mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-03-16 23:30:24 +01:00
Merge branch 'develop' into documentation
This commit is contained in:
commit
47b32b2ec7
1 changed files with 45 additions and 1 deletions
|
@ -61,9 +61,41 @@ my_m_eff = np.log(my_obs1 / my_obs2)
|
||||||
|
|
||||||
The error propagation is based on the gamma method introduced in [arXiv:hep-lat/0306017](https://arxiv.org/abs/hep-lat/0306017).
|
The error propagation is based on the gamma method introduced in [arXiv:hep-lat/0306017](https://arxiv.org/abs/hep-lat/0306017).
|
||||||
|
|
||||||
|
After having arrived at
|
||||||
|
|
||||||
|
Example:
|
||||||
|
```python
|
||||||
|
my_sum.gamma_method()
|
||||||
|
my_sum.details()
|
||||||
|
```
|
||||||
|
|
||||||
|
The standard value for the automatic windowing procedure is $S=2$. Other values for $S$ can be passed to the `gamma_method` as parameter.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
```python
|
||||||
|
my_sum.gamma_method(S=3.0)
|
||||||
|
my_sum.details()
|
||||||
|
```
|
||||||
|
|
||||||
|
The integrated autocorrelation time $\tau_\mathrm{int}$ and the autocorrelation function $\rho(W)$ can be monitored via the methods ´pyerrors.obs.Obs.plot_tauint` and ´pyerrors.obs.Obs.plot_tauint`.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
```python
|
||||||
|
my_sum.plot_tauint()
|
||||||
|
my_sum.plot_rho()
|
||||||
|
```
|
||||||
|
|
||||||
|
### Exponential tails
|
||||||
|
|
||||||
|
Slow modes in the Monte Carlo history can be accounted for by attaching and exponntial tail to the autocorrelation function $\rho$ as suggested in [arXiv:1009.5228](https://arxiv.org/abs/1009.5228). The longest autocorrelation time in the history, $\tau_\mathrm{exp}$, can be passed to the `gamma_method` as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
```python
|
||||||
|
my_sum.gamma_method(tau_exp=4.2)
|
||||||
|
my_sum.details()
|
||||||
|
```
|
||||||
|
|
||||||
For the full API see `pyerrors.obs.Obs.gamma_method`
|
For the full API see `pyerrors.obs.Obs.gamma_method`
|
||||||
### Exponential tails
|
|
||||||
|
|
||||||
## Multiple ensembles/replica
|
## Multiple ensembles/replica
|
||||||
|
|
||||||
|
@ -97,6 +129,18 @@ obs2 = pe.Obs([samples2], ['ensemble1|r02'])
|
||||||
> · Replicum 'r01' : 1000 configurations (from 1 to 1000)
|
> · Replicum 'r01' : 1000 configurations (from 1 to 1000)
|
||||||
> · Replicum 'r02' : 500 configurations (from 1 to 500)
|
> · Replicum 'r02' : 500 configurations (from 1 to 500)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### Error estimation for multiple ensembles
|
||||||
|
|
||||||
|
In order to keep track of different error analyis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
```python
|
||||||
|
pe.Obs.S_dict['ensemble1'] = 2.5
|
||||||
|
pe.Obs.tau_exp_dict['ensemble2'] = 8.0
|
||||||
|
pe.Obs.tau_exp_dict['ensemble3'] = 2.0
|
||||||
|
```
|
||||||
|
|
||||||
## Irregular Monte Carlo chains
|
## Irregular Monte Carlo chains
|
||||||
|
|
||||||
Irregular Monte Carlo chains can be initilized with the parameter `idl`.
|
Irregular Monte Carlo chains can be initilized with the parameter `idl`.
|
||||||
|
|
Loading…
Add table
Reference in a new issue