mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-15 12:03:42 +02:00
Documentation updated
This commit is contained in:
parent
8925776e94
commit
2a63a9c9e9
2 changed files with 11 additions and 11 deletions
|
@ -126,7 +126,7 @@ It is based on the gamma method <a href="https://arxiv.org/abs/hep-lat/0306017">
|
|||
<h1 id="the-obs-class">The <code>Obs</code> class</h1>
|
||||
|
||||
<p><code><a href="">pyerrors</a></code> introduces a new datatype, <code>Obs</code>, which simplifies error propagation and estimation for auto- and cross-correlated data.
|
||||
An <code>Obs</code> object can be initialized with two arguments, the first is a list containing the samples for an Observable from a Monte Carlo chain.
|
||||
An <code>Obs</code> object can be initialized with two arguments, the first is a list containing the samples for an observable from a Monte Carlo chain.
|
||||
The samples can either be provided as python list or as numpy array.
|
||||
The second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble.</p>
|
||||
|
||||
|
@ -137,7 +137,7 @@ The second argument is a list containing the names of the respective Monte Carlo
|
|||
|
||||
<h2 id="error-propagation">Error propagation</h2>
|
||||
|
||||
<p>When performing mathematical operations on <code>Obs</code> objects the correct error propagation is intrinsically taken care using a first order Taylor expansion
|
||||
<p>When performing mathematical operations on <code>Obs</code> objects the correct error propagation is intrinsically taken care of using a first order Taylor expansion
|
||||
$$\delta_f^i=\sum_\alpha \bar{f}_\alpha \delta_\alpha^i\,,\quad \delta_\alpha^i=a_\alpha^i-\bar{a}_\alpha\,,$$
|
||||
as introduced in <a href="https://arxiv.org/abs/hep-lat/0306017">arXiv:hep-lat/0306017</a>.
|
||||
The required derivatives $\bar{f}_\alpha$ are evaluated up to machine precision via automatic differentiation as suggested in <a href="https://arxiv.org/abs/1809.01289">arXiv:1809.01289</a>.</p>
|
||||
|
@ -190,7 +190,7 @@ The standard value for the parameter $S$ of this automatic windowing procedure i
|
|||
|
||||
<p>The integrated autocorrelation time $\tau_\mathrm{int}$ and the autocorrelation function $\rho(W)$ can be monitored via the methods <code><a href="pyerrors/obs.html#Obs.plot_tauint">pyerrors.obs.Obs.plot_tauint</a></code> and <code><a href="pyerrors/obs.html#Obs.plot_tauint">pyerrors.obs.Obs.plot_tauint</a></code>.</p>
|
||||
|
||||
<p>If the parameter $S$ is set to zero it is assumed that dataset does not exhibit any autocorrelation and the windowsize is chosen to be zero.
|
||||
<p>If the parameter $S$ is set to zero it is assumed that the dataset does not exhibit any autocorrelation and the windowsize is chosen to be zero.
|
||||
In this case the error estimate is identical to the sample standard error.</p>
|
||||
|
||||
<h3 id="exponential-tails">Exponential tails</h3>
|
||||
|
@ -379,7 +379,7 @@ Make sure to check the autocorrelation time with e.g. <code><a href="pyerrors/ob
|
|||
<span class="k">return</span> <span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">anp</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">x</span><span class="p">)</span>
|
||||
</code></pre></div>
|
||||
|
||||
<p><strong>It is important that numerical functions refer to <code>autograd.numpy</code> instead of <code>numpy</code> for the automatic differentiation to work properly.</strong></p>
|
||||
<p><strong>It is important that numerical functions refer to <code>autograd.numpy</code> instead of <code>numpy</code> for the automatic differentiation in iterative algorithms to work properly.</strong></p>
|
||||
|
||||
<p>Fits can then be performed via</p>
|
||||
|
||||
|
@ -439,7 +439,7 @@ Make sure to check the autocorrelation time with e.g. <code><a href="pyerrors/ob
|
|||
|
||||
<h1 id="export-data">Export data</h1>
|
||||
|
||||
<p>The preferred exported file format within <code><a href="">pyerrors</a></code> is json.gz. The exact specifications of this formats will be listed here soon.</p>
|
||||
<p>The preferred exported file format within <code><a href="">pyerrors</a></code> is json.gz. The exact specifications of this format will be listed here soon.</p>
|
||||
|
||||
<h2 id="jackknife-samples">Jackknife samples</h2>
|
||||
|
||||
|
@ -487,7 +487,7 @@ See <code><a href="pyerrors/obs.html#Obs.export_jackknife">pyerrors.obs.Obs.expo
|
|||
<span class="sd"># The `Obs` class</span>
|
||||
|
||||
<span class="sd">`pyerrors` introduces a new datatype, `Obs`, which simplifies error propagation and estimation for auto- and cross-correlated data.</span>
|
||||
<span class="sd">An `Obs` object can be initialized with two arguments, the first is a list containing the samples for an Observable from a Monte Carlo chain.</span>
|
||||
<span class="sd">An `Obs` object can be initialized with two arguments, the first is a list containing the samples for an observable from a Monte Carlo chain.</span>
|
||||
<span class="sd">The samples can either be provided as python list or as numpy array.</span>
|
||||
<span class="sd">The second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble.</span>
|
||||
|
||||
|
@ -499,7 +499,7 @@ See <code><a href="pyerrors/obs.html#Obs.export_jackknife">pyerrors.obs.Obs.expo
|
|||
|
||||
<span class="sd">## Error propagation</span>
|
||||
|
||||
<span class="sd">When performing mathematical operations on `Obs` objects the correct error propagation is intrinsically taken care using a first order Taylor expansion</span>
|
||||
<span class="sd">When performing mathematical operations on `Obs` objects the correct error propagation is intrinsically taken care of using a first order Taylor expansion</span>
|
||||
<span class="sd">$$\delta_f^i=\sum_\alpha \bar{f}_\alpha \delta_\alpha^i\,,\quad \delta_\alpha^i=a_\alpha^i-\bar{a}_\alpha\,,$$</span>
|
||||
<span class="sd">as introduced in [arXiv:hep-lat/0306017](https://arxiv.org/abs/hep-lat/0306017).</span>
|
||||
<span class="sd">The required derivatives $\bar{f}_\alpha$ are evaluated up to machine precision via automatic differentiation as suggested in [arXiv:1809.01289](https://arxiv.org/abs/1809.01289).</span>
|
||||
|
@ -557,7 +557,7 @@ See <code><a href="pyerrors/obs.html#Obs.export_jackknife">pyerrors.obs.Obs.expo
|
|||
|
||||
<span class="sd">The integrated autocorrelation time $\tau_\mathrm{int}$ and the autocorrelation function $\rho(W)$ can be monitored via the methods `pyerrors.obs.Obs.plot_tauint` and `pyerrors.obs.Obs.plot_tauint`.</span>
|
||||
|
||||
<span class="sd">If the parameter $S$ is set to zero it is assumed that dataset does not exhibit any autocorrelation and the windowsize is chosen to be zero.</span>
|
||||
<span class="sd">If the parameter $S$ is set to zero it is assumed that the dataset does not exhibit any autocorrelation and the windowsize is chosen to be zero.</span>
|
||||
<span class="sd">In this case the error estimate is identical to the sample standard error.</span>
|
||||
|
||||
<span class="sd">### Exponential tails</span>
|
||||
|
@ -746,7 +746,7 @@ See <code><a href="pyerrors/obs.html#Obs.export_jackknife">pyerrors.obs.Obs.expo
|
|||
<span class="sd">def func(a, x):</span>
|
||||
<span class="sd"> return a[1] * anp.exp(-a[0] * x)</span>
|
||||
<span class="sd">```</span>
|
||||
<span class="sd">**It is important that numerical functions refer to `autograd.numpy` instead of `numpy` for the automatic differentiation to work properly.**</span>
|
||||
<span class="sd">**It is important that numerical functions refer to `autograd.numpy` instead of `numpy` for the automatic differentiation in iterative algorithms to work properly.**</span>
|
||||
|
||||
<span class="sd">Fits can then be performed via</span>
|
||||
<span class="sd">```python</span>
|
||||
|
@ -800,7 +800,7 @@ See <code><a href="pyerrors/obs.html#Obs.export_jackknife">pyerrors.obs.Obs.expo
|
|||
|
||||
<span class="sd"># Export data</span>
|
||||
|
||||
<span class="sd">The preferred exported file format within `pyerrors` is json.gz. The exact specifications of this formats will be listed here soon.</span>
|
||||
<span class="sd">The preferred exported file format within `pyerrors` is json.gz. The exact specifications of this format will be listed here soon.</span>
|
||||
|
||||
<span class="sd">## Jackknife samples</span>
|
||||
<span class="sd">For comparison with other analysis workflows `pyerrors` can generate jackknife samples from an `Obs` object or import jackknife samples into an `Obs` object.</span>
|
||||
|
|
File diff suppressed because one or more lines are too long
Loading…
Add table
Add a link
Reference in a new issue