mirror of
https://github.com/fjosw/pyerrors.git
synced 2025-05-14 19:43:41 +02:00
docs: docstrings and comments cleaned up
This commit is contained in:
parent
080e09a07f
commit
0a1a9ce1a1
2 changed files with 3 additions and 7 deletions
|
@ -39,7 +39,7 @@ class Corr:
|
||||||
region indentified for this correlator.
|
region indentified for this correlator.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if isinstance(data_input, np.ndarray): # Input is an array of Corrs
|
if isinstance(data_input, np.ndarray):
|
||||||
|
|
||||||
# This only works, if the array fulfills the conditions below
|
# This only works, if the array fulfills the conditions below
|
||||||
if not len(data_input.shape) == 2 and data_input.shape[0] == data_input.shape[1]:
|
if not len(data_input.shape) == 2 and data_input.shape[0] == data_input.shape[1]:
|
||||||
|
@ -95,7 +95,6 @@ class Corr:
|
||||||
# An undefined timeslice is represented by the None object
|
# An undefined timeslice is represented by the None object
|
||||||
self.content = [None] * padding[0] + self.content + [None] * padding[1]
|
self.content = [None] * padding[0] + self.content + [None] * padding[1]
|
||||||
self.T = len(self.content)
|
self.T = len(self.content)
|
||||||
|
|
||||||
self.prange = prange
|
self.prange = prange
|
||||||
|
|
||||||
self.gamma_method()
|
self.gamma_method()
|
||||||
|
@ -160,9 +159,6 @@ class Corr:
|
||||||
raise Exception("Vectors are of wrong shape!")
|
raise Exception("Vectors are of wrong shape!")
|
||||||
if normalize:
|
if normalize:
|
||||||
vector_l, vector_r = vector_l / np.sqrt((vector_l @ vector_l)), vector_r / np.sqrt(vector_r @ vector_r)
|
vector_l, vector_r = vector_l / np.sqrt((vector_l @ vector_l)), vector_r / np.sqrt(vector_r @ vector_r)
|
||||||
# if (not (0.95 < vector_r @ vector_r < 1.05)) or (not (0.95 < vector_l @ vector_l < 1.05)):
|
|
||||||
# print("Vectors are normalized before projection!")
|
|
||||||
|
|
||||||
newcontent = [None if (item is None) else np.asarray([vector_l.T @ item @ vector_r]) for item in self.content]
|
newcontent = [None if (item is None) else np.asarray([vector_l.T @ item @ vector_r]) for item in self.content]
|
||||||
|
|
||||||
else:
|
else:
|
||||||
|
|
|
@ -1301,7 +1301,7 @@ def correlate(obs_a, obs_b):
|
||||||
|
|
||||||
Keep in mind to only correlate primary observables which have not been reweighted
|
Keep in mind to only correlate primary observables which have not been reweighted
|
||||||
yet. The reweighting has to be applied after correlating the observables.
|
yet. The reweighting has to be applied after correlating the observables.
|
||||||
Currently only works if ensembles are identical. This is not really necessary.
|
Currently only works if ensembles are identical (this is not strictly necessary).
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if sorted(obs_a.names) != sorted(obs_b.names):
|
if sorted(obs_a.names) != sorted(obs_b.names):
|
||||||
|
@ -1462,7 +1462,7 @@ def covariance(obs1, obs2, correlation=False, **kwargs):
|
||||||
|
|
||||||
|
|
||||||
def pseudo_Obs(value, dvalue, name, samples=1000):
|
def pseudo_Obs(value, dvalue, name, samples=1000):
|
||||||
"""Generate a pseudo Obs with given value, dvalue and name
|
"""Generate an Obs object with given value, dvalue and name for test purposes
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue