mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-03-15 14:50:25 +01:00
Feat/flow (#176)
* fix: String conversion of Obs can now handle a dvalue that is NaN or inf * Feat: Added extraction of w0/a from openQCD files * Removed unnecessary round in w0 routine * Improved error handling in fit_t0 * Allowed to change the reference flow time in t0 and w0 determinations. * Added doc string to fit_t0
This commit is contained in:
parent
5155effbbf
commit
3198088f9c
3 changed files with 216 additions and 17 deletions
|
@ -2,6 +2,7 @@ import os
|
|||
import fnmatch
|
||||
import re
|
||||
import struct
|
||||
import warnings
|
||||
import numpy as np # Thinly-wrapped numpy
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import gridspec
|
||||
|
@ -9,16 +10,52 @@ from ..obs import Obs
|
|||
from ..fits import fit_lin
|
||||
|
||||
|
||||
def fit_t0(t2E_dict, fit_range, plot_fit=False):
|
||||
def fit_t0(t2E_dict, fit_range, plot_fit=False, observable='t0'):
|
||||
"""Compute the root of (flow-based) data based on a dictionary that contains
|
||||
the necessary information in key-value pairs a la (flow time: observable at flow time).
|
||||
|
||||
It is assumed that the data is monotonically increasing and passes zero from below.
|
||||
No exception is thrown if this is not the case (several roots, no monotonic increase).
|
||||
An exception is thrown if no root can be found in the data.
|
||||
|
||||
A linear fit in the vicinity of the root is performed to exctract the root from the
|
||||
two fit parameters.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
t2E_dict : dict
|
||||
Dictionary with pairs of (flow time: observable at flow time) where the flow times
|
||||
are of type float and the observables of type Obs.
|
||||
fit_range : int
|
||||
Number of data points left and right of the zero
|
||||
crossing to be included in the linear fit.
|
||||
plot_fit : bool
|
||||
If true, the fit for the extraction of t0 is shown together with the data. (Default: False)
|
||||
observable: str
|
||||
Keyword to identify the observable to print the correct ylabel (if plot_fit is True)
|
||||
for the observables 't0' and 'w0'. No y label is printed otherwise. (Default: 't0')
|
||||
|
||||
Returns
|
||||
-------
|
||||
root : Obs
|
||||
The root of the data series.
|
||||
"""
|
||||
|
||||
zero_crossing = np.argmax(np.array(
|
||||
[o.value for o in t2E_dict.values()]) > 0.0)
|
||||
|
||||
if zero_crossing == 0:
|
||||
raise Exception('Desired flow time not in data')
|
||||
|
||||
x = list(t2E_dict.keys())[zero_crossing - fit_range:
|
||||
zero_crossing + fit_range]
|
||||
y = list(t2E_dict.values())[zero_crossing - fit_range:
|
||||
zero_crossing + fit_range]
|
||||
[o.gamma_method() for o in y]
|
||||
|
||||
if len(x) < 2 * fit_range:
|
||||
warnings.warn('Fit range smaller than expected! Fitting from %1.2e to %1.2e' % (x[0], x[-1]))
|
||||
|
||||
fit_result = fit_lin(x, y)
|
||||
|
||||
if plot_fit is True:
|
||||
|
@ -38,7 +75,10 @@ def fit_t0(t2E_dict, fit_range, plot_fit=False):
|
|||
ylim = ax0.get_ylim()
|
||||
ax0.fill_betweenx(ylim, x1=retval.value - retval.dvalue, x2=retval.value + retval.dvalue, color='gray', alpha=0.4)
|
||||
ax0.set_ylim(ylim)
|
||||
if observable == 't0':
|
||||
ax0.set_ylabel(r'$t^2 \langle E(t) \rangle - 0.3 $')
|
||||
elif observable == 'w0':
|
||||
ax0.set_ylabel(r'$t d(t^2 \langle E(t) \rangle)/dt - 0.3 $')
|
||||
xlim = ax0.get_xlim()
|
||||
|
||||
fit_res = [fit_result[0] + fit_result[1] * xi for xi in x]
|
||||
|
|
|
@ -229,14 +229,12 @@ def read_rwms(path, prefix, version='2.0', names=None, **kwargs):
|
|||
return result
|
||||
|
||||
|
||||
def extract_t0(path, prefix, dtr_read, xmin, spatial_extent, fit_range=5, postfix='ms', **kwargs):
|
||||
"""Extract t0 from given .ms.dat files. Returns t0 as Obs.
|
||||
def _extract_flowed_energy_density(path, prefix, dtr_read, xmin, spatial_extent, postfix='ms', **kwargs):
|
||||
"""Extract a dictionary with the flowed Yang-Mills action density from given .ms.dat files.
|
||||
Returns a dictionary with Obs as values and flow times as keys.
|
||||
|
||||
It is assumed that all boundary effects have
|
||||
sufficiently decayed at x0=xmin.
|
||||
The data around the zero crossing of t^2<E> - 0.3
|
||||
is fitted with a linear function
|
||||
from which the exact root is extracted.
|
||||
|
||||
It is assumed that one measurement is performed for each config.
|
||||
If this is not the case, the resulting idl, as well as the handling
|
||||
|
@ -258,9 +256,6 @@ def extract_t0(path, prefix, dtr_read, xmin, spatial_extent, fit_range=5, postfi
|
|||
effects have sufficiently decayed.
|
||||
spatial_extent : int
|
||||
spatial extent of the lattice, required for normalization.
|
||||
fit_range : int
|
||||
Number of data points left and right of the zero
|
||||
crossing to be included in the linear fit. (Default: 5)
|
||||
postfix : str
|
||||
Postfix of measurement file (Default: ms)
|
||||
r_start : list
|
||||
|
@ -278,8 +273,6 @@ def extract_t0(path, prefix, dtr_read, xmin, spatial_extent, fit_range=5, postfi
|
|||
files : list
|
||||
list which contains the filenames to be read. No automatic detection of
|
||||
files performed if given.
|
||||
plot_fit : bool
|
||||
If true, the fit for the extraction of t0 is shown together with the data.
|
||||
assume_thermalization : bool
|
||||
If True: If the first record divided by the distance between two measurements is larger than
|
||||
1, it is assumed that this is due to thermalization and the first measurement belongs
|
||||
|
@ -288,8 +281,8 @@ def extract_t0(path, prefix, dtr_read, xmin, spatial_extent, fit_range=5, postfi
|
|||
|
||||
Returns
|
||||
-------
|
||||
t0 : Obs
|
||||
Extracted t0
|
||||
E_dict : dictionary
|
||||
Dictionary with the flowed action density at flow times t
|
||||
"""
|
||||
|
||||
if 'files' in kwargs:
|
||||
|
@ -321,7 +314,7 @@ def extract_t0(path, prefix, dtr_read, xmin, spatial_extent, fit_range=5, postfi
|
|||
else:
|
||||
r_step = 1
|
||||
|
||||
print('Extract t0 from', prefix, ',', replica, 'replica')
|
||||
print('Extract flowed Yang-Mills action density from', prefix, ',', replica, 'replica')
|
||||
|
||||
if 'names' in kwargs:
|
||||
rep_names = kwargs.get('names')
|
||||
|
@ -415,7 +408,7 @@ def extract_t0(path, prefix, dtr_read, xmin, spatial_extent, fit_range=5, postfi
|
|||
warnings.warn('Stepsize between configurations is greater than one!' + str(stepsizes), RuntimeWarning)
|
||||
|
||||
idl = [range(configlist[rep][r_start_index[rep]], configlist[rep][r_stop_index[rep]] + 1, r_step) for rep in range(replica)]
|
||||
t2E_dict = {}
|
||||
E_dict = {}
|
||||
for n in range(nn + 1):
|
||||
samples = []
|
||||
for nrep, rep in enumerate(Ysum):
|
||||
|
@ -424,11 +417,166 @@ def extract_t0(path, prefix, dtr_read, xmin, spatial_extent, fit_range=5, postfi
|
|||
samples[-1].append(cnfg[n])
|
||||
samples[-1] = samples[-1][r_start_index[nrep]:r_stop_index[nrep] + 1][::r_step]
|
||||
new_obs = Obs(samples, rep_names, idl=idl)
|
||||
t2E_dict[n * dn * eps] = (n * dn * eps) ** 2 * new_obs / (spatial_extent ** 3) - 0.3
|
||||
E_dict[n * dn * eps] = new_obs / (spatial_extent ** 3)
|
||||
|
||||
return E_dict
|
||||
|
||||
|
||||
def extract_t0(path, prefix, dtr_read, xmin, spatial_extent, fit_range=5, postfix='ms', c=0.3, **kwargs):
|
||||
"""Extract t0/a^2 from given .ms.dat files. Returns t0 as Obs.
|
||||
|
||||
It is assumed that all boundary effects have
|
||||
sufficiently decayed at x0=xmin.
|
||||
The data around the zero crossing of t^2<E> - c (where c=0.3 by default)
|
||||
is fitted with a linear function
|
||||
from which the exact root is extracted.
|
||||
|
||||
It is assumed that one measurement is performed for each config.
|
||||
If this is not the case, the resulting idl, as well as the handling
|
||||
of r_start, r_stop and r_step is wrong and the user has to correct
|
||||
this in the resulting observable.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path : str
|
||||
Path to .ms.dat files
|
||||
prefix : str
|
||||
Ensemble prefix
|
||||
dtr_read : int
|
||||
Determines how many trajectories should be skipped
|
||||
when reading the ms.dat files.
|
||||
Corresponds to dtr_cnfg / dtr_ms in the openQCD input file.
|
||||
xmin : int
|
||||
First timeslice where the boundary
|
||||
effects have sufficiently decayed.
|
||||
spatial_extent : int
|
||||
spatial extent of the lattice, required for normalization.
|
||||
fit_range : int
|
||||
Number of data points left and right of the zero
|
||||
crossing to be included in the linear fit. (Default: 5)
|
||||
postfix : str
|
||||
Postfix of measurement file (Default: ms)
|
||||
c: float
|
||||
Constant that defines the flow scale. Default 0.3 for t_0, choose 2./3 for t_1.
|
||||
r_start : list
|
||||
list which contains the first config to be read for each replicum.
|
||||
r_stop : list
|
||||
list which contains the last config to be read for each replicum.
|
||||
r_step : int
|
||||
integer that defines a fixed step size between two measurements (in units of configs)
|
||||
If not given, r_step=1 is assumed.
|
||||
plaquette : bool
|
||||
If true extract the plaquette estimate of t0 instead.
|
||||
names : list
|
||||
list of names that is assigned to the data according according
|
||||
to the order in the file list. Use careful, if you do not provide file names!
|
||||
files : list
|
||||
list which contains the filenames to be read. No automatic detection of
|
||||
files performed if given.
|
||||
plot_fit : bool
|
||||
If true, the fit for the extraction of t0 is shown together with the data.
|
||||
assume_thermalization : bool
|
||||
If True: If the first record divided by the distance between two measurements is larger than
|
||||
1, it is assumed that this is due to thermalization and the first measurement belongs
|
||||
to the first config (default).
|
||||
If False: The config numbers are assumed to be traj_number // difference
|
||||
|
||||
Returns
|
||||
-------
|
||||
t0 : Obs
|
||||
Extracted t0
|
||||
"""
|
||||
|
||||
E_dict = _extract_flowed_energy_density(path, prefix, dtr_read, xmin, spatial_extent, postfix, **kwargs)
|
||||
t2E_dict = {}
|
||||
for t in sorted(E_dict.keys()):
|
||||
t2E_dict[t] = t ** 2 * E_dict[t] - c
|
||||
|
||||
return fit_t0(t2E_dict, fit_range, plot_fit=kwargs.get('plot_fit'))
|
||||
|
||||
|
||||
def extract_w0(path, prefix, dtr_read, xmin, spatial_extent, fit_range=5, postfix='ms', c=0.3, **kwargs):
|
||||
"""Extract w0/a from given .ms.dat files. Returns w0 as Obs.
|
||||
|
||||
It is assumed that all boundary effects have
|
||||
sufficiently decayed at x0=xmin.
|
||||
The data around the zero crossing of t d(t^2<E>)/dt - (where c=0.3 by default)
|
||||
is fitted with a linear function
|
||||
from which the exact root is extracted.
|
||||
|
||||
It is assumed that one measurement is performed for each config.
|
||||
If this is not the case, the resulting idl, as well as the handling
|
||||
of r_start, r_stop and r_step is wrong and the user has to correct
|
||||
this in the resulting observable.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path : str
|
||||
Path to .ms.dat files
|
||||
prefix : str
|
||||
Ensemble prefix
|
||||
dtr_read : int
|
||||
Determines how many trajectories should be skipped
|
||||
when reading the ms.dat files.
|
||||
Corresponds to dtr_cnfg / dtr_ms in the openQCD input file.
|
||||
xmin : int
|
||||
First timeslice where the boundary
|
||||
effects have sufficiently decayed.
|
||||
spatial_extent : int
|
||||
spatial extent of the lattice, required for normalization.
|
||||
fit_range : int
|
||||
Number of data points left and right of the zero
|
||||
crossing to be included in the linear fit. (Default: 5)
|
||||
postfix : str
|
||||
Postfix of measurement file (Default: ms)
|
||||
c: float
|
||||
Constant that defines the flow scale. Default 0.3 for w_0, choose 2./3 for w_1.
|
||||
r_start : list
|
||||
list which contains the first config to be read for each replicum.
|
||||
r_stop : list
|
||||
list which contains the last config to be read for each replicum.
|
||||
r_step : int
|
||||
integer that defines a fixed step size between two measurements (in units of configs)
|
||||
If not given, r_step=1 is assumed.
|
||||
plaquette : bool
|
||||
If true extract the plaquette estimate of w0 instead.
|
||||
names : list
|
||||
list of names that is assigned to the data according according
|
||||
to the order in the file list. Use careful, if you do not provide file names!
|
||||
files : list
|
||||
list which contains the filenames to be read. No automatic detection of
|
||||
files performed if given.
|
||||
plot_fit : bool
|
||||
If true, the fit for the extraction of w0 is shown together with the data.
|
||||
assume_thermalization : bool
|
||||
If True: If the first record divided by the distance between two measurements is larger than
|
||||
1, it is assumed that this is due to thermalization and the first measurement belongs
|
||||
to the first config (default).
|
||||
If False: The config numbers are assumed to be traj_number // difference
|
||||
|
||||
Returns
|
||||
-------
|
||||
w0 : Obs
|
||||
Extracted w0
|
||||
"""
|
||||
|
||||
E_dict = _extract_flowed_energy_density(path, prefix, dtr_read, xmin, spatial_extent, postfix, **kwargs)
|
||||
|
||||
ftimes = sorted(E_dict.keys())
|
||||
|
||||
t2E_dict = {}
|
||||
for t in ftimes:
|
||||
t2E_dict[t] = t ** 2 * E_dict[t]
|
||||
|
||||
tdtt2E_dict = {}
|
||||
tdtt2E_dict[ftimes[0]] = ftimes[0] * (t2E_dict[ftimes[1]] - t2E_dict[ftimes[0]]) / (ftimes[1] - ftimes[0]) - c
|
||||
for i in range(1, len(ftimes) - 1):
|
||||
tdtt2E_dict[ftimes[i]] = ftimes[i] * (t2E_dict[ftimes[i + 1]] - t2E_dict[ftimes[i - 1]]) / (ftimes[i + 1] - ftimes[i - 1]) - c
|
||||
tdtt2E_dict[ftimes[-1]] = ftimes[-1] * (t2E_dict[ftimes[-1]] - t2E_dict[ftimes[-2]]) / (ftimes[-1] - ftimes[-2]) - c
|
||||
|
||||
return np.sqrt(fit_t0(tdtt2E_dict, fit_range, plot_fit=kwargs.get('plot_fit'), observable='w0'))
|
||||
|
||||
|
||||
def _parse_array_openQCD2(d, n, size, wa, quadrupel=False):
|
||||
arr = []
|
||||
if d == 2:
|
||||
|
|
|
@ -54,6 +54,7 @@ def test_rwms():
|
|||
files = ['openqcd2r1.ms.dat']
|
||||
names = ['openqcd2|r1']
|
||||
t0 = pe.input.openQCD.extract_t0(path, '', dtr_read=3, xmin=0, spatial_extent=4, files=files, names=names, fit_range=2)
|
||||
assert(np.isclose(t0.value, 0.3816208266076627))
|
||||
t0 = pe.input.openQCD.extract_t0(path, prefix, dtr_read=3, xmin=0, spatial_extent=4, r_start=[1])
|
||||
repname = list(rwfo[0].idl.keys())[0]
|
||||
assert(t0.idl[repname] == range(1, 10))
|
||||
|
@ -64,6 +65,16 @@ def test_rwms():
|
|||
|
||||
pe.input.openQCD.extract_t0(path, '', dtr_read=3, xmin=0, spatial_extent=4, files=files, names=names, fit_range=2, plot_fit=True)
|
||||
|
||||
with pytest.raises(Exception):
|
||||
pe.input.openQCD.extract_t0(path, '', dtr_read=3, xmin=0, spatial_extent=4, files=files, names=names, fit_range=2, c=14)
|
||||
# w0
|
||||
|
||||
w0 = pe.input.openQCD.extract_w0(path, '', dtr_read=3, xmin=0, spatial_extent=4, files=files, names=names, fit_range=2, plot_fit=True)
|
||||
assert(np.isclose(w0.value, 0.5220124285820434))
|
||||
|
||||
with pytest.raises(Exception):
|
||||
pe.input.openQCD.extract_w0(path, '', dtr_read=3, xmin=0, spatial_extent=4, files=files, names=names, fit_range=2, c=14)
|
||||
|
||||
|
||||
def test_Qtop():
|
||||
path = './tests//data/openqcd_test/'
|
||||
|
|
Loading…
Add table
Reference in a new issue