mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-03-15 14:50:25 +01:00
derived_array adjusted to work with irregular Monte Carlo chains.
Additional test required for verification.
This commit is contained in:
parent
0f14aba083
commit
4d3b00eb48
1 changed files with 40 additions and 27 deletions
|
@ -1,25 +1,27 @@
|
|||
import numpy as np
|
||||
from autograd import jacobian
|
||||
import autograd.numpy as anp # Thinly-wrapped numpy
|
||||
from .obs import derived_observable, CObs, Obs
|
||||
from .obs import derived_observable, CObs, Obs, merge_idx, expand_deltas_for_merge, filter_zeroes
|
||||
|
||||
from functools import partial
|
||||
from autograd.extend import defvjp
|
||||
|
||||
|
||||
def derived_array(func, data, **kwargs):
|
||||
"""Construct a derived Obs according to func(data, **kwargs) of matrix value data
|
||||
using automatic differentiation.
|
||||
"""Construct a derived Obs for a matrix valued function according to func(data, **kwargs) using automatic differentiation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func -- arbitrary function of the form func(data, **kwargs). For the
|
||||
automatic differentiation to work, all numpy functions have to have
|
||||
the autograd wrapper (use 'import autograd.numpy as anp').
|
||||
data -- list of Obs, e.g. [obs1, obs2, obs3].
|
||||
man_grad -- manually supply a list or an array which contains the jacobian
|
||||
of func. Use cautiously, supplying the wrong derivative will
|
||||
not be intercepted.
|
||||
func : object
|
||||
arbitrary function of the form func(data, **kwargs). For the
|
||||
automatic differentiation to work, all numpy functions have to have
|
||||
the autograd wrapper (use 'import autograd.numpy as anp').
|
||||
data : list
|
||||
list of Obs, e.g. [obs1, obs2, obs3].
|
||||
man_grad : list
|
||||
manually supply a list or an array which contains the jacobian
|
||||
of func. Use cautiously, supplying the wrong derivative will
|
||||
not be intercepted.
|
||||
"""
|
||||
|
||||
data = np.asarray(data)
|
||||
|
@ -30,25 +32,29 @@ def derived_array(func, data, **kwargs):
|
|||
if isinstance(i_data, Obs):
|
||||
first_name = i_data.names[0]
|
||||
first_shape = i_data.shape[first_name]
|
||||
first_idl = i_data.idl[first_name]
|
||||
break
|
||||
|
||||
for i in range(len(raveled_data)):
|
||||
if isinstance(raveled_data[i], (int, float)):
|
||||
raveled_data[i] = Obs([raveled_data[i] + np.zeros(first_shape)], [first_name])
|
||||
raveled_data[i] = Obs([raveled_data[i] + np.zeros(first_shape)], [first_name], idl=[first_idl])
|
||||
|
||||
n_obs = len(raveled_data)
|
||||
new_names = sorted(set([y for x in [o.names for o in raveled_data] for y in x]))
|
||||
|
||||
new_shape = {}
|
||||
for i_data in raveled_data:
|
||||
for name in new_names:
|
||||
tmp = i_data.shape.get(name)
|
||||
is_merged = len(list(filter(lambda o: o.is_merged is True, raveled_data))) > 0
|
||||
reweighted = len(list(filter(lambda o: o.reweighted is True, raveled_data))) > 0
|
||||
new_idl_d = {}
|
||||
for name in new_names:
|
||||
idl = []
|
||||
for i_data in raveled_data:
|
||||
tmp = i_data.idl.get(name)
|
||||
if tmp is not None:
|
||||
if new_shape.get(name) is None:
|
||||
new_shape[name] = tmp
|
||||
else:
|
||||
if new_shape[name] != tmp:
|
||||
raise Exception('Shapes of ensemble', name, 'do not match.')
|
||||
idl.append(tmp)
|
||||
new_idl_d[name] = merge_idx(idl)
|
||||
if not is_merged:
|
||||
is_merged = (1 != len(set([len(idx) for idx in [*idl, new_idl_d[name]]])))
|
||||
|
||||
if data.ndim == 1:
|
||||
values = np.array([o.value for o in data])
|
||||
else:
|
||||
|
@ -71,8 +77,6 @@ def derived_array(func, data, **kwargs):
|
|||
deriv = np.asarray(kwargs.get('man_grad'))
|
||||
if new_values.shape + data.shape != deriv.shape:
|
||||
raise Exception('Manual derivative does not have correct shape.')
|
||||
elif kwargs.get('num_grad') is True:
|
||||
raise Exception('Multi mode currently not supported for numerical derivative')
|
||||
else:
|
||||
deriv = jacobian(func)(values, **kwargs)
|
||||
|
||||
|
@ -83,7 +87,7 @@ def derived_array(func, data, **kwargs):
|
|||
d_extracted[name] = []
|
||||
for i_dat, dat in enumerate(data):
|
||||
ens_length = dat.ravel()[0].shape[name]
|
||||
d_extracted[name].append(np.array([o.deltas[name] for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, )))
|
||||
d_extracted[name].append(np.array([expand_deltas_for_merge(o.deltas[name], o.idl[name], o.shape[name], new_idl_d[name]) for o in dat.reshape(np.prod(dat.shape))]).reshape(dat.shape + (ens_length, )))
|
||||
|
||||
for i_val, new_val in np.ndenumerate(new_values):
|
||||
new_deltas = {}
|
||||
|
@ -95,12 +99,21 @@ def derived_array(func, data, **kwargs):
|
|||
|
||||
new_samples = []
|
||||
new_means = []
|
||||
for name in new_names:
|
||||
new_samples.append(new_deltas[name])
|
||||
new_idl = []
|
||||
if is_merged:
|
||||
filtered_names, filtered_deltas, filtered_idl_d = filter_zeroes(new_names, new_deltas, new_idl_d)
|
||||
else:
|
||||
filtered_names = new_names
|
||||
filtered_deltas = new_deltas
|
||||
filtered_idl_d = new_idl_d
|
||||
for name in filtered_names:
|
||||
new_samples.append(filtered_deltas[name])
|
||||
new_means.append(new_r_values[name][i_val])
|
||||
|
||||
final_result[i_val] = Obs(new_samples, new_names, means=new_means)
|
||||
new_idl.append(filtered_idl_d[name])
|
||||
final_result[i_val] = Obs(new_samples, filtered_names, means=new_means, idl=new_idl)
|
||||
final_result[i_val]._value = new_val
|
||||
final_result[i_val].is_merged = is_merged
|
||||
final_result[i_val].reweighted = reweighted
|
||||
|
||||
return final_result
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue