mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-16 12:33:41 +02:00
flake8 style changes
This commit is contained in:
parent
43f85efff5
commit
57c6a07801
9 changed files with 87 additions and 128 deletions
|
@ -6,15 +6,17 @@ import autograd.numpy as anp # Thinly-wrapped numpy
|
|||
from .pyerrors import derived_observable
|
||||
|
||||
|
||||
### This code block is directly taken from the current master branch of autograd and remains
|
||||
# This code block is directly taken from the current master branch of autograd and remains
|
||||
# only until the new version is released on PyPi
|
||||
from functools import partial
|
||||
from autograd.extend import defvjp
|
||||
|
||||
_dot = partial(anp.einsum, '...ij,...jk->...ik')
|
||||
# batched diag
|
||||
_diag = lambda a: anp.eye(a.shape[-1])*a
|
||||
_diag = lambda a: anp.eye(a.shape[-1]) * a
|
||||
# batched diagonal, similar to matrix_diag in tensorflow
|
||||
|
||||
|
||||
def _matrix_diag(a):
|
||||
reps = anp.array(a.shape)
|
||||
reps[:-1] = 1
|
||||
|
@ -24,14 +26,17 @@ def _matrix_diag(a):
|
|||
|
||||
# https://arxiv.org/pdf/1701.00392.pdf Eq(4.77)
|
||||
# Note the formula from Sec3.1 in https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf is incomplete
|
||||
|
||||
|
||||
def grad_eig(ans, x):
|
||||
"""Gradient of a general square (complex valued) matrix"""
|
||||
e, u = ans # eigenvalues as 1d array, eigenvectors in columns
|
||||
e, u = ans # eigenvalues as 1d array, eigenvectors in columns
|
||||
n = e.shape[-1]
|
||||
|
||||
def vjp(g):
|
||||
ge, gu = g
|
||||
ge = _matrix_diag(ge)
|
||||
f = 1/(e[..., anp.newaxis, :] - e[..., :, anp.newaxis] + 1.e-20)
|
||||
f = 1 / (e[..., anp.newaxis, :] - e[..., :, anp.newaxis] + 1.e-20)
|
||||
f -= _diag(f)
|
||||
ut = anp.swapaxes(u, -1, -2)
|
||||
r1 = f * _dot(ut, gu)
|
||||
|
@ -43,8 +48,10 @@ def grad_eig(ans, x):
|
|||
# but the derivative should be real in real input case when imaginary delta is forbidden
|
||||
return r
|
||||
return vjp
|
||||
|
||||
|
||||
defvjp(anp.linalg.eig, grad_eig)
|
||||
### End of the code block from autograd.master
|
||||
# End of the code block from autograd.master
|
||||
|
||||
|
||||
def scalar_mat_op(op, obs, **kwargs):
|
||||
|
@ -92,8 +99,8 @@ def eig(obs, **kwargs):
|
|||
"""Computes the eigenvalues of a given matrix of Obs according to np.linalg.eig."""
|
||||
if kwargs.get('num_grad') is True:
|
||||
return _num_diff_eig(obs, **kwargs)
|
||||
# Note: Automatic differentiation of eig is implemented in the git of autograd
|
||||
# but not yet released to PyPi (1.3)
|
||||
# Note: Automatic differentiation of eig is implemented in the git of autograd
|
||||
# but not yet released to PyPi (1.3)
|
||||
w = derived_observable(lambda x, **kwargs: anp.real(anp.linalg.eig(x)[0]), obs)
|
||||
return w
|
||||
|
||||
|
@ -214,7 +221,6 @@ def _num_diff_eigh(obs, **kwargs):
|
|||
for i in range(dim):
|
||||
res_vec.append(derived_observable(_mat, raveled_obs, n=0, i=i, **kwargs))
|
||||
|
||||
|
||||
res_mat = []
|
||||
for i in range(dim):
|
||||
row = []
|
||||
|
@ -244,7 +250,7 @@ def _num_diff_eig(obs, **kwargs):
|
|||
res = np.linalg.eig(np.array(mat))[n]
|
||||
|
||||
if n == 0:
|
||||
# Discard imaginary part of eigenvalue here
|
||||
# Discard imaginary part of eigenvalue here
|
||||
return np.real(res[kwargs.get('i')])
|
||||
else:
|
||||
return res[kwargs.get('i')][kwargs.get('j')]
|
||||
|
@ -260,8 +266,8 @@ def _num_diff_eig(obs, **kwargs):
|
|||
|
||||
res_vec = []
|
||||
for i in range(dim):
|
||||
# Note: Automatic differentiation of eig is implemented in the git of autograd
|
||||
# but not yet released to PyPi (1.3)
|
||||
# Note: Automatic differentiation of eig is implemented in the git of autograd
|
||||
# but not yet released to PyPi (1.3)
|
||||
res_vec.append(derived_observable(_mat, raveled_obs, n=0, i=i, **kwargs))
|
||||
|
||||
return np.array(res_vec) @ np.identity(dim)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue