mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-14 19:43:41 +02:00
attribute e_Q removed
This commit is contained in:
parent
e73a99409c
commit
4edea2c3a8
3 changed files with 3 additions and 15 deletions
|
@ -14,6 +14,7 @@ All notable changes to this project will be documented in this file.
|
||||||
|
|
||||||
### Deprecated
|
### Deprecated
|
||||||
- The function `plot_corrs` was deprecated as all its functionality is now contained within `Corr.show`
|
- The function `plot_corrs` was deprecated as all its functionality is now contained within `Corr.show`
|
||||||
|
- Obs no longer have an attribute e_Q
|
||||||
|
|
||||||
## [1.1.0] - 2021-10-11
|
## [1.1.0] - 2021-10-11
|
||||||
### Added
|
### Added
|
||||||
|
|
|
@ -56,6 +56,7 @@ def ks_test(obs=None):
|
||||||
else:
|
else:
|
||||||
obs_list = obs
|
obs_list = obs
|
||||||
|
|
||||||
|
# TODO: Rework to apply to Q-values of all fits in memory
|
||||||
Qs = []
|
Qs = []
|
||||||
for obs_i in obs_list:
|
for obs_i in obs_list:
|
||||||
for ens in obs_i.e_names:
|
for ens in obs_i.e_names:
|
||||||
|
|
|
@ -86,7 +86,6 @@ class Obs:
|
||||||
self.e_tauint = {}
|
self.e_tauint = {}
|
||||||
self.e_dtauint = {}
|
self.e_dtauint = {}
|
||||||
self.e_windowsize = {}
|
self.e_windowsize = {}
|
||||||
self.e_Q = {}
|
|
||||||
self.e_rho = {}
|
self.e_rho = {}
|
||||||
self.e_drho = {}
|
self.e_drho = {}
|
||||||
self.e_n_tauint = {}
|
self.e_n_tauint = {}
|
||||||
|
@ -298,19 +297,6 @@ class Obs:
|
||||||
self.e_windowsize[e_name] = n
|
self.e_windowsize[e_name] = n
|
||||||
break
|
break
|
||||||
|
|
||||||
if len(self.e_content[e_name]) > 1 and self.e_dvalue[e_name] > np.finfo(np.float64).eps:
|
|
||||||
e_mean = 0
|
|
||||||
for r_name in self.e_content[e_name]:
|
|
||||||
e_mean += self.shape[r_name] * self.r_values[r_name]
|
|
||||||
e_mean /= e_N
|
|
||||||
xi2 = 0
|
|
||||||
for r_name in self.e_content[e_name]:
|
|
||||||
xi2 += self.shape[r_name] * (self.r_values[r_name] - e_mean) ** 2
|
|
||||||
xi2 /= self.e_dvalue[e_name] ** 2 * e_N
|
|
||||||
self.e_Q[e_name] = 1 - scipy.special.gammainc((len(self.e_content[e_name]) - 1.0) / 2.0, xi2 / 2.0)
|
|
||||||
else:
|
|
||||||
self.e_Q[e_name] = None
|
|
||||||
|
|
||||||
self.dvalue += self.e_dvalue[e_name] ** 2
|
self.dvalue += self.e_dvalue[e_name] ** 2
|
||||||
self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2
|
self.ddvalue += (self.e_dvalue[e_name] * self.e_ddvalue[e_name]) ** 2
|
||||||
|
|
||||||
|
@ -421,7 +407,7 @@ class Obs:
|
||||||
for r, r_name in enumerate(self.e_content[e_name]):
|
for r, r_name in enumerate(self.e_content[e_name]):
|
||||||
arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1))
|
arr[r] = (self.r_values[r_name] - sub_r_mean) / (self.e_dvalue[e_name] * np.sqrt(e_N / self.shape[r_name] - 1))
|
||||||
plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name]))
|
plt.hist(arr, rwidth=0.8, bins=len(self.e_content[e_name]))
|
||||||
plt.title('Replica distribution' + e_name + ' (mean=0, var=1), Q=' + str(np.around(self.e_Q[e_name], decimals=2)))
|
plt.title('Replica distribution' + e_name + ' (mean=0, var=1)')
|
||||||
plt.draw()
|
plt.draw()
|
||||||
|
|
||||||
def plot_history(self):
|
def plot_history(self):
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue