diff --git a/pyerrors/fits.py b/pyerrors/fits.py index 89f73e5b..675bdca6 100644 --- a/pyerrors/fits.py +++ b/pyerrors/fits.py @@ -365,6 +365,8 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs): if (chol_inv[1] != key_ls): raise ValueError('The keys of inverse covariance matrix are not the same or do not appear in the same order as the x and y values.') chol_inv = chol_inv[0] + if np.any(np.diag(chol_inv) <= 0) or (not np.all(chol_inv == np.tril(chol_inv))): + raise ValueError('The inverse covariance matrix inv_chol_cov_matrix[0] has to be a lower triangular matrix constructed from a Cholesky decomposition.') else: corr = covariance(y_all, correlation=True, **kwargs) inverrdiag = np.diag(1 / np.asarray(dy_f)) diff --git a/tests/fits_test.py b/tests/fits_test.py index 2eeb6a49..283ff6a2 100644 --- a/tests/fits_test.py +++ b/tests/fits_test.py @@ -223,6 +223,9 @@ def test_inv_cov_matrix_input_least_squares(): diff_inv_cov_combined_fit.gamma_method() assert(diff_inv_cov_combined_fit.is_zero(atol=1e-12)) + with pytest.raises(ValueError): + pe.least_squares(x_dict, data_dict, fitf_dict, correlated_fit = True, inv_chol_cov_matrix = [corr,chol_inv_keys_combined_fit]) + def test_least_squares_invalid_inv_cov_matrix_input(): xvals = [] yvals = []