mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-15 12:03:42 +02:00
fits fit_exp removed
This commit is contained in:
parent
f4abad1280
commit
0b158f8731
3 changed files with 2 additions and 29 deletions
2
.github/workflows/flake8.yml
vendored
2
.github/workflows/flake8.yml
vendored
|
@ -1,4 +1,4 @@
|
||||||
name: flake8 Lint
|
name: flake8
|
||||||
|
|
||||||
on:
|
on:
|
||||||
push:
|
push:
|
||||||
|
|
|
@ -17,6 +17,7 @@ All notable changes to this project will be documented in this file.
|
||||||
- The function `plot_corrs` was deprecated as all its functionality is now contained within `Corr.show`
|
- The function `plot_corrs` was deprecated as all its functionality is now contained within `Corr.show`
|
||||||
- The kwarg `bias_correction` in `derived_observable` was removed
|
- The kwarg `bias_correction` in `derived_observable` was removed
|
||||||
- Obs no longer have an attribute `e_Q`
|
- Obs no longer have an attribute `e_Q`
|
||||||
|
- Removed `fits.fit_exp`
|
||||||
|
|
||||||
## [1.1.0] - 2021-10-11
|
## [1.1.0] - 2021-10-11
|
||||||
### Added
|
### Added
|
||||||
|
|
|
@ -512,34 +512,6 @@ def fit_lin(x, y, **kwargs):
|
||||||
raise Exception('Unsupported types for x')
|
raise Exception('Unsupported types for x')
|
||||||
|
|
||||||
|
|
||||||
def fit_exp(data, **kwargs):
|
|
||||||
"""Fit a single exponential to a discrete time series of Obs without errors.
|
|
||||||
|
|
||||||
Keyword arguments
|
|
||||||
-----------------
|
|
||||||
shift -- specifies the absolute timeslice value of the first entry of data (default 0.0)
|
|
||||||
only important if one is interested in the matrix element, for the mass this is irrelevant.
|
|
||||||
"""
|
|
||||||
if 'shift' in kwargs:
|
|
||||||
shift = kwargs.get("shift")
|
|
||||||
else:
|
|
||||||
shift = 0
|
|
||||||
length = len(data)
|
|
||||||
xsum = 0
|
|
||||||
xsum2 = 0
|
|
||||||
ysum = 0
|
|
||||||
xysum = 0
|
|
||||||
for i in range(shift, length + shift):
|
|
||||||
xsum += i
|
|
||||||
xsum2 += i ** 2
|
|
||||||
tmp_log = np.log(np.abs(data[i - shift]))
|
|
||||||
ysum += tmp_log
|
|
||||||
xysum += i * tmp_log
|
|
||||||
res0 = -(length * xysum - xsum * ysum) / (length * xsum2 - xsum * xsum) # mass
|
|
||||||
res1 = np.exp((xsum2 * ysum - xsum * xysum) / (length * xsum2 - xsum * xsum)) # matrix element
|
|
||||||
return [res0, res1]
|
|
||||||
|
|
||||||
|
|
||||||
def qqplot(x, o_y, func, p):
|
def qqplot(x, o_y, func, p):
|
||||||
""" Generates a quantile-quantile plot of the fit result which can be used to
|
""" Generates a quantile-quantile plot of the fit result which can be used to
|
||||||
check if the residuals of the fit are gaussian distributed.
|
check if the residuals of the fit are gaussian distributed.
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue