latticegpu.jl/src/YM/YM.jl
2024-07-05 14:34:14 +02:00

184 lines
5.5 KiB
Julia

###
### "THE BEER-WARE LICENSE":
### Alberto Ramos wrote this file. As long as you retain this
### notice you can do whatever you want with this stuff. If we meet some
### day, and you think this stuff is worth it, you can buy me a beer in
### return. <alberto.ramos@cern.ch>
###
### file: YM.jl
### created: Mon Jul 12 16:23:51 2021
###
module YM
using CUDA, Random, TimerOutputs, BDIO
using ..Space
using ..Groups
using ..Fields
using ..MD
import Base.show
"""
struct GaugeParm{T,G,N}
Structure containing the parameters of a pure gauge simulation. These are:
- beta: Type `T`. The bare coupling of the simulation.
- c0: Type `T`. LatticeGPU supports the simulation of gauge actions made of 1x1 Wilson Loops and 2x1 Wilson loops. The parameter c0 defines the coefficient on the simulation of the 1x1 loops. Some common choices are:
- c0=1: Wilson plaquette action.
- c0=5/3: Tree-level improved Lüscher-Weisz action.
- c0=3.648: Iwasaki gauge action.
- cG: Tuple (`T`, `T`). Boundary improvement parameters.
- ng: `Int64`. Rank of the gauge group.
- Ubnd: Boundary field for SF boundary conditions.
"""
struct GaugeParm{T,G,N}
beta::T
c0::T
cG::NTuple{2,T}
ng::Int64
Ubnd::NTuple{N, G}
GaugeParm{T1,T2,T3}(a,b,c,d,e) where {T1,T2,T3} = new{T1,T2,T3}(a,b,c,d,e)
function GaugeParm{T}(::Type{G}, bt, c0, cG, phi, iL) where {T,G}
degree(::Type{SU2{T}}) where T <: AbstractFloat = 2
degree(::Type{SU3{T}}) where T <: AbstractFloat = 3
ng = degree(G)
nsd = length(iL)
return new{T,G,nsd}(bt, c0, cG, ng, ntuple(id->bndfield(phi[1], phi[2], iL[id]), nsd))
end
function GaugeParm{T}(::Type{G}, bt, c0) where {T,G}
degree(::Type{SU2{T}}) where T <: AbstractFloat = 2
degree(::Type{SU3{T}}) where T <: AbstractFloat = 3
ng = degree(G)
return new{T,G,0}(bt, c0, (0.0,0.0), ng, ())
end
end
export GaugeParm
function Base.show(io::IO, gp::GaugeParm{T, G, N}) where {T,G,N}
println(io, "Group: ", G)
println(io, " - beta: ", gp.beta)
println(io, " - c0: ", gp.c0)
println(io, " - cG: ", gp.cG)
if (N > 0)
for i in 1:N
println(io, " - Boundary link: ", gp.Ubnd[i])
end
end
return nothing
end
"""
struct YMworkspace{T}
Structure containing memory workspace that is reused by different routines in order to avoid allocating/deallocating time.
The parameter `T` represents the precision of the simulation (i.e. single/double). The structure contains the following components
- GRP: Group being simulated.
- ALG: Corresponding Algebra.
- PRC: Precision (i.e. `T`).
- frc1: Algebra field with natural indexing.
- frc2: Algebra field with natural indexing.
- mom: Algebra field with natural indexing.
- U1: Group field with natural indexing.
- cm: Complex field with lexicographic indexing.
- rm: Real field with lexicographic indexing.
"""
struct YMworkspace{T}
GRP
ALG
PRC
frc1
frc2
mom
U1
cm # complex of volume
rm # float of volume
function YMworkspace(::Type{G}, ::Type{T}, lp::SpaceParm) where {G <: Group, T <: AbstractFloat}
@timeit "Allocating YMWorkspace" begin
if (G == SU2)
GRP = SU2
ALG = SU2alg
f1 = vector_field(SU2alg{T}, lp)
f2 = vector_field(SU2alg{T}, lp)
mm = vector_field(SU2alg{T}, lp)
u1 = vector_field(SU2{T}, lp)
end
if (G == SU3)
GRP = SU3
ALG = SU3alg
f1 = vector_field(SU3alg{T}, lp)
f2 = vector_field(SU3alg{T}, lp)
mm = vector_field(SU3alg{T}, lp)
u1 = vector_field(SU3{T}, lp)
end
cs = scalar_field_point(Complex{T}, lp)
rs = scalar_field_point(T, lp)
end
return new{T}(GRP,ALG,T,f1, f2, mm, u1, cs, rs)
end
end
export YMworkspace
function Base.show(io::IO, ymws::YMworkspace)
println(io, "Workspace for Group: ", ymws.GRP)
println(io, " Algebra: ", ymws.ALG)
println(io, "Precision: ", ymws.PRC)
return nothing
end
"""
function ztwist(gp::GaugeParm{T,G}, lp::SpaceParm{N,M,B,D}[, ipl])
Returns the twist factor. If a plane index is passed, returns the twist factor as a Complex{T}. If this is not provided, returns a tuple, containing the factor of each plane.
"""
function ztwist(gp::GaugeParm{T,G}, lp::SpaceParm{N,M,B,D}) where {T,G,N,M,B,D}
function plnf(ipl)
id1, id2 = lp.plidx[ipl]
return convert(Complex{T},exp(2im * pi * lp.ntw[ipl]/(gp.ng)))
end
return ntuple(i->plnf(i), M)
end
function ztwist(gp::GaugeParm{T,G}, lp::SpaceParm{N,M,B,D}, ipl::Int) where {T,G,N,M,B,D}
id1, id2 = lp.plidx[ipl]
return convert(Complex{T},exp(2im * pi * lp.ntw[ipl]/(gp.ng)))
end
export ztwist
include("YMfields.jl")
export randomize!, zero!, norm2
include("YMact.jl")
export krnl_plaq!, force_gauge, force_wilson
include("YMhmc.jl")
export gauge_action, hamiltonian, plaquette, HMC!, MD!
include("YMflow.jl")
export FlowIntr, flw, flw_adapt
export Eoft_clover, Eoft_plaq, Qtop
export FlowIntr, wfl_euler, zfl_euler, wfl_rk2, zfl_rk2, wfl_rk3, zfl_rk3
include("YMsf.jl")
export sfcoupling, bndfield, setbndfield
include("YMio.jl")
export import_lex64, import_cern64, import_bsfqcd, save_cnfg, read_cnfg, read_gp
end