diff --git a/pyerrors/fits.py b/pyerrors/fits.py index 722f9bc0..44ce8ae4 100644 --- a/pyerrors/fits.py +++ b/pyerrors/fits.py @@ -706,10 +706,9 @@ def _combined_fit(x, y, func, silent=False, **kwargs): x_all = [] y_all = [] for key in x.keys(): - x_all += x[key] y_all += y[key] - x_all = np.asarray(x_all) + x_all = np.concatenate([np.array(o) for o in x.values()]) if len(x_all.shape) > 2: raise Exception('Unknown format for x values') diff --git a/tests/fits_test.py b/tests/fits_test.py index 828c0cbe..d275a848 100644 --- a/tests/fits_test.py +++ b/tests/fits_test.py @@ -608,6 +608,22 @@ def test_ks_test(): pe.fits.ks_test(fit_res) +def test_combined_fit_list_v_array(): + res = [] + y_test = {'a': [pe.Obs([np.random.normal(i, 0.5, 1000)], ['ensemble1']) for i in range(1, 7)]} + for x_test in [{'a': [0, 1, 2, 3, 4, 5]}, {'a': np.arange(6)}]: + for key in y_test.keys(): + [item.gamma_method() for item in y_test[key]] + def func_a(a, x): + return a[1] * x + a[0] + + funcs_test = {"a": func_a} + res.append(pe.fits.least_squares(x_test, y_test, funcs_test)) + + assert (res[0][0] - res[1][0]).is_zero(atol=1e-8) + assert (res[0][1] - res[1][1]).is_zero(atol=1e-8) + + def fit_general(x, y, func, silent=False, **kwargs): """Performs a non-linear fit to y = func(x) and returns a list of Obs corresponding to the fit parameters.