Merge pull request #142 from fjosw/feat/root_of_multi_parameter_functions

Root of multi parameter functions
This commit is contained in:
Fabian Joswig 2023-01-10 10:34:36 +00:00 committed by GitHub
commit 569bf8c2f1
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 17 additions and 5 deletions

View file

@ -27,15 +27,17 @@ def find_root(d, func, guess=1.0, **kwargs):
Obs
`Obs` valued root of the function.
'''
root = scipy.optimize.fsolve(func, guess, d.value)
d_val = np.vectorize(lambda x: x.value)(np.array(d))
root = scipy.optimize.fsolve(func, guess, d_val)
# Error propagation as detailed in arXiv:1809.01289
dx = jacobian(func)(root[0], d.value)
dx = jacobian(func)(root[0], d_val)
try:
da = jacobian(lambda u, v: func(v, u))(d.value, root[0])
da = jacobian(lambda u, v: func(v, u))(d_val, root[0])
except TypeError:
raise Exception("It is required to use autograd.numpy instead of numpy within root functions, see the documentation for details.") from None
deriv = - da / dx
res = derived_observable(lambda x, **kwargs: (x[0] + np.finfo(np.float64).eps) / (d.value + np.finfo(np.float64).eps) * root[0], [d], man_grad=[deriv])
res = derived_observable(lambda x, **kwargs: (x[0] + np.finfo(np.float64).eps) / (np.array(d).reshape(-1)[0].value + np.finfo(np.float64).eps) * root[0],
np.array(d).reshape(-1), man_grad=np.array(deriv).reshape(-1))
return res

View file

@ -42,3 +42,13 @@ def test_root_no_autograd():
with pytest.raises(Exception):
my_root = pe.roots.find_root(my_obs, root_function)
def test_root_multi_parameter():
o1 = pe.pseudo_Obs(1.1, 0.1, "test")
o2 = pe.pseudo_Obs(1.3, 0.12, "test")
f2 = lambda x, d: d[0] + d[1] * x
assert f2(-o1 / o2, [o1, o2]) == 0
assert pe.find_root([o1, o2], f2) == -o1 / o2