Merge branch 'develop' into develop

This commit is contained in:
JanNeuendorf 2022-01-18 16:21:59 +01:00 committed by GitHub
commit 5244e34d9e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 125 additions and 45 deletions

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -206,7 +206,7 @@ print(my_corr)
```
In case the correlation functions are not defined on the outermost timeslices, for example because of fixed boundary conditions, a padding can be introduced.
```python
my_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3], padding_front=1, padding_back=1)
my_corr = pe.Corr([obs_0, obs_1, obs_2, obs_3], padding=[1, 1])
print(my_corr)
> x0/a Corr(x0/a)
> ------------------

View file

@ -19,46 +19,55 @@ class Corr:
to iterate over all timeslices for every operation. This is especially true, when dealing with smearing matrices.
The correlator can have two types of content: An Obs at every timeslice OR a GEVP
smearing matrix at every timeslice. Other dependency (eg. spacial) are not supported.
smearing matrix at every timeslice. Other dependency (eg. spatial) are not supported.
"""
def __init__(self, data_input, padding_front=0, padding_back=0, prange=None):
# All data_input should be a list of things at different timeslices. This needs to be verified
def __init__(self, data_input, padding=[0, 0], prange=None):
""" Initialize a Corr object.
Parameters
----------
data_input : list
list of Obs or list of arrays of Obs.
padding : list, optional
List with two entries where the first labels the padding
at the front of the correlator and the second the padding
at the back.
prange : list, optional
List containing the first and last timeslice of the plateau
region indentified for this correlator.
"""
if not isinstance(data_input, list):
raise TypeError('Corr__init__ expects a list of timeslices.')
# data_input can have multiple shapes. The simplest one is a list of Obs.
# We check, if this is the case
if all([(isinstance(item, Obs) or isinstance(item, CObs)) for item in data_input]):
self.content = [np.asarray([item]) for item in data_input]
# Wrapping the Obs in an array ensures that the data structure is consistent with smearing matrices.
self.N = 1 # number of smearings
# data_input in the form [np.array(Obs,NxN)]
self.content = [np.asarray([item]) for item in data_input]
self.N = 1
elif all([isinstance(item, np.ndarray) or item is None for item in data_input]) and any([isinstance(item, np.ndarray) for item in data_input]):
self.content = data_input
noNull = [a for a in self.content if not (a is None)] # To check if the matrices are correct for all undefined elements
self.N = noNull[0].shape[0]
# The checks are now identical to the case above
if self.N > 1 and noNull[0].shape[0] != noNull[0].shape[1]:
raise Exception("Smearing matrices are not NxN")
if (not all([item.shape == noNull[0].shape for item in noNull])):
raise Exception("Items in data_input are not of identical shape." + str(noNull))
else: # In case its a list of something else.
else:
raise Exception("data_input contains item of wrong type")
self.tag = None
# We now apply some padding to our list. In case that our list represents a correlator of length T but is not defined at every value.
# An undefined timeslice is represented by the None object
self.content = [None] * padding_front + self.content + [None] * padding_back
self.T = len(self.content) # for convenience: will be used a lot
self.content = [None] * padding[0] + self.content + [None] * padding[1]
self.T = len(self.content)
# The attribute "range" [start,end] marks a range of two timeslices.
# This is useful for keeping track of plateaus and fitranges.
# The range can be inherited from other Corrs, if the operation should not alter a chosen range eg. multiplication with a constant.
self.prange = prange
self.gamma_method()
@ -406,7 +415,7 @@ class Corr:
newcontent.append(self.content[t + 1] - self.content[t])
if(all([x is None for x in newcontent])):
raise Exception("Derivative is undefined at all timeslices")
return Corr(newcontent, padding_back=1)
return Corr(newcontent, padding=[0, 1])
if symmetric:
newcontent = []
for t in range(1, self.T - 1):
@ -416,7 +425,7 @@ class Corr:
newcontent.append(0.5 * (self.content[t + 1] - self.content[t - 1]))
if(all([x is None for x in newcontent])):
raise Exception('Derivative is undefined at all timeslices')
return Corr(newcontent, padding_back=1, padding_front=1)
return Corr(newcontent, padding=[1, 1])
def second_deriv(self):
"""Return the second derivative of the correlator with respect to x0."""
@ -428,7 +437,7 @@ class Corr:
newcontent.append((self.content[t + 1] - 2 * self.content[t] + self.content[t - 1]))
if(all([x is None for x in newcontent])):
raise Exception("Derivative is undefined at all timeslices")
return Corr(newcontent, padding_back=1, padding_front=1)
return Corr(newcontent, padding=[1, 1])
def m_eff(self, variant='log', guess=1.0):
"""Returns the effective mass of the correlator as correlator object
@ -456,7 +465,7 @@ class Corr:
if(all([x is None for x in newcontent])):
raise Exception('m_eff is undefined at all timeslices')
return np.log(Corr(newcontent, padding_back=1))
return np.log(Corr(newcontent, padding=[0, 1]))
elif variant in ['periodic', 'cosh', 'sinh']:
if variant in ['periodic', 'cosh']:
@ -479,7 +488,7 @@ class Corr:
if(all([x is None for x in newcontent])):
raise Exception('m_eff is undefined at all timeslices')
return Corr(newcontent, padding_back=1)
return Corr(newcontent, padding=[0, 1])
elif variant == 'arccosh':
newcontent = []
@ -490,7 +499,7 @@ class Corr:
newcontent.append((self.content[t + 1] + self.content[t - 1]) / (2 * self.content[t]))
if(all([x is None for x in newcontent])):
raise Exception("m_eff is undefined at all timeslices")
return np.arccosh(Corr(newcontent, padding_back=1, padding_front=1))
return np.arccosh(Corr(newcontent, padding=[1, 1]))
else:
raise Exception('Unknown variant.')

View file

@ -8,6 +8,7 @@ import platform
import warnings
from ..obs import Obs
from ..covobs import Covobs
from ..correlators import Corr
from .. import version as pyerrorsversion
@ -19,7 +20,7 @@ def create_json_string(ol, description='', indent=1):
----------
ol : list
List of objects that will be exported. At the moments, these objects can be
either of: Obs, list, numpy.ndarray.
either of: Obs, list, numpy.ndarray, Corr.
All Obs inside a structure have to be defined on the same set of configurations.
description : str
Optional string that describes the contents of the json file.
@ -173,6 +174,18 @@ def create_json_string(ol, description='', indent=1):
d['cdata'] = cdata
return d
def write_Corr_to_dict(my_corr):
front_padding = next(i for i, j in enumerate(my_corr.content) if np.all(j))
back_padding_start = front_padding + next((i for i, j in enumerate(my_corr.content[front_padding:]) if not np.all(j)), my_corr.T)
dat = write_Array_to_dict(np.array(my_corr.content[front_padding:back_padding_start]))
dat['type'] = 'Corr'
corr_meta_data = str(front_padding) + '|' + str(my_corr.T - back_padding_start) + '|' + str(my_corr.tag)
if 'tag' in dat.keys():
dat['tag'].append(corr_meta_data)
else:
dat['tag'] = [corr_meta_data]
return dat
if not isinstance(ol, list):
ol = [ol]
@ -193,6 +206,10 @@ def create_json_string(ol, description='', indent=1):
d['obsdata'].append(write_List_to_dict(io))
elif isinstance(io, np.ndarray):
d['obsdata'].append(write_Array_to_dict(io))
elif isinstance(io, Corr):
d['obsdata'].append(write_Corr_to_dict(io))
else:
raise Exception("Unkown datatype.")
jsonstring = json.dumps(d, indent=indent, cls=my_encoder, ensure_ascii=False)
@ -222,7 +239,7 @@ def dump_to_json(ol, fname, description='', indent=1, gz=True):
----------
ol : list
List of objects that will be exported. At the moments, these objects can be
either of: Obs, list, numpy.ndarray.
either of: Obs, list, numpy.ndarray, Corr.
All Obs inside a structure have to be defined on the same set of configurations.
fname : str
Filename of the output file.
@ -255,7 +272,7 @@ def dump_to_json(ol, fname, description='', indent=1, gz=True):
def import_json_string(json_string, verbose=True, full_output=False):
"""Reconstruct a list of Obs or structures containing Obs from a json string.
The following structures are supported: Obs, list, numpy.ndarray
The following structures are supported: Obs, list, numpy.ndarray, Corr
If the list contains only one element, it is unpacked from the list.
Parameters
@ -374,6 +391,22 @@ def import_json_string(json_string, verbose=True, full_output=False):
ret[-1].tag = taglist[i]
return np.reshape(ret, layout)
def get_Corr_from_dict(o):
taglist = o.get('tag')
corr_meta_data = taglist[-1].split('|')
padding_front = int(corr_meta_data[0])
padding_back = int(corr_meta_data[1])
corr_tag = corr_meta_data[2]
tmp_o = o
tmp_o['tag'] = taglist[:-1]
if len(tmp_o['tag']) == 0:
del tmp_o['tag']
dat = get_Array_from_dict(tmp_o)
my_corr = Corr(list(dat), padding=[padding_front, padding_back])
if corr_tag != 'None':
my_corr.tag = corr_tag
return my_corr
json_dict = json.loads(json_string)
prog = json_dict.get('program', '')
@ -400,6 +433,10 @@ def import_json_string(json_string, verbose=True, full_output=False):
ol.append(get_List_from_dict(io))
elif io['type'] == 'Array':
ol.append(get_Array_from_dict(io))
elif io['type'] == 'Corr':
ol.append(get_Corr_from_dict(io))
else:
raise Exception("Unkown datatype.")
if full_output:
retd = {}
@ -422,7 +459,7 @@ def import_json_string(json_string, verbose=True, full_output=False):
def load_json(fname, verbose=True, gz=True, full_output=False):
"""Import a list of Obs or structures containing Obs from a .json.gz file.
The following structures are supported: Obs, list, numpy.ndarray
The following structures are supported: Obs, list, numpy.ndarray, Corr
If the list contains only one element, it is unpacked from the list.
Parameters

View file

@ -115,7 +115,7 @@ def test_plateau():
def test_padded_correlator():
my_list = [pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']) for o in range(8)]
my_corr = pe.Corr(my_list, padding_front=7, padding_back=3)
my_corr = pe.Corr(my_list, padding=[7, 3])
my_corr.reweighted
[o for o in my_corr]

View file

@ -89,3 +89,36 @@ def test_json_string_reconstruction():
assert reconstructed_string == json_string
assert my_obs == reconstructed_obs2
def test_json_corr_io():
my_list = [pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']) for o in range(8)]
rw_list = pe.reweight(pe.Obs([np.random.normal(1.0, 0.1, 100)], ['ens1']), my_list)
for obs_list in [my_list, rw_list]:
for tag in [None, "test"]:
obs_list[3].tag = tag
for fp in [0, 2]:
for bp in [0, 7]:
for corr_tag in [None, 'my_Corr_tag']:
my_corr = pe.Corr(obs_list, padding=[fp, bp])
my_corr.tag = corr_tag
pe.input.json.dump_to_json(my_corr, 'corr')
recover = pe.input.json.load_json('corr')
assert np.all([o.is_zero() for o in [x for x in (my_corr - recover) if x is not None]])
assert my_corr.tag == recover.tag
assert my_corr.reweighted == recover.reweighted
def test_json_corr_2d_io():
obs_list = [np.array([[pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test'), pe.pseudo_Obs(0.0, 0.1 * i, 'test')], [pe.pseudo_Obs(0.0, 0.1 * i, 'test'), pe.pseudo_Obs(1.0 + i, 0.1 * i, 'test')]]) for i in range(8)]
for tag in [None, "test"]:
obs_list[3][0, 1].tag = tag
for padding in [0, 1]:
my_corr = pe.Corr(obs_list, padding=[padding, padding])
my_corr.tag = tag
pe.input.json.dump_to_json(my_corr, 'corr')
recover = pe.input.json.load_json('corr')
assert np.all([np.all([o.is_zero() for o in q]) for q in [x.ravel() for x in (my_corr - recover) if x is not None]])
assert my_corr.tag == recover.tag

View file

@ -615,7 +615,7 @@ def test_covariance_symmetry():
cov_ab = pe.covariance(test_obs1, a)
cov_ba = pe.covariance(a, test_obs1)
assert np.abs(cov_ab - cov_ba) <= 10 * np.finfo(np.float64).eps
assert np.abs(cov_ab) < test_obs1.dvalue * test_obs2.dvalue * (1 + 10 * np.finfo(np.float64).eps)
assert np.abs(cov_ab) < test_obs1.dvalue * a.dvalue * (1 + 10 * np.finfo(np.float64).eps)
def test_empty_obs():