mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-15 12:03:42 +02:00
Documentation updated
This commit is contained in:
parent
d2116b4bb3
commit
3a79bd2eb5
2 changed files with 83 additions and 1 deletions
|
@ -136,8 +136,49 @@ It is based on the <strong>gamma method</strong> <a href="https://arxiv.org/abs/
|
|||
|
||||
<h2 id="multiple-ensemblesreplica">Multiple ensembles/replica</h2>
|
||||
|
||||
<p>Error propagation for multiple ensemblesi (Markov chains with different simulation parameters) are automatically handled.</p>
|
||||
|
||||
<p><strong>Example:</strong></p>
|
||||
|
||||
<div class="codehilite"><pre><span></span><code><span class="kn">import</span> <span class="nn">pyerrors</span> <span class="k">as</span> <span class="nn">pe</span>
|
||||
|
||||
<span class="n">obs1</span> <span class="o">=</span> <span class="n">pe</span><span class="o">.</span><span class="n">Obs</span><span class="p">([</span><span class="n">samples1</span><span class="p">],</span> <span class="p">[</span><span class="s1">'ensemble1'</span><span class="p">])</span>
|
||||
<span class="n">obs2</span> <span class="o">=</span> <span class="n">pe</span><span class="o">.</span><span class="n">Obs</span><span class="p">([</span><span class="n">samples1</span><span class="p">],</span> <span class="p">[</span><span class="s1">'ensemble2'</span><span class="p">])</span>
|
||||
|
||||
<span class="n">my_sum</span> <span class="o">=</span> <span class="n">obs1</span> <span class="o">+</span> <span class="n">obs2</span>
|
||||
<span class="n">my_sum</span><span class="o">.</span><span class="n">details</span><span class="p">()</span>
|
||||
<span class="o">></span> <span class="n">Result</span> <span class="mf">2.00596631e+00</span> <span class="o">+/-</span> <span class="mf">0.00000000e+00</span> <span class="o">+/-</span> <span class="mf">0.00000000e+00</span> <span class="p">(</span><span class="mf">0.000</span><span class="o">%</span><span class="p">)</span>
|
||||
<span class="o">></span> <span class="mi">1500</span> <span class="n">samples</span> <span class="ow">in</span> <span class="mi">2</span> <span class="n">ensembles</span><span class="p">:</span>
|
||||
<span class="o">></span> <span class="n">ensemble1</span><span class="p">:</span> <span class="p">[</span><span class="s1">'ensemble1'</span><span class="p">]</span>
|
||||
<span class="o">></span> <span class="n">ensemble2</span><span class="p">:</span> <span class="p">[</span><span class="s1">'ensemble2'</span><span class="p">]</span>
|
||||
</code></pre></div>
|
||||
|
||||
<p><code><a href="">pyerrors</a></code> identifies multiple replica (independent Markov chains with identical simulation parameters) by the vertical bar <code>|</code> in the name of the dataset.</p>
|
||||
|
||||
<p><strong>Example:</strong></p>
|
||||
|
||||
<div class="codehilite"><pre><span></span><code><span class="kn">import</span> <span class="nn">pyerrors</span> <span class="k">as</span> <span class="nn">pe</span>
|
||||
|
||||
<span class="n">obs1</span> <span class="o">=</span> <span class="n">pe</span><span class="o">.</span><span class="n">Obs</span><span class="p">([</span><span class="n">samples1</span><span class="p">],</span> <span class="p">[</span><span class="s1">'ensemble1|r01'</span><span class="p">])</span>
|
||||
<span class="n">obs2</span> <span class="o">=</span> <span class="n">pe</span><span class="o">.</span><span class="n">Obs</span><span class="p">([</span><span class="n">samples1</span><span class="p">],</span> <span class="p">[</span><span class="s1">'ensemble1|r02'</span><span class="p">])</span>
|
||||
|
||||
<span class="n">my_sum</span> <span class="o">=</span> <span class="n">obs1</span> <span class="o">+</span> <span class="n">obs2</span>
|
||||
<span class="n">my_sum</span><span class="o">.</span><span class="n">details</span><span class="p">()</span>
|
||||
<span class="o">></span> <span class="n">Result</span> <span class="mf">2.00596631e+00</span> <span class="o">+/-</span> <span class="mf">0.00000000e+00</span> <span class="o">+/-</span> <span class="mf">0.00000000e+00</span> <span class="p">(</span><span class="mf">0.000</span><span class="o">%</span><span class="p">)</span>
|
||||
<span class="o">></span> <span class="mi">1500</span> <span class="n">samples</span> <span class="ow">in</span> <span class="mi">1</span> <span class="n">ensemble</span><span class="p">:</span>
|
||||
<span class="o">></span> <span class="n">ensemble1</span><span class="p">:</span> <span class="p">[</span><span class="s1">'ensemble1|r01'</span><span class="p">,</span> <span class="s1">'ensemble1|r02'</span><span class="p">]</span>
|
||||
</code></pre></div>
|
||||
|
||||
<h2 id="irregular-monte-carlo-chains">Irregular Monte Carlo chains</h2>
|
||||
|
||||
<div class="codehilite"><pre><span></span><code><span class="kn">import</span> <span class="nn">pyerrors</span> <span class="k">as</span> <span class="nn">pe</span>
|
||||
|
||||
<span class="n">obs1</span> <span class="o">=</span> <span class="n">pe</span><span class="o">.</span><span class="n">Obs</span><span class="p">([</span><span class="n">samples1</span><span class="p">],</span> <span class="p">[</span><span class="s1">'ensemble1|r01'</span><span class="p">])</span>
|
||||
<span class="n">obs2</span> <span class="o">=</span> <span class="n">pe</span><span class="o">.</span><span class="n">Obs</span><span class="p">([</span><span class="n">samples1</span><span class="p">],</span> <span class="p">[</span><span class="s1">'ensemble1|r02'</span><span class="p">])</span>
|
||||
|
||||
<span class="n">my_sum</span> <span class="o">=</span> <span class="n">obs1</span> <span class="o">+</span> <span class="n">obs2</span>
|
||||
</code></pre></div>
|
||||
|
||||
<h1 id="error-propagation">Error propagation</h1>
|
||||
|
||||
<p>Automatic differentiation, cite Alberto,</p>
|
||||
|
@ -219,8 +260,49 @@ It is based on the <strong>gamma method</strong> <a href="https://arxiv.org/abs/
|
|||
|
||||
<span class="sd">## Multiple ensembles/replica</span>
|
||||
|
||||
<span class="sd">Error propagation for multiple ensemblesi (Markov chains with different simulation parameters) are automatically handled.</span>
|
||||
|
||||
<span class="sd">**Example:**</span>
|
||||
<span class="sd">```python</span>
|
||||
<span class="sd">import pyerrors as pe</span>
|
||||
|
||||
<span class="sd">obs1 = pe.Obs([samples1], ['ensemble1'])</span>
|
||||
<span class="sd">obs2 = pe.Obs([samples1], ['ensemble2'])</span>
|
||||
|
||||
<span class="sd">my_sum = obs1 + obs2</span>
|
||||
<span class="sd">my_sum.details()</span>
|
||||
<span class="sd">> Result 2.00596631e+00 +/- 0.00000000e+00 +/- 0.00000000e+00 (0.000%)</span>
|
||||
<span class="sd">> 1500 samples in 2 ensembles:</span>
|
||||
<span class="sd">> ensemble1: ['ensemble1']</span>
|
||||
<span class="sd">> ensemble2: ['ensemble2']</span>
|
||||
|
||||
<span class="sd">```</span>
|
||||
|
||||
<span class="sd">`pyerrors` identifies multiple replica (independent Markov chains with identical simulation parameters) by the vertical bar `|` in the name of the dataset.</span>
|
||||
|
||||
<span class="sd">**Example:**</span>
|
||||
<span class="sd">```python</span>
|
||||
<span class="sd">import pyerrors as pe</span>
|
||||
|
||||
<span class="sd">obs1 = pe.Obs([samples1], ['ensemble1|r01'])</span>
|
||||
<span class="sd">obs2 = pe.Obs([samples1], ['ensemble1|r02'])</span>
|
||||
|
||||
<span class="sd">my_sum = obs1 + obs2</span>
|
||||
<span class="sd">my_sum.details()</span>
|
||||
<span class="sd">> Result 2.00596631e+00 +/- 0.00000000e+00 +/- 0.00000000e+00 (0.000%)</span>
|
||||
<span class="sd">> 1500 samples in 1 ensemble:</span>
|
||||
<span class="sd">> ensemble1: ['ensemble1|r01', 'ensemble1|r02']</span>
|
||||
<span class="sd">```</span>
|
||||
<span class="sd">## Irregular Monte Carlo chains</span>
|
||||
|
||||
<span class="sd">```python</span>
|
||||
<span class="sd">import pyerrors as pe</span>
|
||||
|
||||
<span class="sd">obs1 = pe.Obs([samples1], ['ensemble1|r01'])</span>
|
||||
<span class="sd">obs2 = pe.Obs([samples1], ['ensemble1|r02'])</span>
|
||||
|
||||
<span class="sd">my_sum = obs1 + obs2</span>
|
||||
<span class="sd">```</span>
|
||||
<span class="sd"># Error propagation</span>
|
||||
<span class="sd">Automatic differentiation, cite Alberto,</span>
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue