Documentation updated

This commit is contained in:
fjosw 2021-11-15 10:57:31 +00:00
parent 6159b6e4f4
commit 2950e16c5e
2 changed files with 19 additions and 19 deletions

View file

@ -110,7 +110,7 @@ It is based on the <strong>gamma method</strong> <a href="https://arxiv.org/abs/
<li><strong>automatic differentiation</strong> as suggested in <a href="https://arxiv.org/abs/1809.01289">arXiv:1809.01289</a> (partly based on the <a href="https://github.com/HIPS/autograd">autograd</a> package)</li> <li><strong>automatic differentiation</strong> as suggested in <a href="https://arxiv.org/abs/1809.01289">arXiv:1809.01289</a> (partly based on the <a href="https://github.com/HIPS/autograd">autograd</a> package)</li>
<li><strong>treatment of slow modes</strong> in the simulation as suggested in <a href="https://arxiv.org/abs/1009.5228">arXiv:1009.5228</a></li> <li><strong>treatment of slow modes</strong> in the simulation as suggested in <a href="https://arxiv.org/abs/1009.5228">arXiv:1009.5228</a></li>
<li>coherent <strong>error propagation</strong> for data from <strong>different Markov chains</strong></li> <li>coherent <strong>error propagation</strong> for data from <strong>different Markov chains</strong></li>
<li><strong>non-linear fits with x- and y-errors</strong> and exact linear error propagation based on automatic differentiation as introduced in [arXiv:1809.01289]</li> <li><strong>non-linear fits with x- and y-errors</strong> and exact linear error propagation based on automatic differentiation as introduced in <a href="https://arxiv.org/abs/1809.01289">arXiv:1809.01289</a></li>
<li><strong>real and complex matrix operations</strong> and their error propagation based on automatic differentiation (cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...)</li> <li><strong>real and complex matrix operations</strong> and their error propagation based on automatic differentiation (cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...)</li>
</ul> </ul>
@ -129,7 +129,7 @@ It is based on the <strong>gamma method</strong> <a href="https://arxiv.org/abs/
<h1 id="the-obs-class">The <code>Obs</code> class</h1> <h1 id="the-obs-class">The <code>Obs</code> class</h1>
<p><code><a href="">pyerrors</a></code> introduces a new datatype, <code>Obs</code>, which simplifies error propagation and estimation for auto- and cross-correlated data. <p><code><a href="">pyerrors</a></code> introduces a new datatype, <code>Obs</code>, which simplifies error propagation and estimation for auto- and cross-correlated data.
An <code>Obs</code> object can be initialized with two arguments, the first is a list containining the samples for an Observable from a Monte Carlo chain. An <code>Obs</code> object can be initialized with two arguments, the first is a list containing the samples for an Observable from a Monte Carlo chain.
The samples can either be provided as python list or as numpy array. The samples can either be provided as python list or as numpy array.
The second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble.</p> The second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble.</p>
@ -165,9 +165,9 @@ as introduced in <a href="https://arxiv.org/abs/hep-lat/0306017">arXiv:hep-lat/0
<h2 id="error-estimation">Error estimation</h2> <h2 id="error-estimation">Error estimation</h2>
<p>The error propagation is based on the gamma method introduced in <a href="https://arxiv.org/abs/hep-lat/0306017">arXiv:hep-lat/0306017</a>.</p> <p>The error estimation within <code><a href="">pyerrors</a></code> is based on the gamma method introduced in <a href="https://arxiv.org/abs/hep-lat/0306017">arXiv:hep-lat/0306017</a>.</p>
<p>After having arrived at</p> <p>After having arrived at the derived quantity of interest the <code>gamma_method</code> can be called as detailed in the following example.</p>
<p>Example:</p> <p>Example:</p>
@ -201,7 +201,7 @@ as introduced in <a href="https://arxiv.org/abs/hep-lat/0306017">arXiv:hep-lat/0
<h3 id="exponential-tails">Exponential tails</h3> <h3 id="exponential-tails">Exponential tails</h3>
<p>Slow modes in the Monte Carlo history can be accounted for by attaching and exponntial tail to the autocorrelation function $\rho$ as suggested in <a href="https://arxiv.org/abs/1009.5228">arXiv:1009.5228</a>. The longest autocorrelation time in the history, $\tau_\mathrm{exp}$, can be passed to the <code>gamma_method</code> as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.</p> <p>Slow modes in the Monte Carlo history can be accounted for by attaching an exponential tail to the autocorrelation function $\rho$ as suggested in <a href="https://arxiv.org/abs/1009.5228">arXiv:1009.5228</a>. The longest autocorrelation time in the history, $\tau_\mathrm{exp}$, can be passed to the <code>gamma_method</code> as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.</p>
<p>Example:</p> <p>Example:</p>
@ -217,7 +217,7 @@ as introduced in <a href="https://arxiv.org/abs/hep-lat/0306017">arXiv:hep-lat/0
<h2 id="multiple-ensemblesreplica">Multiple ensembles/replica</h2> <h2 id="multiple-ensemblesreplica">Multiple ensembles/replica</h2>
<p>Error propagation for multiple ensembles (Markov chains with different simulation parameters) is handeled automatically. Ensembles are uniquely identified by their <code>name</code>.</p> <p>Error propagation for multiple ensembles (Markov chains with different simulation parameters) is handled automatically. Ensembles are uniquely identified by their <code>name</code>.</p>
<p>Example:</p> <p>Example:</p>
@ -250,7 +250,7 @@ as introduced in <a href="https://arxiv.org/abs/hep-lat/0306017">arXiv:hep-lat/0
<h3 id="error-estimation-for-multiple-ensembles">Error estimation for multiple ensembles</h3> <h3 id="error-estimation-for-multiple-ensembles">Error estimation for multiple ensembles</h3>
<p>In order to keep track of different error analyis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.</p> <p>In order to keep track of different error analysis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.</p>
<p>Example:</p> <p>Example:</p>
@ -264,7 +264,7 @@ Passing arguments to the <code>gamma_method</code> still dominates over the dict
<h2 id="irregular-monte-carlo-chains">Irregular Monte Carlo chains</h2> <h2 id="irregular-monte-carlo-chains">Irregular Monte Carlo chains</h2>
<p>Irregular Monte Carlo chains can be initilized with the parameter <code>idl</code>.</p> <p>Irregular Monte Carlo chains can be initialized with the parameter <code>idl</code>.</p>
<p>Example:</p> <p>Example:</p>
@ -279,7 +279,7 @@ Passing arguments to the <code>gamma_method</code> still dominates over the dict
</code></pre></div> </code></pre></div>
<p><strong>Warning:</strong> Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions. <p><strong>Warning:</strong> Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions.
Make sure to check the with e.g. <code><a href="pyerrors/obs.html#Obs.plot_rho">pyerrors.obs.Obs.plot_rho</a></code> or <code><a href="pyerrors/obs.html#Obs.plot_tauint">pyerrors.obs.Obs.plot_tauint</a></code>.</p> Make sure to check the autocorrelation time with e.g. <code><a href="pyerrors/obs.html#Obs.plot_rho">pyerrors.obs.Obs.plot_rho</a></code> or <code><a href="pyerrors/obs.html#Obs.plot_tauint">pyerrors.obs.Obs.plot_tauint</a></code>.</p>
<p>For the full API see <code><a href="pyerrors/obs.html#Obs">pyerrors.obs.Obs</a></code></p> <p>For the full API see <code><a href="pyerrors/obs.html#Obs">pyerrors.obs.Obs</a></code></p>
@ -314,7 +314,7 @@ Make sure to check the with e.g. <code><a href="pyerrors/obs.html#Obs.plot_rho">
<span class="sd">- **automatic differentiation** as suggested in [arXiv:1809.01289](https://arxiv.org/abs/1809.01289) (partly based on the [autograd](https://github.com/HIPS/autograd) package)</span> <span class="sd">- **automatic differentiation** as suggested in [arXiv:1809.01289](https://arxiv.org/abs/1809.01289) (partly based on the [autograd](https://github.com/HIPS/autograd) package)</span>
<span class="sd">- **treatment of slow modes** in the simulation as suggested in [arXiv:1009.5228](https://arxiv.org/abs/1009.5228)</span> <span class="sd">- **treatment of slow modes** in the simulation as suggested in [arXiv:1009.5228](https://arxiv.org/abs/1009.5228)</span>
<span class="sd">- coherent **error propagation** for data from **different Markov chains**</span> <span class="sd">- coherent **error propagation** for data from **different Markov chains**</span>
<span class="sd">- **non-linear fits with x- and y-errors** and exact linear error propagation based on automatic differentiation as introduced in [arXiv:1809.01289]</span> <span class="sd">- **non-linear fits with x- and y-errors** and exact linear error propagation based on automatic differentiation as introduced in [arXiv:1809.01289](https://arxiv.org/abs/1809.01289)</span>
<span class="sd">- **real and complex matrix operations** and their error propagation based on automatic differentiation (cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...)</span> <span class="sd">- **real and complex matrix operations** and their error propagation based on automatic differentiation (cholesky decomposition, calculation of eigenvalues and eigenvectors, singular value decomposition...)</span>
<span class="sd">## Getting started</span> <span class="sd">## Getting started</span>
@ -332,7 +332,7 @@ Make sure to check the with e.g. <code><a href="pyerrors/obs.html#Obs.plot_rho">
<span class="sd"># The `Obs` class</span> <span class="sd"># The `Obs` class</span>
<span class="sd">`pyerrors` introduces a new datatype, `Obs`, which simplifies error propagation and estimation for auto- and cross-correlated data.</span> <span class="sd">`pyerrors` introduces a new datatype, `Obs`, which simplifies error propagation and estimation for auto- and cross-correlated data.</span>
<span class="sd">An `Obs` object can be initialized with two arguments, the first is a list containining the samples for an Observable from a Monte Carlo chain.</span> <span class="sd">An `Obs` object can be initialized with two arguments, the first is a list containing the samples for an Observable from a Monte Carlo chain.</span>
<span class="sd">The samples can either be provided as python list or as numpy array.</span> <span class="sd">The samples can either be provided as python list or as numpy array.</span>
<span class="sd">The second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble.</span> <span class="sd">The second argument is a list containing the names of the respective Monte Carlo chains as strings. These strings uniquely identify a Monte Carlo chain/ensemble.</span>
@ -368,9 +368,9 @@ Make sure to check the with e.g. <code><a href="pyerrors/obs.html#Obs.plot_rho">
<span class="sd">## Error estimation</span> <span class="sd">## Error estimation</span>
<span class="sd">The error propagation is based on the gamma method introduced in [arXiv:hep-lat/0306017](https://arxiv.org/abs/hep-lat/0306017).</span> <span class="sd">The error estimation within `pyerrors` is based on the gamma method introduced in [arXiv:hep-lat/0306017](https://arxiv.org/abs/hep-lat/0306017).</span>
<span class="sd">After having arrived at</span> <span class="sd">After having arrived at the derived quantity of interest the `gamma_method` can be called as detailed in the following example.</span>
<span class="sd">Example:</span> <span class="sd">Example:</span>
<span class="sd">```python</span> <span class="sd">```python</span>
@ -405,7 +405,7 @@ Make sure to check the with e.g. <code><a href="pyerrors/obs.html#Obs.plot_rho">
<span class="sd">### Exponential tails</span> <span class="sd">### Exponential tails</span>
<span class="sd">Slow modes in the Monte Carlo history can be accounted for by attaching and exponntial tail to the autocorrelation function $\rho$ as suggested in [arXiv:1009.5228](https://arxiv.org/abs/1009.5228). The longest autocorrelation time in the history, $\tau_\mathrm{exp}$, can be passed to the `gamma_method` as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.</span> <span class="sd">Slow modes in the Monte Carlo history can be accounted for by attaching an exponential tail to the autocorrelation function $\rho$ as suggested in [arXiv:1009.5228](https://arxiv.org/abs/1009.5228). The longest autocorrelation time in the history, $\tau_\mathrm{exp}$, can be passed to the `gamma_method` as parameter. In this case the automatic windowing procedure is vacated and the parameter $S$ does not affect the error estimate.</span>
<span class="sd">Example:</span> <span class="sd">Example:</span>
<span class="sd">```python</span> <span class="sd">```python</span>
@ -421,7 +421,7 @@ Make sure to check the with e.g. <code><a href="pyerrors/obs.html#Obs.plot_rho">
<span class="sd">## Multiple ensembles/replica</span> <span class="sd">## Multiple ensembles/replica</span>
<span class="sd">Error propagation for multiple ensembles (Markov chains with different simulation parameters) is handeled automatically. Ensembles are uniquely identified by their `name`.</span> <span class="sd">Error propagation for multiple ensembles (Markov chains with different simulation parameters) is handled automatically. Ensembles are uniquely identified by their `name`.</span>
<span class="sd">Example:</span> <span class="sd">Example:</span>
<span class="sd">```python</span> <span class="sd">```python</span>
@ -454,7 +454,7 @@ Make sure to check the with e.g. <code><a href="pyerrors/obs.html#Obs.plot_rho">
<span class="sd">### Error estimation for multiple ensembles</span> <span class="sd">### Error estimation for multiple ensembles</span>
<span class="sd">In order to keep track of different error analyis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.</span> <span class="sd">In order to keep track of different error analysis parameters for different ensembles one can make use of global dictionaries as detailed in the following example.</span>
<span class="sd">Example:</span> <span class="sd">Example:</span>
<span class="sd">```python</span> <span class="sd">```python</span>
@ -469,7 +469,7 @@ Make sure to check the with e.g. <code><a href="pyerrors/obs.html#Obs.plot_rho">
<span class="sd">## Irregular Monte Carlo chains</span> <span class="sd">## Irregular Monte Carlo chains</span>
<span class="sd">Irregular Monte Carlo chains can be initilized with the parameter `idl`.</span> <span class="sd">Irregular Monte Carlo chains can be initialized with the parameter `idl`.</span>
<span class="sd">Example:</span> <span class="sd">Example:</span>
<span class="sd">```python</span> <span class="sd">```python</span>
@ -484,7 +484,7 @@ Make sure to check the with e.g. <code><a href="pyerrors/obs.html#Obs.plot_rho">
<span class="sd">```</span> <span class="sd">```</span>
<span class="sd">**Warning:** Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions.</span> <span class="sd">**Warning:** Irregular Monte Carlo chains can result in odd patterns in the autocorrelation functions.</span>
<span class="sd">Make sure to check the with e.g. `pyerrors.obs.Obs.plot_rho` or `pyerrors.obs.Obs.plot_tauint`.</span> <span class="sd">Make sure to check the autocorrelation time with e.g. `pyerrors.obs.Obs.plot_rho` or `pyerrors.obs.Obs.plot_tauint`.</span>
<span class="sd">For the full API see `pyerrors.obs.Obs`</span> <span class="sd">For the full API see `pyerrors.obs.Obs`</span>

File diff suppressed because one or more lines are too long