mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-14 11:33:42 +02:00
Merge pull request #147 from fjosw/fix/non_overlapping_cnfgs
Fix non overlapping configurations
This commit is contained in:
commit
2e66f0323a
4 changed files with 127 additions and 30 deletions
|
@ -339,7 +339,7 @@ def test_dobsio():
|
|||
|
||||
dobsio.write_dobs(ol, fname, 'TEST')
|
||||
|
||||
rl = dobsio.read_dobs(fname, noempty=True)
|
||||
rl = dobsio.read_dobs(fname)
|
||||
os.remove(fname + '.xml.gz')
|
||||
[o.gamma_method() for o in rl]
|
||||
|
||||
|
|
|
@ -566,7 +566,7 @@ def test_intersection_reduce():
|
|||
intersection = pe.obs._intersection_idx([o.idl["ens"] for o in [obs1, obs_merge]])
|
||||
coll = pe.obs._reduce_deltas(obs_merge.deltas["ens"], obs_merge.idl["ens"], range1)
|
||||
|
||||
assert np.all(coll == obs1.deltas["ens"])
|
||||
assert np.allclose(coll, obs1.deltas["ens"] * (len(obs_merge.idl["ens"]) / len(range1)))
|
||||
|
||||
|
||||
def test_irregular_error_propagation():
|
||||
|
@ -878,7 +878,7 @@ def test_correlation_intersection_of_idls():
|
|||
cov1 = pe.covariance([obs1, obs2_a])
|
||||
corr1 = pe.covariance([obs1, obs2_a], correlation=True)
|
||||
|
||||
obs2_b = obs2_a + pe.Obs([np.random.normal(1.0, 0.1, len(range2))], ["ens"], idl=[range2])
|
||||
obs2_b = (obs2_a + pe.Obs([np.random.normal(1.0, 0.1, len(range2))], ["ens"], idl=[range2])) / 2
|
||||
obs2_b.gamma_method()
|
||||
|
||||
cov2 = pe.covariance([obs1, obs2_b])
|
||||
|
@ -1038,6 +1038,7 @@ def test_hash():
|
|||
assert hash(obs) != hash(o1)
|
||||
assert hash(o1) != hash(o2)
|
||||
|
||||
|
||||
def test_gm_alias():
|
||||
samples = np.random.rand(500)
|
||||
|
||||
|
@ -1049,3 +1050,99 @@ def test_gm_alias():
|
|||
|
||||
assert np.isclose(tt1.dvalue, tt2.dvalue)
|
||||
|
||||
|
||||
def test_overlapping_missing_cnfgs():
|
||||
length = 200000
|
||||
|
||||
l_samp = np.random.normal(2.87, 0.5, length)
|
||||
s_samp = np.random.normal(7.87, 0.7, length // 2)
|
||||
|
||||
o1 = pe.Obs([l_samp], ["test"])
|
||||
o2 = pe.Obs([s_samp], ["test"], idl=[range(1, length, 2)])
|
||||
|
||||
a2 = pe.Obs([s_samp], ["alt"])
|
||||
t1 = o1 + o2
|
||||
t1.gm(S=0)
|
||||
|
||||
t2 = o1 + a2
|
||||
t2.gm(S=0)
|
||||
assert np.isclose(t1.value, t2.value)
|
||||
assert np.isclose(t1.dvalue, t2.dvalue, rtol=0.01)
|
||||
|
||||
|
||||
def test_non_overlapping_missing_cnfgs():
|
||||
length = 100000
|
||||
|
||||
xsamp = np.random.normal(1.0, 1.0, length)
|
||||
|
||||
|
||||
full = pe.Obs([xsamp], ["ensemble"], idl=[range(0, length)])
|
||||
full.gm()
|
||||
|
||||
even = pe.Obs([xsamp[0:length:2]], ["ensemble"], idl=[range(0, length, 2)])
|
||||
odd = pe.Obs([xsamp[1:length:2]], ["ensemble"], idl=[range(1, length, 2)])
|
||||
|
||||
average = (even + odd) / 2
|
||||
average.gm(S=0)
|
||||
assert np.isclose(full.value, average.value)
|
||||
assert np.isclose(full.dvalue, average.dvalue, rtol=0.01)
|
||||
|
||||
|
||||
def test_non_overlapping_operations():
|
||||
length = 100000
|
||||
|
||||
samples = np.random.normal(0.93, 0.5, length)
|
||||
|
||||
e = pe.Obs([samples[0:length:2]], ["ensemble"], idl=[range(0, length, 2)])
|
||||
o = pe.Obs([samples[1:length:2]], ["ensemble"], idl=[range(1, length, 2)])
|
||||
|
||||
|
||||
e2 = pe.Obs([samples[0:length:2]], ["even"])
|
||||
o2 = pe.Obs([samples[1:length:2]], ["odd"])
|
||||
|
||||
for func in [lambda a, b: a + b,
|
||||
lambda a, b: a - b,
|
||||
lambda a, b: a * b,
|
||||
lambda a, b: a / b,
|
||||
lambda a, b: a ** b]:
|
||||
|
||||
res1 = func(e, o)
|
||||
res1.gm(S=0)
|
||||
res2 = func(e2, o2)
|
||||
res2.gm(S=0)
|
||||
|
||||
print(res1, res2)
|
||||
print((res1.dvalue - res2.dvalue) / res1.dvalue)
|
||||
|
||||
assert np.isclose(res1.value, res2.value)
|
||||
assert np.isclose(res1.dvalue, res2.dvalue, rtol=0.01)
|
||||
|
||||
|
||||
def test_non_overlapping_operations_different_lengths():
|
||||
length = 100000
|
||||
|
||||
samples = np.random.normal(0.93, 0.5, length)
|
||||
first = samples[:length // 5]
|
||||
second = samples[length // 5:]
|
||||
|
||||
f1 = pe.Obs([first], ["ensemble"], idl=[range(1, length // 5 + 1)])
|
||||
s1 = pe.Obs([second], ["ensemble"], idl=[range(length // 5, length)])
|
||||
|
||||
|
||||
f2 = pe.Obs([first], ["first"])
|
||||
s2 = pe.Obs([second], ["second"])
|
||||
|
||||
for func in [lambda a, b: a + b,
|
||||
lambda a, b: a - b,
|
||||
lambda a, b: a * b,
|
||||
lambda a, b: a / b,
|
||||
lambda a, b: a ** b,
|
||||
lambda a, b: a ** 2 + b ** 2 / a]:
|
||||
|
||||
res1 = func(f1, f1)
|
||||
res1.gm(S=0)
|
||||
res2 = func(f2, f2)
|
||||
res2.gm(S=0)
|
||||
|
||||
assert np.isclose(res1.value, res2.value)
|
||||
assert np.isclose(res1.dvalue, res2.dvalue, rtol=0.01)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue