mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-15 20:13:41 +02:00
Merge branch 'develop' into documentation
This commit is contained in:
commit
4ff10c392d
2 changed files with 46 additions and 20 deletions
|
@ -329,24 +329,6 @@ class Obs:
|
|||
self.ddvalue = np.sqrt(self.ddvalue) / self.dvalue
|
||||
return
|
||||
|
||||
def expand_deltas(self, deltas, idx, shape):
|
||||
"""Expand deltas defined on idx to a regular, contiguous range, where holes are filled by 0.
|
||||
If idx is of type range, the deltas are not changed
|
||||
|
||||
Parameters
|
||||
----------
|
||||
deltas -- List of fluctuations
|
||||
idx -- List or range of configs on which the deltas are defined.
|
||||
shape -- Number of configs in idx.
|
||||
"""
|
||||
if isinstance(idx, range):
|
||||
return deltas
|
||||
else:
|
||||
ret = np.zeros(idx[-1] - idx[0] + 1)
|
||||
for i in range(shape):
|
||||
ret[idx[i] - idx[0]] = deltas[i]
|
||||
return ret
|
||||
|
||||
def calc_gamma(self, deltas, idx, shape, w_max, fft):
|
||||
"""Calculate Gamma_{AA} from the deltas, which are defined on idx.
|
||||
idx is assumed to be a contiguous range (possibly with a stepsize != 1)
|
||||
|
@ -361,7 +343,7 @@ class Obs:
|
|||
the computation of the autocorrelation function
|
||||
"""
|
||||
gamma = np.zeros(w_max)
|
||||
deltas = self.expand_deltas(deltas, idx, shape)
|
||||
deltas = _expand_deltas(deltas, idx, shape)
|
||||
new_shape = len(deltas)
|
||||
if fft:
|
||||
max_gamma = min(new_shape, w_max)
|
||||
|
@ -505,7 +487,7 @@ class Obs:
|
|||
tmp = []
|
||||
for r, r_name in enumerate(self.e_content[e_name]):
|
||||
if expand:
|
||||
tmp.append(self.expand_deltas(self.deltas[r_name], self.idl[r_name], self.shape[r_name]) + self.r_values[r_name])
|
||||
tmp.append(_expand_deltas(self.deltas[r_name], self.idl[r_name], self.shape[r_name]) + self.r_values[r_name])
|
||||
else:
|
||||
tmp.append(self.deltas[r_name] + self.r_values[r_name])
|
||||
r_length.append(len(tmp[-1]))
|
||||
|
@ -829,6 +811,28 @@ class CObs:
|
|||
return 'CObs[' + str(self) + ']'
|
||||
|
||||
|
||||
def _expand_deltas(deltas, idx, shape):
|
||||
"""Expand deltas defined on idx to a regular, contiguous range, where holes are filled by 0.
|
||||
If idx is of type range, the deltas are not changed
|
||||
|
||||
Parameters
|
||||
----------
|
||||
deltas : list
|
||||
List of fluctuations
|
||||
idx : list
|
||||
List or range of configs on which the deltas are defined.
|
||||
shape : int
|
||||
Number of configs in idx.
|
||||
"""
|
||||
if isinstance(idx, range):
|
||||
return deltas
|
||||
else:
|
||||
ret = np.zeros(idx[-1] - idx[0] + 1)
|
||||
for i in range(shape):
|
||||
ret[idx[i] - idx[0]] = deltas[i]
|
||||
return ret
|
||||
|
||||
|
||||
def _merge_idx(idl):
|
||||
"""Returns the union of all lists in idl
|
||||
|
||||
|
|
|
@ -74,6 +74,28 @@ def test_matmul_irregular_histories():
|
|||
assert np.all([o.is_merged for o in t2.ravel()])
|
||||
|
||||
|
||||
def test_irregular_matrix_inverse():
|
||||
dim = 3
|
||||
length = 500
|
||||
|
||||
for idl in [range(8, 508, 10), range(250, 273), [2, 8, 19, 20, 78, 99, 828, 10548979]]:
|
||||
irregular_array = []
|
||||
for i in range(dim ** 2):
|
||||
irregular_array.append(pe.Obs([np.random.normal(1.1, 0.2, len(idl)), np.random.normal(0.25, 0.1, 10)], ['ens1', 'ens2'], idl=[idl, range(1, 11)]))
|
||||
irregular_matrix = np.array(irregular_array).reshape((dim, dim))
|
||||
|
||||
invertible_irregular_matrix = np.identity(dim) + irregular_matrix @ irregular_matrix.T
|
||||
|
||||
inverse = pe.linalg.inv(invertible_irregular_matrix)
|
||||
|
||||
assert np.allclose(np.linalg.inv(np.vectorize(lambda x: x.value)(invertible_irregular_matrix)) - np.vectorize(lambda x: x.value)(inverse), 0.0)
|
||||
|
||||
check1 = pe.linalg.matmul(invertible_irregular_matrix, inverse)
|
||||
assert np.all([o.is_zero() for o in (check1 - np.identity(dim)).ravel()])
|
||||
check2 = invertible_irregular_matrix @ inverse
|
||||
assert np.all([o.is_zero() for o in (check2 - np.identity(dim)).ravel()])
|
||||
|
||||
|
||||
def test_matrix_inverse():
|
||||
content = []
|
||||
for t in range(9):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue