feat: priors in fits replaced by covobs, random hash added to avoid

prior collisions.
This commit is contained in:
Fabian Joswig 2021-12-09 12:36:28 +00:00
parent c2ff8c715a
commit 071d550d1d

View file

@ -10,7 +10,7 @@ from scipy.odr import ODR, Model, RealData
import iminuit
from autograd import jacobian
from autograd import elementwise_grad as egrad
from .obs import Obs, derived_observable, covariance, pseudo_Obs
from .obs import Obs, derived_observable, covariance, cov_Obs
class Fit_result(Sequence):
@ -352,7 +352,7 @@ def _prior_fit(x, y, func, priors, silent=False, **kwargs):
loc_priors.append(i_prior)
else:
loc_val, loc_dval = extract_val_and_dval(i_prior)
loc_priors.append(pseudo_Obs(loc_val, loc_dval, 'p' + str(i_n)))
loc_priors.append(cov_Obs(loc_val, loc_dval ** 2, '#prior' + str(i_n) + f"_{np.random.randint(2147483647):010d}"))
output.priors = loc_priors