docs: typo corrected

This commit is contained in:
Fabian Joswig 2022-03-05 15:27:29 +00:00
parent 57a45e271f
commit 56af582303

View file

@ -1351,7 +1351,7 @@ def covariance(obs, visualize=False, correlation=False, **kwargs):
Notes
-----
The covariance is estimated by calculating the correlation matrix assuming no autocorrelation and then rescaling the correlation matrix by the full errors including the previous gamma method estimate for the autocorrelation of the observables. The covariance at windowsize 0 is guaranteed to be positive semi-definite
$$v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v_i\in\mathbb{R}^N$, while such an identity does not hold for larger windows/lags.
$$v_i\Gamma_{ij}(0)v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i,j}v_i\delta_i^s\delta_j^s v_j=\frac{1}{N}\sum_{s=1}^N\sum_{i}|v_i\delta_i^s|^2\geq 0\,,$$ for every $v\in\mathbb{R}^M$, while such an identity does not hold for larger windows/lags.
For observables defined on a single ensemble our approximation is equivalent to assuming that the integrated autocorrelation time of an off-diagonal element is equal to the geometric mean of the integrated autocorrelation times of the corresponding diagonal elements.
$$\tau_{\mathrm{int}, ij}=\sqrt{\tau_{\mathrm{int}, i}\times \tau_{\mathrm{int}, j}}$$
This construction ensures that the estimated covariance matrix is positive semi-definite (up to numerical rounding errors).