total_least_squares docstring updated

This commit is contained in:
Fabian Joswig 2021-11-08 09:50:51 +00:00
parent effccb1cc8
commit 2a594dfb4b

View file

@ -111,149 +111,8 @@ def least_squares(x, y, func, priors=None, silent=False, **kwargs):
return _standard_fit(x, y, func, silent=silent, **kwargs)
def standard_fit(x, y, func, silent=False, **kwargs):
warnings.warn("standard_fit renamed to least_squares", DeprecationWarning)
return least_squares(x, y, func, silent=silent, **kwargs)
def _standard_fit(x, y, func, silent=False, **kwargs):
output = Fit_result()
output.fit_function = func
x = np.asarray(x)
if x.shape[-1] != len(y):
raise Exception('x and y input have to have the same length')
if len(x.shape) > 2:
raise Exception('Unkown format for x values')
if not callable(func):
raise TypeError('func has to be a function.')
for i in range(25):
try:
func(np.arange(i), x.T[0])
except:
pass
else:
break
n_parms = i
if not silent:
print('Fit with', n_parms, 'parameters')
y_f = [o.value for o in y]
dy_f = [o.dvalue for o in y]
if np.any(np.asarray(dy_f) <= 0.0):
raise Exception('No y errors available, run the gamma method first.')
if 'initial_guess' in kwargs:
x0 = kwargs.get('initial_guess')
if len(x0) != n_parms:
raise Exception('Initial guess does not have the correct length.')
else:
x0 = [0.1] * n_parms
def chisqfunc(p):
model = func(p, x)
chisq = anp.sum(((y_f - model) / dy_f) ** 2)
return chisq
if 'method' in kwargs:
output.method = kwargs.get('method')
if not silent:
print('Method:', kwargs.get('method'))
if kwargs.get('method') == 'migrad':
fit_result = iminuit.minimize(chisqfunc, x0)
fit_result = iminuit.minimize(chisqfunc, fit_result.x)
else:
fit_result = scipy.optimize.minimize(chisqfunc, x0, method=kwargs.get('method'))
fit_result = scipy.optimize.minimize(chisqfunc, fit_result.x, method=kwargs.get('method'), tol=1e-12)
chisquare = fit_result.fun
output.iterations = fit_result.nit
else:
output.method = 'Levenberg-Marquardt'
if not silent:
print('Method: Levenberg-Marquardt')
def chisqfunc_residuals(p):
model = func(p, x)
chisq = ((y_f - model) / dy_f)
return chisq
fit_result = scipy.optimize.least_squares(chisqfunc_residuals, x0, method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15)
chisquare = np.sum(fit_result.fun ** 2)
output.iterations = fit_result.nfev
if not fit_result.success:
raise Exception('The minimization procedure did not converge.')
if x.shape[-1] - n_parms > 0:
output.chisquare_by_dof = chisquare / (x.shape[-1] - n_parms)
else:
output.chisquare_by_dof = float('nan')
output.message = fit_result.message
if not silent:
print(fit_result.message)
print('chisquare/d.o.f.:', output.chisquare_by_dof)
if kwargs.get('expected_chisquare') is True:
W = np.diag(1 / np.asarray(dy_f))
cov = covariance_matrix(y)
A = W @ jacobian(func)(fit_result.x, x)
P_phi = A @ np.linalg.inv(A.T @ A) @ A.T
expected_chisquare = np.trace((np.identity(x.shape[-1]) - P_phi) @ W @ cov @ W)
output.chisquare_by_expected_chisquare = chisquare / expected_chisquare
if not silent:
print('chisquare/expected_chisquare:',
output.chisquare_by_expected_chisquare)
hess_inv = np.linalg.pinv(jacobian(jacobian(chisqfunc))(fit_result.x))
def chisqfunc_compact(d):
model = func(d[:n_parms], x)
chisq = anp.sum(((d[n_parms:] - model) / dy_f) ** 2)
return chisq
jac_jac = jacobian(jacobian(chisqfunc_compact))(np.concatenate((fit_result.x, y_f)))
deriv = -hess_inv @ jac_jac[:n_parms, n_parms:]
result = []
for i in range(n_parms):
result.append(derived_observable(lambda x, **kwargs: x[0], [pseudo_Obs(fit_result.x[i], 0.0, y[0].names[0], y[0].shape[y[0].names[0]])] + list(y), man_grad=[0] + list(deriv[i])))
output.fit_parameters = result
output.chisquare = chisqfunc(fit_result.x)
output.dof = x.shape[-1] - n_parms
if kwargs.get('resplot') is True:
residual_plot(x, y, func, result)
if kwargs.get('qqplot') is True:
qqplot(x, y, func, result)
return output
def odr_fit(x, y, func, silent=False, **kwargs):
warnings.warn("odr_fit renamed to total_least_squares", DeprecationWarning)
return total_least_squares(x, y, func, silent=silent, **kwargs)
def total_least_squares(x, y, func, silent=False, **kwargs):
"""Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.
r'''Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.
Parameters
----------
@ -264,21 +123,24 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
func : object
func has to be of the form
```python
def func(a, x):
y = a[0] + a[1] * x + a[2] * anp.sinh(x)
return y
```
For multiple x values func can be of the form
```python
def func(a, x):
(x1, x2) = x
return a[0] * x1 ** 2 + a[1] * x2
```
It is important that all numpy functions refer to autograd.numpy, otherwise the differentiation
will not work.
silent : bool, optional
If true all output to the console is omitted (default False).
Based on the orthogonal distance regression module of scipy
initial_guess : list
can provide an initial guess for the input parameters. Relevant for non-linear
fits with many parameters.
@ -287,7 +149,9 @@ def total_least_squares(x, y, func, silent=False, **kwargs):
corrected by effects caused by correlated input data.
This can take a while as the full correlation matrix
has to be calculated (default False).
"""
Based on the orthogonal distance regression module of scipy
'''
output = Fit_result()
@ -541,6 +405,147 @@ def _prior_fit(x, y, func, priors, silent=False, **kwargs):
return output
def standard_fit(x, y, func, silent=False, **kwargs):
warnings.warn("standard_fit renamed to least_squares", DeprecationWarning)
return least_squares(x, y, func, silent=silent, **kwargs)
def _standard_fit(x, y, func, silent=False, **kwargs):
output = Fit_result()
output.fit_function = func
x = np.asarray(x)
if x.shape[-1] != len(y):
raise Exception('x and y input have to have the same length')
if len(x.shape) > 2:
raise Exception('Unkown format for x values')
if not callable(func):
raise TypeError('func has to be a function.')
for i in range(25):
try:
func(np.arange(i), x.T[0])
except:
pass
else:
break
n_parms = i
if not silent:
print('Fit with', n_parms, 'parameters')
y_f = [o.value for o in y]
dy_f = [o.dvalue for o in y]
if np.any(np.asarray(dy_f) <= 0.0):
raise Exception('No y errors available, run the gamma method first.')
if 'initial_guess' in kwargs:
x0 = kwargs.get('initial_guess')
if len(x0) != n_parms:
raise Exception('Initial guess does not have the correct length.')
else:
x0 = [0.1] * n_parms
def chisqfunc(p):
model = func(p, x)
chisq = anp.sum(((y_f - model) / dy_f) ** 2)
return chisq
if 'method' in kwargs:
output.method = kwargs.get('method')
if not silent:
print('Method:', kwargs.get('method'))
if kwargs.get('method') == 'migrad':
fit_result = iminuit.minimize(chisqfunc, x0)
fit_result = iminuit.minimize(chisqfunc, fit_result.x)
else:
fit_result = scipy.optimize.minimize(chisqfunc, x0, method=kwargs.get('method'))
fit_result = scipy.optimize.minimize(chisqfunc, fit_result.x, method=kwargs.get('method'), tol=1e-12)
chisquare = fit_result.fun
output.iterations = fit_result.nit
else:
output.method = 'Levenberg-Marquardt'
if not silent:
print('Method: Levenberg-Marquardt')
def chisqfunc_residuals(p):
model = func(p, x)
chisq = ((y_f - model) / dy_f)
return chisq
fit_result = scipy.optimize.least_squares(chisqfunc_residuals, x0, method='lm', ftol=1e-15, gtol=1e-15, xtol=1e-15)
chisquare = np.sum(fit_result.fun ** 2)
output.iterations = fit_result.nfev
if not fit_result.success:
raise Exception('The minimization procedure did not converge.')
if x.shape[-1] - n_parms > 0:
output.chisquare_by_dof = chisquare / (x.shape[-1] - n_parms)
else:
output.chisquare_by_dof = float('nan')
output.message = fit_result.message
if not silent:
print(fit_result.message)
print('chisquare/d.o.f.:', output.chisquare_by_dof)
if kwargs.get('expected_chisquare') is True:
W = np.diag(1 / np.asarray(dy_f))
cov = covariance_matrix(y)
A = W @ jacobian(func)(fit_result.x, x)
P_phi = A @ np.linalg.inv(A.T @ A) @ A.T
expected_chisquare = np.trace((np.identity(x.shape[-1]) - P_phi) @ W @ cov @ W)
output.chisquare_by_expected_chisquare = chisquare / expected_chisquare
if not silent:
print('chisquare/expected_chisquare:',
output.chisquare_by_expected_chisquare)
hess_inv = np.linalg.pinv(jacobian(jacobian(chisqfunc))(fit_result.x))
def chisqfunc_compact(d):
model = func(d[:n_parms], x)
chisq = anp.sum(((d[n_parms:] - model) / dy_f) ** 2)
return chisq
jac_jac = jacobian(jacobian(chisqfunc_compact))(np.concatenate((fit_result.x, y_f)))
deriv = -hess_inv @ jac_jac[:n_parms, n_parms:]
result = []
for i in range(n_parms):
result.append(derived_observable(lambda x, **kwargs: x[0], [pseudo_Obs(fit_result.x[i], 0.0, y[0].names[0], y[0].shape[y[0].names[0]])] + list(y), man_grad=[0] + list(deriv[i])))
output.fit_parameters = result
output.chisquare = chisqfunc(fit_result.x)
output.dof = x.shape[-1] - n_parms
if kwargs.get('resplot') is True:
residual_plot(x, y, func, result)
if kwargs.get('qqplot') is True:
qqplot(x, y, func, result)
return output
def odr_fit(x, y, func, silent=False, **kwargs):
warnings.warn("odr_fit renamed to total_least_squares", DeprecationWarning)
return total_least_squares(x, y, func, silent=silent, **kwargs)
def fit_lin(x, y, **kwargs):
"""Performs a linear fit to y = n + m * x and returns two Obs n, m.